FSU COP 4530 / CGS 5425 (Fall 2003, Section 4)
Data Structures, Algorithms, and Generic Programming

Introduction to UNIX Shell

Teaching assistants

Zhiqian Hu (zhiqiahu@cs.fsu.edu)
Nobuyasu Fukuhara (nff0150@garnet.acns.fsu.edu)

Office:
CS Majors Lab

Office: CS Majors Lab

Office hours:
T 3:00pm – 5:00pm
Office hours: M 10:00am – 11:00am, W 2:00pm – 3:00pm

Introduction to the Shell

Simply defined, a shell is a program that allows the computer system to understand your commands. There are three main purposes of the shell:

· Interactive use

· Customization of your UNIX session

· Programming

When the shell is used interactively, the system waits for you to type a command at the UNIX prompt. Your commands can include special symbols that let you redirect input and output.

A UNIX shell also defines variables to control the behavior of your UNIX session. Setting these variables will tell the system, for example, which directory to use as your home directory. You can define start-up files that are read when you log in. Start-up files can also contain UNIX commands that will be executed every time you log in.

UNIX shells provide a set of special commands that can be used to create programs called shell scripts. Scripts are useful for executing a series of individual commands, similar to the behaviors of BATCH files in MS-DOS.

Common Features

Many different brands of shells exist, but almost all of them provide certain common features. Here is a list of commonly used symbols and commands:

· &

(run process in background)

· >

(redirect output)

· <

(redirect input)

· |

(pipe output)

· >>

(append to file)

· *

(match any character(s) in filename)

· $var

(use the value of the variable)

· cd

(change directories)

· echo

(display output)

· exit

(exit the shell)

· jobs

(list the current running jobs)

· kill <job id>
(kill the job)

Let’s see some examples:

emacs &

run emacs in the background

ls > file

store the output of the ls, or the contents of the current directory, to

file.

mail ta < report

mail ta the contents of the report

ls | grep substring
list all the files in the current directory with file names containing the

substring

cat file1 >> file2
append the contents of file1 to the end of file2

cat file1 file2 > file3
concatenate file1 and file2 and store into file3

ls a*

list all the files with file names that begin with a

echo $PATH

display the contents of the PATH environment variable

cd dir

change to the directory named dir

cd

change to the home directory

cd ..

change to the parent directory

BIG UNIX Concept: A Collection of Small Tools

One important UNIX concept is the invention of the UNIX pipe, which allows the composition of tools to form new tools. For example, ls –l creates a detailed listing of the directory contents, but sometimes the results won’t fit the screen. Instead of adding an extra flag into the ls to display one screen at a time, you can type ls -l | more: The results of the ls are “piped” through the more command.

The invention of this pipe mechanism encouraged the rapid advancement of UNIX tools in its early years. The following directories contain a large collection of tools:

· /bin
· /usr/bin
· /usr/local/bin
· /usr/sbin
· /usr/local/sbin
Feel free to view the corresponding online manual pages (e.g., type man grep) and try them out. Here is a list of useful commands for your initial exploration.

· date

(print the current time and date)

· diff file1 file2
(report lines that differ between file1 and file2)

· df

(print disk usage)

· find

(find particular groups of files)

· grep

(search for lines that match a string or a regular expression)

· memstat

(check the memory states)

· netstat

(check the network states)

· ps

(check the process running states)

· sort

(sort the lines of the named files)

· uptime

(check the system loads)

