
Exploiting Redundancy to Conserve Energy
in Storage Systems ∗

Eduardo Pinheiro
Rutgers University

edpin@cs.rutgers.edu

Ricardo Bianchini
Rutgers University

ricardob@cs.rutgers.edu

Cezary Dubnicki
NEC Labs America

dubnicki@nec-labs.com

ABSTRACT
This paper makes two main contributions. First, it introduces Di-
verted Accesses, a technique that leverages the redundancy in stor-
age systems to conserve disk energy. Second, it evaluates the previ-
ous (redundancy-oblivious) energy conservation techniques, along
with Diverted Accesses, as a function of the amount and type of
redundancy in the system. The evaluation is based on novel an-
alytic models of the energy consumed by the techniques. Using
these energy models and previous models of reliability, availability,
and performance, we can determine the best redundancy configura-
tion for new energy-aware storage systems. To study Diverted Ac-
cesses for realistic systems and workloads, we simulate a wide-area
storage system under two file-access traces. Our modeling results
show that Diverted Accesses is more effective and robust than the
redundancy-oblivious techniques. Our simulation results show that
our technique can conserve 20-61% of the disk energy consumed
by the wide-area storage system.

Categories and Subject Descriptors
D.4 [Operating systems]: Storage management

General Terms
Design, experimentation

Keywords
Energy management, energy modeling, disk energy

1. INTRODUCTION
Large storage systems, such as those of popular Internet services,

outsourced storage services, and wide-area storage utilities, con-
sume significant amounts of energy. For example, one report indi-
cates that the storage subsystem can represent 27% of the energy
consumed in a data center [16]. Even worse, this fraction tends to
increase as storage requirements are rising by 60% annually [17].
∗This research has been supported by NSF under grant #CCR-
0238182 (CAREER award).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMetrics/Performance’06, June 26–30, 2006, Saint Malo, France.
Copyright 2006 ACM 1-59593-320-4/06/0006 ...$5.00.

Because the energy consumption of storage systems is reflected
in their electricity bills, several research groups have been seek-
ing to reduce it [2, 3, 9, 14, 15, 19, 27, 28, 29]. However, only a
few of these efforts [14, 15, 27] have explicitly leveraged redun-
dancy and they did so in a limited context. Redundancy is present
in all practical storage systems, since it is mostly through redun-
dancy that these systems achieve high reliability, availability, and
throughput. Redundancy is typically implemented by replicating
the “original data” (as in mirrored disk arrays, cluster-based storage
systems [13], or wide-area storage systems [21, 23]) or by storing
additional information that can be used to reconstruct the original
data in case of disk failures (as in RAID 5 or erasure-code-based
wide-area storage systems [8, 10, 12]). We refer to the replicas and
the additional information as “redundant data”.

Our approach is to leverage this redundancy to conserve disk en-
ergy without performance degradation. In particular, we propose a
technique called Diverted Accesses that segregates original and re-
dundant data on different disks. We refer to these disks as original
and redundant disks, respectively. The segregation allows the sys-
tem to concentrate the requests on the original disks (under light or
moderate demand for disk bandwidth), leaving the redundant disks
idle. During the idle periods, the disks can be sent to low-power
mode. The redundant disks only need to be activated in three cases:
(1) when the demand for bandwidth is high; (2) when one or more
disks fail; and (3) periodically to reflect changes made to the origi-
nal data. In this last case, the writes to the original disks need to be
logged until the corresponding redundant disks are activated.

Because the benefits of our technique vary with the amount and
type of redundancy built into the system, our evaluation analytically
quantifies the effect of redundancy on several system characteris-
tics, including disk energy consumption and the potential of differ-
ent techniques to conserve energy. More specifically, we develop
energy models for Diverted Accesses and previous redundancy-
oblivious techniques, and couple them with well-known models
of reliability, availability, and throughput. Our modeling results
show that Diverted Accesses can provide substantial energy sav-
ings across a wide range of redundancy, request rate, and write per-
centage parameters. Other techniques are only useful in small parts
of this parameter space.

Designers can use our models to determine the best redundancy
configuration for new storage systems. Our approach is to select
the configuration that achieves the required throughput, reliability,
and availability but consumes the least amount of energy. Our re-
sults show that non-intuitive redundancy configurations are often
the best ones when all metrics are considered.

Finally, to demonstrate our technique for a system that requires
high redundancy, we simulate a wide-area storage system with sta-
ble nodes and data replication under two realistic file-access traces.

The goal is to mimic a world-wide corporation that owns and oper-
ates its dedicated, distributed storage resources. Our results show
that Diverted Accesses can reduce disk energy consumption by 20-
61%. These results are close to those predicted by our models.

We conclude that considering redundancy can provide significant
disk energy savings beyond those of previous techniques. Further-
more, we conclude that designing a storage system requires quan-
tifying several metrics, which are all affected by the redundancy
configuration. Our models are key in this design process.

The remainder of this paper is organized as follows. The next
section discusses the related work and our contributions. Section 3
describes Diverted Accesses. Section 4 describes the energy mod-
els for the conservation techniques we study. Section 5 overviews
previously proposed models for throughput, reliability, and avail-
ability, and discusses the selection of the best redundancy configu-
ration. Section 6 presents our modeling results. Section 7 presents
our real-trace results. Section 8 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 Redundancy
Redundancy is typically implemented in storage systems through

replication, parity schemes, or erasure codes. These methods can
be defined in terms of their redundancy configurations by (n, m)
tuples, where each block of data is striped, replicated, or encoded
into n fragments, but only m fragments (m ≤ n) are needed to
reconstruct the data. For instance, a RAID 1 storage system is rep-
resented by (n = 2, m = 1), since there are two copies of each
block but only one copy is enough to reconstruct the block. A re-
cent wide-area storage system based on erasure codes [10] used
(n = 48, m = 5) to resist massive correlated failures.

Several papers have studied these redundancy approaches, e.g.
[1, 26]. Replication typically requires more bandwidth and stor-
age space than the parity schemes. However, parity schemes can
only tolerate small numbers of concurrent failures. Erasure codes
require less bandwidth and storage than replication (for the same
levels of reliability and availability), can tolerate more failures than
parity schemes, but involve coding and decoding overheads.
Contributions. Our work complements these previous studies as
we consider the impact of redundancy configuration on disk energy
consumption and conservation.

2.2 Disk Energy Conservation
Several techniques have been proposed for disk energy conser-

vation in storage systems.
Threshold-Based Techniques. The simplest threshold-based tech-
nique is Fixed Threshold (FT). In FT, a disk is transitioned to low-
power mode after a fixed threshold time has elapsed since the last
access. Inspired by competitive policies, the threshold is usually
set to the break-even time, i.e. the time a disk would have to be in
low-power mode to conserve the same energy consumed by transi-
tioning the disk down and back up to active mode. FT is one of the
techniques to which we compare Diverted Accesses.
Data-Movement Techniques. In this category are those techniques
that migrate or copy data across disks. The Massive Array of Idle
Disks (MAID) technique [3] uses extra cache disks to cache recently
accessed data. On each access miss in the cache disks, the accessed
block is copied to one of the cache disks. If all cache disks are full,
one of them evicts its LRU block to make space for the incoming
block. The goal is to concentrate the accesses on the cache disks,
so that the non-cache disks can remain mostly idle and, thus, be
transitioned to low-power mode.

In contrast to the copy-based approach of MAID, Popular Data
Concentration (PDC) [19] migrates data across disks according to
frequency of access or popularity. The goal is to lay data out in
such a way that popular and unpopular data are stored on different
disks. This layout leaves the disks that store unpopular data mostly
idle, so that they can be transitioned to low-power mode.

MAID and PDC use FT for power management.
Redundancy-aware Techniques. Only three works have exploited
redundancy to conserve energy in storage systems: EERAID [14],
eRAID [15], and RIMAC [27]. (EERAID is actually the only one
that pre-dates our technical report on Diverted Accesses [20].) The
most closely related work is eRAID, which is similar to Diverted
Accesses but only considered RAID 1 storage. EERAID and RI-
MAC were targeted at RAID 5 organizations and as such are only
capable of conserving 1/N of the energy of an array with N disks.
In contrast with these three systems, we are interested in a broader
range of storage systems, including those that are based on erasure
codes, in which n may not be equal to m + 1 as in RAIDs 1 and 5.
EERAID, eRAID, and RIMAC represent only a couple of points in
this spectrum.
Other Techniques. Carrera et al. [2] and Gurumurthi et al. [9]
proposed disks with more than one speed and showed that they can
provide significant energy savings for different server workloads.
Zhu et al. [28] exploited intelligent disk speed setting and data
migration to conserve energy in arrays comprised of multi-speed
disks without degrading response time. Carrera et al. also showed
that a combination of laptop and SCSI disks can be even more ben-
eficial in terms of energy, but only for over-provisioned servers.
Papathanasiou and Scott [18] propose replacing server-class disks
with larger arrays of laptop disks. Zhu et al. [29] proposed storage
cache replacement algorithms that selectively keep blocks of data
in memory, so that certain disks can stay in low-power mode for
longer periods.
Contributions. Our work introduces Diverted Accesses, a novel
and effective technique for leveraging redundancy. Further, our
work presents energy models for FT, MAID, PDC, and Diverted
Accesses that take redundancy configurations into account, and a
case study of the application of Diverted Accesses in the context of
a realistic wide-area storage system. Finally, ours is the first study
of these techniques as a function of redundancy.

2.3 Storage System Design
Anderson et al. [5] proposed Ergastulum, a tool that quickly

evaluates the space of possible data layouts and storage system
configurations and finds a near-optimal design. Ergastulum uses
performance models to determine whether a potential design is ac-
ceptable. Minerva [7] is similar but not as efficient as Ergastulum.
Hippodrome [6] uses Ergastulum to adjust the design of the storage
system as a result of dynamic changes in the workload.
Contributions. We extend the previous work on Ergastulum, Min-
erva, and Hippodrome by considering the reliability, availability,
and energy consumption of different designs. Since we only fo-
cus on selecting the redundancy configuration (n, m), our space of
possible designs is much more constrained than in these systems.
For our purposes, exhaustive search works fine.

3. DIVERTED ACCESSES
Our approach to reducing energy consumption in storage sys-

tems leverages their redundancy. The key observation is that the
redundant data is only read in two scenarios: (1) during periods of
high demand for disk bandwidth, to increase performance; and (2)
when disk failures occur, to guarantee reliability and availability.

Given this observation, it is clear that the redundant data need
not be readily accessible at all times. For example, storage systems
used for data backup exhibit long periods of low read loads during
the day in between periods of intense write activity at night. As
another example, regular file system activity in engineering envi-
ronments is high during the day and low at night. Regardless of the
type of storage system, if one or more disks fail, the only redundant
data needed is that corresponding to the failed disks.

Unfortunately, current storage systems cannot take advantage of
these characteristics to conserve disk energy. Our Diverted Ac-
cesses technique addresses this limitation by segregating the orig-
inal data from the redundant data onto different subsets of disks:
original and redundant disks, respectively. Even when all frag-
ments contain redundant information, i.e. no fragment is strictly
“original”, we can still store m fragments of each block on a subset
of the disks, which would act as the original disks.

The goal of Diverted Accesses is to keep redundant disks in low-
power mode during periods of light and moderate offered disk load.
More specifically, the handling of reads and writes depends on the
offered load as follows:

• Reads are directed to the original disks only, unless the of-
fered load is high enough that redundant disks need to be
activated to help service it.

• Writes are performed on all disks, when the load is high.
When the load is light or moderate, writes are directed to
the m original disks immediately (they are synchronously
performed on the media) but only propagated to the n − m
redundant disks periodically.

Writes and Reliability. The handling of writes to redundant data
under light and moderate loads requires further discussion. These
writes can be buffered in non-volatile memory (NVRAM) at stor-
age appliances, disk-array controllers, or at the disk controllers
themselves. While the buffer is being filled, the disk can stay in
a low-power mode. When the buffer fills up (or is about to fill up),
all redundant writes are performed on disk, completely emptying
the buffer.

To implement this buffering at disk or JBOD controllers, hosts
should identify these writes as special, “flush-when-full” writes.
Storage appliances and RAID controllers can manage the redun-
dant data they generate in the same way. (Original writes – and
redundant writes during periods of high disk load – are not special
and proceed normally.) This buffering of redundant writes does
not affect the level of redundancy, as long as no controller or ap-
pliance is responsible for more than one redundant fragment of a
block. Fortunately, this is the case in practice even in typical RAID
organizations, for which n = m + 1.

Note that these changes to controller or appliance firmware are
fairly minor, since several products on the market today (e.g., [4,
25]) already have NVRAM buffers for reliably optimizing writes.
Unfortunately, these products transfer dirty blocks from the buffer
to disk frequently, one/few at a time when the buffer fills up or
when the disk is idle, preventing energy savings.

Nevertheless, we can avoid firmware changes by instead using
off-the-shelf NVRAM cards or extra buffer disks [11]. This type
of buffering does not affect the level of redundancy either, as long
as no host is responsible for more than one redundant fragment of
a block. This property is easily enforceable in typical distributed
storage systems.

Thus, the best approach for redundant write buffering depends
on the type of system. For single-host storage systems, the storage

controller/appliance approach is the best, since it retains high reli-
ability at the cost of simple firmware changes. For distributed stor-
age systems, using off-the-shelf NVRAM is the best option, as it re-
tains high reliability with standard firmware. Our high-level model-
ing in Section 4 is oblivious to where buffering is done, whereas the
distributed storage system we simulate in Section 7 buffers writes
in n − 1 NVRAMs.

A final reliability issue is the disk spin up/down cycles generated
by Diverted Accesses. Manufacturers design their disks to support
a certain number of cycles, e.g. 50000 for the IBM 36Z15 Ultra-
star server disk. When possible, write buffers should be sized such
that this limit is not exceeded during the disks’ lifetime (typically
three years). To guarantee that the limit is not exceeded, a simple
approach is to keep track of the number of cycles imposed on each
disk and leave it in high-power mode when the limit is reached.
Our modeling in Section 4 does not include the notions of lifetime
or cycle limits, whereas the distributed storage system and work-
loads of Section 7 generate only a fraction of the cycle limit on
each disk.
Energy. Regardless of where redundant writes are buffered, this
approach produces increased idle times at the redundant disks. How-
ever, when the buffer size is small or writes are frequent, the result-
ing idle times may still be too short to justify power-mode transi-
tions. For this reason, we power-manage the redundant disks (as
well as the original disks) with FT, rather than just sending these
disks to low-power right after buffer flushes. Interestingly, write
buffering as in Diverted Accesses does not increase disk idle times
for the other conservation techniques we study, since they do not
segregate read and write accesses.

With FT as its primitive power-management technique, Diverted
Accesses produces significant energy savings in most scenarios, as
we shall demonstrate. However, note that in parity-based storage
systems with “small write” workloads, the energy benefits of Di-
verted Accesses are reduced, since the redundant disk(s) need to
be activated before the parity data can be computed. Thus, the de-
signer needs to understand the workload before applying Diverted
Accesses in parity-based systems.
Performance. To avoid performance degradation, we define the
load as high when the set of original disks is not enough to provide
the required disk bandwidth. This approach works by keeping track
of the average utilization of the disks and activating the redundant
disks when the original disk are almost fully utilized.

During periods of light and moderate load, the write buffering at
the redundant disks has no real effect on performance for two rea-
sons: (1) only writes are directed to redundant disks during these
periods; and (2) standard controllers and appliances already ac-
knowledge writes right after they are written to memory.

However, Diverted Accesses does pose a problem for parity-
based storage systems in the presence of small writes. For exam-
ple, applying Diverted Accesses to RAID 5 would transform it into
RAID 4. Under high disk load, the bandwidth requirements of the
parity disk in RAID 4 may degrade performance for small writes.
Again, this highlights the importance of understanding the work-
load before applying Diverted Accesses in parity-based systems.
Implementation. Diverted Accesses can be implemented entirely
at the storage system level (i.e., underneath the file system layer),
since it is solely concerned with laying data out across the disks,
assessing the offered disk load, and directing disk accesses.

In terms of disk technology, Diverted Accesses can operate ef-
fectively with standard disks since disk spin ups and downs oc-
cur infrequently and typically in the background of read accesses.
Thus, our technique has little use for multi-speed disks.

Scope of This Study. In general, Diverted Accesses is applicable
whenever there is redundancy: from data-center storage systems
using RAID to wide-area storage systems, such as world-wide dig-
ital libraries and storage utilities, using replication or erasure codes.
A large fraction of our study focuses on wide-area storage systems
(owned by a single institution or corporation), as these systems re-
quire significant redundancy and, thus, have a more serious need for
redundancy-aware energy conservation. In particular, our energy
models are general, whereas our modeling results and simulations
focus on the high redundancy configurations that are necessary in
wide-area storage systems, e.g. [8, 10, 12].

Interestingly, an important aspect of wide-area systems is that
they are accessed by a large population of independent clients across
the Internet. This characteristic is the reason why we consider
throughput rather than response time; in these systems, even large
degradations in response time are typically overwhelmed by the la-
tency of multiple network transfers per request. Furthermore, our
study focuses mostly on data allocation, data access, and energy
issues, to assess the potential energy savings achievable with Di-
verted Accesses; other aspects of storage systems are beyond the
scope of the paper. Finally, we focus solely on disk energy in this
paper. However, Diverted Accesses can be applied to entire nodes
in a distributed storage system. In this case, we could send memo-
ries and processors to low-power mode as well.

4. MODELING ENERGY
We model block-based storage systems comprised of identical

disks. The disks may be attached to one or more servers, but our
models are independent of such issues. Besides the characteristics
of the disks, the models’ inputs are the redundancy configuration
(n, m) and the percentage of reads and writes in the workload.

4.1 Overview
We define D as the number of disks required to store the data

without any redundancy. Given a redundancy configuration, we
define N , the number of required disks to store all data (original
plus redundant), N(n, m) = (n/m)D. For simplicity, we refer to
N instead of N(n, m).

Each disk has a power consumption of Ph Watts when powered
on and ready to service requests (high power mode) and Pl when
in standby mode, not able to service requests (low power mode).
(Note that most high-performance, server-class disks – typically
SCSI drives – do not offer more than one power-saving mode.) A
disk spin up takes time Tu and energy Eu, whereas a disk spin
down takes time Td and energy Ed. A full transition from high-
power mode to low-power mode and back to high consumes Tt =
Td + Tu time and Et = Ed + Eu energy.

Each request to the system is assumed to have size blockSize.
Internally, disk data is accessed in fragments of size fragSize,
which is defined as blockSize/m. On each access, the disks take
time S to seek to the appropriate track and time R to rotate to the
desired sector. A fragment of data is transferred at a nominal rate
X . We do not model the energy consumed by disk accesses, since
previous works have demonstrated that it is a small fraction of the
overall disk energy, even in busy systems [9, 22].

As in previous works [9], we only model the request traffic that
reaches the storage system (i.e., beyond any main memory caches)
and assume that request inter-arrival times are drawn from a Pareto
distribution with average 1/requestRate, even though our models
work with any distribution. Block requests can be reads or writes
with probabilities 1 − pw and pw , respectively.

To estimate energy (average power) we do the following: (1)
Draw a request inter-arrival time t; (2) For each energy conserva-

Symbol Description
D Number of required disks without redundancy
N Number of required disks with redundancy
Ph Disk power in high-power mode
Pl Disk power in low-power mode
Tu Time to transition to high-power mode
Td Time to transition to low-power mode
Tt Time to transition down and up again
Eu Energy to transition to high-power mode
Ed Energy to transition to low-power mode
Et Energy to transition down and up again

blockSize Size of blocks
fragSize Size of fragments

S Average disk seek time
R Average disk rotation time
X Disk transfer rate

requestRate Arrival rate of block requests
pw Probability of block write requests

Dmaid Number of cache disks (MAID)
mmaid Miss rate of cache disks (MAID)

β Disk popularity coefficient (PDC)
c Storage system coverage (PDC)

wbSize Size of write buffer per redundant disk (DIV)
batchSize Size of write batch per redundant disk (MAID+DIV)

Table 1: Summary of model parameters and their meanings.

tion technique, calculate the average idle time per disk, based on
the inter-arrival time; (3) For each technique, estimate the average
power (as a proxy for energy) for this idle time based on the un-
derlying power management mechanism and any other technique-
specific parameters; (4) Repeat three previous steps until enough
samples have been drawn to allow the average inter-arrival time
to converge to 1/requestRate; (5) Compute the overall average
power of each technique by dividing the sum of the average powers
by the number of inter-arrival times drawn.

Note that each inter-arrival time t we draw in step 1 above does
not represent a single disk access. Rather, it represents a period
in which requests arrive with average interval t and access disks
in round-robin fashion. Although energy conservation techniques
may entail widely different energy consumptions depending on the
length of each interval, using the average interval as a proxy for
each period is appropriate because we assume that the intervals as-
sociated with each average interval are within the same range (the
ranges are defined by the “cases” of the next subsection). For ex-
ample, this means that the intervals during a period of high load,
i.e. low average t, are shorter than the disk break-even time. The
results of Section 7.1 show that our models are accurate for real
workloads, i.e. in the absence of these assumptions.

Table 1 summarizes the model parameters.

4.2 Energy Conservation Techniques
We model six different energy conservation techniques: Fixed

Threshold (FT), Popular Data Concentration (PDC), Massive Ar-
ray of Inexpensive Disks (MAID), Diverted Accesses (DIV), the
combination of PDC and DIV (PDC+DIV), and the combination of
MAID and DIV (MAID+DIV). The latter five techniques use FT as
their low-level power-management technique. We compute the en-
ergy savings of each technique with respect to an energy-oblivious
(EO) system that keeps all disks at Ph at all times.
FT. In FT, disks are transitioned to low-power mode after an idle-
ness threshold T . We set T to the break-even time, i.e. T =
Et/(Ph − Pl). For each inter-arrival time t, we can approximate
the idle time per disk I as:

Nt

npw + m(1 − pw)
(1)

Pl

Ph

Ed Eu

A

T Td

B B’

Tu

Time

Ed

T Td

C

Eu

Tu

C’

I I

Figure 1: I ≥ T + Tu. Accesses arrive at times A, B, and C. Accesses
are actually performed at times A, B’, and C’.

Pl

Ph

Ed Eu

A

T Td

B B’

Tu

TimeI I

C

Figure 2: T ≤ I < T + Tu. Accesses arrive at times A, B, and C.
Accesses are actually performed at times A, B’, and C.

Since the average number of disk accesses per second is (npw +
m(1 − pw))/t, the idle time at each disk is simply the inverse of
the access rate times the number of disks.

The average power for each idle time is then defined by the three
cases below:

PhN, case1
(TPh + (I − T − Tt)Pl + Et)N/I, case2
((I − Tu + T)Ph + (I − T − Td)Pl + Et)N/(2I), case3

(2)

where case1 represents the scenario in which I < T , case2 rep-
resents I ≥ T + Tu, and case3 represents all other cases (i.e.,
T ≤ I < T + Tu). (To avoid more cases, our modeling extends
idle times that end during a transition to low-power mode until the
end of the transition.)

More intuitively, the top equation represents the scenario in which
idle times are too short and do not trigger a transition to low-power
mode. The energy is simply that of all disks on, so the average
power will be PhN . The middle equation represents the scenario
in which there is enough time for the disks to transition to low-
power mode, perhaps spend some time in low-power mode, and
transition back. In this case, all idle times except the first are effec-
tively reduced by the spin up time. Figure 1 illustrates this scenario.
The figure shows accesses arriving at times A, B, and C; actual disk
accesses occur at times A, B’, and C’. Note that, after the first idle
time, the behavior between B and C will consistently be repeated
while this idle time is in effect. Thus, we use the period between B
and C in computing the average power. The last equation represents
the scenario in which there is not enough time for the full transi-
tion to and from low-power mode. In this case, the next idle time
is shortened to a point that no power-mode transitions can happen.
Figure 2 illustrates this scenario. The behavior between A and C
will be consistently repeated while this idle time is in effect. For
this reason, we use the entire period (two idle times) in computing
the average power.
MAID. In this strategy, Dmaid extra disks are used to cache recently-
accessed files. Upon each block request, if the block is not yet on
one of the cache disks, the corresponding fragments are accessed at
the non-cache disks and also copied to one of the cache disks. To
avoid high latencies, requests may bypass the cache disks during
periods of high load. Thus, the maximum throughput of a MAID
system is that of N + Dmaid disks. In terms of energy, this high
load scenario leads to extremely short idle times and an average
power of (N + Dmaid)Ph. Below, we model MAID under light
and moderate loads.

Modeling MAID requires knowledge of the temporal locality of
accesses to files. As an approximation, we assume that we know
the fragment cache miss ratio mmaid of the cache disks. We can
then estimate the idle times of the cache disks and the non-cache
disks. To conserve energy, we can leverage the cache disks to ac-
cumulate the writes to a non-cache disk until a cache disk miss
(a read) accesses it. At that point, the accumulated writes can be

performed on the non-cache disk. This approach promotes energy
conservation at the cost of lower reliability.

We need to calculate two distinct idle times: for the MAID caches
(Icache) and for the non-cache disks (IN).

Icache = (Dmaidt)/((npw) + (m(1 − pw)))
IN = (Nt)/(m(1 − pw)mmaid)

(3)

The average power consumed by the cache disks can be com-
puted as in FT (equations 2), except that we need to replace Icache

for I and Dmaid for N . The average power of the non-cache disks
can also be computed using those equations, as long as we replace
IN for I . The overall average power is the sum of the cache and
non-cache powers.

Note that our modeling of MAID is simplistic. In the extreme
cases in which there are no read accesses (pw = 1) or all read
accesses hit the cache disks (mmaid = 0), the idle time of the
non-cache disks is modeled as infinite. In other words, we assume
the cache disks to have infinite write buffering capacity. Further,
we assume that the energy spent in copying data to the cache disks
is negligible. Our goal with these simplifications is to provide an
upper bound on the energy conservation potential of MAID.
PDC. Like FT and MAID, the original PDC proposal [19] did not
consider redundancy explicitly. However, unlike the other tech-
niques, PDC can hurt reliability significantly if it is applied to all
fragments arbitrarily.

To avoid this problem, we modify PDC to migrate data in such a
way that the n fragments of each block remain on different disks.
Over time, the most popular fragments would then be stored on the
“first” set of n disks, the second most popular fragments would be
stored on the “second” set of n disks and so on.

In order to model PDC, we need to introduce the notions of disk
popularity and file system coverage. Previous research has shown
that the popularity distribution of various Web and network work-
loads follows a power law. In particular, Zipf’s power law with
coefficient α to describe the popularity of files. Zipf’s law states
that the probability of a file being accessed is proportional to 1/rα,
where r is the rank (popularity) of the file and α is the degree of
skewness of popularity. For example, when α = 0, all files are
equally likely to be accessed. The larger α is, the more heavy-tailed
the distribution is. Based on a similar idea, we use Zipf’s power
law with coefficient β to describe the popularity of the groups of n
disks in steady state, i.e. when all fragments have been migrated to
their best locations.

File system coverage represents the percentage of blocks that are
actually accessed in a given period of time (a day, a week, or the
length of a workload).

To compute the idle times, we need to take the disk popular-
ity and the coverage c into account. We do so using an “idleness
weight” w for each set i of n disks:

wi = (Nc/n)

(

1 −
1/iβ

∑dNc/ne
j=1

1/jβ

)

(4)

The idleness weight of a group of disks ranges from 0 to Nc/n
(the number of groups) and is proportional to the fraction of ac-
cesses that is not directed to the group (the term inside parentheses
on the right of equation 4). In other words, the most popular group
will have a weight that tends to 0, whereas the least popular group
will have a weight that approaches Nc/n.

These factors can be used to weight the idle time I from equation
1 in computing the average power consumed by the disks for each
idle time in PDC:

dNc/ne
∑

i=1

{

wiPhn, c1
(TPh + (Iwi − T − Tt)Pl + Et)n/I, c2
((Iwi − Tu + T)Ph + (Iwi − T − Td)Pl + Et)n/(2I), c3

(5)

where c1 represents the scenario in which Iwi < T , c2 represents
Iwi ≥ T + Tu, and c3 represents all other cases. Intuitively, this
equation sums up the average power consumed by each group of
disks for each idle time, noting that each group may actually fall in
a different case.

Our modeling of PDC is optimistic for three reasons. First, our
coverage parameter assumes that all write accesses are updates of
existing data, rather than writes of new data. Second, we assume
the energy consumed in data migration to be negligible. Third,
due to the complexity of the its data layout, PDC is essentially im-
practical in the presence of redundancy; it would be very hard to
implement in single-node storage systems, and even harder in dis-
tributed storage systems. Nevertheless, our goal is to compute an
upper bound on the potential benefits of PDC.
DIV. Diverted Accesses stores the original data on D disks and the
redundant data on R = N − D disks. The redundant disks can be
sent to low-power mode, until they are required for reliability or to
provide higher bandwidth under high load. Again, idle times are
short under high load, leading to an average power consumption of
NPh. Next, we model DIV under light and moderate loads.

First, we compute the idle times on the original disks, ID:

ID =
Dt

m
(6)

Note that all (read and write) requests translate into accesses to
the D disks. Writes are also buffered, so the expected idle time on
the redundant disks (IR) is the expected time for the write buffer to
fill up times R.

IR =
Rt ∗ wbSize

blockSize ∗ (n − m)pw
, (7)

such that wbSize ≥ blockSize.
With these idle times, the average power for DIV can be com-

puted as the sum of the power consumed by the original and the
redundant disks. These average powers can be computed the same
way as in FT (equations 2) with minor differences. For the original
disks, the average power is:

PhD, c1
(TPh + (ID − T − Tt)Pl + Et)D/ID , c2
((ID − Tu + T)Ph + (ID − T − Td)Pl + Et)D/(2ID), c3

(8)

where c1 represents the scenario in which ID < T , c2 represents
ID ≥ T + Tu, and c3 represents all other cases.

For the redundant disks, the average power is:

PhR, c1
(TPh + (IR − T − Tt)Pl + Et)R/IR, c2
((IR − Tu + T)Ph + (IR − T − Td)Pl + Et)R/(2IR), c3

(9)

where c1 represents the scenario in which IR < T , c2 represents
IR ≥ T + Tu, and c3 represents all other cases.
MAID+DIV. MAID can be combined with DIV. In MAID+DIV,
the idea is to place a few cache disks in front of DIV-structured
disks. Dmaid extra disks are used to cache recently accessed blocks
like in MAID, whereas the D + R = N non-cache disks are orga-
nized as in DIV.

Given the extra cache disks, we can accumulate writes aggres-
sively on them, as in MAID. The writes are propagated to the non-
cache disks on read misses on the cache disks (original disks) or
periodically in a large batch (redundant disks). The resulting idle
times, Icache, ID, and IR, for MAID+DIV are slight variations of
these times in MAID and DIV. Specifically, Icache is defined ex-
actly as in equation 3; ID is also defined as in equation 3, except
that N is replaced by D; and IR is defined as in equation 7, except
that wbSize is replaced by batchSize.

The average power consumed by the cache disks in MAID+DIV
is computed as in MAID, whereas the average power of the non-
cache disks is computed as in DIV. The overall average power is
the sum of these components, as the energy used by data copying
is assumed negligible.
PDC+DIV. Here, we combine PDC with DIV. The idea is to segre-
gate original and redundant fragments and only migrate the original
ones according to popularity. Migration is performed in such a way
that the m fragments remain on different disks. Over time, the most
popular fragments would then be stored on the “first” set of m orig-
inal disks, the second most popular fragments would be stored on
the “second” set of m original disks and so on.

Due to the concentration of accesses, the computation of the idle
times uses idleness weights w for each group i of m original disks,
just as in our modeling of PDC (equation 4) except that N is re-
placed by D. These weighting factors can be used to weight the
idle time ID from equation 6 in computing the average power con-
sumed by the original disks for each idle time in PDC+DIV. This
power can be computed as in equation 5, except that n is replaced
by m and I is replaced by ID.

The average power consumed by the redundant disks can be
computed exactly as in DIV. The overall average power is the sum
of these two original and redundant powers. Again, we assume all
writes to be updates to existing data and the energy of data migra-
tion to be negligible.

5. DESIGNING REAL SYSTEMS
In this section, we present well-known models for reliability,

availability, and performance. Using these models along with our
energy models, we can select the best redundancy configuration for
new storage systems.

5.1 Reliability and Availability
We define the reliability r(x) of each disk as the probability that

the disk does not lose or damage the data it stores (e.g., due to a
permanent mechanical drive failure) within time x. To simplify the
notation, we refer to r(x) simply as r. We define the availability
a of each disk as the probability that the disk is not temporarily
inaccessible (e.g., due to a loose cable or a period of offline main-
tenance) at a given time. We assume disk faults to be independent.
Given these assumptions, the combinatorial models that quantify

reliability and availability as a function of the redundancy configu-
ration (n, m) are similar [24]. Equation 10 is the availability model
when at least m fragments must be available upon a disk access. A
is typically close to 1, so availability is often referred to in terms of
the number of nines after the decimal period. The reliability model
is the same, except that a is replaced by r.

A =

n−m
∑

i=0

(

n
i

)

a n−i (1 − a)i (10)

Note that, although our independence assumption and simple
combinatorial models produce only rough approximations for RAID
systems, they are more accurate for distributed storage systems,
which are less likely to experience correlated faults.
Diverted Accesses. The reliability and availability definitions above
apply to DIV as well, even though it uses NVRAM for tempo-
rary storage of recently written redundant data. The reason is that
battery-backed RAM can achieve similar reliability to disks in real
storage systems, as long as administrators periodically replace bat-
teries. Along the same lines, NVRAM and disks should exhibit
similar availabilities, since downtimes are likely to be dominated
by the unavailability of their supporting components, such as hosts
and cabling. The key observation is that the use of NVRAM in
DIV does not reduce the level of redundancy in typical systems, as
mentioned in Section 3.

5.2 Performance: Maximum Throughput
Our performance model is the aggregate maximum throughput

of the disks in the system, given a fixed configuration. Recall that
the number of disks is a function of the redundancy configuration,
N = Dn/m.

The maximum throughput is defined by the redundancy config-
uration and the disk bandwidth for the workload:

fragSize = blockSize/m
delay = S + R + fragSize/X

widthr = N × fragSize/delay
widthw = N × (fragSize/delay) × m/n

P = totalBW = pwwidthw + (1.0 − pw)widthr

(11)

where blockSize is the maximum between the block size exported
by the storage system interface and the weighted mean of a distribu-
tion of request sizes (each size being a multiple of the block size);
fragSize is the size of each fragment; widthr and widthw rep-
resent the effective bandwidth for reads and writes, respectively; as
previously defined, S, R, and X are the average seek time, the av-
erage rotational delay, and the disk transfer rate, respectively; and
pw is the probability of writes.

These equations apply to all energy conservation techniques, even
though disks that are in low-power mode limit the maximum through-
put of the system. However, all techniques activate all disks when
the offered load requires it.

5.3 Putting It All Together
Determining the best redundancy configuration for a storage sys-

tem involves meeting its storage capacity, reliability, availability,
and throughput requirements for the least amount of energy. More
specifically, we need to explore the space of potential configura-
tions (n, m) and energy conservation techniques, trying to mini-
mize energy (or average power), subject to the constraints on stor-
age capacity, reliability, availability, and throughput. Given the rel-
atively small search space of n ∗ m possible configurations, for
example in n ∈ [1..16] and m ∈ [1..16], the problem becomes
easy to solve by enumeration (and modeling, of course).

Parameter Default Value
Request Rate (requestRate) 64 reqs/sec
Write Ratio (pw) 33%
Disk Popularity (β, PDC) 1.0
File System Coverage (c, PDC) 70%
MAID Cache Disks (Dmaid) 0.1N
MAID Fragment Miss Ratio (mmaid) 40%
MAID+DIV Batch Size (batchSize) 1 GB
DIV Write Buffer Size (wbSize) 4 MB
Block size (blockSize) 8 KB
Disks without Redundancy (D) 64
Disks with Redundancy (N) Varies
Disk reliability (r) 0.999
Disk availability (a) 0.99
High Power (Ph) 10.2 W
Low Power (Pl) 2.5 W
Avg. Seek Time (S) 3.4 ms
Avg. Rot. Time (R) 2.0 ms
Transfer Rate (X) 55.0 MB/sec
Idleness Threshold (T) 19.2 secs
Spin up Time (Tu) 10.9 secs
Spin down Time (Td) 1.5 secs
Energy transition down+up (Et) 148.0 J

Table 2: Configurable parameters and their default values.

6. MODELING RESULTS
In this section, we analyze the tradeoffs between different (n, m)

configurations, in terms of energy, reliability, availability, and per-
formance. Because the parameter space has at least 6 dimensions
– n, m, energy, reliability, availability, and performance –, it is
impossible to visualize it all at the same time. Thus, we plot 2-D
graphs showing the interesting parts of the space.

We computed the energy results in this section using a synthetic
workload generated as follows. We draw 10,000 inter-arrival times
from a Pareto distribution with a default average of 64 requests
per second and an infinite variance. Requests are for 8-KB blocks.
The disk parameters are based on the IBM 36Z15 Ultrastar model.
The disk reliability assumes an exponential distribution of faults
during one year and an MTTF of 2 million hours. We assume a
low disk availability of 0.99 to encompass not only the availability
of the disk itself, but also that of its supporting components, such
as the power supply, controllers, and cabling. The modeling of
DIV assumes the same reliability and availability values for disks
and NVRAM. Table 2 summarizes the default parameter values we
used. Note that the values for Ph, Pl, Tu, Td, Et were actually
measured, rather than taken from our disk’s datasheet.

Although we study a wide range of parameter values, we care-
fully selected the default values for the workload-related parame-
ters. In particular, the defaults for requestRate and pw lie within
the ranges created by our two realistic access traces (see Section 7)
for these parameters. Further, we selected the default for Dmaid

based on simulations of the cache disk miss rate under our traces;
0.1N cache disks leads to the best tradeoff between miss rate and
number of disks for our traces. The default value for mmaid lies
in the middle of the range created by our two traces for the default
number of cache disks. Our traces do not include information about
coverage, so we arbitrarily chose 70% as its default value but quan-
tify the effect of changes in this parameter explicitly. Finally, we
do not have definitive information about β either; we set it to 1.0,
but have found that this parameter has a negligible impact on the
energy gains achieved by PDC and PDC+DIV.

6.1 Energy
We now evaluate the effectiveness of the energy conservation

techniques, as a function of the redundancy configuration. We start

-20

 0

 20

 40

 60

 80

 0 2 4 6 8 10 12 14 16

E
ne

rg
y

R
ed

uc
tio

n
(%

)

m

All techniques, n=16, pw=0.33

PDC+DIV
DIV

MAID+DIV
PDC

MAID
FT

Figure 3: Energy savings for n = 16.

-20

 0

 20

 40

 60

 80

 0 2 4 6 8 10 12 14 16

E
ne

rg
y

R
ed

uc
tio

n
(%

)

n

All techniques, m=1, pw=0.33

PDC+DIV
DIV

MAID+DIV
PDC

MAID
FT

Figure 4: Energy savings for m = 1.

by assuming the number of disks N increases (decreases) as the
amount of redundancy – n/m – in the system increases (decreases).
When n = m, N = D = 64.

Figures 3 and 4 assess the impact of varying m (for n = 16) and
n (for m = 1), respectively, on the energy savings produced by
each technique. We compute the energy savings with respect to an
energy-oblivious (EO) storage system. Note though that the per-
centages of savings represent different absolute energy consump-
tions, as the number of disks is not fixed. For example, EO con-
sumes 10445 W average power for m = 1 and 653 W for m = 16.
Note also that some configurations are infeasible under PDC and
are thus not included in the graphs. These configurations lead to
fractional numbers of disk sets (see Section 4).

From figure 3, we can see that FT provides no energy savings
across the space. Under the default request rate, there is not enough
idle time for energy conservation in FT. In contrast, MAID con-
serves energy for small m but degrades as we increase this param-
eter. In fact, MAID conserves a substantial amount of energy when
m = 1, since the idle time on the non-cache disks is high enough
under the default request rate and MAID fragment miss rate. How-
ever, when m ≥ 2, MAID consumes more energy than EO because
the cache disks do not filter enough accesses, and thus do not jus-
tify their energy overhead. PDC produces roughly the same energy
savings, regardless of m. The reason is that these savings result
from the constant coverage we assume.

DIV behaves very well until m starts approaching n; larger m
means that there is less redundancy, so fewer disks can be in low-
power mode during read operations. Comparing the techniques,
we find that DIV conserves more energy than MAID regardless of
m. In comparison to PDC, DIV conserves more energy when the
amount of redundancy is high, i.e. n >> m.

Combining MAID or PDC with DIV improves these techniques
substantially. MAID+DIV behaves similarly to DIV and better than
MAID for highly redundant configurations. With little redundancy,
MAID+DIV behaves worse than DIV, consuming more energy than
EO. PDC+DIV conserves more energy than PDC for highly redun-
dant systems. In contrast, PDC+DIV conserves more energy than
DIV when redundancy is limited. Overall, PDC+DIV behaves best,
as it combines the benefits of DIV and PDC under high and low re-
dundancy, respectively.

From figure 4, we see that all techniques and combinations ben-
efit from increases in redundancy, except for PDC and FT. MAID
consumes more energy than EO for small n, but produces savings
when the system becomes highly redundant. These savings come
from the increase in the number of cache disks that results from

increasing n (recall that we assume Dmaid to be a fixed percentage
of N). DIV and its combinations produce the most significant and
consistent energy savings, since DIV allows an increasing number
of disks to be sent to low-power mode with increasing redundancy.
PDC+DIV performs best as explained above.
Impact of Workload Characteristics. We now study the impact
of different workload characteristics on energy conservation, start-
ing with the request rate. Figure 5 shows the effect of the request
rate on a configuration with n = 8, m = 1. We may see such
a highly redundant configuration in wide-area storage systems, in
which many types of events can cause parts of the system to be-
come inaccessible, including network partitions, external attacks,
and correlated failures [10]. Recall that our previous results as-
sumed the default request rate of 64 reqs/s.

The figure shows that FT and MAID only conserve energy for
very low request rates (less than 32 and 64 reqs/s, respectively).
For higher rates, more sophisticated organizations are necessary to
increase idle times. Both PDC and DIV provide savings, but DIV
conserves between two and three times more energy than PDC in
this range of request rates. Adding DIV to MAID or PDC improves
their behavior significantly, especially in the case of MAID. In fact,
MAID+DIV degrades very slowly with the increase in request rate,
due to our optimistic assumptions regarding the write accesses (in-
finite write buffering at cache disks and large write batch size). Un-
der these assumptions, the cache disks and the original disks remain
active, but the redundant disks can be in low-power mode most of
the time. The overall trends we see continue until the request rate
becomes so high that all disks are needed (not shown).

We now turn to the percentage of writes in the workload. Figure
6 shows a request-rate graph for the techniques that differentiate
reads and writes, MAID and the DIV variants, with n = 8, m = 1.
We omit PDC+DIV because its results follow the exact same trends
as those of DIV, but with slightly larger savings. The figure plots
results for three pw settings: 0.33, 0.66, and 0.99. Recall that our
other results assume pw = 0.33.

Interestingly, MAID and DIV behave very differently. MAID
conserves the most energy for write-mostly workloads, due to our
optimistic assumptions for this technique; when reads are a sig-
nificant fraction of the accesses, MAID actually consumes more
energy than EO. In contrast, DIV does best for read-mostly work-
loads, as the redundant disks can be kept in low-power mode most
of the time. Nevertheless, DIV also does well for write-mostly
workloads, since the redundant disks are only activated when the
write buffers fill up. MAID+DIV behaves well for all write rates
by combining the best characteristics of MAID and DIV.

-20

 0

 20

 40

 60

 80

 0 50 100 150 200 250 300 350 400 450 500

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Reqs/s

All techniques per request rate, pw=0.33, n=8, m=1

PDC+DIV
DIV

MAID+DIV
PDC

MAID
FT

Figure 5: Savings per request rate for n = 8, m = 1.

-20

 0

 20

 40

 60

 80

 0 50 100 150 200 250 300 350 400 450 500

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Reqs/s

DIV and MAID per write ratio n=8, m=1

DIV:0.33
DIV:0.66
DIV:0.99

MAID+DIV:0.99
MAID+DIV:0.66
MAID+DIV:0.33

MAID:0.99
MAID:0.66
MAID:0.33

Figure 6: Savings per write percent for n = 8, m = 1.

-20

 0

 20

 40

 60

 80

 0 50 100 150 200 250 300 350 400 450 500

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Reqs/s

PDC, PDC+DIV, DIV per Coverage and Request Rate

PDC+DIV:0.1
PDC+DIV:0.5
PDC+DIV:0.9

DIV
PDC:0.1
PDC:0.5
PDC:0.9

Figure 7: PDC and PDC+DIV savings as a function of coverage (10%,
50%, 90%) for n = 8,m = 1.

-20

 0

 20

 40

 60

 80

 0 50 100 150 200 250 300 350 400 450 500

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Reqs/s

MAID, MAID+DIV, DIV per MAID Miss Rate and Request Rate

DIV
MAID+DIV:0.10
MAID+DIV:0.50
MAID+DIV:0.90

MAID:0.10
MAID:0.50
MAID:0.90

Figure 8: MAID and MAID+DIV savings as a function of cache miss
rate (10%, 50%, 90%) for n = 8, m = 1.

Figure 7 shows the behavior of PDC and PDC+DIV, as a function
of coverage and request rate. Recall that coverage is the percentage
of blocks referenced (read or written) over all stored blocks. By de-
fault, we have been assuming a coverage of 70% and a request rate
of 64 reqs/s. PDC benefits significantly from smaller coverages. In
fact, PDC becomes the best technique for very low coverage and
high request rate. PDC+DIV also benefits from smaller coverages,
but the improvements over DIV are meager when compared with
the benefits a smaller coverage has on PDC alone. Note also that
the savings potential of data migration is small, since the savings
of PDC+DIV with 90% coverage are very similar to those of DIV.

Figure 8 shows the behavior of MAID and MAID+DIV, as a
function of cache miss and request rates. The miss rate depends on
the workload and on the number of MAID caches used. Here, we
study how the miss rate affects energy conservation, without con-
cern for how it is achieved, i.e. without changing other parameters.
The figure shows that the miss rate has a significant effect on MAID
but not on MAID+DIV. MAID improves with lower miss rate, since
lower rates increase the idle time at the non-cache disks, allowing
them to be kept in low-power mode longer. MAID+DIV only bene-
fits from extremely low miss rates (much lower than 10%), at which
point the original (non-cache) disks can be sent to low-power mode
for a long enough period. Again, this shows that MAID+DIV be-
haves well due to DIV and our favorable modeling assumptions.
Impact of Write Buffer and Write Batch Sizes. The size of the

write buffer is very important for DIV when workloads exhibit a
non-trivial fraction of writes. For these workloads, DIV may not
be able to conserve energy in the absence of a write buffer. As we
increase the size of the write buffer, energy savings increase quickly
at first but later taper off, as the redundant disks remain idle most of
the time. Under our default parameters, the energy savings start to
taper off with a 2-MB write buffer. We study the impact of buffer
sizes in more detail in Section 7.

The behavior of MAID+DIV is significantly affected by a similar
parameter, the write batch size. The batch size can be much larger
than the buffer size in DIV, since writes are buffered on the cache
disks in the former technique. When the batch size is the same as
the buffer size, MAID+DIV conserves less energy than DIV, due to
the energy overhead of the cache disks.
Impact of Fixed Number of Disks. We just examined the effect of
the redundancy configuration for a variable number of disks. Here,
we evaluate the impact of a fixed number of disks, N = 64. Under
this assumption, all but one configuration (n = 16, m = 1) will
have unused storage space.

Fixing N = 64 leads to similar trends as in figures 3 and 4. In-
creases in n tend to increase the DIV savings initially, since larger
n increases the number of redundant disks. At some point how-
ever, write accesses start limiting the idle time of a large number
of disks. Increasing m reduces the DIV savings consistently, since
this effectively increases the number of original disks.

(n, m) N P A Tech E
(MB/s) (W)

(8, 5) 32 8.1 0.999999 EO 326
(8, 5) 32 8.1 0.999999 FT 326
(8, 5) 32 9.1 0.999999 MAID 367
(8, 5) 32 8.1 0.999999 PDC 265
(8, 5) 32 8.1 0.999999 DIV 267
(8, 5) 32 9.1 0.999999 MAID+DIV 275
(8, 5) 32 8.1 0.999999 PDC+DIV 228
(3, 1) 60 66.0 0.999999 EO 612
(3, 1) 60 66.0 0.999999 FT 612
(3, 1) 60 72.6 0.999999 MAID 674
(3, 1) 60 66.0 0.999999 PDC 473
(3, 1) 60 66.0 0.999999 DIV 326
(3, 1) 60 72.6 0.999999 MAID+DIV 365
(3, 1) 60 66.0 0.999999 PDC+DIV 280
(8, 1) 160 160.4 1.000000 EO 1632
(8, 1) 160 160.4 1.000000 FT 1633
(8, 1) 160 176.5 1.000000 MAID 1774
(8, 1) 160 160.4 1.000000 PDC 1262
(8, 1) 160 160.4 1.000000 DIV 631
(8, 1) 160 176.5 1.000000 MAID+DIV 717
(8, 1) 160 160.4 1.000000 PDC+DIV 585

Table 3: Sample candidate solutions for simple example.

6.2 Defining a Redundancy Configuration
We illustrate the use of our models in the design of a redundancy

configuration with a simple example. Suppose you need to design
a system that requires: at least 20 disks to store all the data, at least
5 MB/s of throughput, at least 6 nines of reliability, and at least 5
nines of availability.

We evaluated all combinations of n, m ∈ [1..16] for this exam-
ple and our default model parameters. Table 3 summarizes some
of the candidate combinations. From left to right, the table lists
the redundancy configuration, the number of disks, its throughput,
its availability, the energy conservation technique, and the average
power consumption. We do not list reliabilities, as all configura-
tions that meet the other requirements easily meet the reliability
requirement.

In the table, the first group of rows shows the optimal configu-
ration, (8, 5) with PDC+DIV for energy conservation. In this con-
figuration, the two best techniques, DIV and PDC+DIV, consume
18% and 30% less energy than EO, respectively. It is interesting
to note that the optimal configuration is somewhat unintuitive; the
intuitive ones are either invalid or sub-optimal. For example, the
simplest redundant configuration ((2, 1), not shown) uses 40 disks,
delivers enough throughput, but provides insufficient availability.
The second group of rows shows results under another simple and
intuitive mirrored configuration, (3, 1). For this configuration, DIV
and PDC+DIV conserve 47% and 54% of the energy consumed by
EO, respectively. The last group shows results for yet another in-
tuitive configuration, (8, 1). In this scenario, DIV and PDC+DIV
consume 61% and 64% less energy than EO, respectively. Note
that the maximum throughput of (8, 1) is substantially higher than
that of (8, 5), because the former configuration uses more disks and
larger fragments than the latter.

6.3 Summary
From these results, it is clear that DIV (independently or in com-

bination with other techniques) is an effective technique. In most
of the parameter space, the DIV energy savings are large and con-
sistent. DIV is particularly effective for high n, low m, and read-
mostly workloads. Wide-area storage utility, digital library, and file
sharing systems, for example, exhibit these ideal properties.

DIV is the very reason why MAID+DIV and PDC+DIV behave

well; MAID and PDC independently are neither robust nor energy-
efficient in most cases. MAID+DIV behaves better than DIV in part
of the space, mostly due to our highly favorable modeling of write
accesses in MAID+DIV (and MAID). However, in other parts, the
cache disks contribute little besides energy overhead; in those sce-
narios, MAID+DIV consumes more energy than EO.

PDC+DIV conserves more energy than DIV when redundancy
is limited. However, we also modeled PDC+DIV (and PDC) un-
der favorable assumptions: perfect popularity categorization and
no migration costs. Furthermore, PDC+DIV has one major draw-
back: it is very complex to implement in practice, especially in the
context of a distributed storage system. In fact, determining the
best data layout for energy and bandwidth is clearly NP-hard.

Based on these observations, we argue that DIV is the only effec-
tive, robust, and practical redundancy-aware energy conservation
technique. As we mentioned before, the other redundancy-aware
techniques, EERAID, eRAID, and RIMAC, provide more limited
savings than DIV as they only apply to RAID systems.

It is also clear from our results that the task of a storage system
designer is not simple. Choosing the right redundancy configura-
tion requires making informed decisions based on all the system
requirements. Our simple example showed that non-intuitive re-
dundancy configurations may actually lead to the best results.

7. CASE STUDY: WIDE-AREA STORAGE
We now evaluate DIV in the context of a realistic system under

both real and synthetic workloads. In particular, we study a sim-
ple wide-area storage system with stable nodes and data replication
using simulation. The idea is to mimic a storage system owned
and operated by a single world-wide institution, enterprise, or data
utility on dedicated machines.

We simulate a storage system comprised by geographically dis-
tributed nodes. Each file stored in the system is broken down into
8-KB blocks, each of them replicated at k randomly selected nodes.
A block-read request is routed directly to a randomly chosen replica.
Block writes are routed to all replicas. To model this simple stor-
age system, we describe it using n = k, m = 1, since k copies
are always available and only one is required to retrieve the orig-
inal data. Even though we could consider power-managing entire
storage nodes, we continue focusing on disks (one disk per node,
for simplicity).

The simulator is trace-driven and selects a random node to re-
ceive each client request in the trace. The request is then routed
to the destination node and the reply is routed back. The network
latency is assumed fixed at 50 ms. (We do not experiment with vari-
able network latency to avoid adding sources of noise to the energy
computation, which would make it hard to isolate where benefits
come from.) We simulate DIV, FT, and EO. The DIV simulation
keeps our technique active at all times (a real system would include
a separate mechanism to turn DIV on/off). We simulate the same
IBM disks we have been studying.

7.1 Comparing Modeling and Simulation
In this section, we compare the results of our most important

energy models (FT and DIV) against those of our simulator using
synthetic workloads. Although technically not a “validation” of
the models, this comparison is intended to build confidence in our
main modeling results, as the simulator eliminates several of the
modeling assumptions. Note however that our modeling of MAID,
PDC, and their combinations with DIV is an upper bound on their
energy conservation potential, so we do not consider them here.

Our synthetic workload generator takes the request rate and per-
centage of writes as input and produces a trace with 10,000 re-

k N ReqRate pw Buffer Savings (%) Error
(reqs/s) (MB) Sim Model (%)

3 6 10 0.50 0 0.0 0.0 0.0
3 6 10 0.50 8 45.7 46.1 0.6
3 6 10 0.50 ∞ 49.3 50.3 2.0
3 15 100 0.75 0 0.0 0.0 0.0
3 15 100 0.75 8 24.5 24.8 -0.3
3 15 100 0.75 ∞ 49.6 50.1 1.0
5 20 100 0.75 0 0.0 0.0 0.0
5 20 100 0.75 8 21.7 22.2 0.8
5 20 100 0.75 ∞ 59.8 60.1 0.8
3 3 0.1 0.0 0 13.0 12.8 -0.3
3 15 0.1 0.0 0 57.8 58.1 0.7
3 3 10 0.0 0 0.0 0.0 0.0
3 15 10 0.0 0 0.0 0.0 0.0

Table 4: Sample DIV (top) and FT (bottom) comparison results.

quest arrivals drawn from a Pareto distribution with infinite vari-
ance. Each request is directed to a different disk (in round-robin
fashion) and accesses a block of 8 KB. Note that the generation of
our synthetic traces differs markedly from our modeling approach.
In particular, each request arrival corresponds to a single disk ac-
cess in our synthetic traces.

We executed a large number of simulations varying six system
and workload parameters: pw ∈ [0, 0.25, 0.5, 0.75, 1], k ∈ [3, 5],
req rate ∈ [0.01, 0.1, 10, 100, 1000], energy conservation tech-
nique ∈ [FT, DIV], N ∈ [3, 6, 9, 10, 15, 20], and wbSize ∈

[0, 1, 8,∞]. Parameter combinations that do not make sense (e.g.,
k > N) or require more bandwidth than that of N disks were dis-
carded. We then compared the energy results of the remaining 795
simulations with the corresponding modeling results.

Table 4 shows a fraction of our validation results. The last col-
umn shows the percentage difference between the energy consump-
tion predicted by model and simulator. Our modeling results match
the simulation results closely; the average error is 1.3%, the stan-
dard deviation is 2.8%, and the maximum error is 18%. If requests
are directed to disks randomly (rather than in round-robin fashion),
these values become 3.4%, 8.1%, and 28%, respectively.

The simulation and modeling trends match very closely. Again,
DIV is most effective for high redundancy, read-mostly workloads,
and larger write buffers. Also, FT is again only effective for very
low request rates. These results build confidence in our parameter
space study (Section 6).

7.2 Real Workload Results
We also wanted to simulate our system for real traces. Unfor-

tunately, the real file-system traces available publicly are not ap-
propriate to evaluate wide-area storage systems such as the one we
simulate; these traces are typically for local-area systems, which
are amenable to small data and meta-data accesses. To approxi-
mate the characteristics of the accesses to wide-area systems, we
used two proxy traces from AT&T and the IRCache project. Proxy
traces log the file accesses of a large set of clients to a large content
base; the same characteristics of our wide-area system.

The AT&T trace was collected between 01/16/99 and 01/22/99,
whereas the IRCache trace was collected at three locations from
09/29/04 to 10/05/04. To mimic a system in which files are stored
on disk and later retrieved, we pre-processed the traces to transform
all file accesses into file read operations. Since the traces do not
include information about file creation, we also introduced a write
access for each unique file at a random time before the first access
to it. After pre-processing, the AT&T trace exhibits 21,150,244
block requests, a 34% write percentage, an average request rate
of 35 reqs/s, and a peak rate of 2266 reqs/s. The IRCache trace

Buffer Energy Spin Idle Reqs Energy
Size Downs Time Delayed Savings

(MB) (MJ) (s) (%) (%)
0 120.3 5068 0.3 0.0 2.5
1 99.0 168540 27.9 0.8 19.7
2 78.1 110760 60.2 0.5 36.7
8 55.9 29120 265.9 0.2 54.7
32 50.3 8000 1088.5 0.1 59.3
∞ 48.4 1168 34551.4 0.0 60.8
0 499.7 2134 0.9 0.0 0.0
1 307.6 220746 89.9 0.5 38.4
2 278.2 111846 186.7 0.3 44.3
8 255.8 28254 766.8 0.1 48.8
32 250.1 7194 3070.7 0.0 49.9
∞ 248.3 390 80632.6 0.0 50.3

Table 5: DIV results: AT&T (top) and IRCache (bottom) traces.

includes 42,976,431 block requests, a 34% write percentage, an
average request rate of 71 reqs/s, and a peak rate of 10635 reqs/s.

Before simulating, we need to define the ideal redundancy con-
figuration for these workloads. First, we set the maximum through-
put requirements as their peak request rates. Second, we set the
target availability for the system at two different levels: 6 nines
(IRCache) and 9 nines (AT&T). Third, we set the target reliabili-
ties two nines higher than the target availabilities.

Assuming these constraints and parameters, our optimization pro-
cedure finds N = 20 disks and n = k = 5 (AT&T) and N = 81
disks and n = k = 3 (IRCache) as the best configurations. We
assess the DIV behavior on these realistic traces by simulating the
system with this configuration and different write buffer sizes. We
list these results in table 5. From left to right, the table lists the write
buffer sizes, the amount of energy consumed during the trace, the
number of disk spin downs, the average idle times, the percentage
of requests that were delayed (due to contention or disk spin ups),
and the DIV energy savings with respect to EO. The table shows
that DIV conserves between 20% and 61% of the energy, depend-
ing on the size of the write buffers. Small buffers (e.g., 8 MB) can
achieve most of the energy savings, but when we cripple DIV by
eliminating its write buffers, it conserves little if any energy. Be-
cause the periods of high load are short, simulating DIV all the time
only leads to serious performance degradation when writes are de-
layed by disk spin ups. However, as the table also shows, these
delays are extremely infrequent. Although we do not include this
information in the tables, our DIV model matches the simulations
closely; the average errors are 3.4% (AT&T) and 1.8% (IRCache),
whereas the maximum errors are 10% (AT&T) and 8% (IRCache).

8. CONCLUSIONS
In this paper, we introduced Diverted Accesses, a novel and ef-

fective energy conservation technique designed to leverage the re-
dundancy in storage systems. We also introduced models that pre-
dict the disk energy consumption of Diverted Accesses and the
previously proposed techniques, as a function of the system’s re-
dundancy configuration. Our evaluation coupled a wide parameter
space exploration with simulations of a real storage system under
two realistic workloads. This study was the first to consider the
previous techniques in the presence and as a function of redun-
dancy. Our modeling and simulation results showed that Diverted
Accesses is very effective and robust throughout most of the pa-
rameter space; other techniques are either not robust or impracti-
cal. Furthermore, we found non-intuitive redundancy configura-
tions to be ideal in a simple example, showing that designing a
storage system requires quantifying and trading off several metrics;

our energy models are key in this design process. For our realistic
system and workloads, and ideal configuration, Diverted Accesses
was able to conserve 20-61% of the disk energy consumed by an
energy-oblivious system.

We conclude that Diverted Accesses should be extremely useful
for large-scale storage systems, such as outsourced storage services
or wide-area storage utility, digital library, and file sharing systems.
In fact, we believe that our technique would be even more beneficial
(in absolute energy consumption terms) if applied to entire nodes
rather than just their disks.

Acknowledgements
We would like to thank our shepherd Arif Merchant, as well as
Enrique V. Carrera, Uli Kremer, Athanasios Papathanasiou, Anand
Sivasubramaniam, and Yuanyuan Zhou for comments that helped
us significantly improve the paper. We would also like to thank
Prof. Arthur Goldberg from New York University for giving us the
AT&T trace.

9. REFERENCES
[1] R. Bhagwan, D. Moore, S. Savage, and G. M. Voelker.

Replication Strategies for Highly Available Peer-to-Peer
Storage. In Proceedings of International Workshop on Future
Directions in Distributed Computing, May 2002.

[2] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving
Disk Energy in Network Servers. In Proceedings of the 17th
International Conference on Supercomputing, June 2003.

[3] D. Colarelli and D. Grunwald. Massive Arrays of Idle Disks
For Storage Archives. In Proceedings of the 15th High
Performance Networking and Computing Conference,
November 2002.

[4] Data Domain. Data Domain DD400 Enterprise Series.
http://www.datadomain.com/, 2005.

[5] E. Anderson et al. Ergastulum: Quickly Finding
Near-Optimal Storage System Designs. Technical Report
HPL-SSP-2001-05, HP Laboratories SSP, June 2002.

[6] E. Anderson et al. Hippodrome: Running Circles Around
Storage Administration. In Proceedings of the International
Conference on File and Storage Technology, pages 175–188,
January 2002.

[7] G. A. Alvarez et al. Minerva: An Automated Resource
Provisioning Tool for Large-Scale Storage Systems. ACM
Transactions on Computer Systems, 19(4):483–518,
November 2001.

[8] A. Goldberg and P. N. Yianilos. Towards an Archival
Intermemory. In Proceedings of IEEE Advances in Digital
Libraries, ADL 98, 1998.

[9] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. DRPM: Dynamic Speed Control for Power
Management in Server Class Disks. In Proceedings of the
International Symposium on Computer Architecture, June
2003.

[10] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
Durable, Decentralized Storage Despite Massive Correlated
Failures. In Proceedings of the 2nd Symposium on
Networked Systems Design and Implementation, May 2005.

[11] Y. Hu and Q. Yang. DCD – Disk Caching Disk: A New
Approach for Boosting I/O Performance. In Proceedings of
the 23rd International Symposium on Computer
Architecture, June 1995.

[12] J. Kubiatowicz et al. OceanStore: An Architecture for
Global-scale Persistent Storage. In Proceedings of the 9th

International Conference on Architectural Support for
Programming Languages and Operating Systems, November
2000.

[13] E. K. Lee and C. A. Thekkath. Petal: Distributed Virtual
Disks. In Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 1996.

[14] D. Li and J. Wang. EERAID: Energy-Efficient Redundant
and Inexpensive Disk Array. In Proceedings of the 11th ACM
SIGOPS European Workshop, Sept 2004.

[15] D. Li and J. Wang. Conserving Energy in RAID Systems
with Conventional Disks. In Proceedings of the International
Workshop on Storage Network Architecture and Parallel
I/Os, Sept 2005.

[16] Maximum Throughput, Inc. Power, Heat, and
Sledgehammer, April 2002.

[17] Fred Moore. More Power Needed, November 2002. Energy
User News.

[18] A. Papathanasiou and M. Scott. Power-efficient Server-class
Performance from Arrays of Laptop Disks. Technical Report
837, Department of Computer Science, University of
Rochester, May 2004.

[19] E. Pinheiro and R. Bianchini. Energy Conservation
Techniques for Disk Array-Based Servers. In Proceedings of
the 18th International Conference on Supercomputing
(ICS’04), June 2004.

[20] E. Pinheiro, R. Bianchini, and C. Dubnicki. Exploiting
Redundancy to Conserve Energy in Storage Systems.
Technical Report DCS-TR-570, Rutgers University, March
2005.

[21] A. Rowstron and P. Druschel. Storage Management and
Caching in PAST, a Large-Scale, Persistent Peer-to-Peer
Storage Utility. In Proceedings of the International
Symposium on Operating Systems Principles, 2001.

[22] S. Gurumurthi et al. Interplay of Energy and Performance for
Disk Arrays Running Transaction Processing Workloads. In
Proceedings of the International Symposium on Performance
Analysis of Systems and Software, March 2003.

[23] Y. Saito, C. Karamonolis, M. Karlsson, and M. Mahalingam.
Taming Aggressive Replication in the Pangaea Wide-Area
File System. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, Dec 2002.

[24] D. Siewiorek and R. Swarz. Reliable Computer Systems
Design and Evaluation. A K Peters, third edition, 1998.

[25] Sun Microsystems. Sun StorEdge 3320.
http://www.sun.com/storage/, 2005.

[26] H. Weatherspoon and J. Kubiatowicz. Erasure Coding vs.
Replication: A Quantitative Comparison. In Proceedings of
the 1st International Workshop on Peer-to-Peer Systems,
March 2002.

[27] X. Yao and J. Wang. RIMAC: A Redundancy-based,
Hierarchical I/O Architecture for Energy-Efficient Storage
Systems. In Proceedings of the 1st ACM EuroSys
Conference, Apr 2006.

[28] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes.
Hibernator: Helping Disk Arrays Sleep Through the Winter.
In Proceedings of the 20th ACM Symposium on Operating
Systems Principles, Oct 2005.

[29] Q. Zhu and Y. Zhou. Power-Aware Storage Cache
Management. IEEE Transactions on Computers, 54(5), 2005.

