CS111—Operating System Principles

Setting up Shell Environment
(from UNIX in a NutShell)

Teaching Assistants:

Andy Wang (awang@cs.ucla.edu)

Murali Mani (mani@cs.ucla.edu)

Office Hours:

Andy:
M1-3, W3-4, Th1-2 at 4428 BH and by appointment

Murali:
W4:30-6:30 at 4428 BH and by appointment

As some of you have experienced, when you type the name of the executable file as a command, the shell complains that it cannot find the file. Executing a program involves much more than just setting the processor’s PC to the beginning of the executable image; you must have the proper execution environment.
When you login, the login shell will execute two configuration files located in your home directory—.cshrc and .login.
 The .cshrc file is executed at each instance of shell, and the .login is executed by login shell after .cshrc at login. The configuration files contain shell commands that you could type by hand every time you start a shell, but this method is much easier and less error prone.

Setting up .login

For the purposes of this course, all you need is a simple .login file like the following:

comments

setenv MANPATH /usr/man:/usr/local/man

Lines that start with # denote comments. The setenv shell command sets the environment variable MANPATH to directories containing the man pages. In a UNIX shell, if you want to see a list of all the defined environment variables, just type setenv. To see a particular environment variable, such as MANPATH, type echo $MANPATH. To undefine an environment variable, type unsetenv VARIABLE.

Setting up .cshrc

The following is a simple example of a .cshrc file:

set path = (/bin /usr/bin /usr/sbin /usr/local/sbin \

/usr/local/bin /usr/lib/gcc-lib/i486-linux/2.6.3 .)

alias ls

dir

alias rm
-i
rm

alias cat
dog

alias man
woman

The set command sets the path variable (which is the same as PATH variable) to the directories that may contain the executable you want to run. The shell searches the directories in the PATH until it finds an executable. The first found executable gets executed. Note that the last element in the path is ‘.’, which means the current directory. For example, if you create an executable with the name ls, and if you type ls in your project directory, the /bin/ls will be executed instead of your ls because /bin is listed first. To execute your ls in the current directory, type ./ls, which we will explain later. To find out which ls you are currently running, type which ls.

Note that use ‘\’ if you need to continue on the next line. With the above path definition, if your directory contains an executable named a.out, typing a.out is equivalent to typing ./a.out.

The alias command allows you to create arbitrary mappings from one UNIX command to another. For example, alias ls dir allows you to type dir to list the contents of a directory. The rm example shows you how to save typing by using alias.
After you modify .login and .cshrc files to your heart’s content, you can execute them by typing source .login and source .cshrc. To disable an alias, type unalias command. To see the complete list of defined aliases, type alias.

� As a convention, file or directory names that start with ‘.’ are configuration files, and they are normally invisible with ls command. However, if you try ls -aF, you will see all the configuration files whose names start with ‘.’, all the directories appended with ‘/’, and all the executable files appended with ‘*’.

