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ABSTRACT
In this paper, we study energy conservation techniques for disk
array-based network servers. First, we introduce a new conser-
vation technique, called Popular Data Concentration (PDC), that
migrates frequently accessed data to a subset of the disks. The
goal is to skew the load towards a few of the disks, so that oth-
ers can be transitioned to low-power modes. Next, we introduce a
user-level file server that takes advantage of PDC. In the context of
this server, we compare PDC to the Massive Array of Idle Disks
(MAID). Using a validated simulator, we evaluate these techniques
for conventional and two-speed disks and a wide range of parame-
ters. Our results for conventional disks show that PDC and MAID
can only conserve energy when the load on the server is extremely
low. When two-speed disks are used, both PDC and MAID can
conserve significant energy with only a small fraction of delayed
requests. Overall, we find that PDC achieves more consistent and
robust energy savings than MAID.

Categories and Subject Descriptors
D.4 [Operating systems]: Storage management; B.4 [Input/out-
put and data communications]: Input/output devices

General Terms
Experimentation, measurement

Keywords
Energy conservation, network servers, disk power

1. INTRODUCTION
Energy conservation has been extensively studied in the context

of mobile devices. Recently, researchers have realized that energy
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conservation is also important for servers and server clusters. For
these systems, energy conservation is obviously not intended to ex-
tend battery life, but nonetheless has serious economical and envi-
ronmental implications. Economical because the energy consump-
tion of these servers and their cooling systems is reflected in their
electricity bills. Environmental because most power-generation te-
chnologies are harmful to the environment.

A few efforts [6, 12, 18] have been made to conserve energy
in server clusters by tackling the high base power of traditional
servers, i.e. the power consumption when the server is on but idle.
Other efforts [2, 8, 9] have tackled the energy consumed by the
servers’ microprocessors. Finally, the energy consumption of disk
array-based servers has received some attention as well [5, 7, 10,
11, 20, 21]. The energy consumed by the array can easily surpass
that of the rest of the system, depending on the array size [5, 10].

In this paper, we propose a new energy conservation technique
for disk array-based network servers, called Popular Data Concen-
tration (PDC). The idea behind PDC is to dynamically migrate the
popular disk data (i.e., the most frequently accessed data on disk) to
a subset of the disks in the array, so that the load becomes skewed
towards a few of the disks and others can be sent to low-power
modes. PDC is based on the observation that network server work-
loads often exhibit files with widely different popularities. For in-
stance, Web server workloads are known to exhibit highly skewed
popularity towards a small set of files.

To demonstrate the benefits of PDC, we also propose a user-level
file server, called Nomad FS, that takes advantage of our technique.
We envision coupling Nomad FS with one or more front-end net-
work servers. Nomad FS uses the MQ algorithm [19] for second-
level cache replacement to guide the placement of files in the disk
array dynamically. The current prototype of Nomad FS conserves
energy by spinning disks down after a period of idleness. Unfor-
tunately, spinning a disk back up to service a request increases the
response time for the request significantly.

We also study Nomad FS in the context of disk arrays composed
of two-speed disks [5]. These disks conserve energy by automati-
cally reducing their rotational speeds under light load. Thus, No-
mad FS does not have to explicitly effect power mode transitions
when two-speed disks are used. Furthermore, requests are only de-
layed during rotational speed transitions, which means that only a
small percentage of requests is delayed for stable workloads.

Because our work targets network servers, degrading the respon-
se time of a small fraction of requests is acceptable for Nomad FS.
In fact, the overhead of multiple message exchanges per request
in network servers means that higher server response times can be
accommodated. Moreover, network servers typically interact with



people (or background processes), so even substantial degradations
may not be noticeable. For example, a degradation from 10 to 100
milliseconds is usually acceptable for network servers.

To put PDC in context, we compare Nomad FS against a very
similar version of it that is based on the Massive Array of Idle Disks
(MAID) [7]. Instead of relying on file popularity and migration,
MAID relies on temporal locality to place copies of files on a subset
of the disks. Each disk in this subset acts as a cache of the files and
uses the LRU replacement policy. Non-cache disks then become
more lightly loaded, allowing for energy conservation.

The behavior of the systems we consider is affected by several
important parameters, such as the type of disks, the disk request
rate, the size of the main memory cache, and the percentage of
the stored files that is actually accessed. To understand the effect
of these parameters and determine the “sweet spot” for each tech-
nique, we assess the parameter space extensively using a simulator
and synthetic traces. We also simulate two real traces to confirm
the observations from the parameter space exploration. To guaran-
tee the accuracy of our results, we validate the simulator against
real executions of our prototype implementation of Nomad FS.

Our results for arrays of conventional disks show that PDC and
MAID can only conserve energy when the load on the server is ex-
tremely low. When arrays of two-speed disks are used, both PDC
and MAID can conserve up to 30-40% of the disk energy with only
a small fraction of delayed requests. Overall, PDC is more con-
sistent and robust than MAID; the behavior of MAID is highly de-
pendent on the number of cache disks. Furthermore, PDC achieves
these properties without the overhead of extra disks. However, the
PDC energy savings degrade substantially for long migration inter-
vals. Based on these results, we conclude that the techniques we
study will be very useful for disk array-based servers when multi-
speed disks become available.

In summary, the contributions of this paper are:

We propose a file popularity-based energy conservation tech-
nique for disk array-based network servers;

We design and implement an energy-aware file server that
takes advantage of the technique; and

We assess the behavior of two energy conservation techni-
ques for conventional and two-speed disk arrays and a wide
range of parameters.

The remainder of this paper is organized as follows. The next
section describes PDC, Nomad FS, and MAID. Section 3 describes
our evaluation methodology, including our simulator and the pa-
rameter space we study. Sections 4 and 5 present our results for
synthetic and real traces, respectively. Section 6 discusses the re-
lated work. Finally, section 7 concludes the paper.

2. ENERGY CONSERVATION IN ARRAYS
In this section we first describe two of our main contributions:

the PDC energy conservation technique and Nomad FS. Next, we
move on to describing MAID and the traditional fixed-threshold
technique, and qualitatively comparing the approaches.

2.1 Popular Data Concentration
Several types of network servers exhibit workloads with highly

skewed file access frequencies. For example, it has been shown
that the frequency of file access by a Web server conforms to a Zipf
distribution [3] with high coefficient. The same is true of other
servers as well, e.g. [13]. More formally, Zipf’s law predicts that
the frequency of access or popularity of a file is proportional to

the inverse of its rank raised to some coefficient , i.e. .
When is high (close to 1), a relatively small number of files is
accessed frequently, whereas a large number of files is accessed
rarely. Workloads with high often exhibit skewed popularity in
terms of disk accesses as well (albeit with smaller ), even in the
presence of large main memory caches [4].

PDC is inspired by such heavily clustered popularities. The idea
behind PDC is to concentrate the most popular disk data (i.e., those
that most frequently miss in the main memory cache) by migrat-
ing it to a subset of the disks. This concentration should skew the
disk load towards this subset, while other disks become less loaded.
These other disks can then be sent to low-power modes to conserve
energy. More specifically, the goal of PDC is to lay data out across
the disk array so that the first disk stores the most popular disk data,
the second disk stores the next set of most popular disk data, and
so on. The least popular disk data and the data that are never ac-
cessed will then be stored on the last few disks. In fact, the last few
disks will also include the data that most frequently hit in the main
memory cache.

To avoid performance degradation, it is important not to overload
the disks that store popular data. Thus, the expected access rate for
each disk needs to be considered explicitly. This is done by esti-
mating the future load (in MBytes/second) on each disk to be the
sum of the recent load directed to the data to be stored on it. PDC
should then only migrate data onto a disk until the expected load
on the disk is close to its maximum bandwidth for the workload.

Because data popularity can change over time, PDC may have to
be applied periodically. In such cases, it might be necessary to free
up space on a disk by migrating data out of it, before more popular
data can be migrated in.

2.2 Nomad FS
PDC has been implemented in Nomad FS, a prototype energy-

aware file server consisting of approximately 13k lines of C++
code. Nomad FS is a user-level, event-driven server that works on
top of the local file system. The server associates a helper thread
with each disk. This thread is the only part of the server that directly
touches the disk, either for read/write operations or migrations. Al-
though the server receives requests for 8-KByte file blocks, entire
files are migrated according to PDC. This approach works fine for
the workloads we are interested in, such as Web, proxy, ftp, and
email server workloads, which access entire files at a time.

To conserve energy in disk arrays composed of conventional
disks, PDC is used to idle disks, which are then spun down by the
server after a fixed period of idleness (the idleness threshold). The
server determines that it is time to spin down a disk by keeping the
last access time per disk and periodically testing whether any disk
has been idle for longer than the idleness threshold. A spun down
disk is reactivated on the next access to it. When we consider disk
arrays composed of two-speed disks, Nomad FS does not explicitly
effect power mode transitions. Furthermore, Nomad FS does not
migrate files out of disks that are already running in low speed to
reduce the migration overhead.

The file server exports one single view of the file system, al-
though multiple disks drives can be used. For simplicity of our
prototype, each file is permanently stored on one disk only, i.e. no
striping or mirroring is used at this time. The user has no con-
trol over where (on the disk array) files are stored, since that in-
formation can change dynamically. New files are created on any
of the disks with enough free space. Metadata information is kept
in a well-known location on the disk that stores the most popular
files. The metadata for each file contains the file name (at most
128 bytes), the size of the file, the disk on which the file resides,



the times of creation and last access, and bookkeeping information
(pointers to next and previous files on the same disk, etc). Over-
all, each metadata entry consumes 168 bytes. The metadata for all
files is kept in a large file that is memory mapped to the virtual ad-
dress space of the server. Only when a file is actually opened is its
metadata accessed and physical memory allocated for it.

Nomad FS caches data blocks in memory at the user level. Be-
cause the cache is not a first-level cache (it sits behind the clients’
and/or network servers’ caches), the standard LRU replacement
policy would not work well for this cache. Instead, Nomad FS uses
the Multi Queue (MQ) algorithm [19] to manage its block cache.
MQ has been shown superior to other algorithms, including sophis-
ticated variations of LRU.

The MQ cache works as follows. There are multiple LRU queues
numbered , , ..., ; in our prototype , but
the system behavior is typically similar for other large numbers of
queues. Blocks stay in the LRU queues for a given lifetime. This
lifetime is defined dynamically by the MQ algorithm to be the max-
imum temporal distance between two accesses to the same file or
the number of cache blocks, whichever is larger. If a block has not
been referenced within its lifetime, it is demoted from to
or evicted from the cache if it is in . Each queue also has a max-
imum access count. If a block in queue is accessed more than

times, this block is then promoted to until it is accessed
more than times or its lifetime expires. Within a given queue,
blocks are ranked by recency of access, according to LRU.

During operation of the server, information about the files refer-
enced in the past are summarized on a list in main memory. The
summary for each file stores the file descriptor, the number of disk
accesses for the file, a pointer to its metadata, and some other book-
keeping data (such as list pointers), totaling 60 bytes. The amount
of memory dedicated to the list of summary information should be
large enough to hold at least the number of files in the working set
of a given workload.

The ranking of file popularity is done incrementally every time a
file access requires a disk access. We do this by reusing the same
MQ cache algorithm described above, but instead of using it on
cache blocks, we use it on the summary information. More specif-
ically, we keep the summary information on an MQ cache-like list.
Every disk access causes the file’s summary data to move on the
list according to the MQ policy. More disk accesses cause the sum-
mary entry to move closer to the head of the list. After a while,
popular files (in terms of disk accesses) will be close to the head of
the list, while unpopular files will be towards the tail.

Periodically, files are migrated to disks based on this ranked list
of disk accesses. The algorithm traverses the queues from
to . Initially, files in queue are migrated to the first disk
(numbered 0) until it is full or the expected load on the disk ap-
proaches its maximum bandwidth for the workload. The expected
load associated with a file is estimated by dividing its size by its
average inter-access time. The next set of files is migrated to the
second disk (according to the same conditions) and so on. If the
server needs to migrate a file to disk drive , there is no space
available on , and a file on is less popular than , then file

is migrated to disk . Disk is selected as follows. First, the
server tries the disks holding more popular files, starting from disk
0 and checking all disks until disk . If not enough space and
bandwidth can be found there, the server checks the disks holding
less popular data, starting from disk and checking all higher
numbered disks. This algorithm should always find space for the
file, as long as the overall disk space is not excessively tight for the
size of the file system. We have not developed an algorithm to deal
with this last scenario, because it has not been a problem for us.

2.3 Comparison Against Other Approaches
MAID. The Massive Array of Idle Disks (MAID) [7] has been pro-
posed as a replacement for old tape backup archives with hundreds
or thousands of tapes. Because only a small part of the archive
would be active at a time, the idea is to copy the required data to a
set of “cache disks” and put all the other disks in low-power mode.
Accesses to the archive may then find the data on the cache disk(s).
Cache disk replacements are implemented using an LRU policy.
Replaced data can simply be discarded if it is clean. If it is dirty, it
has to be written back to the corresponding non-cache disk.

This same idea can be applied to file servers as well. In fact,
we developed a version of Nomad FS that uses MAID to conserve
energy. We used as much code from Nomad FS as possible for our
MAID-based file server, so that the two servers can be directly com-
pared. The main memory cache management, for instance, is ex-
actly the same for both implementations. On an access to a cached
file block, the access is performed on the corresponding cache disk.
If the block accessed is not cached, the entire file is copied by the
server from its location on one of the non-cache disks to one of the
cache disks. If a replacement is required on a cache disk, an entire
file that is large enough is replaced according to LRU.

The designers of MAID observed that cache disks can become
overloaded [7]. To counter this problem, we optimize MAID by
avoiding copying files to the cache disks when the recent load on
these disks is approaching their maximum bandwidth. We find that
the absence of this optimization always leads to a large percentage
of delayed requests, as the cache disks become a bottleneck.

To conserve energy in configurations with conventional disks,
the MAID version of our server explicitly spins disks down after a
period of idleness. When considering two-speed disks, the server
does not control power modes explicitly and does not copy data out
of disks that are already at low speed.

In section 4, we quantitatively compare the MAID version of our
file server against the PDC version. Here we focus on a qualitative
comparison. PDC and MAID have the same objective, namely to
increase idle times by moving data around the disk array and spin-
ning disks down. As a result, both techniques sacrifice the access
time of certain files in favor of energy conservation. However, in-
stead of relying on file popularity and migration like PDC, MAID
relies on temporal locality and copying to conserve energy. This
has a few potential disadvantages in terms of energy savings: (1)
the cache disk(s) represent energy overhead, since they are addi-
tional to the set of disks that are required to store the actual data;
(2) the cache disk(s) might not have enough space to store the entire
(dynamically changing) working set for a given workload, causing
constant accesses to the non-cache disks; and (3) files are randomly
spread on the non-cache disks, which may significantly reduce the
opportunity for energy conservation if requests miss in the cache
disk(s) frequently. Nevertheless, MAID does have a few poten-
tial advantages: (1) metadata management is significantly simpler,
since it does not need to store and operate on file access informa-
tion about all files, only those that are on cache disks; and (2) it
adapts faster to changes in workload behavior, because file copying
(and possibly replacement) take place on a per-file access basis.

FT. When considering disk arrays composed of conventional disks,
we also study a fixed-threshold (FT) technique. FT is simple: a disk
is spun down after it has been idle for a fixed period. The idleness
threshold is the amount of time for which the energy consumed
in idle state is the same as that of powering the disk down and
later powering the disk back up. The rationale for this definition
is similar to the competitive argument about renting or buying skis
[15]. A spun down disk is reactivated on the next access to it.



FT does not involve any data movement or re-organization and,
thus, is not very effective at conserving energy in busy servers. In
contrast, it is very useful when combined with PDC or MAID, as
described above. We use an FT-based version of our file server as
a basis for comparison in section 4. Again, we re-used most of the
Nomad FS code to implement our FT-based file server.

3. METHODOLOGY
Our main goals in this paper are to determine the conditions un-

der which PDC is effective at conserving energy and how it com-
pares to MAID and FT for two disk array types and a wide range
of parameters. We explore this parameter space using the simulator
that we describe in subsection 3.1.

The reason why we chose simulation rather than real experimen-
tation is two-fold: (1) two-speed disks are not yet available on the
market (although Sony already has a disk drive that allows for static
speed setting [16]); and (2) using real experiments to perform such
a comprehensive parameter space exploration would have taken ex-
tremely long. For example, each of our simulations involves 19
million requests at 750 requests/second. A real experiment with
these parameters takes 7 hours, whereas a simulation takes less than
40 minutes. Note that accelerating a real execution and then scal-
ing results back would not have worked, since it is not possible to
accelerate real disk spin up/spin down operations, file copying, or
file migration.

Nevertheless, we strongly believe in realistic simulations, so we
carefully validated the simulator against executions of our proto-
type file server implementations on our own server hardware. We
discuss the validation of the simulator in subsection 3.2.

Another advantage of using simulation is that we can easily vary
parameters, which is a key component of this paper. In subsec-
tion 3.3 we discuss the set of parameters that we have found most
relevant in evaluating and comparing the different file servers.

We drive the simulator with both synthetic and real traces. Sub-
section 3.4 describes our generator of synthetic traces, whereas sub-
section 3.5 describes our real traces.

3.1 Simulation
We have developed an execution-driven simulator of our pro-

totype file servers. The simulator mimics the implementation of
our servers as closely as possible. In fact, several parts of the real
servers were reused in the simulator to avoid deviations from the
real implementations. The MQ replacement algorithm implemen-
tation, for example, was copied straight out of the server code.

At the file system level, files are assumed to be laid out in con-
secutive blocks of the same disk, whereas i-nodes are assumed to
be cached in memory. At a lower level, the simulator models an
array of conventional Cheetah disks or an array of two-speed disks.
The main characteristics of the conventional disk are shown in ta-
ble 1. The table also lists the idleness threshold for this disk, which
is the sum of the energies to spin the disk up and down divided by
the idle power.

The main characteristics of the two-speed disks are shown in ta-
ble 2. The high speed values are those of the Cheetah disk. These
values were scaled down to produce the low speed values. In par-
ticular, the power and energy values were scaled down in quadratic
fashion [10], assuming that where

is the constant . The disk controller slows
the disk down when the offered load becomes lower than 80% of
the disk throughput at low speed. Conversely, the controller transi-
tions the disk to high speed when this same threshold is exceeded.
The controller can trigger these transitions by observing the actual
utilization of the disk. We assume that no accesses can proceed

Description Value

Disk model Seagate Cheetah ST39205LC
Standard interface SCSI
Storage capacity 9.17 GBytes

Number of platters 1
Rotational speed 10000 rpm
Avg. seek time 5.4 msecs

Avg. rotation time 3 msecs
Transfer rate 31 MBytes/sec
Idle power 5.26 Watts

Down power 1.86 Watts
Active energy (8-KB read) 61 mJoules

Spin up energy 65.91 Joules
Spin down energy 28.25 Joules

Spin up time 6.12 secs
Spin down time 11.24 secs

Idleness threshold 17.9 secs

Table 1: Main characteristics and measured power, energy, and
time statistics of our SCSI disk.

Description Value

Storage capacity 9.17 GBytes
Avg. seek time 5.4 msecs

High to low speed transition energy 14.13 Joules
High to low speed transition time 5.62 secs

Low to high speed transition energy 32.96 Joules
Low to high speed transition time 3.06 secs

High rotational speed 10000 rpm
Avg. rotation time at high speed 3 msecs

Transfer rate at high speed 31 MBytes/sec
Idle power at high speed 5.26 Watts

Active energy at high speed (8-KB read) 61 mJoules
Low rotational speed 3000 rpm

Avg. rotation time at low speed 10 msecs
Transfer rate at low speed 9.3 MBytes/sec
Idle power at low speed 2.17 Watts

Active energy at low speed (8-KB read) 43 mJoules

Table 2: Main characteristics and simulated power, energy, and
time for our two-speed disk. The high speed values are those of
our Cheetah disk (table 1). These values were scaled down to
produce the low speed values. The speed transition costs are set
to half of the corresponding costs in the Cheetah disk.

when a disk is transitioning speeds. The speed transition costs are
set to half of the corresponding costs for the Cheetah disk. For ex-
ample, going from low to high speed costs half of the energy and
time to spin up the Cheetah disk. These transition cost settings are
admittedly somewhat arbitrary. However, note that the transition
costs make little difference in our simulations, since the frequency
of speed transitions is low for the parameters we consider. This
same effect has been observed in previous work [5].

Finally, the PDC and MAID-based servers involve four major
sources of overhead that do not exist in the FT version of our server:
migrations, copies, LRU processing, MQ processing. The CPU en-
ergy consumed by these operations has not been considered so far.
To take this consumption into account, we determined these over-
heads by running three microbenchmarks. One of them isolates the
CPU energy involved in each file block request to be about 37 J
for both LRU and MQ processing. The other two microbenchmarks
isolate the CPU energy consumed by each migration and copy op-
eration, as a function of file size. We have approximated these costs
to 1.5 J per byte moved. The simulator charges each request, mi-
gration, and copy with these CPU energy costs.



Description Total energy consumed Files moved MBytes moved Spin downs/ups Delayed requests
Sim Real Error Sim Real Sim Real Sim Real Sim Real

PDC 152023 172843 12.0% 9715 10943 227 283 336 326 1.3% 1.2%
MAID 141349 156335 9.6% 8738 8716 204 204 300 304 1.1% 1.0%

FT 190374 200479 5.0% n/a n/a n/a n/a 10 13 0.2% 0.2%
EO 190346 200833 5.2% n/a n/a n/a n/a n/a n/a 0.0% 0.0%

Table 4: Summary of simulator validation. Energy values are in Joules.

Description Value

Request rate 4 file requests/sec
Trace length 9033 secs (2.5 hours)

Number of files 43690 *
File size 20 KBytes *

Total file system size 853 MBytes *
Main memory cache size 64 MBytes *

Number of disks 4
Disk capacity 342 MBytes *

Idleness threshold 17.9 secs
Migration period every 1.25 hours (PDC only)

Table 3: Values used in the simulator validation: workload
characteristics (top), server settings and disk characteristics
(bottom). Values marked with “*” are used for fast validation.

The simulator faithfully models the disk powers, energies, and
times discussed above to determine disk energy consumption and
response times. The CPU energy costs associated with PDC and
MAID are added to their disk energy consumption.

3.2 Simulator Validation
It is important to build confidence in our simulator by validating

it against real experiments. Unfortunately, we can only validate the
simulations that assume conventional disks.

Our server hardware consists of an ASUS A7A133 motherboard
with an Intel Pentium-4 1.9-GHz processor, 512 MBytes of mem-
ory, 4 Seagate Cheetah 9.1-GByte Ultra SCSI disks, one Adaptec
29160 Ultra 160 SCSI controller, and one Gigabit Ethernet net-
work adaptor. The energy consumed by the disks is monitored by
a TDS 3014 oscilloscope. The oscilloscope is connected to a re-
mote computer that collects power consumption data at 1.25 Gsam-
ples/second. These data are averaged every 10 milliseconds. A 1.2-
GHz PC connected to the server via a Gigabit Ethernet connection
generates load for the server.

We used a synthetic workload to validate the simulator against
our prototype file servers running on this server hardware. Our
workload generator (explained in detail below) keeps selecting a
file to access randomly out of a set of files for a user-specified
amount of time. All the blocks of each chosen file are requested
in sequence. The timing of the file requests follows an exponen-
tial distribution. The main characteristics of the synthetic workload
and the server settings are summarized in table 3. Note that some of
the workload characteristics and server settings (those marked with
“*”) are not realistic; they are meant exclusively for fast validation.

We collected results for our file servers, as well as an energy-
oblivious server (EO) under which disks are never powered down.
The MAID version used one of the 4 disks as a cache disk, so it
did not incur any energy overhead due to the cache disk. Table
4 compares the servers in terms of disk energy consumption, files
and bytes moved between disks, number of disk spin downs/ups,
and the percentage of delayed requests. We consider a file request
to be delayed if it takes longer than 200 milliseconds.

The results show that the total energy consumed by each server
matches closely (within 5 to 12%) that of the simulated system. The
results also match the other metrics closely, especially the number
of spin downs/ups, which is a key metric for energy conservation.
These results give us confidence that our simulator can be used to
illustrate the important trends across the parameter space.

3.3 Parameter Space
Three categories of parameters directly affect the energy conser-

vation techniques and file servers we study: workload characteris-
tics, server characteristics, and disk drive characteristics. Next, we
discuss each of these categories in turn.

Workload characteristics. These are characteristics that are in-
herent to the workload imposed on the file server. Among the large
set of parameters that describe a workload, we have identified five
key characteristics: the request rate, the file popularity, the cover-
age of the file system, the percentage of writes, and the temporal
correlation of accesses to files.

The request rate has to do with the rate at which file requests
arrive at the server. We assume that inter-arrival times are exponen-
tially distributed; the request rate is the average of the distribution.

File popularity corresponds to the frequency with which each file
is accessed. We represent popularity by a value of the coefficient
in Zipf’s power law. This coefficient determines how skewed the
distribution of accesses to files is. A smaller (close to 0) means
that requests are more evenly distributed among files, whereas a
larger (close to 1) means that requests are more skewed towards
a few files.

The file system coverage has to do with the percentage of the
entire file repository that is actually accessed by the workload. A
coverage of 100% means that all files in the file system are accessed
at least once.

The percentage of writes corresponds to the frequency of file
write operations in the workload.

Temporal locality describes how far apart in time consecutive
accesses to the same files are. In particular, workloads with high
temporal locality exhibit consecutive accesses to the same file that
are “close” in time, whereas workloads with low temporal locality
exhibit consecutive accesses to the same file that are “far apart” in
time. Temporal locality has a direct relationship with popularity,
i.e., popular files have a short inter-arrival time due to their pop-
ularity. However, temporal locality can also be an effect of tem-
poral correlation, as discussed in [14]. Files with high temporal
correlation are those for which accesses are close together in time
regardless of the absolute popularity of the file. In this study, we
are interested in the effect of both aspects of temporal locality on
energy conservation.

File server characteristics. The configuration of the file server can
impact the energy savings significantly. Important configuration
parameters are the main memory cache size, the cache replacement
policy, and the number of disks used. We consider the cache size
and the number of disks in this study. We keep the cache replace-
ment policy fixed on the MQ algorithm, which has been shown to



be the best policy for second-level caches such as the ones used in
our file servers [19].

Disk drive characteristics. Several characteristics of physical disk
drives affect energy consumption directly, especially the power con-
sumption in each mode and the spin up/down overheads. Rather
than focusing on a detailed exploration of this space however, we
concentrate on evaluating the systems we study for disk arrays
composed of either conventional or two-speed disks.

3.4 Synthetic Trace Generator
To understand the impact of the parameters we just discussed,

we built a workload generator that can produce request traces with
user-specified request rate, popularity, coverage, temporal correla-
tion, number of requests, file system size, and average file size.
Currently the generator assumes that all files are of the same size
for simplicity.

To generate a request trace, the generator must first compute the
total number of files in the file system, by dividing the file system
size by the file size. With the total number of files, the generator can
determine the number of files that must be requested, according to
the desired coverage. Each of the files to be requested then receives
a probability weight, based on Zipf’s formula , where is the
rank of the file from 1 to the number of files to be requested. Based
on these probabilities, the generator randomly selects the actual file
requests that will make up the trace. All blocks of a selected file are
requested in sequence. Each new request is assigned a timestamp
that is equal to the time of the last access plus an exponentially
distributed random increment based on the request rate.

The generator continues to select files based on their weights
until the number of requests reaches the desired number. If the
desired coverage is still missing N files when the trace is missing
N requests, a request for each of these N files is appended to the
trace sequentially. However, to avoid having a long sequence of
previously unreferenced files in the end of the trace, we randomize
the trace once all the files have been selected. We have verified that
this procedure produces the desired coverage without changing the
desired popularity ( ) by inspecting several generated workloads.

However, this generation procedure does not consider temporal
correlation explicitly. As described, the temporal locality of the
workload is the one inherent to the popularity of files. The work-
loads we consider have this form of temporal locality, except when
we explicitly address the effect of temporal correlation. To generate
a set of workloads with varying degrees of temporal correlation, the
generator does the following. The probability weights described by
the Zipf are split into a fixed number of groups with the same num-
ber of files per group. Instead of generating requests that span the
whole range of files in the coverage, the generator selects files from
the first group first, for as many requests as the first group of files
should receive. After generating all the requests for the first group,
the generator moves to the second group and so on. Grouping files
in this way forces files to be selected more closely together in time.
For a number of groups larger than 1, the result is a workload with
higher temporal correlation. For large numbers of groups, even
unpopular files will have much higher temporal correlation. The
resulting workload might be unrealistic for more than 1 group, but
it does exhibit a controlled temporal correlation behavior, which
suffices for our purpose of observing trends.

3.5 Real Traces
We also simulate two real (proxy server) traces, which we call

Hummingbird (HUM) and Point of Presence (POP). HUM was col-
lected at AT&T from 01/16/99 to 01/31/99. The total footprint of
HUM consists of 76.9 GBytes with an average requested file size

Description Default Value

Request rate * 750 reqs/s (36 MBytes/sec)
File popularity * 0.85

Coverage * 40%
Percentage of writes * 0%

Temporal locality * popularity-induced only
Trace length 19,000,000 requests

Main memory cache size * 1 GByte
Number of disks * 8 (PDC), 9 (MAID-1+), 10 (MAID-2+)

File size 48 KBytes
Total file system size 126 GBytes
Migration period * every 1/2 hour (PDC only)

Cache disks 1 (MAID-1+), 2 (MAID-2+)
Disk characteristics same as in tables 1 and 2

Table 5: Default parameters used in synthetic trace simula-
tions: workload characteristics (top), server settings (middle),
disk characteristics (bottom). We vary the parameters marked
with “*”.

of 294 KBytes. POP was collected between 10/15/01 and 10/26/01
at the Federal University of Minas Gerais, Brazil. POP was filtered
to eliminate the proxy misses, leading to a total footprint of 39.4
GBytes and an average requested file size of 17 KBytes.

4. PARAMETER SPACE RESULTS
In this section we present the results of our parameter space ex-

ploration. We break the evaluation into two parts: arrays of conven-
tional disks and arrays of two-speed disks. In each part, we start by
analyzing workload characteristics and later move on to file server
characteristics. To study the effect of each parameter, we assess the
energy savings of the PDC, MAID, and FT-based versions of our
file server (in comparison to the energy-oblivious version, EO), as
a function of different settings for the parameter. To isolate the ef-
fect of a single parameter at a time, all other parameters are fixed at
their default values. Throughout this section, we refer to the name
of each technique and the server that exploits it interchangeably.

The default values for our simulation parameters are listed in ta-
ble 5. Note that MAID-1+ is the MAID version of our file server
that uses one extra disk as cache; MAID-2+ assumes two cache
disks. The “+” refers to the optimization we made to MAID to
avoid overloading the cache disk(s). The values for our simulated
hardware are based on our own real server hardware, except for
the main memory cache size. The values for the workload char-
acteristics were chosen because they are “reasonable” values that
represent areas of the parameter space where PDC and MAID per-
form well. In particular, the default request rate was set to half of
the peak load we would expect for our real server. Common provi-
sioning practice suggests that a server should be provisioned such
that its peak load reaches 80% of its maximum throughput; the 20%
extra capacity can handle any unexpected increases in load. We fol-
lowed these suggestions and determined the maximum throughput
of our server, 125 MBytes/sec, when all file requests can be served
from the main memory cache. Given that the load peaks and val-
leys of servers deployed in the field can vary by factors ranging
from 3 to 10 [6], our default request rate corresponds to a period
of light load, exactly when energy savings are possible. Previous
works have made similar assumptions, e.g., [5]. Nevertheless, we
do vary the parameters marked with “*” in the table in the next two
subsections.
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Figure 1: Energy savings per file request rate (conventional
disks).

4.1 Arrays of Conventional Disks
Figure 1 depicts the energy savings that can be accrued by the

four versions of our file server, as different average file request rates
are imposed on the servers. The energy savings are computed in
comparison to EO.

As expected, low request rates show better energy savings. The
maximum savings are substantial, reaching almost 40% in the case
of PDC. However, note that non-trivial energy savings can only be
achieved for very low request rates, less than 100 requests/second.
These request rates are less than 10% of our default request rate. A
file request rate of 25 request/second, for instance, is equivalent to a
throughput of only 1.2 MBytes/second. Even worse, when request
rates are very low, a significant percentage of requests is delayed by
disk spin up operations. Note also that the MAID systems actually
produce negative energy gains, i.e. they consume more energy than
EO, across most of the space of request rates. The reason is that the
cache disks do not reduce the load on the non-cache disks enough
for them to be spun down; they are simply energy overhead.

These request rate and response time results clearly show that
conventional disks are not useful when the goal is to conserve en-
ergy without noticeable performance degradation. When request
rates are high, no energy savings can be accrued. When request
rates are low, requests are frequently delayed by disk spin ups.
These same negative effects are observed across the whole param-
eter space of workload and file server characteristics, so we do not
present further results for arrays of conventional disks.

4.2 Arrays of Two-Speed Disks

4.2.1 Workload Characteristics
Request rate. Figure 2 depicts the energy savings that can be ac-
crued by the four versions of our file server, as a function of the file
request rate. The curve labeled “2spd” represents the version that
uses two-speed disks, but no data movement. All energy savings
are computed with respect to EO running on an array of conven-
tional (Cheetah) disks.

Again, lower request rates show better energy savings. In fact,
the maximum savings in comparison to EO are very substantial,
reaching almost 60%, the energy differential between low and high
speeds, for PDC and 2spd at 250 and 500 requests/second. In this
part of the space, the MAID systems produce lower savings due
to the cache disks, which are unnecessary. The energy savings
decrease quickly as we increase the file request rate. At 750 re-
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Figure 2: Energy savings per file request rate (two-speed disks).
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Figure 3: Energy savings per file system coverage.

quests/second, the 2spd and MAID-1+ systems stop producing en-
ergy gains, since all disks remain in high speed virtually all the
time. At that request rate, PDC and MAID-2+ still produce gains
of 30-40%, as data movement has the effect of reducing the load
on several disks. At 1000 requests/second, the gains achievable by
both MAID systems become negative, whereas PDC still produces
gains of more than 10%. For higher request rates, the PDC gains
are reduced and approach 3% at 1250 requests/second.

These results demonstrate that PDC is more consistent and ro-
bust than other techniques for the range of request rates that can
actually provide energy savings. PDC achieves the highest gains
across the range, without ever consuming more energy than EO.
The behavior of the MAID systems is heavily influenced by the
number of cache disks used. Moreover, the overhead of cache disks
is pronounced on both ends of the range. 2spd does not provide
gains in most cases.

In terms of response time, we find that all versions of our server
exhibit less than 2% delayed requests, regardless of the request rate.
In fact, the percentage of delayed requests is consistently very low
for all except the most extreme (and clearly unrealistic) of param-
eters for two-speed disks. For this reason and the fact that network
servers can accommodate substantial response time degradations,
hereafter we do not discuss response times.

File system coverage. Figure 3 presents the energy savings ac-
crued by the four servers, as a function of file system coverage.
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Figure 4: Energy savings per file popularity.

Recall that the default coverage we consider in our other analyses
is 40%. As expected, higher coverages mean that disk loads in-
crease and therefore the energy savings are reduced. On the other
hand, higher coverage also allows the Nomad FS file placement al-
gorithm (MQ) to place a larger number of files more intelligently
in the array. As a result, the energy savings accrued by PDC de-
grade gracefully. MAID-2+ also degrades gracefully, since its two
cache disks provide enough extra bandwidth at the default request
rate to compensate for increases in coverage. In contrast, MAID-
1+ suffers severely with increasing coverage, as a result of the extra
pressure on the cache disk. When this disk becomes fully utilized,
the non-cache disks also start operating at high speed.

File popularity. Figure 4 depicts the energy gains for different val-
ues of the Zipf coefficient (alpha). Alpha represents the file pop-
ularity as seen by the server, not the disk subsystem. Recall that
the default popularity we assume in our other analyses is 0.85. The
figure shows that all systems suffer as we decrease the popularity.
The reason is that decreased popularity means lower main memory
cache hit rates, which yield higher disk loads. Furthermore, the
PDC file migration approach does not work as well when file pop-
ularity is decreased. Despite these problems, PDC degrades more
gracefully than MAID or 2spd; it provides energy gains for popu-
larities as low as 0.6. MAID does not behave as well as PDC be-
cause the files on its cache disks exhibit worse (popularity-induced)
temporal locality with decreased popularity. This increases the load
on the cache disks. When the cache disks become fully utilized, the
traffic directed to the other disks increases further, forcing all disks
to operate at high speed. As a result, the MAID systems consume
more energy than EO for most of the parameter space.

Percentage of file write operations. Figure 5 shows the effect
of the percentage of writes on the energy savings provided by the
servers we consider. Recall that we have been considering read-
only workloads by default. The figure shows that the energy sav-
ings provided by the different techniques decrease slightly (if at
all) with increases in the percentage of writes. The reason for the
slight decreases is that more writes increase the disk traffic when
dirty blocks are evicted from the main memory cache. In fact, in
the MAID-based servers, writes can cause even more traffic when
dirty disk cache blocks have to be written back to their correspond-
ing non-cache disks.

Temporal correlation. Figure 6 shows the effect of temporal cor-
relation on the energy savings of the servers we consider. We com-
pute the average number of file accesses between two consecutive
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Figure 5: Energy savings per percentage of writes.
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Figure 6: Energy savings per temporal correlation.

accesses to each file and compute the overall average for all files.
Recall that we assume no temporal locality besides that induced by
file popularity in our other analyses. For each curve in the figure,
this means the rightmost point.

We can see that all systems benefit from higher temporal cor-
relation (i.e., smaller average inter-access distance). The higher
correlation increases the main memory cache hit rate and reduces
the load on the disk subsystem. This effect is highly beneficial
for 2spd. MAID has the added benefit that high temporal correla-
tion causes the cache disks to work more effectively. However, the
MAID systems have the energy overhead of the cache disks them-
selves. Again, PDC is the most consistent and robust system across
the parameter space.

4.2.2 File Server Characteristics
Number of disks. Figure 7 shows the energy savings of the dif-
ferent versions of our server, as a function of the number of disks.
The total storage size is not changed, therefore simulations with
more disks have fewer files per disk and do not require additional
cache disks for the MAID systems. Recall that the default number
of disks we assume in our other analyses is 8 for PDC and 2spd, 9
for MAID-1+, and 10 for MAID-2+.

We can see that increasing the number of disks increases savings
quite significantly, as one would expect. The smaller set of accesses
directed to each disk allows all disks to operate at low speed. Note
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Figure 8: Energy savings per main memory cache size.

also that the energy overhead of cache disks is better amortized
in larger array configurations. However, if we had assumed the
number of cache disks to increase proportionally to the number of
regular disks, we would have seen overheads of around 10% and
20% for the two MAID systems in these large configurations.

Main memory cache size. Figure 8 considers the effect of main
memory cache size. Recall that the default size of the memory
cache we assume in our other analyses is 1 GByte.

Cache size increases produce significant benefits for all servers.
With caches of 5 GBytes or larger, both PDC and 2spd approach the
maximum achievable energy savings of 60%, since the cache miss
rate becomes so low that all disks start to operate at low speed. The
MAID systems also benefit from larger main memory caches, but
settle at lower energy savings with very large caches.

Migration frequency. Figure 9 shows the effect of changes in the
migration period in Nomad FS. Recall that the default migration
period we assume in our other analyses is every 1/2 hour. For very
short migration periods, there may not be enough time to complete
the migrations until the next round of migrations needs to start. In
these cases, we simply stop the current migration process midway
and start the next. Since MAID and 2spd do not involve migrations,
we plot their energy gains as horizontal lines for comparison.

From the figure we can see that the frequency of migrations has
a substantial impact on the gains achieved by PDC. With longer
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Figure 9: Energy savings per reconfiguration period.

Description HUM POP

Avg. request rate 241 reqs/sec 263 reqs/sec
Coverage 100% 100%

File popularity 0.70 0.93
Percentage of writes 35% 0%
Temporal correlation 467280 reqs 94568 reqs

Cache size 1 GByte 64 MBytes
Migration period 672 minutes 168 minutes

Table 6: Parameters of real traces and server settings. Request
rate values correspond to the accelerated traces. Migration pe-
riods correspond to one week in the non-accelerated traces.

periods, PDC takes longer to adjust to access patterns. It is also in-
teresting to note that short migration periods provide slightly higher
energy savings than our default setting. The reason is that the en-
ergy cost of file placement changes is a small fraction of the energy
consumed in between migrations. However, these shorter periods
also come with substantial increases in the percentage of delayed
requests, due to the intense file migration traffic.

5. REAL TRACE RESULTS
The results so far have assumed synthetic traces and exponen-

tial request arrivals with a fixed mean arrival rate. In this section,
we study real traces that exhibit pronounced load intensity varia-
tions, with load peaks in the afternoon and valleys at night. Note
however that we accelerated the traces by factors of 15 (HUM) and
60 (POP), because even the peak loads in the original traces are
relatively low for our disk array.

We simulate a tight coupling between the file server and the net-
work server; the file server forms the “bottom half” of the network
server on a single machine. We assume a “warm up” period corre-
sponding to one week of the original, non-accelerated traces. Table
6 lists the characteristics of the traces and server settings with re-
spect to the parameters we just explored. All simulations assume
two-speed disks and 8 (PDC), 9 (MAID-1+), or 10 (MAID-2+)
disks in the array.

Table 7 lists the energy and percentage of requests delayed (by
more than 200 milliseconds) for each technique and trace after their
warm up periods. EO consumes 2022095 J (HUM) and 256745 J
(POP) with virtually no delayed requests.

These results confirm the main observations of the previous sec-
tion, i.e. under light load, PDC conserves a significant amount of



Technique HUM POP

PDC Energy 1472438 J 147332 J
MAID-1+ Energy 1605547 J 170232 J
MAID-2+ Energy 1700585 J 181815 J

2spd Energy 1538228 J 160114 J
PDC Delayed 5.3% 8.0%

MAID-1+ Delayed 14.3% 8.5%
MAID-2+ Delayed 11.2% 8.1%

2spd Delayed 6.0% 7.6%

Table 7: Real trace results: energy and percentage of requests
delayed.

energy (27% for HUM and 43% for POP) while the cache disks in
MAID reduce energy gains. The one exception is that 2spd con-
serves more energy than both MAID systems. 2spd performs well
because, throughout most of the traces, the disk load is low enough
that all disks can be at low speed. This characteristic makes these
traces ideal for 2spd. Despite these good results, PDC still con-
serves more energy than 2spd (14% more for HUM and 13% more
for POP) without an increase in the percentage of delayed requests.

Note also that the percentage of delayed requests is higher than in
our parameter space exploration. The main reason for these results
is that, going from each valley to the next peak, disk loads increase
very quickly in the accelerated traces. Under this scenario, disk
contention develops until the two-speed disks can transition to high
speed. This should not be a problem in practice however, since load
variations are substantially slower in real time.

6. RELATED WORK
We originally suggested PDC and our energy-aware file server

at the work-in-progress session of SOSP’01 [17]. This paper is the
first detailed and complete evaluation of our proposals. The inspi-
ration for this work came from our work on Load Concentration
(LC) and dynamic cluster reconfiguration for energy conservation
[18]. PDC is an application of a similar concept to LC to storage
systems. However, we found that it was much harder to success-
fully apply PDC than LC, given the information required to make
intelligent migration decisions and the large number of important
parameters involved.

As far as we know, there have been six other works on disk en-
ergy conservation for servers [5, 7, 10, 11, 20, 21]. Carrera et al. [5]
and Gurumurthi et al. [10] considered multi-speed disks for stand-
alone servers. These papers showed that significant energy savings
can be accrued by adjusting speeds according to the load imposed
on the disk. Carrera et al. also show that a combination of laptop
and SCSI disks can be even more beneficial in terms of energy, but
only for over-provisioned servers. Our work is orthogonal to these
contributions in that we seek to conserve energy in the context of
disk array-based servers. For these systems, exploiting data move-
ment between disks can provide significant additional gains, as we
demonstrate in section 4.2.

In terms of disk array-based servers, Gurumurthi et al. [11] con-
sidered the effect of different RAID parameters, such as RAID
level, stripe size, and number of disks, on the performance and en-
ergy consumption of stand-alone database servers running transac-
tion processing workloads. They also observed that it is not possi-
ble to exploit idleness in this context. However, they did not con-
sider any other energy conservation techniques.

Colarelli and Grunwald [7] proposed MAID and evaluated it for
a large scientific workload. Although they mentioned a migration-
based version of MAID, they decided not to pursue it in favor of the

copy-based version we studied here. For their workload, MAID
conserves no more energy than FT. We extend their work by im-
plementing a prototype file server based on MAID, validating our
simulator against the prototype, considering a broader range of pa-
rameters, and comparing copying against migration.

Finally, Zhu et al. [20] recently considered storage cache repla-
cement techniques that selectively keep blocks from certain disks
in the main memory cache, so that the disks can stay in low-power
mode for a longer period of time. In another paper, Zhu et al. [21]
study a more elegant approach to the same problem. Their work
is similar to ours in that it also attempts to affect the load directed
to disks. As another similarity, their work evaluated replacement
techniques for disk arrays composed of multi-speed disks. How-
ever, they did not consider data movement between disks, which
can provide greater benefits.

Bianchini and Rajamony [1] surveyed these and other works on
power and energy conservation for server systems.

7. CONCLUSIONS
We have introduced a new energy conservation technique called

PDC for disk arrays. We have also designed and implemented an
energy-aware file server called Nomad FS that exploits this tech-
nique. For comparison, we developed two versions of our server
that use other energy conservation techniques, MAID and FT. Us-
ing a validated simulator, we performed a comprehensive study of
the parameters that affect energy conservation the most, pinpoint-
ing the scenarios under which each technique is useful, for disk
arrays composed of either conventional or two-speed disks. The
study allowed us to map the areas of the parameter space for which
no technique can conserve energy. We also studied the behavior of
the different techniques for two real traces.

In summary, we found that it is possible to conserve a substan-
tial amount of energy during periods of light load on the server, as
long as two-speed disks are used. We have also found that Nomad
FS can deal more gracefully with increases in request rate and de-
creases in file popularity than the other servers. In addition, PDC
achieved consistent energy savings for most of the parameter space.
However, the PDC gains degrade substantially for long migration
intervals. In comparison, the behavior of MAID is heavily depen-
dent on the number of cache disks used. Furthermore, the energy
overhead of these disks is pronounced in several parts of the param-
eter space. For the real traces, PDC achieved the best results, con-
firming the observations from the synthetic traces. We also showed
that using two-speed disks without data movement behaves well
when real disk loads remain light most of the time.

Based on these results, we conclude that the techniques we study
will be very useful for disk array-based network servers when mul-
ti-speed disks become available.

Further research is required on the reliability implications of
PDC. In fact, it is clear that PDC negatively affects the reliability
of conventional disks due the large number of power mode transi-
tions it causes. However, we have shown that PDC is not useful
for conventional disks anyway. For multi-speed disks, we expect
PDC to have a negligible impact on reliability. The reason is that
real network server workloads (which exhibit load peaks in the af-
ternoon and valleys at night) should induce at most two speed tran-
sitions/disk/day in the presence of PDC.

Another interesting research issue is the interaction of PDC with
storage system reliability approaches, such as mirroring and RAID.
Extending Nomad FS to deal with mirroring should be easy, but
combining PDC with data striping can be more challenging.

Finally, our parameter space exploration and experience with
real traces suggest that PDC is highly sensitive to the length of



the migration period and the estimation of the load to be imposed
on disks after migrations. Another research topic is how to make
Nomad FS automatically determine the best settings for these pa-
rameters.
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