
FlashCache: A NAND Flash Memory File Cache for Low
Power Web Servers

Taeho Kgil
Advanced Computer Architecture Laboratory

The University of Michigan
Ann Arbor, USA

tkgil@eecs.umich.edu

Trevor Mudge
Advanced Computer Architecture Laboratory

The University of Michigan
Ann Arbor, USA

tnm@eecs.umich.edu

ABSTRACT
We propose an architecture that uses NAND flash mem-
ory to reduce main memory power in web server platforms.
Our architecture uses a two level file buffer cache composed
of a relatively small DRAM, which includes a primary file
buffer cache, and a flash memory secondary file buffer cache.
Compared to a conventional DRAM-only architecture, our
architecture consumes orders of magnitude less idle power
while remaining cost effective. This is a result of using
flash memory, which consumes orders of magnitude less idle
power than DRAM and is twice as dense. The client re-
quest behavior in web servers, allows us to show that the
primary drawbacks of flash memory—endurance and long
write latencies—can easily be overcome. In fact the wear-
level aware management techniques that we propose are not
heavily used.

Categories and Subject Descriptors
B.3 [Semiconductor Memories]; C.0 [System architec-
tures]

General Terms
Design, Experimentation, Performance

Keywords
Low power, web server, application-specific architectures,
Flash memory, server platforms, embedded system, full-system
simulation

1. INTRODUCTION
With the growing importance of web servers found in

internet service providers like Google and AOL, there is
a trend towards using simple low power systems as blade
servers in power hungry server farms. These suit the modest
computation power and high memory throughput required

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

in typical server workloads. As shown in Figure 1, web
servers connect directly to the client and are only in charge
of delivering the web content page to the client. Since web
servers require just a modest amount of computation power,
a large amount of their performance depends heavily on
memory, I/O bandwidth and access latency. To mitigate
I/O latency and bandwidth, especially latency in hard disk
drives, server farms typically use large main memories that
try to map the entire fileset onto memory, caching the whole
fileset onto DRAM. Unfortunately, DRAM consumes a large
portion of overall system power. Today’s typical servers
come with large quantities of main memory—4∼32GB and
have been reported to consume as much as 45W in DRAM
idle power[8]. If we consider that the Niagara core inside
the Sun T2000, a typical server, consumes about 63W, we
can clearly see that DRAM idle power contributes to a large
portion of overall system power.

We examined the behavior of DRAM main memory in Fig-
ure 2. In particular, Figure 2(a) shows the hit rate of a file
buffer cache for web server applications. We see marginal
improvement in page cache hit rate after a certain point.
However, because the access latency to a hard disk drive is
in milliseconds, a large amount of DRAM size is still needed
to make up for the costly hard disk drive access latency.
Otherwise, the server will not be fully utilized and remain
idle waiting to get information from the hard disk drive. Sur-
prisingly though, from our experiments done on web server
workloads shown in Figure 3, we observe an access latency
of tens to hundreds of microseconds can be tolerated when
accessing a large part of a file buffer cache without affecting
throughput. This is due to the multi-threaded nature of web
server applications that allows modest access latency of mi-
croseconds to be hidden. The resulting non-uniform memory
hierarchy consumes less power while performing equally well
as a flat DRAM-only main memory. Furthermore, reads are
more frequent than writes in web server applications. These
characteristics make a strong case for using flash memories
as a secondary file buffer cache. Flash memories have estab-
lished themselves as storage devices for embedded and mo-
bile platforms. Their continued rapid improvement is sup-
ported by their growing usage in a wide variety of high vol-
ume commercial products. Flash memories consume orders
of magnitude less idle power and are cheaper than DRAM,
especially NAND-based flash memory, making them an ex-
cellent component used for energy-efficient computing.

In this paper, we propose an architecture called Flash-
Cache that uses a NAND-based flash memory as a secondary

103

IP Services
Frontend

Application
Services

Data
Backup
Services

Internet

TIER 1 TIER 2 TIER 3
HTTP Response

HTTP Request Invoke Component

Response Return Results

Invoke Query

Execute
Query

Web Server Application
Server

Database Server

Figure 1: A Typical 3 Tier Server Architecture. Tier 1—Web Server, Tier 2—Application Server, Tier 3—
DataBase Server. PicoServer is targeted at Tier 1. An example of an internet transaction is shown. When
a client request comes in for a Java Servlet Page, it is first received by the front end server—Tier 1. Tier 1
recognizes a Java Servlet Page that must be handled and initiates a request to Tier 2 typically using Remote
Message Interfaces (RMI). Tier 2 initiates a database query on the Tier 3 servers, which in turn generate
the results and send the relevant information up the chain all the way to Tier 1. Finally, Tier 1 sends the
generated content to the client.

file buffer cache to reduce overall power consumption in the
main memory without impacting network bandwidth. Al-
though flash memory has limitations in terms of endurance
and bandwidth, we will make the case in this paper that
the benefits found in the reduction of overall main memory
power outweigh the drawbacks in adopting flash memory.

Aside from the cost-effectiveness and low idle power of
flash memory, our FlashCache architecture can also take
advantage of flash memory’s persistence. Integrating flash
memory into the conventional system-level memory hierar-
chy enables quick warm up of file buffer caches, which allows
quicker deployment of web servers. We can quickly image
the cached file content onto the flash memory and reduce
the warm-up time of the file buffer cache.

Our FlashCache architecture provides:

• Overall reduction in system level power. The
physical characteristics of flash memory reduces by a
significant amount the idle power in main memory.
The overhead resulting from the increased latency in
accessing items in the file buffer cache can be mini-
mized because of the access behavior of the files.

• Overall cost reduction in main memory. A cost-
effective solution with multi-chip main memory com-
pared to a DRAM-only based solution. The density of
flash memory exceeds DRAM by more than 2×, which
is reflected in the reduced cost per bit of flash mem-
ory. Therefore, the total cost of a main memory is
much less costly than a DRAM-only solution.

• Quicker startup time compared to conventional
DRAM-only platforms. The nonvolatile property
in flash memory means file buffer cache warm up is not
required after boot up.

In the process of describing our architecture, we inter-
changeably use page cache and file buffer cache. This is
because after Linux kernel version 2.4 the file buffer cache
has been merged into a page cache.

The paper is organized as follows. In section 2, we provide
background on flash memory, web server workloads, and re-
lated work. Section 3 and 4 provide a detailed description
of our FlashCache architecture and explains how it works.
Section 5 and 6 present our experimental setup and results.
And finally we present our conclusions and future work in
Section 7.

2. BACKGROUND

2.1 Flash memory
There are two types of flash memory—NAND and NOR—

that are commonly used today. Each type of memory has
been developed for a particular purpose and has its own pros
and cons. Table 1 and Table 2 summarizes the properties
of NAND and NOR along with DRAM. The biggest differ-
ence, compared to DRAM, is when writing to a flash mem-
ory. Flash memories require a preceding erase operation
to perform a write operation. The ITRS roadmap projects
NAND flash memory cell sizes to be 2∼4× smaller than
DRAM cell sizes and NOR flash memory cell sizes to be sim-
ilar or slightly bigger than DRAM cell sizes. A NAND flash
memory uses a NAND structure memory array to store con-
tent. The small cell size for a NAND flash memory results in
higher storage density. With the potential to support multi-
level cells, storage density is expected to improve even more
as shown in the ITRS roadmap. However, the drawback is
that the random read access time for NAND flash memory is
lengthy due to the nature of the NAND structure. Sequen-

104

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

percentage of fileset

cu
m

ul
at

ed
 p

er
ce

nt
ag

e
of

re

qu
es

ts

(a)

60%
65%
70%
75%
80%
85%
90%
95%

100%

32MB 64MB 128MB 256MB

DRAM size

pa
ge

 c
ac

he
 h

it
ra

te

MP4 MP8 MP12

(b)

Figure 2: (a) File buffer cache access behavior on the server side for client requests. We measured for 4, 8,
12 multicore configurations and varied the DRAM size. (b) A typical cumulative distribution function of a
client request behavior. 90% of requests are for 20% of the web content files.

0
300
600
900

1,200
1,500
1,800
2,100

12μs 25μs 50μs 100μs 400μs 1600μs

access latency

N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s MP4 MP8 MP12

(a) SURGE

0

200

400

600

800

1,000

1,200

12μs 25μs 50μs 100μs 400μs 1600μs

access latency

N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

MP4 MP8 MP12

(b) SPECWeb99

Figure 3: Measured network bandwidth for full system simulation while varying access latency to a secondary
page cache. We assumed a 128MB DRAM with a slower memory of 1GB. We measured bandwidth for 4, 8, 12
multicore configurations. The secondary page cache can tolerate access latencies of hundreds of microseconds
while providing equal network bandwidth.

tial read accesses are not as slow as random reads, making
it a good candidate for applications that have streaming lo-
cality. As a consequence, NAND flash memory has become
popular for storing digital content—audio and video files. In
addition to lengthy random access time, NAND flash mem-
ory also has issues with reliability.

NAND flash memory is likely to be manufactured with
faulty cells. Furthermore, wear-out may cause good cells to
become bad cells. NAND flash memory comes with built-
in error correction code support to maintain reliability and
extend the lifespan of flash memory. There have been im-
plementations of file systems that extend the endurance of
NAND flash memory to more than 5,000,000 cycles using
BCH (Bose,Chaudhuri and Hocquenghem) block codes[9].
A NOR flash memory, in contrast to NAND flash, has a
random read access time that is faster. Since NOR flash
memory performs relatively well for random read accesses,
it is commonly used for applications requiring fast access to
code and data. Accordingly, NOR flash memory has typi-
cally been used to store code and data on handheld devices,
PDAs, laptops, cell phones, etc.

2.2 Web Server workload
Web Server workloads are known to have high levels of

thread level parallelism (TLP), because connection level par-
allelism can be translated into thread level parallelism. In
addition to that, they cover a working set size determined
by the client web page request behavior. Client web page
requests follow a Zipf-like distribution as shown in Figure
2(b). A large portion of requests are centered around the
same group of files. These file accesses translate into mem-
ory and I/O accesses. Due to the modest computation,
memory and I/O latency are critical to high performance.
Therefore, file caching in the main memory plays a criti-
cal part in providing sufficient throughput. Without a page
cache, the performance degradation due to the hard disk
drive latency would be unacceptable. To work well on this
particular workload, the preferred architecture is a simple
multicore architecture with enough page cache to reduce the
amount of access to the hard disk drive[18].

105

Density–
Gb/cm2 $/Gb

Active
Power∗

Idle
Power∗

Read
Latency

Write
Latency

Erase
Latency

Built-in ECC
support

DDR2 DRAM 0.7 48 878mW 80mW† 55ns 55ns N/A No
NOR 0.57 96 86mW 16μW 200ns 200μs 1.2s No

NAND 1.42 21 27mW 6μW 25μs 200μs 1.5ms Yes
∗ Power consumed for 1Gbit of memory
† DRAM Idle power in active mode. Idle power in powerdown mode is 18mW

Table 1: Cost and power consumption for conventional DRAM, NOR, NAND-based flash memory. NAND
flash memory is the most cost-effective while consuming the least amount of power.[22][20]

2005 2007 2009 2011 2013 2016
Flash NAND Cell size
–SLC/MLC∗(μm2)

0.0231/0.0116 0.0130/0.0065 0.0081/0.0041 0.0052/0.0013 0.0031/0.0008 0.0016/0.0004

Flash NOR Cell size(μm2)† 0.0520 0.0293 0.0204 0.0117 0.0078 0.0040

DRAM Cell size(μm2) 0.0514 0.0324 0.0153 0.0096 0.0061 0.0030
Flash erase/write cycles 1E+05 1E+05 1E+05 1E+06 1E+06 1E+07
Flash data retention 10-20 10-20 10-20 10-20 20 20

∗ SLC - Single level Cell, MLC - Multi Level Cell
† We assume a single level cell with smallest area size of 9F2 stated in the ITRS roadmap

Table 2: ITRS 2005 roadmap for flash memory technology. NAND flash memory is projected to be upto
7∼8× as dense as DRAM. Flash memory endurance improves by an order of magnitude approximately every
5∼6 years. Data retention is over 10 years which is a long time for server platforms.[10]

2.3 Related Work
There has been considerable work on using flash memory

as part of the memory hierarchy. In [22], it was shown that
flash memory could be used directly for high performance
code execution by adding an SRAM. In [2], the authors pro-
posed to integrate flash memory into hard disk drives to
improve their access latencies in mobile laptops. The proto-
type used the flash memory as a boot buffer to speedup boot
time and as a write buffer to hide write latencies to the hard
disk drive. The issue of wear-level awareness has also been
studied. For example, wear-level aware file systems have
been outlined in [3] to extend flash memory endurance. [15]
has shown error correction codes extend the lifespan of flash
memory with marginal overhead.

In the case of non-uniform main memory, [14] showed the
potential of having a non-uniform main memory architec-
ture. They examined using a slow secondary main memory
as a swap cache and measured the performance overhead.
The overhead was shown to be negligible. [17][19] showed
that a considerable amount of main memory power can be
reduced with power aware page allocation. They reduced
DRAM idle power by putting non-recently accessed pages
to sleep. Our work extends the work from [14][2] and in-
tegrates flash memory as a secondary file buffer cache for
web server applications. We will show that this architecture
reduces operating costs due to an order of magnitude re-
duction in main memory power consumption, while giving a
significant cost advantage compared to a DRAM-only archi-
tecture. By adapting and simplifying the methods in [3] and
incorporating them onto a cache replacement algorithm, we
mitigate any wear-out problems.

3. FLASHCACHE ARCHITECTURE
Figure 4 shows an overview of our proposed architecture

using a FlashCache. Compared to a conventional DRAM-
only architecture, our proposed FlashCache assumes a two
level page cache. It requires a non-uniform main memory ar-
chitecture with a small DRAM that holds the primary page
cache and flash memory that functions as the secondary page
cache. A flash memory controller is also required. Addi-
tional data structures required to manage the FlashCache
are placed in DRAM.

Our FlashCache architecture uses a NAND-based flash
memory rather than a NOR-based flash memory due to the
compactness and faster write latency found in NAND flash
memory. The random read access latency for a commercial
NAND is 25μs and the write latency is 200μs with an erase
latency of 1.5ms per block [6]. We employ flash memory as
a page cache rather than a generic main memory or a stor-
age device. Flash is unsuitable as a generic main memory,
because of the frequent writes and associated wear-out. It is
unsuitable as a storage device, because of the large memory
overhead required in a file system where wear-out is a con-
cern. A page cache only requires cache tags for each block,
implying less memory overhead than a file system requiring
a tree structure filled with file location nodes. Data struc-
tures used in FlashCache management are read from the
hard disk drive or the flash memory and loaded to DRAM
to reduce access latency and mitigate wear-out.

In conventional DRAM-only architectures that use a sin-
gle level DRAM for file caching, a fully associative page
cache table is managed in software and probed to check if
a certain file is in DRAM. The search time is speed up by
using tree structures. A considerable amount of search time
can still elapse, but is sustainable because DRAM access la-
tency for transferring file content is in nanoseconds. This is
not the case for a flash memory-based page cache, where the
read access latency for transferring file content is 10∼100 mi-

106

croseconds. Although, we found search time to be 300∼400
nanoseconds, for conservative reasons, we employ a hash ta-
ble to reduce search time.

3.1 FlashCache Hash Table for tag lookup
The FlashCache Hash Table (FCHT) is a memory struc-

ture that holds tags associated with the flash memory blocks.
This table exists in DRAM. A tag is made up of a page ad-
dress field and a flash memory address field. The page ad-
dress field points to the location in the hard disk drive and
is used for determining whether the flash memory holds this
particular location in the hard disk drive. The correspond-
ing flash memory address field is used to access flash mem-
ory. If a hit occurs in the FCHT, the corresponding flash
memory address field is used to access flash memory. More
than 99% of the time a hit occurs for our FlashCache sys-
tem and the flash memory location containing the requested
file is sent to the primary page cache existing in DRAM. If
a miss occurs, the FlashCache management scheme deter-
mines which block to evict based on a wear-level aware re-
placement algorithm and schedules that block to be evicted.

The FCHT is partitioned into a set associative table. In
this work, we assume 16 way set associativity. Our studies
suggested that there was a marginal improvement in the hit
rate for higher associativity. Wear-level awareness is man-
aged both at the block level—fine grain—and at the set
level—coarse grain. Each set is made up of 16 logical blocks
that are in turn made up of 4 of the write/erase blocks in
the flash memory. A wear-level status table is required to
profile the number of writes and erases performed on a par-
ticular block. In the following subsections, we describe each
component in an architecture using the FlashCache.

3.2 Wear-level aware cache replacement
The drawback of using flash memory is wear-out. Com-

pared to DRAM, flash memory can only be written a fixed
amount of times. The endurance for flash memory is ex-
pected to improve in the future [10]. Table 2 shows the
ITRS projection for flash memory endurance. A 10× im-
provement in endurance is expected every 5∼6 years. En-
durance improvement is attributed to the use of better ma-
terial. Although endurance is expected to improve to the
point where it is no longer a concern, we have chosen to
be conservative and make our FlashCache replacement al-
gorithm wear-level aware. The wear-level status table exists
to assist in wear-level management.

3.2.1 Wear-level status table
The wear-level status table located in DRAM maintains

the number of erases and writes performed on a logical block.
The number of erases and writes is equal to the number of
evictions. A wear level status counter exists for each logical
block in the flash memory. Every time a logical block is
selected for eviction its wear-level status table entry located
in DRAM is incremented. The wear level status table is
used for both coarse grain and fine grain level wear-level
management. The wear-level status table determines a hot
set or a hot block. A set or block is considered hot if its
status table entry exceeds a certain threshold.

3.2.2 Management at the block level and set level
Wear-level management for the FlashCache is performed

on FlashCache misses. At the block level, we initially select

a logical block to be evicted using an LRU policy. However,
if this block is identified to be a hot block by observing the
difference between the eviction count of the logical block se-
lected for eviction chosen from the LRU policy and the min-
imum eviction count from the other logical blocks belonging
to the same set exceeds a certain threshold, then the log-
ical block corresponding to the minimum eviction count is
evicted to balance the wear level.

At the set level, we determine if the currently accessed set
is a hot set by comparing it to the maximum eviction count
for the logical blocks belonging to the currently accessed
set and whether this number exceeds the eviction count of
other sets by a certain threshold. A hot set is swapped with
a cold set to balance the wear-level. The temporary staging
area for swaps is located in flash memory where a temporary
buffer is used in the swap process.

3.3 Flash memory controller with DMA
support

The flash memory controller handles the unique interface
required in accessing flash memory. The flash memory con-
troller supports DMA to handle DMA transfers from DRAM
to flash memory and vice versa. The procedure required
in transferring flash memory data is simple in principle—
similar to accessing DRAM. However, there are two poten-
tial problems in performing reads and writes in flash mem-
ory. The first potential problem is bandwidth. Usually, a
flash memory can read and write only a single byte or word
per cycle. In addition, today’s NAND flash memories have
a slow transfer clock— 50MHz. Therefore, a large amount
of time is spent in reading and writing data. This becomes a
problem when we access the flash memory frequently. The
limited bandwidth in flash memory potentially becomes a
bottleneck in providing high performance. The other poten-
tial problem is blocking writes. Today’s NAND flash mem-
ory suffer from blocking writes and do not support Read
While Write (RWW). A NAND flash memory is busy during
writes, blocking all other accesses that can occur. Without
RWW, a blocking flash memory write could also become a
potential bottleneck in providing high performance.

Fortunately, these problems can currently be dealt with.
From our studies shown in Figure 3, we know that we
can tolerate an access latency of hundreds of microseconds.
This relieves the limited bandwidth problem. The blocking
property of flash memory writes can be solved by distribut-
ing writes. Because flash memory writes do not occur fre-
quently, we can schedule flash memory reads to have priority
over writes, by using a lazy writeback scheme. By manag-
ing a writeback buffer in DRAM that stores blocks that
need to be updated in the flash memory, we can prevent a
flash memory write from occurring when flash memory reads
are requested. The lazy writeback scheme allows writebacks
to occur mostly when the flash memory is not accessed for
reads.

In the long term we expect to see more direct solutions—
improve bandwidth and non-blocking features. Adopting
emerging technologies like 3D stacking technology[16] to im-
prove flash memory bandwidth and implementing multi-
banked flash memory that supports RWW are possible so-
lutions.

107

Processor

1GB DRAM

Hard Disk Drive

Main Memory

HDD ctrl

Processor

128MB DRAM

Hard Disk Drive

1GB Flash

Main Memory

Secondary File
Buffer Cache

Flash ctrl

HDD ctrl

DMA

PPC FCHTWST

PPC : Primary Page Cache
FCHT : FlashCache Hash Table
WST : Wear level Status Table

Generic main
memory +
Primary File
Buffer Cache

Replaces

Figure 4: General overview of our FlashCache architecture. We show an example of a 1GB DRAM replaced
with a smaller 128MB DRAM and 1GB NAND-based flash memory. Additional components are added
to control the flash memory. The total die area required in our multichip memory is 60% the size of a
conventional DRAM-only architecture.

4. HOW IT WORKS
In this section we discuss how FlashCache hits and misses

are handled.
When a file I/O is performed at the application level, the

OS searches for the file in the primary page cache located in
DRAM. On a primary page cache hit in DRAM, the Flash-
Cache is not accessed at all, and the file content is accessed
directly from the primary page cache. On a primary page
cache miss in DRAM, the OS searches the FCHT to de-
termine whether the requested file currently exists in the
secondary page cache. If the requested file is found, then
a flash memory read is performed and a DMA transaction
is scheduled to transfer flash memory content to DRAM.
The requested address to flash memory is obtained from the
FlashCache Hash Table.

If a miss occurs in the FlashCache Hash Table search pro-
cess, a logical block is selected for eviction. The selection
process first considers wear-level at the fine grain block level.
If the selected logical block has been evicted more times than
a certain threshold—a hot block, we evict the least evicted
logical block belonging to the same set instead of applying
an LRU policy (noted above). Furthermore, if the set which
the selected logical block belongs to is evicted frequently—a
hot set, a set swap is performed, where a hot set is swapped
with a cold set. Fortunately this does not occur frequently
as a result of the behavior of the workload. After a logical
block is selected for eviction and whether or not we decide to
do a set swap, an erase operation is performed on the flash

memory for that logical block. Concurrently, a hard disk
drive access is scheduled using the device driver interface.
The hard disk drive content is copied to the primary page
cache in DRAM. The corresponding tag in the FCHT is also
updated. Finally, we schedule a writeback of the hard disk
drive content to flash memory through our lazy writeback
scheme using DMA.

5. EXPERIMENTAL SETUP
The architectural aspects of our studies are obtained from

a microarchitectural simulator called M5 [12] that is able to
run Linux and evaluate full system level performance. A web
server connected to multiple clients is modeled. The client
requests are generated from user level network application
programs. To measure and model behavior found in DRAM
and flash memory, we extracted information from [6][5] to
add timing and power models to M5. A more detailed de-
scription of our methodology is described in the following
subsections.

5.1 Simulation Studies

5.1.1 Full system architectural simulator
M5 is a configurable architecture that runs an SMP ver-

sion of Linux 2.6. The clients and server are all modeled with
distinct communicating instances of M5 connected through
a point-to-point ethernet link. The server side executes
Apache—a web server. The client side executes benchmarks

108

Server configuration parameters
Processor type single issue in-order
Number of cores 4, 8, 12 core
Clock frequency 1GHz
L1 cache size 4 way 16KB
L2 cache size 8 way 2MB

DRAM
64MB∼1GB
tRC latency 50ns
bandwidth 6.4GB/s

NAND Flash Memory

1GB
16 way 128KB logical block size
random read latency 25μs
write latency 200μs
erase latency 1.5ms
bandwidth 50MB/s

IDE disk
average access latency 3.3ms
bandwidth 300MB/s

Ethernet Device (NIC) 1Gbps Ethernet NIC
Number of NICs 2, 4, 6

Table 3: Server configurations in our studies.

that generate representative requests for dynamic and static
page content. For comparison, a chip multiprocessor-like
system is created from [18]. Configurations of 4, 8, 12 pro-
cessors are used in this study. We assumed a simple in-order
5 stage pipeline core which is similar to, but simpler than the
Niagara configuration. A detailed breakdown of our server
architecture is shown in Table 3. The clients are modeled
just functionally. We use total network bandwidth in the
ethernet devices as our performance metric. It is the sum of
transmitted and received bandwidth.

5.1.2 Server Benchmarks
We use two web server benchmarks that directly interact

with client requests, SURGE[11] and Specweb99[7] to mea-
sure client web page requests. Both benchmarks request
filesets of more than a 1GB. The fileset size for SURGE is
1.5GB and for Specweb99 is 1.8GB.

SURGE The SURGE benchmark represents client re-
quests for static web content[11]. SURGE is a multi-threaded,
multi-process workload. We modified the SURGE fileset
and used a Zipf distribution to generate reasonable client
requests. Based on the Zipf distribution a static web page
which is approximately 16KB in file size is requested 50% of
the time in our client requests. We configured the SURGE
client to have 24 outstanding client requests. It has been
shown in [13] that the number of requests handled per sec-
ond saturates after 10 concurrent connections implying 24
concurrent connections is more than enough to fully utilize
the server.

SPECWeb99 To evaluate a mixture of static web con-
tent and simple dynamic web content, we used a modified
version of SURGE to request SPECWeb99 filesets. We used
the default configuration for Specweb99 to generate client re-
quests. 70% of client requests are for static web content and
30% are for dynamic web contents. We also fixed the num-
ber of connections of Specweb99 to be 24 as in the SURGE
case.

5.2 Modeling DRAM and Flash memory
Timing, power, and die area estimation at the architec-

tural level is difficult to estimate with great accuracy. To
make a reasonable estimation and show general trends, we

relied on industry and academia publications on die size
area, power and performance. We used published datasheets
found in [6][5] to estimate timing and power consumption.
For die area estimation, we used published data found in
[20][21]. We discuss this further in the next subsections.

5.2.1 DRAM
The timing model for DRAM is generated from the Mi-

cron datasheets in [4]. Our timing model also considers the
DRAM command interfaces including address multiplexing,
DRAM precharge, etc. This timing model is integrated onto
the M5 simulator. The Micron DRAM spreadsheet calcula-
tor generates DRAM power based on inputs of reads, writes,
and page hit rates [5]. From the platform simulator, we pro-
file the number of cycles spent on DRAM reads and writes,
and page hit rates to obtain average power. Our power es-
timates correlate well with numbers from [8]. For die area
estimation, we used numbers generated from industry prod-
ucts found in [21].

5.2.2 Flash memory
To understand the timing and power model for NAND

flash memory, we used several of the publications found in
[6]. We assumed a single bit cell in this study and expect
density and bandwidth to continue to improve due to the
high demand of flash memory in many commercial sectors.
Our die area estimates that are used to compare with DRAM
are from [20][21] and we performed comparisons on similar
process technologies. Although flash memory has begun to
outpace DRAM in process technology, we made conservative
estimates. To estimate the power consumption of our Flash-
Cache architecture, we used measurements from datasheets.
Published numbers in datasheets represent maximum power
consumption. Therefore, our estimates are expected to be
conservative compared to real implementations. The idle
power of flash memory is typically 3 orders of magnitude
less than that of DRAM.

109

0

400

800

1,200

1,600

2,000

DRAM
32MB +
FLASH

1GB

DRAM
64MB +
FLASH

1GB

DRAM
128MB

+FLASH
1GB

DRAM
256MB

+FLASH
1GB

DRAM
512MB

+FLASH
1GB

DRAM
1GB

N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

MP4 MP8 MP12

(a) SURGE

0

200

400

600

800

1,000

1,200

DRAM
32MB +
FLASH

1GB

DRAM
64MB +
FLASH

1GB

DRAM
128MB

+FLASH
1GB

DRAM
256MB

+FLASH
1GB

DRAM
512MB

+FLASH
1GB

DRAM
1GB

N
et

w
or

k
B

an
dw

id
th

 -
M

bp
s

MP4 MP8 MP12

(b) SPECWeb99

0

200

400

600

800

1,000

1,200

DRAM
32MB +
FLASH

1GB

DRAM
64MB +
FLASH

1GB

DRAM
128MB

+FLASH
1GB

DRAM
256MB

+FLASH
1GB

DRAM
512MB

+FLASH
1GB

DRAM
1GB

to
ta

l d
ie

 a
re

a
(m

m
2)

(c) total die area

Figure 5: (a),(b) show a network bandwidth comparison for various main memory configurations using the
FlashCache. The rightmost points are for a DRAM-only system. (c) depicts the total die area.

0

0.5

1

1.5

2

2.5

3

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 128MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

2.7W

1.8W

0.7W

(a) SURGE

0

0.5

1

1.5

2

2.5

3

DDR2 1GB
active

DDR2 1GB
powerdown

DDR2 128MB +
Flash 1GB

O
ve

ra
ll

Po
w

er
 -

W

read power write power idle power

2.5W

1.6W

0.6W

(b) SPECWeb99

Figure 6: Overall memory power consumption breakdown. Our FlashCache architecture reduces idle power
by several orders of magnitude. For powerdown mode in DRAM, we assume an oracle powerdown algorithm.

6. RESULTS
The feasibility of this architecture can be measured by

performance, power reduction, and wear-out. In the follow-
ing subsections, we present performance in terms of network
bandwidth, an important metric in server platforms. The
power reduction results mostly from the reduction in idle
power. We also show that our FlashCache architecture does
not require frequent wear-level rebalancing.

6.1 Network Performance
Figure 5 depicts the overall network performance as DRAM

size is varied and flash memory is fixed at 1GB. Our base-
line comparison is a configuration with no flash and 1GB of
DRAM. Our optimal multichip configuration requires less
die area than our baseline configuration. From our early
observations that large portions of the page cache can toler-
ate access latencies of tens to hundreds of microseconds, we
find our optimal configuration to be 128MB of DRAM and
1GB of flash memory. In terms of area, this configuration
requires 40% less die than our baseline of no flash and 1GB
of DRAM as shown in Figure 5 (c).

6.2 Overall main memory power
With respect to overall power consumed in main memory,

our primary power savings come from the reduction in idle
power from using flash memory. It is several orders of magni-
tude. We compare our multichip configuration with DRAM
configurations that have a) no power management—active
mode and b) ideal power management—powerdown mode.
Intelligent power management reduces DRAM idle power.
Our ideal power management scheme assumes the DRAM
is set to a powerdown mode whenever possible. These modes
were derived from [17][19]. Figure 6 shows our results. As
shown in Figure 6, the FlashCache architecture reduces
overall main memory power by more than a factor of 2.5,
even compared to an oracle power management policy im-
plemented in software for DRAM. The memory power for an
architecture using a FlashCache includes the flash memory
controller power consumption along with the extra DRAM
accesses to manage the flash memory. Since flash memory
is accessed only thousands of times per second, the overall
average contribution from additional DRAM accesses and
the flash memory controller is negligible.

110

0.01

0.10

1.00

10.00

100.00

1000.00

128MB 256MB 512MB 1GB 2GB

Flash memory size

Li
fe

tim
e

- y
ea

rs

SURGE SPECWeb99 worst case

(a)

0.01

0.10

1.00

10.00

128MB 256MB 512MB 1GB 2GB

Flash memory size

St
an

da
rd

 D
ev

ia
tio

n

SURGE SPECWeb99

(b)

Figure 7: Flash memory endurance and spatial variation for a 8 core 128MB DRAM configuration while
varying the flash memory size in the FlashCache architecture (a) temporal endurance in years, assuming
flash memory endurance of 1,000,000 cycles (b) standard deviation for the number of evicted flash memory
blocks spatial variation

6.3 Wear level aware behavior
Figure 7 shows the predicted lifetime for varying flash

memory sizes assuming the lifecycle of a flash memory to
be a million cycles. These simulations assumed a 128MB
DRAM with 8 multicores and FlashCache sizes from 128MB
to 2GB. From our simulation results, we found our Flash-
Cache is accessed less than 2000 times a second. This implies
a flash memory size of 1GB has a lifetime close to 100 years
when assuming a 1,000,000 cell lifecycle. Worst case analysis
assuming the hard disk drive is accessed all the time yielded
a lifetime of 2 years for a 2GB flash memory. With ECC
support for multiple error correction, worst case lifetime can
be extended even more. The ECC overhead in latency has
been found to be in nanoseconds[15][1]. Applying a 100,000
cell of lifecycle, which is the current endurance figure, we
expect 1GB flash memory to have an lifetime of 10 years.
We also found that the spatial variation is small implying
our architecture naturally levels out wear. This is largely
due to the set associativity of the cache. In our simulations,
wear-level management routines were seldom invoked—only
twice for the whole duration of our simulation.

7. CONCLUSIONS AND FUTURE WORK
Our FlashCache architecture reduces idle power by sev-

eral orders of magnitude while maintaining cost effectiveness
over conventional DRAM-only architectures both in terms
of operating cost and energy efficiency. From our obser-
vations, a typical web server architecture can sustain a file
access latency in the tens to hundreds of microseconds with-
out noticeable loss in throughput. We also observe that the
organization of a cache, especially set associativity, inher-
ently displays wear-level aware properties. This strengthens
the case for using a flash based file buffer cache instead of
a conventional DRAM. Our simulations show more than a
2.5× reduction in overall main memory power with negligi-
ble network performance degradation. Our future work will
investigate the bandwidth requirements and endurance re-
quirements for adopting flash memory for other types work-
loads found in other application domains.

8. ACKNOWLEDGEMENTS
This project is supported by the National Science Foun-

dation under grants NSF-ITR CCR-0325898. This work was
also supported by gifts from Intel.

9. REFERENCES
[1] Error Correction Code in Single Level Cell NAND

Flash Memories. http://www.st.com/stonline/
products/literature/an/10123.pdf.

[2] Hybrid Hard Drives with Non-Volatile Flash and
Longhorn.
http://www.samsung.com/Products/HardDiskDrive/

news/HardDiskDrive_20050425_0000117556.htm.

[3] JFFS: The Journalling Flash File System.
http://sources.redhat.com/jffs2/jffs2.pdf.

[4] Micron DDR2 DRAM.
http://www.micron.com/products/dram/ddr2/.

[5] The Micron system-power calculator. http:
//www.micron.com/products/dram/syscalc.html.

[6] Samsung NAND Flash memory datasheet.
http://www.samsung.com/products/semiconductor/

NANDFlash/SLC_LargeBlock/8Gbit/K9K8G08U0A/

K9K8G08U0A.htm.

[7] SPECweb99 benchmark.
http://www.spec.org/osg/web99/.

[8] Sun Fire T2000 Server Power Calculator.
http://www.sun.com/servers/coolthreads/t2000/

calc/index.jsp.

[9] TrueFFS.
http://www.m-systems.com/site/en-US/Support/

DeveloperZone/Software/LifespanCalc.htm.

[10] ITRS roadmap. Technical report, 2005.

[11] P. Barford and M. Crovella. Generating representative
web workloads for network and server performance
evaluation. In Measurement and Modeling of
Computer Systems, pages 151–160, 1998.

[12] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The M5 simulator:

111

Modeling networked systems. IEEE Micro,
26(4):52–60, Jul/Aug 2006.

[13] E. L. Congduc. Packet classification in the NIC for
improved SMP-based internet servers. In Proc. Int’l
Conf. on Networking, Feb. 2004.

[14] M. Ekman and P. Stenstr. A cost-effective main
memory organization for future servers. In Proc. of the
Int’l Parallel and Distributed Processing Symp., Apr
2005.

[15] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli.
On-chip error correcting techniques for new-generation
flash memories. 91(4), Apr 2003.

[16] S. Gupta, M. Hilbert, S. Hong, and R. Patti.
Techniques for producing 3D ICs with high-density
interconnect. www.tezzaron.com/about/papers/ieee_
vmic_2004_finalsecure.pdf.

[17] H. Huang, P. Pillai, and K. G. Shin. Design and
Implementation of Power-Aware Virtual Memory. In
USENIX Annual Technical Conference, pages 57–70,
2003.

[18] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara:
A 32-way multithreaded Sparc processor. IEEE Micro,
25(2):21–29, Mar. 2005.

[19] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power
aware page allocation. In Proc. Int’l Conf. on Arch.
Support for Programming Languages and Operating
Systems, pages 105–116, 2000.

[20] J. Lee, S.-S. Lee, O.-S. Kwon, K.-H. Lee, D.-S. Byeon,
I.-Y. Kim, K.-H. Lee, Y.-H. Lim, B.-S. Choi, J.-S. Lee,
W.-C. Shin, J.-H. Choi, and K.-D. Suh. A 90-nm
CMOS 1.8-V 2-Gb NAND Flash Memory for Mass
Storage Applications. 38(11), Nov 2003.

[21] G. MacGillivray. Process vs. density in DRAMs.
http://www.eetasia.com/ARTICLES/2005SEP/B/

2005SEP01_STOR_TA.pdf.

[22] C. Park, J. Seo, S. Bae, H. Kim, S. Kim, and B. Kim.
A Low-cost Memory Architecture With NAND XIP
for Mobile Embedded Systems. In Proc. Int’l Conf. on
HW-SW Codesign and System
Synthesis(CODES+ISSS), Oct 2003.

112

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

