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In enterprise data centers power usage is a problem impacting server density and the total cost
of ownership. Storage uses a significant fraction of the power budget and there are no widely
deployed power-saving solutions for enterprise storage systems. The traditional view is that en-
terprise workloads make spinning disks down ineffective because idle periods are too short. We
analyzed block-level traces from 36 volumes in an enterprise data center for one week and con-
cluded that significant idle periods exist, and that they can be further increased by modifying the
read/write patterns using write off-loading. Write off-loading allows write requests on spun-down
disks to be temporarily redirected to persistent storage elsewhere in the data center.

The key challenge is doing this transparently and efficiently at the block level, without sacrific-
ing consistency or failure resilience. We describe our write off-loading design and implementation
that achieves these goals. We evaluate it by replaying portions of our traces on a rack-based testbed.
Results show that just spinning disks down when idle saves 28–36% of energy, and write off-loading
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1. INTRODUCTION

Power consumption is a major problem for enterprise data centers, impacting
the density of servers and the total cost of ownership. This is causing changes
in data center configuration and management. Some components already
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support power management features: For example, server CPUs can use low-
power states and dynamic clock and voltage scaling to reduce power consump-
tion significantly during idle periods. Enterprise storage subsystems do not
have such advanced power management and consume a significant amount of
power in the data center [Zhu et al. 2005]. An enterprise-grade disk such as
the Seagate Cheetah 15K.4 consumes 12 W, even when idle [Seagate Technol-
ogy LLC 2005], whereas a dual-core Intel Xeon processor consumes 24 W when
idle [Intel Corporation 2006]. Thus, an idle machine with one dual-core proces-
sor and two disks already spends as much power on disks as on processors. For
comparison, the 13 core servers in our building’s data center have a total of 179
disks, more than 13 disks per machine on average.

Saving power in storage systems is difficult. Simply buying fewer disks is
usually not an option, since this would reduce peak performance and/or ca-
pacity. The alternative is to spin-down disks when they are not in use. The
traditional view is that idle periods in server workloads are too short for this
to be effective [Carrera et al. 2003; Gurumurthi et al. 2003; Zhu et al. 2005]. In
this article we present an analysis of block-level traces of storage volumes in an
enterprise data center, which only partially supports this view. The traces are
gathered from servers providing typical enterprise services, such as file servers,
Web servers, Web caches, etc.

Previous work has suggested that main-memory caches are effective at ab-
sorbing reads but not writes [Baker et al. 1991]. Thus we would expect at the
storage level to see periods where all the traffic is write traffic. Our analysis
shows that this is indeed true, and that the request stream is write-dominated
for a substantial fraction of time.

This analysis motivated a technique that we call write off-loading, which
allows blocks written to one volume to be redirected to other storage elsewhere
in the data center. During periods which are write-dominated, the disks are
spun down and the writes are redirected, causing some of the volume’s blocks
to be off-loaded. Blocks are off-loaded temporarily, for a few minutes up to a
few hours, and are reclaimed lazily in the background after the home volume’s
disks are spun up.

Write off-loading modifies the per-volume access patterns, creating idle pe-
riods during which all the volume’s disks can be spun down. For our traces this
causes volumes to be idle for 79% of the time on average. The cost of doing
this is that when a read occurs for a non-off-loaded block, it incurs a significant
latency while the disks spin up. However, our results show that this is rare.

Write off-loading is implemented at the block level and is transparent to file
systems and applications running on the servers. Blocks can be off-loaded from
any volume to any available persistent storage in the data center, either on
the same machine or on a different one. The storage could be based on disks,
NVRAM, or solid-state memory such as flash. Our current hardware does not
have flash or other solid-state devices and hence we used a small partition at
the end of each existing volume to host blocks off-loaded from other volumes.

Write off-loading is also applicable to a variety of storage architectures.
Our trace analysis and evaluation are based on a direct attached storage
(DAS) model, where each server is attached directly to a set of disks, typically
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configured as one or more RAID arrays. DAS is typical for small data centers
such as those serving a single office building. However, write off-loading can
also be applied to network attached storage (NAS) and storage area networks
(SANs).

A major challenge when off-loading writes is to ensure consistency. Each
write request to any volume can be off-loaded to one of several other locations
depending on a number of criteria, including the power state and the current
load on the destination. This per-operation load balancing improves perfor-
mance, but it means that successive writes of the same logical block could be
off-loaded to different destinations. It is imperative that the consistency of the
original volume is maintained even in the presence of failures. We achieve this
by persisting sufficient metadata with each off-loaded write to reconstruct the
latest version of each block after a failure.

This article makes two main contributions. First, we show that, contrary
to conventional wisdom and current practice, idle periods in enterprise work-
loads can be exploited by spinning disks down, for power savings of 28–36%.
Second, we present write off-loading as a generic and practical approach that
allows further reduction of power consumption in storage systems and also
eliminates the spin-up penalty for write requests. In our trace-based evalua-
tion on a rack-mounted testbed, write off-loading enabled energy savings of
45–60%. The performance of all write requests, and 99% of read requests, was
equivalent to that when not spinning disks down.

The rest of the article is organized as follows. Section 2 presents an analysis
of block-level traces from an enterprise data center, which motivates write off-
loading. Section 3 describes the design and implementation of the write off-
loading infrastructure. Section 4 presents an evaluation of write off-loading on
a rack-based hardware testbed. Section 5 discusses related work, and Sections 6
and 7 conclude the article.

2. VOLUME ACCESS PATTERNS

The traditional view is that spinning disks down does not work well for server
workloads [Carrera et al. 2003; Gurumurthi et al. 2003; Zhu et al. 2005].
Gurumurthi et al. [2003] show that for disk traffic patterns generated by the
TPC-C and TPC-H benchmarks, spinning down disks is ineffectual: The periods
of idleness are too short. Zhu et al. [2005] also use the cello block-level volume
traces [Ruemmler and Wilkes 1993] collected from a single file/compute server
at HP Labs. These are not necessarily representative of all server workloads
in enterprise data centers. Many enterprise servers are less I/O intensive than
TPC benchmarks, which are specifically designed to stress the system under
test. Enterprise workloads also show significant variation in usage over time,
for example, due to diurnal patterns.

In order to understand better the I/O patterns generated by standard data
center servers, we instrumented the core servers in our building’s data center
to generate per-volume block-level traces for one week. Table I describes the
servers that we traced: Most of these are typical of any enterprise data center.
In total, we traced 36 volumes containing 179 disks on 13 servers.
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Table I. Data Center Servers Traced
(13 servers, 36 volumes, 179 disks)

Server Function #volumes
usr User home directories 3
proj Project directories 5
prn Print server 2
hm Hardware monitoring 2
rsrch Research projects 3
prxy Firewall/web proxy 2
src1 Source control 3
src2 Source control 3
stg Web staging 2
ts Terminal server 1
web Web/SQL server 4
mds Media server 2
wdev Test web server 4

The data center is air-conditioned and the servers are high-end rack-mounted
machines. The default configuration is for each server to have two internal
physical disks configured as a RAID-1 array, which is used as the boot volume.
Each server is additionally configured with one or more RAID-5 arrays as data
volumes: The storage for these is provided using rack-mounted colocated DAS.
All the servers run the Windows Server 2003 SP2 operating system. Data on
the volumes is stored through the NTFS file system and accessed by clients
through a variety of interfaces including CIFS and HTTP.

We believe that the servers, data volumes, and their access patterns are
representative of a large number of small-to-medium-size enterprise data cen-
ters. Although access patterns for system volumes may be dependent on, for
example, the server’s operating system, we believe that for data volumes these
differences will be small.

The traces are gathered per-volume below the file system cache and capture
all block-level reads and writes performed on the 36 volumes traced. The traced
period was 168 hours (1 week) starting from 5PM GMT on the 22nd of February,
2007. The traces are collected using event tracing for Windows (ETW) [Microsoft
2002], and each event describes an I/O request seen by a Windows disk device
(i.e., volume), including a timestamp, the disk number, the start logical block
number, the number of blocks transferred, and the type (read or write). ETW has
very low overhead, and the traces were written to a separate server not included
in the trace: Hence, we do not believe that the tracing activity perturbed the
traced access patterns. The total number of requests traced was 434 million, of
which 70% were reads; the total size of the traces was 29GB. A total of 8.5TB
was read and 2.3 TB written by the traced volumes during the trace period.

Figure 1(a) shows the average read and write request rate over the entire
week for each of the volumes. There is significant variation across volumes,
with volumes for the file servers, the source-version control servers, and the
Web proxy all having significant read load. However, many of the volumes,
such as the research projects server and the test Web server, have low read
and write load. Figure 1(b) shows the peak read and write rates, measured at a
60-second granularity for the 36 volumes. Peak loads are generally much higher
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Fig. 1. Mean and peak request rates per volume over 7 days.

Fig. 2. CDF of active time per volume.

than the mean load, indicating that while volumes may be provisioned for a high
peak load, most of the bandwidth is unused most of the time.

Overall, the workload is read-dominated: The ratio of read to write requests
is 2.37. However, 19 of the 36 volumes have read/write ratios below 1.0; for these
volumes the overall read-write ratio is only 0.18. Further analysis shows that
for most of the volumes, the read workload is bursty. Hence, intuitively, remov-
ing the writes from the workload could potentially yield significant idle periods.

Figure 2 confirms this intuition. It shows a cumulative distribution function
across volumes of the number of volumes versus the percentage of time that the
volume is active over the course of a week. We show the distribution for both
the original trace (read/write) as well as the trace with the writes removed. In
both cases we consider the volume to be idle (i.e., not active) when 60 seconds
have elapsed since the last request.

Figure 2 shows that even without removing the writes, there is significant
idle time for the volumes. As expected, the write workload has a large impact
on the length of the idle periods. When the write load is removed, the mean
amount of time a volume is active is only 21%. By contrast, the volume active
time in the read/write case is 60% on average. Similarly, the median amount of
time a volume is active drops from 80% to 14% when the write load is removed.

Finally, we measure the potential benefit in reducing the peak power con-
sumption of the data center storage by examining the temporal relationship
between volumes. Figure 3 shows the number of volumes active over time
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Fig. 3. Number of active volumes over time.

Table II. Number of Concurrently Active Volumes

Mean Median 99th pctile Max
Read/ 21.7 22 27 31
write (60%) (61%) (75%) (86%)
Read- 7.6 7 15 22
only (21%) (19%) (42%) (61%)

Numbers in parentheses show the number of active volumes
as a percentage of the total number of volumes (36).

through the week. We see that removing the writes from the trace significantly
reduces the number of concurrently active volumes.

Table II shows the mean, median, 99th percentile, and maximum number of
volumes concurrently active during the week. These results indicate that simply
spinning down when idle can reduce the peak power of the storage subsystem,
and that creating longer idle periods by off-loading writes can reduce it even
further. Note that the set of active volumes changes over time, and a rarely-
active volume might still store a large amount of data or experience a high peak
load. Thus, we cannot simply save energy by using fewer disks per volume, since
we must still provision the volumes for capacity and peak load.

This analysis indicates that there are significant potential power savings in
spinning down enterprise data center disks when idle. Further, it shows that
efficiently redirecting writes creates even longer periods of idleness, leading
to substantially higher power savings. This motivated the design of our write
off-loading mechanisms.

3. WRITE OFF-LOADING

The goal of write off-loading is to utilize periods of write-dominated load to spin
disks down and off-load write requests, reverting to normal operation during
periods of read-dominated load. When writes are being off-loaded the aim is to
achieve comparable write-response times and throughput as when using the
local volume.

Each volume supporting off-loading has a dedicated manager. The manager
is entirely responsible for the volume, which we refer to as its home volume:
It decides when to spin the physical disks up or down, and also when and
where to off-load writes. Off-loaded blocks are only temporarily off-loaded and
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the manager is also responsible for reclaiming blocks previously off-loaded.
To achieve all these tasks, the manager needs to intercept all read and write
requests to its home volume.

When a manager decides to off-load a block, it selects one or more loggers to
store it temporarily. Each logger instance requires a small area of persistent
storage, which is used exclusively to store off-loaded blocks and metadata until
they are reclaimed by a manager or no longer required. The persistent storage
could be a disk, NVRAM, or solid-state memory such as flash, depending on
what is available on each server; the logger’s data layout should be optimized
for the particular type of storage. Our current implementation uses only disk-
based loggers.

The set of loggers that a manager uses is configurable. It is important that
the loggers used by a manager offer the same or better failure properties as the
home volume. It is also possible to configure the manager so that it will only
off-load blocks to loggers residing on the same server as itself, in the same rack,
or across the entire data center. We have evaluated write off-loading at both a
server and rack granularity. Current off-the-shelf gigabit networking makes the
rack granularity feasible, with low network overhead and good performance.
Server-granularity off-loading is feasible at any network speed, since off-load
traffic does not go over the network.

In the rest of this article, we refer to a volume as being active if its disks are
spinning and I/O operations are being performed on it. If the disks are spinning
but no I/O operations are being performed, we refer to the volume as being idle:
In this state the disk spindles continue to use energy even though they are
doing no work. Finally, if the volume’s disks are spun down, we refer to the
volume as being in the standby state. We assume that all the disks belonging
to a volume are always in the same state, since all the power management
strategies considered in this article operate on entire volumes at a time.

When we refer to a manager or logger component being in standby, we mean
that the volume used by that component has transitioned to the standby state.
When a manager goes into standby, it will force loggers sharing the same phys-
ical disks to go into the standby state. The manager will then off-load writes
to loggers that are not in the standby state. Note that loggers using solid-state
memory or NVRAM would never enter the standby state.

3.1 Detailed Design

3.1.1 Loggers. Conceptually the logger’s role is simple: It temporarily
stores blocks. Loggers support the following remote operations: write, read,
invalidate, and reclaim. A write consists of persisting the provided blocks and
metadata. The metadata consists of the source manager identity, a range of
logical block numbers (LBNs), and a version number. A read returns the latest
stored versions of the requested blocks. An invalidate request specifies a set of
blocks and versions that are no longer required. To ensure consistency, the in-
validate request explicitly includes version information, and the logger marks
the corresponding versions as invalid. The logger can then lazily garbage-collect
the space used to store the invalidated data and metadata. A reclaim request
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Fig. 4. Manager data structures.

is like a read, except that no block range is specified: The logger can return any
valid block range it is holding for the requesting manager. Invalidates and re-
claims are nonlatency-critical operations; reads and writes are latency-critical
but reads are expected to be rare. Hence loggers are optimized for the perfor-
mance of writes.

Our current implementation uses a log-based on-disk layout. This means
that writes have good locality; both data and metadata are written with a single
I/O to the current head of the log. Log compaction and other maintenance tasks
are done in the background with low priority. Metadata about the valid blocks
stored for each manager, their versions, and their location in the log is cached
in main memory for fast access.

Each logger uses a small partition at the end of an existing volume to persist
data and metadata. This avoids the need to dedicate additional storage for off-
loading. The remainder of the volume functions as before, and could have an
associated manager to enable off-loading. In general, a volume might host zero
or more managers and zero or more loggers, on distinct partitions but on the
same set of physical disks. In our evaluation we run with a typical configuration
for a data volume: one manager and one logger, with the latter using a small
partition at the end.

3.1.2 Managers. The manager controls the off-loading of blocks, deciding
when to off-load blocks and when to reclaim them. It is also responsible for
ensuring consistency and performing failure recovery. To achieve this, each
manager maintains persistently the identities of a set of loggers with which it
interacts, referred to as the logger view. It also maintains two in-memory data
structures, as shown in Figure 4. The redirect cache stores, for each block off-
loaded, the block’s LBN, the identity of the logger storing the current data for
the block, and the corresponding version number. Version numbers are unique
monotonically increasing 64-bit quantities, which ensure that the manager
can identify the last written version of any block during failure recovery. The
garbage cache stores the location of old versions of blocks. In the background,
the manager sends invalidation requests for these versions; when these are
committed by the logger they are removed from the garbage cache.

The manager intercepts all read and write requests sent to the home volume.
For a read request, it first checks the redirect cache for existing logged versions.
If none is found, the read is serviced locally from the home volume, causing
it to transition from standby to active if necessary. Otherwise the request is
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dispatched to that logger identified as having the latest version of the block.
Multiblock reads are split as required, to fetch data from the home volume
and/or one or more loggers.

For a write request, the manager off-loads the write to a logger if the home
volume is in standby. It also off-loads the write if there are currently logged
versions of any of the blocks, to ensure that the new version is persistently
recorded as the latest version. Writes that are not off-loaded are sent directly
to the home volume.

To off-load a write, the manager probes the loggers in its logger view: This is
currently done using subnet broadcast for efficiency. Each logger replies with a
set of metrics, including the power state of the logger’s volume, its queue length,
the amount of available space, etc. The manager ranks the loggers using these
metrics and selects one to off-load the write to. When the write is committed
and acknowledged by the logger, the manager updates its redirect cache with
the latest version and moves any older versions to the garbage cache.

When the home volume is idle, the manager reclaims off-loaded blocks from
loggers in the background and writes them to the home volume. After the re-
claimed blocks are written to disk, the manager sends invalidation requests to
the appropriate loggers. To ensure correct failure recovery, the latest version of
a block is invalidated only after all older versions have been invalidated. The
background reclaim and invalidation ensure that all blocks will eventually be
restored to the home volume and that logger space will eventually be freed.

Finally, the manager controls state transitions to and from standby for the
home volume. The manager monitors the elapsed time since the last read and
the last write; if both of these have passed a certain threshold, it spins the
volume down and off-loads all subsequent writes. The volume spins up again
when there is a read on a non-off-loaded block, or when the number of off-loaded
blocks reaches a limit (to avoid off-loading very large amounts of data). Before
putting the volume into standby, the manager first ensures that there is at
least one logger in its logger view that is using a set of disks different from its
own and that is not currently in standby. This ensures that any future writes
to the home volume can be off-loaded by the manager without waiting for disks
to spin up. If there are no such loggers, then the manager does not spin down,
but periodically probes its logger set for any change in their status.

This design is optimized for the common case: During periods of intense
activity, the home volumes will be in the active state, and all I/Os will be local,
except for a small number of requests on blocks that are currently off-loaded.
During periods of low, write-dominated load, we expect that the home volume
will be in standby and writes will be successfully off-loaded to a logger.

Uncommon cases are handled through fall-back strategies. For example, if
the manager cannot find any available loggers, it spins up the home volume
in the background, and retries the request until a logger is found or the home
volume is spun up. If a volume needs to be taken offline (say, for maintenance)
then the manager spins it up, as well as all volumes that it depends on or that
depend on it. It then forces blocks to be reclaimed until the volume has all its
own blocks and none of any other’s, that is, until its state is restored as if no
off-loading had occurred.
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Fig. 5. Consistency across loggers example.

Write off-loading can mask the performance impact of spinning-up disks
for write requests. For read requests on spun-down disks we cannot mask the
spin-up delay. For some applications this large delay (10–15 seconds) will be un-
acceptable even if rare: Write off-loading should not be enabled on the volumes
that these applications use.

3.2 Failure Resilience

Enterprise storage is expected to provide consistency and durability, despite
transient failures such as reboots as well as single-disk permanent failures. At
volume level, the failure resilience with off-loading is the same as that without.
However, off-loading can create failure dependencies between managers and
loggers. With off-loading at the rack- or data-center level, a manager on machine
A could off-load blocks to a logger on machine B: If machine B should suffer a
failure, then the off-loaded blocks would become unavailable on machine A until
machine B has been brought online again.

This problem can be solved by off-loading each block to multiple independent
loggers. With k-way logging, a manager can tolerate up to k − 1 failures in its
logger view. Given the high availability and reliability of enterprise servers, we
do not think k-way logging would be required in most cases.

Write off-loading guarantees both consistency and durability across failures.
We achieve durability by acknowledging writes only when both data and meta-
data have been reliably persisted, that is, we do not employ write-back caching
of any form. Consistency is achieved by using versioned metadata to mark the
latest version of a block. When a read is performed for a range of blocks, it is
quite possible that the required blocks are distributed over multiple loggers
as well as over the home volume, as shown in Figure 5. The manager uses
the version information to ensure that the applications using the volume see a
consistent view of the stored data. We also add a checksum to the metadata to
ensure that partial writes are correctly detected on failure recovery.

If one or more machines reboot due to, say, a power failure, all the log-
gers recover concurrently by scanning their persistent logs to reconstruct their
soft state. Each manager can be brought online when all the loggers in its
logger view are online. A manager recovers its soft state (the redirect cache
and garbage cache) by requesting information about all blocks stored for it
from each logger in its logger view. To optimize the common case of a clean
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shutdown/reboot of a server, the manager writes the soft state to a small meta-
data partition during shutdown; this allows managers to restart after a clean
shutdown without any network communication.

It is important that a manager’s logger view be restricted to loggers which
have the same or higher failure resilience as the home volume. Otherwise, when
blocks are off-loaded, they will not have the same failure resilience as non-off-
loaded blocks. If the storage uses standard solutions such as RAID-1 or RAID-5
for all volumes, then this property will be ensured, and off-loading will provide
the same resilience to single-disk failures as standard RAID solutions.

When a logger experiences a single-disk failure, it pushes all off-loaded blocks
to other loggers or the appropriate manager, which should typically take sec-
onds to minutes. This reduces the risk of losing off-loaded blocks due to multiple-
disk failures; the risk can be further reduced if desired by using k-way logging.

4. EVALUATION

Section 2 presented a trace-driven analysis showing the potential benefits of
write off-loading. This analysis was based on block-level traces of enterprise
data center workloads. In this section we evaluate write off-loading using a
real testbed and these workload traces.

4.1 Experimental Setup

The experiments were all run using a testbed consisting of four standard HP
servers, each with a dual-core Intel Xeon processor and an HP SmartArray 6400
controller connected to a rack-mounted disk enclosure with a SCSI backplane.
All the servers were running Windows Server 2003 SP2. For the purposes of
trace replay, data volumes were accessed as raw block devices rather than as
file systems, since our traces are at block level.

The disk enclosures were populated with 56 Seagate Cheetah 15,000 RPM
disks: 28 of size 36GB and 28 of size 146GB. The servers were connected via a
switched 1Gbps Ethernet. The device driver for the SmartArray 6400 does not
support physical spin-down and spin-up of the disks, highlighting the fact that
disk spin-down is not standard practice in enterprise storage systems today.
We did not have access to the driver source-code and hence were forced to
emulate the power state of each volume in a software layer. This layer delays
requests on a spun-down volume until the volume is spun up; it also models the
power consumed by each volume based on the number and type of disks and
the emulated spin state.

The parameters for emulating the power state of the disks used in the
testbed are shown in Table III. These parameters were derived manually from
the voltage/current profiles given in the Seagate Cheetah 15K.4 SCSI prod-
uct manual [Seagate Technology LLC 2005, Section 6, Figures 4 and 5]. The
steady-state power consumption when spun up is based on the current draw
of both the 12 V input line (which powers the motor) and the 5 V line (which
powers the electronics); the power consumption when spun down is based on
the 5 V current only. The energy cost of spinning up is defined as the difference
between the total energy used while the disk was spinning up and that used if
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Table III. Energy Parameters for Seagate
Cheetah 15K.4

Time to spin up (36 GB disk) 10 s
Time to spin up (146 GB disk) 15 s
Energy cost of spinning up 20 J
Power when spun up 12 W
Power when spun down 2.6 W

Table IV. Servers Grouped by Rack

Rack Server Function #volumes
1 usr User files 3

mds Media server 2
prn Print server 2
hm H/w monitoring 2

2 src2 Source control 3
proj Project files 5
wdev Test web server 4

3 rsrch Research projects 3
prxy Firewall/web proxy 1
src1 Source control 2
stg Web staging 2
ts Terminal server 1
web Web/SQL server 4

the disk were idle and spinning for that duration. We do not model the energy
cost of doing I/O over and above that of keeping the disk electronics powered
and the platter spinning; in general, this is difficult to model for an arbitrary
workload and is also relatively small.

To drive the experiments we used real-time replay of the data center traces
that we analyzed in Section 2. Using all the trace data would have required one
week per experimental run. To make this tractable, each trace was split into
seven one-day (24-hour) traces. These traces were statically analyzed to find
the “least idle” and “most idle” days. Averaged across all volumes, the least idle
day provides the smallest potential amount of idle time for write off-loading,
whereas the most idle day provides the largest. The least idle day ran from
midnight on Monday 26th February 2007 to midnight on the following day; it
had 35 million requests with 73% reads. The most idle day ran from midnight
on Sunday 25th February to midnight on the following day; it had 21 million re-
quests with 70% reads. These two days represent the worst and best case for en-
ergy savings using write off-loading, and hence our evaluation is based on them.

To emulate the traced data center volumes, sets of volumes were mapped onto
the testbed. The entire testbed’s disk capacity is much smaller than the original
traced servers. Therefore the traced servers were divided into three sets, or
“racks” (see Table IV). Experiments were run for each rack independently; all
the volumes in a single rack were simultaneously emulated on the testbed.
Two of the 36 volumes (prxy/1 and src1/0) could not be accommodated on the
testbed with enough disks to sustain the offered load, so they were omitted. Due
to physical limitations of the testbed, the mapping does not keep volumes from
the same original server on the same testbed server, or vice versa. However, our
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results show that the peak network load imposed by write off-loading is less
than 7% of the network capacity: Hence remapping does not significantly affect
the system’s performance. Each volume was mapped to a RAID-1 or RAID-5
array with sufficient capacity to replay the volume trace.

A per-server trace replay component was used to replay the traces and gather
performance metrics. The start of trace replay was synchronized across all
servers. Each trace event was then converted to an I/O request sent to the
corresponding emulated volume at the time specified by the timestamp: In
other words, the traces were replayed “open-loop” in real time. This is neces-
sary because the block-level traces do not capture higher-level dependencies
between requests. However, requests which accessed overlapping block ranges
were serialized, under the assumption that such requests would not be issued
concurrently.

When configured for write off-loading each emulated volume was assigned
both a manager and a logger. The logger used a 4GB partition at the end of the
volume; on hardware with flash or other solid-state devices the logger would
run on the solid-state component instead. All manager and logger components
on each server were linked together into a single user-level process along with
the trace replay component. This component opened each server volume as a
raw Windows block device; trace I/Os were then converted into read and write
requests on these devices. Communication between managers and loggers is
in-process if on the same physical server; otherwise we use UDP for broadcast
and TCP for unicast.

In the experiments we evaluated four configurations, described next.

— Baseline. Volumes are never spun down. This gives no energy savings and
no performance overhead.

— Vanilla. Volumes spin down when idle, and spin up again on the next request,
whether read or write.

— Machine-Level Off-Load. Write off-loading is enabled, but managers can only
off-load writes to loggers running on the same server: Here the “server” is
the original traced server, not the testbed replay server.

— Rack-Level Off-Load. Managers can off-load writes to any logger in the rack.

The configurations which place volumes in standby require an idle period be-
fore initiating standby. In the vanilla configuration we use an idle period of
60 seconds. For the two off-load configurations, a volume is placed in standby
after 60 seconds of no reads and 10 seconds of no writes. Each off-load manager
also limits the amount of off-loaded data to 1GB: On reaching this limit, the
manager spins up the volume in the background.

In the remainder of this section we present the summarized results of our
experimental runs. Each result is presented both for the most idle day and
the least idle day, and for each of the four configurations. For a given day and
configuration, results are aggregated across racks; although the experiments
were run sequentially, this emulates all three racks running concurrently with
off-loading (if enabled) happening at the rack or machine level, depending on
the configuration.
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Fig. 6. CDF of energy consumed as a percentage of baseline.

Fig. 7. Total power consumption as percentage of baseline.

4.2 Energy Savings

Figures 6(a) and 6(b) show the CDFs of energy consumed per volume for the
least idle day and most idle day, respectively. Obviously, in the baseline case, all
disks would always be spun up, and volumes would always be at their maximum
power level. Hence, we normalize the power consumption of each volume in
the other three configurations by the corresponding baseline value. All three
configurations on both days save significant amounts of energy compared to
the baseline, as seen by the number of volumes that use 50% or lower energy
compared to baseline. Figure 7 summarizes these results showing the mean
and peak power consumption across all volumes, again as a percentage of the
baseline value.

For the least idle day, of the three nonbaseline configurations, the vanilla con-
figuration consumes the most energy: 72% of baseline. This is because it does not
utilize write off-loading to lengthen the idle periods. Machine-level off-loading
is able to do this, and hence uses less energy: 64% of the baseline. However,
the energy savings are limited by the need to keep one volume spinning per
machine to absorb the off-loaded writes. This means that at all times at least
13 of 34 volumes were kept spinning. Rack-level off-loading uses the least en-
ergy of all (55% of baseline), since it does not suffer from the limitations of the
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Fig. 8. Response time distributions: The x-axis shows response times on a log scale, and the y-axis
shows the fraction (also on a log scale) of requests with response times higher than some value.

other two approaches. With rack-level off-loading, potentially a single spun-up
volume could absorb the off-loads for the entire rack.

For the most idle day, all three nonbaseline configurations improve their
energy savings by exploiting the increased amount of idleness. As on the least
idle day, vanilla uses significantly less energy (64%) than baseline; machine-
level off-load does better (51%) than vanilla; and rack-level off-load does even
better (40%).

The peak power results in Figure 7 show that vanilla reduces peak power
to 87–89% of the baseline; machine-level off-load to 83–84%, and rack-level off-
load to 80%. Unlike the mean power usage, these results show that there is not
a significant difference between the most and least idle days. This is because
the power usage varies considerably over the time scale of minutes, as shown
in Figure 3, and hence even on a day with a low mean power usage, the peak
could be quite high. However, there is still a significant difference between the
off-loading and non-off-loading configurations.

4.3 Performance Impact

We now evaluate the performance impact of spinning disks down, both with
and without off-loading. We measured the response time of each read and write
request in each configuration, on each of the test days. Figure 8 shows the
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response-time distributions for reads and writes, for the two days, aggregated
over all volumes. Since most requests have the same response time in all config-
urations, we put the y-axis on a log scale to highlight the differences between
the configurations. The x-axis is also on a log scale, since response times vary
from tens of milliseconds in the common case to over 15 seconds in the worst
case. For example, the baseline curve in Figure 8(a) shows that 0.01 (1%) of the
read requests in the baseline configuration on the least idle day had a response
time of more than 100 millisecond.

We see that for the majority of requests, the performance was identical in all
configurations. For a small fraction of the requests, we see a long tail in some
cases, going out to over 10 seconds. This tail represents requests that needed
to wait for a disk to spin up. In the vanilla configuration both reads and writes
are impacted by this effect. For the machine-level and rack-level off-load, only
reads are affected: For write requests they track baseline performance up to
and beyond the 0.0001 point, namely, for 99.99% or more of the requests. For
a very small number of requests (fewer than 0.01%) on the least idle day, the
machine-level off-load does worse than the baseline or rack-level off-load; this
is because in the case of a heavy burst of write requests, the machine-level
off-load cannot spread the load across loggers on multiple servers, whereas the
rack-level off-load can do this.

These results confirm our expectation that spinning disks down causes a
large penalty for a small number of requests. This penalty occurs for both reads
and writes if we do not off-load writes, and only for reads if we do. It is worth
noting that both the length and thickness of this tail are increased by an artifact
of our experimental setup. Since we replay the traces open-loop, all requests
that arrive while a disk is spinning up will be queued, and simultaneously
released to the disk when it spins up. Since the spin-up period is relatively long
(10–15 seconds), a large number of requests could arrive during this period,
which causes an additional large queuing delay even after the disk is spun
up. For example, the tail for the vanilla configuration in Figure 8(c) goes out
to 56 seconds: This is due to a single episode in which 5,000 requests were
queued while waiting for a volume to spin up, and 22 of these requests suffered
extremely high delays as a result.

In reality, many of the requests in a single such burst would have been issued
by the application in a closed loop, that is, serialized one after another. Hence,
delaying the first request would have prevented additional requests from being
issued, avoiding the large queues and queuing delay. Further, if the request
burst was created by a noninteractive application, for example a backup, then
an initial delay of 10–15 seconds is acceptable. For interactive applications, of
course, this first-byte delay will be visible to the user; if a volume supports
interactive applications that cannot tolerate this delay even infrequently, then
write off-loading or indeed any kind of spin down should not be enabled for that
volume.

We now present some summary statistics on the response-time distributions.
Figure 9(a) shows the median response time; as expected, there is no penalty for
spinning disks down or off-loading. Figure 9(b) shows the mean response time.
Here we see the effect of the skewed response-time distribution, namely, the
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Fig. 9. Median and mean response times.

Fig. 10. Percentage of requests incurring spin-up delays.

long thin tail, which causes a small number of requests to increase the mean sig-
nificantly. For reads, all nonbaseline configurations have a high mean response
time. The off-load configurations do worse than vanilla because they spin down
more often (and save more energy): Hence a burst of read requests is more likely
to hit a spun-down volume in these cases. For the same reason, the rack-level
off-load has a higher mean response time than the machine-level off-load.

In the case of writes, the mean is high for vanilla, but the off-load config-
urations do slightly better than the baseline case, with the rack-level off-load
having the best performance of all. This is because logger writes have good lo-
cality, since they use a log structure, even if the original access pattern does not
have good locality. Further, during bursts of high write load, rack-level off-load
is able to load-balance across multiple loggers on multiple servers, and hence
delivers the best performance.

Figure 10 shows the percentage of requests incurring a spin-up delay in each
case. Obviously, the baseline configuration has no spin-up delays, and the off-
load configurations do not have spin-up delays on write requests. Reads for
rack-level/machine-level off-load, and all requests for vanilla, have significant
(up to 1.2%) numbers of spin-up delays, which skews the mean response time for
these cases. However, as remarked previously, some of this effect is an artifact
of open-loop replay.
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Fig. 11. 95th-percentile and maximum (worst-case) response times.

Figure 11(a) shows the 95th-percentile response times for the different cases.
There are only minor differences between the different configurations, since
much fewer than 5% of requests see spin-up delays in any configurations. Fi-
nally, Figure 11(b) shows the maximum response time for each case. For reads,
the nonbaseline configurations have similar worst-case performance to each
other, although worse than the baseline: This is due to spin-up delays. For
writes, all configurations have similar performance on the most idle day. On
the least idle day, there is a large penalty for vanilla due to a combination of
spin-up delay and queuing delay for a large write burst, as previously discussed.
Machine-level off-load also has a significant, though lower, penalty due to the
lack of load balancing on a heavy write burst. Rack-level off-load is able to
load-balance such bursts and hence has a much better worst-case performance.

In summary, all configurations have comparable performance to the baseline
case for a majority of requests; however, reads in the off-load configurations and
both reads and writes in the vanilla configuration have a long thin tail, which is
unavoidable. Finally, rack-level off-load consistently outperforms machine-level
off-load in terms of both energy savings and write performance, but has worse
read performance and adds network traffic to the system. Administrators can
configure the logger views on a per-manager basis to provide the appropriate
trade-off between these metrics.

4.4 Network Usage

We also measured the network overheads of rack-level off-loading across both
test days combined. These are summarized in Table V. Note that the bandwidth
usage is based on communications between managers and loggers that belong to
different servers in the original trace. In other words, this measures the network
overheads if write off-loading had been run on the original traced servers rather
than on the testbed servers. Thus, there are no network overheads for machine-
level off-load and of course none for the baseline or vanilla configurations.

The average bandwidth usage is low compared to the bandwidth available
in a typical data center. The peak bandwidth usage can easily be supported by
gigabit networks, which are widespread in enterprise data centers. The mean
RPC round-trip latency is the amount of additional latency incurred by requests
due to manager-logger communication.
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Table V. Network Overheads for Rack-Level Off-Loading

Total network transfers over 2 days 46.5 GB
Average network bandwidth usage 2.31 Mbps
Peak bandwidth usage over 60 s 68.8 Mbps
Mean RPC round-trip latency 2.6 ms
Fraction of writes off-loaded 27%
Fraction of remote reads 3.8%

The last two entries in Table V show that a substantial fraction of write
requests were off-loaded, but only a very small fraction of reads were remote. A
remote read is one that required the manager to interact with a logger because
some or all of the requested blocks had been off-loaded. This is the expected
behavior: Due to main-memory buffer caches, very few recently-written blocks
are read back from the storage layer. In other words, most off-loaded blocks will
be overwritten or reclaimed before they are read again. The small fraction of
remote reads also justifies our decision to optimize the loggers for write rather
than read requests. Machine-level off-loading gives similar results to rack-level
off-loading, with 8.3% of writes off-loaded but only 0.78% of reads being remote.

5. RELATED WORK

There has been considerable research in power management for laptop and mo-
bile device storage [Douglis et al. 1994; Nightingale and Flinn 2004; Zedlewski
et al. 2003] and also on high-level power management for data centers as a
whole [Chase et al. 2001]. We focus on related work in power management for
enterprise storage systems.

The closest related work is massive arrays of idle disks (MAID) [Colarelli
and Grunwald 2002], which has been proposed for replacing tape libraries as
tertiary storage environments for very large-scale storage. MAIDs are storage
components composed of thousands of disks, holding hundreds of terabytes of
storage. A subset of the disks are kept spinning, acting as a cache, while the
rest are spun down. For standard RAID-based enterprise primary storage, this
requires a minimum of two additional disks per volume. For nonarchival storage
this is an unacceptable overhead in terms of both energy and cost. In contrast,
write off-loading does not require additional dedicated disks per volume or new
hardware: We can opportunistically use any unused storage in the data center
to store blocks.

Power-aware cache management [Zhu and Zhou 2005] optimizes cache re-
placement for idle times rather than miss ratios, and shows power savings for
OLTP, cello [Ruemmler and Wilkes 1993], and synthetic traces. This is orthogo-
nal to our approach: Any increase in the inter-read time will result in increased
energy savings with write off-loading. However, we observe that the enterprise
workloads that we traced already have large inter-read times that we exploit
using write off-loading.

DRPM [Gurumurthi et al. 2003] and Hibernator [Zhu et al. 2005] are recently
proposed approaches to save energy by using multispeed disks (standard en-
terprise disks spin at a fixed rate of 10,000 or 15,000 rpm). They propose using
lower spin speeds when load is low, which decreases power consumption while
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increasing access latency. However, multispeed disks are not widely deployed
today in the enterprise, and we do not believe their use is likely to become
widespread in the near future.

Several approaches [Li and Wang 2004; Weddle et al. 2007; Yao and Wang
2006] have proposed power management schemes for RAID arrays at the RAID
controller level or lower, which are orthogonal to write off-loading which works
above the block, device level. In particular, PARAID [Weddle et al. 2007] uses
different numbers of disks in the array for different load levels, and provides
good power savings for read-mostly workloads. Hence it is complementary to
write off-loading, which can convert a mixed workload to a read-only one.

Popular data concentration (PDC) [Pinheiro and Bianchini 2004] migrates
data between disks to concentrate hot data on a few disks, allowing the remain-
der to spin down. This could be done within the disks on a volume: In this case
it would be transparent and orthogonal to volume-level off-loading. PDC could
potentially be done across volumes as well. However, this is not practical for
most enterprise solutions, since volumes will no longer be isolated from each
other for performance, cannot be tuned individually, and acquire long-term data
dependencies on each other.

Serverless file systems, such as xFS [Anderson et al. 1995], attempt to dis-
tribute block storage and management across multiple networked machines,
and use cooperative caching [Dahlin et al. 1994] to improve performance. By
contrast, write off-loading is designed to save energy rather than reduce la-
tency or increase throughput. It also works at the block level, and rather than
storing data remotely for days or weeks, a relatively small number of blocks
are temporarily hosted on remote machines.

The log structure used to store off-loaded data and metadata is similar to
those used in log-structured file systems [Ganesh et al. 2007; Rosenblum and
Ousterhout 1991; Seltzer et al. 1993]. However, log-structured file systems store
all written data for the long term, whereas our logs store only off-loaded data,
and temporarily.

Finally, various approaches to storage workload tracing and trace replay have
been proposed in the research literature [Aranya et al. 2004; Ellard et al. 2003;
Joukov et al. 2005; Zhu et al. 2005]. We decided to use ETW for tracing, since
it is already supported on our traced servers and it provides the functionality
we needed (tracing block-level I/O requests) with low overhead.

6. DISCUSSION

— Hardware Trends. Recently, there has been considerable interest in solid-
state drives (SSDs) for mobile devices and laptops [Samsung 2007; SanDisk
2007]. These drives currently vary in size from 4–32GB, and use less
power than disks. While SSD-based storage is likely to become widely
used in laptops over the next 2–3 years, it is unlikely to replace disks in
the enterprise in the foreseeable future due to the high per-GB costs and
performance characteristics.

However, it is likely that solid-state memory (flash) will become common,
either in hybrid drives or as a small generic block-level storage device on

ACM Transactions on Storage, Vol. 4, No. 3, Article 10, Publication date: November 2008.



Write Off-Loading: Practical Power Management for Enterprise Storage • 10:21

motherboards. Hybrid drives include a small amount of flash within the disk.
This allows the drive to spin the physical disk down and use the flash as a
persistent buffer cache. This is very similar to the idea of using battery-backed
NVRAM as a buffer cache to reduce disk traffic [Baker et al. 1992].

Thus, if and when enterprise storage becomes fully SSD-based, write off-
loading will offer few advantages. However, for the next decade or so we expect
that server systems will continue to have disk-based systems, increasingly aug-
mented with solid-state memory: By running loggers on the solid-state devices
and using them for write off-loading, the power savings of write off-loading can
be further increased.

Traditionally, spinning a disk up and down is viewed as increasing the stress
on the drive and reducing the mean time to failure (MTTF). For the state-of-the-
art enterprise class Seagate Cheetah 15K.4 SCSI drives, the MTTF calculations
assume 200 power cycles per year. Recent research has re-examined some of
the assumptions about factors that impact disk lifetime [Pinheiro et al. 2007;
Schroeder and Gibson 2007], but has not examined the effect of spinning disks
down: We see it as an open question what impact spinning up and down will
have on enterprise disks.

— Configuration and Management. Write off-loading requires some level of ad-
ministrator configuration and management. For example, an administrator
might wish to disable write off-loading for some period of time on some set
of disks, say a RAID array, hosting both managers and loggers. When this is
desired, all data on loggers hosted on such disks must be reclaimed by their
home volumes. Similarly, all data off-loaded by managers on those disks
must be reclaimed and invalidated on the loggers that were storing them.
This would be the procedure, for example, for decommissioning a volume that
currently has write off-loading enabled.

System boot volumes typically should not have an off-load manager enabled
(although they can certainly support a logger). This avoids off-loading blocks
that are required for the system to boot.

7. CONCLUSION

In this article we propose a technique called write off-loading to save energy
in enterprise storage. It allows blocks written to one volume to be temporar-
ily redirected to persistent storage elsewhere in an enterprise data center.
This alters the I/O access pattern to the volume, generating significant idle
periods during which the volume’s disks can be spun down, thereby saving
energy.

We analyzed the potential savings using real-world traces gathered for a
week from the 13 servers in our building’s data center. Our analysis shows that
simply spinning disks down when idle saves significant energy. Further, write
off-loading enables potentially much larger savings by creating longer idle pe-
riods. To validate the analysis we implemented write off-loading and measured
its performance on a hardware testbed. The evaluation confirms the analysis
results: Just spinning disks down when idle reduces their energy consumption
by 28–36%, and write off-loading increases the savings to 45–60%.
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We believe that write off-loading is a viable technique for saving energy in
enterprise storage. In order to use write off-loading, a system administrator
needs to manage the trade-off between energy and performance. We are de-
signing tools to help administrators decide how to save the most energy with
the least performance impact.
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