
Year Article

A POWER AND PERFORMANCE

MEASUREMENT FRAMEWORK FOR

SERVER- CLASS STORAGE

Mathew Oldham
Florida State University (Arts & Sciences - Computer Science)

This paper is posted at the Florida State University D-Scholarship Repository.

http://dscholarship.lib.fsu.edu/undergrad/93

Copyright c©2005 by the author.

A POWER AND PERFORMANCE

MEASUREMENT FRAMEWORK FOR

SERVER- CLASS STORAGE

Abstract

Recently researchers have studied various approaches on how to reduce en-
ergy consumption of server-class disk storage devices. Although many studies
have claimed success, details of their experimental setups are either little docu-
mented or not designed to measure power consumption or performance of their
systems simultaneously. This thesis describes a new framework that produces
accurate results using realistic workloads by measuring both the power and per-
formance of the disks at the same time while maintaining the privacy of the
users. We have used this framework to test the power and performance charac-
teristics of three different RAID personalities.

THE FLORIDA STATE UNIVERSITY
COLLEGE OF ARTS AND SCIENCES

A POWER AND PERFORMANCE MEASUREMENT FRAMEWORK

FOR SERVER- CLASS STORAGE

By

MATHEW OLDHAM

A Thesis submitted to the
Department of Computer Science

in partial fulfillment of the requirements for Honors in the Major

Degree Awarded:
Spring Semester, 2005

2

The members of the Committee approve the thesis of Mathew Oldham defended on
5 Apr 2005.

Dr. An-I Wang
Professor Directing Thesis

Dr. Ted Baker
Committee Member

Dr. Nancy Greenbaum
Outside Committee Member

3

Table of Contents

1.0 Introduction...8

2.0 Background..8

2.1 Hard Drives..9

2.2 Web Servers...9

2.3 Redundant Arrays of Inexpensive Disks (RAID).....................................10

3.0 Performance Evaluation Techniques..10

3.1 Workload Types..11

3.2 Popular Web Server Benchmarks...11

4.0 Framework Design..12

4.1 Hardware Design...12

4.2 Workload Considerations..13

4.3 File System Creation...13

4.4 WebClient..14

4.5 Power Setup...14

4.6 Metrics...16

5.0 Implementation..16

5.1 Hardware Setup...16

5.2 Software Setup..17

5.3 File System Creation...18

5.4 Web Server Access Logs..18

6.0 Case Study and Validation...19

6.1 RAID Personalities...19

4

6.2 Power Consumption...19

6.3 Performance Metrics..20

7.0 Future Work...22

7.1 Workloads..22

7.2 File System Performance...22

7.3 WebClient Improvements..23

7.4 Automation..23

8.0 Conclusion..24

9.0 References..24

5

List of Figures

Figure 1: Internal Mechanical Structure of a Hard Drive..9

Figure 2: Internals of a Web Server...12

Figure 3: Modified Internals of a Web Server...12

Figure 4: Power Measurement Circuit...15

Figure 5: Ohms Laws...15

Figure 6: Power Measurement Framework Hardware Setup ..17

Figure 7: Web Server Activity for 23 Sep 04...18

Figure 8: RAID-0/LRU/PARAID Total Power Consumption Comparison...................20

Figure 9: RAID-0/LRU/PARAID Latency Cumulative Display Function21
Comparison

Figure 10: RAID-0/LRU/PARAID Total Completion Time Cumulative......................21
Display Function

List of Tables

Table 1: Properties of Popular Web Server Benchmarks...11

Table 2: Hardware and Software Used in the Measurement Framework......................17

6

Acknowledgements

I would like to thank Carl Owenby for his engineering skills in creating the cables used to

monitor the power consumption of the drives. I would also like to thank Dr. Geoffrey

Kuenning for his insight on measuring the power consumption of the disks and associated

problems that were occurring, along with providing sanity checks throughout the

framework creation process. I’d like to thank Charles Weddle and Sean Toh, part of the

OS Research Team. Finally, I would like to thank Nicolas Wallen for providing the

external power supply and the members of my committee, Dr. Nancy Greenbaum and Dr.

Ted Baker. This work was funded by NSF grant number CNS-0410896.

7

ABSTRACT OF THE THESIS

A Power and Performance Measurement Framework for Server-Class
Storage

by

Mathew Oldham

Florida State University, Spring 2005

Dr. An-I Wang

Dr. Ted Baker

Dr. Nancy Greenbaum

Recently researchers have studied various approaches on how to reduce energy

consumption of server-class disk storage devices. Although many studies have claimed

success, details of their experimental setups are either little documented or not designed

to measure power consumption or performance of their systems simultaneously. This

thesis describes a new framework that produces accurate results using realistic workloads

by measuring both the power and performance of the disks at the same time while

maintaining the privacy of the users. We have used this framework to test the power and

performance characteristics of three different RAID personalities.

Keywords: RAID, Hard Drive, Power

8

1.0 Introduction

The average cost of computers has declined over the years. Average computers
that used to cost ~$2,000 now cost only half as much due to cheaper manufacturing
techniques and the economy of scale. Affordable computers, along with wide-spread
network access, have brought computing to the masses. This in turn has lead to the
explosion of the Internet.

As the Internet has grown, so too have the number of servers needed to store the
massive amounts of information. These servers must have the ability to respond very
quickly to the requests of the clients accessing them. Serving thousands of requests every
second requires multiple fast processors, large amounts of memory, fast hard drives that
can store the necessary amount of information, and one or more network connections
capable of delivering the information back to the user.

As the performance of these servers have increased, so too has the amount of
power consumed. For example, in March 2003, the Google search engine contained over
15,000 servers located at 4 different installations [2]. With such a dense deployment of
resources in a confined space, massive amounts of energy are required for not only the
servers, but also for cooling on top of the regular operating costs of a building. Over the
lifetime of a server, the energy cost outweighs the operational cost of the server. One
report estimates that the energy costs of a typical server center can reach up to 60% of the
operational costs and can use between 10 and 20 megawatts of power per hour. The
power needed to run one server center can power 10,000 to 20,000 homes with every
light turned on [1].

Recently researchers have studied various approaches on how to save energy
consumption of server-class disk storage devices. Hard drives alone account for up to
24% of the total power consumed by a web server and up to 77% of power consumed by
a proxy server [2]. Although many studies have claimed success, their experimental
setups are either little documented or not designed to measure power consumption and
performance of their systems simultaneously. It is very hard to measure such benefits as
current servers are built for maximum performance, not for power measurement.

In this thesis I present a new framework for measuring the performance and
power consumption of server-class storage systems. The framework is easy to setup and
run, and provides repeatable workloads based on real traffic patterns. The workloads
themselves are realistic, repeatable, and privacy-aware and match the hardware and
software environments that are used within the framework.

2.0 Background

This section introduces the terminology associated with hard drives, web servers,
and the way hard drives are used in web servers. Those who are familiar with such topics
may skip to Section 3.

9

2.1 Hard Drives

The performance and power consumed relate directly to the fact a hard drive is a
mechanical device with moving parts. Figure 1 describes the internal mechanical
structure of a typical hard disk. A typical hard drive consists of several cylindrical disks
called platters that rotate around a spindle. Each platter contains magnetically encoded
data. To read and write data onto the platters, a disk arm moves back and forth over the
platters. Attached to the end of the disk arm is a read/write head that translates the data
sent from the operating system to the drive.

When a user either reads or writes a file to disk, the operating system sends a disk
request to the hard drive containing the information. The disk platters must be spinning
at a specific speed to read or write the data. Should the platters be spinning below this
speed, additional power is required to ‘spin up’ the disk. After the platters are spinning at

the appropriate speed, the disk
arm moves over the platters into
the proper position and performs
the read/write operation. After
the operation is complete, the
disk arm moves away from the
platter and the disk returns to an
idle state.

Figure 1: Internal mechanical structure of a hard disk.

2.2 Web Servers

Since different application servers have different workload characteristics, we
limited the focus of our study to web servers. Web servers allow users (clients) to access
information from anywhere in the world. A typical web server consists of one or more
processors, one or more fast network connections, large amounts of memory, and several
hard drives to store the web content. The server itself runs a web server program, which
receives requests from the client, finds the requested file, and returns the file to the user
over a network.

Web servers can serve both static and dynamic content. Static content includes
files such as images, web pages, and text files that are served directly to the user.
Dynamic content is generated on demand. Dynamic content includes such things as stock
tickers, news tickers, and other content that is generated by the server and then served on
demand to the client.

Web servers consume a considerable amount of power. This is mainly due to the
need for continual service to all users whether the web server is used or not. A web
server contains several hard drives, which can increase the performance and throughput
of the server through parallelism, but also increase power consumption. The drives are
connected directly to a logic board, called a backplane, which provides power and

10

distributes the disk requests to the appropriate drive. The hard drives work together in a
redundant array of inexpensive disks (RAID) to provide performance and reliability
through data redundancy.

2.3 Redundant Arrays of Inexpensive Disks (RAID)

A RAID device distributes data across several disks, which provides greater
performance by allowing more than one drive to be accessed at a time . This data striping
can either be uniform meaning that each disk contains the same amount of information,
or skewed meaning that some disks contain more information than other disks. Data
striping provides a greater throughput for large files where seek time is not the dominant
time factor. For small files, where seek time and rotational delay dominate, RAID is only
as fast as the slowest drive.

RAID provides greater reliability by spreading redundant information across
several disks. This allows for one or more disks to fail without crashing the system or
losing data. When the failed disk is replaced with a new one, the remaining disks can
rebuild the RAID device and regenerate the data previously stored on the failed drive.
Different RAID personalities provide tradeoffs between performance and reliability. For
example, RAID-0 contains no redundancy but can provide excellent bandwidth but will
not be able to recover from a single disk failure. RAID-5 provides redundancy striped
across all disks which allows for a disk to be recovered should a disk failure occur.

3.0 Performance Evaluation Techniques

There are three types of performance evaluation techniques including analytical
modeling, simulations, and empirical measurements. Analytical modeling requires the
construction of a model. The model can be constructed quickly and can provide
predictors of anticipated results, but such results are often based on many simplifying
assumptions that reflect reality in limited ways.

Simulations are a good alternative, if the hardware is not available to conduct
actual measurements. Simulations can be easily configured to explore a large parameter
space. However, simulations need to be validated, and the validation process can be
tedious. Simulations may take a long time to run if the physical effects being simulated
are at the time scale of microseconds. For example, if a disk is powered in pulses. It is
also hard to simulate the amount of energy required to spin up a disk, which can throw
off results.

The most realistic form of performance evaluation in terms of validity is empirical
measurement. This type of performance evaluation can be labor intensive and costly to
obtain the needed equipment to implement and measure the test system. Many times new
methods must be invented to take the proper measurements, which involve in-depth
knowledge of the test system and what is happening within the system. Other times it
may be difficult to perform the measurements due to lack of compatibility between
software measurement devices and the system.

11

3.1 Workload Types

There are two major types of workloads. Workloads can be either synthetic or
realistic. Synthetic workloads are mostly designed to measure the individual components
of a system at peak performance. They often provide their own file set based off
previous statistics. However, such workloads do not reflect real world situations such as
human interaction.

Realistic workloads are based off workloads from a real system. Realistic
workloads are more accurate in representing user behavior and intentions. However, one
workload may not be representative of all workloads. For web servers, there is no such
thing as an average or ideal workload. For every web server, there is a difference in the
types of web sites and content of the web sites. Each trace may also be biased based on
the software and hardware implemented running on the server.

3.2 Popular Web-Server Benchmarks

Several popular benchmarks exist and are used to measure the performance of
web servers. Chart 1 contains an overview of various popular benchmarks along with
what our benchmark aims to achieve. All the benchmarks are client-server benchmarks
where a client makes a request to the server and the server responds. Some benchmarks
have the ability to run traces based on web server access log files while others are
synthetic and have a predetermined file set. The synthetic benchmarks tend to measure
the peak performance of the web server while the more realistic benchmarks that use web
access logs to drive the benchmark provide more of an average performance from a
realistic workload. However, none of the previous benchmarking frameworks measure
the power consumption of the hard drives within the server [6, 8, 9, 10].

Table 1

R
eal-T

im
e

D
aily/W

eekly
C

ycles

T
race-B

ased

C
oncurrent

R
equests

H
um

an
Interaction

P
ow

er

P
eak

P
erform

ance

A
verage

P
erform

ance

M
atching H

W

C
haracteristics

D
ynam

ic
C

ontent

WebStone X X X
SPECWeb 99 X X X
HTTPerf X X X
Self Scaling Web Benchmark X X X X X
Trace Replay X X X X X X X X
WebClient (Ours) X X X X X X X X X ?

12

4.0 Design

The design of our new measurement
framework takes into account several
aspects of the entire system from the
hardware the system runs to the software
running on the hardware. We also take into
account the workload used to drive the
benchmark, how the file system is created to
maintain privacy, and how the benchmark
itself is designed to generate loads
efficiently and report the appropriate
information from power measurement to
performance metrics.

4.1 Hardware Design

Commercial servers are not designed to be research friendly for measuring the
power consumption of the hard drives. Figure 2 shows the inside of a typical web server.
Each hard drive is connected to a logic board called a backplane. The connection
between the backplane powers the disks along with providing data transfer capabilities
since server-class disks do not have a separate power connection. There is no way to
measure the power of the individual drives while they are connected to the backplane.
Measuring the power of the entire backplane yields the total power consumed by all
drives, but also shows the power consumed by the backplane itself , which can skew
results.

The solution implemented in our design is to bypass the backplane as shown in
Figure 3. The drives themselves are removed from the backplane. A separate cable
having the same interface as the backplane connects the disks to the server. The cable
interface is also the same as the drive
interface. Since the drives have a different
number of pins in their connection, an
adapter is provided to connect the drives to
the cable. The adapter contains a standard
power connector that allows us to connect
an external power supply to power the
drives. This provides us with the ability to
measure the power consumption of the
drives since the adapter itself takes no
power. We also maintain the same
performance with the drives connected to
the cable as with the drives connected to the
backplane since the same interface is used
between each.

13

4.2 Workload Considerations

The next decision was to find an appropriate workload that matched our hardware
and software. The workload chosen came from an academic web server. Academic
workloads are not the same as government or commercial workloads. Commercial
servers may contain more dynamic content while academic and government servers may
contain more static content. Ideally, our framework can adapt to different workloads.

Our chosen workload also has several nice properties for studying power savings.
Web accesses exhibit a periodic nature where more requests are served during the midday
hours than at night, and more requests during the middle of the week than on weekends
[5]. This property is essential for many power-saving techniques to work well. This
periodicity of requests also allows us to identify whether a web server is severely over-
provisioned or under- provisioned.

Finally, the workload must be timely enough to match the hardware settings. A
web trace that is too old may not fully exercise modern hardware. A modern trace on
older hardware can also overwhelm the older hardware. Great care must also be taken
when using modern workloads with modern hardware as the workload may still not
exercise the hardware to its full potential.

4.3 File System Creation

Most studies make no mention of recreating the original file system used for their
workload. They often reconstruct a file system based only on the files referenced during
the logged period. Since many of the researchers used an older web trace to provide the
workload for their testing, the possibility of them having access to the original file system
remains extremely small. Without the original file system, errors could skew results in
terms of both power and performance.

Taking into account only those web files that are publicly accessible still would
not capture the entire file system. Additional overhead occurs with larger file systems in
terms of file lookup, updating metadata, etc. Some files may be password protected. To
gather the entire file system, we must contact every user of the web server and get prior
approval. This could involve hundreds if not thousands of people and man hours.

Most researchers do not have access to the actual file system the trace comes from
due to many factors (e.g. privacy). Sensitive data may be contained within user files (e.g.
final exam questions). Even file names could encode information as many users name a
file after the contents within the file.

Our solution was to disregard the actual information contained within the file and
encrypt the names of the files. A script runs through the entire file system and gathers the
name, size, and type of file along with the time stamps of the files creation, modification,
and last access. We then encrypted the names of the files using the SHA-1 algorithm [7].

14

Even if a webpage contains a picture of other resources, they are still served as separate
requests within the log file so the file is still served appropriately.

4.4 WebClient

The WebClient program is the heart of the benchmark. Web server programs
keep accurate logs of who has requested what resource from the server. The WebClient
program replays these web server log files by splitting them into two separate files. The
first file is the master log file. This file contains the time followed by the number of
requests issued at that time. The second file contains a sequential list of requests from
the web server. For example if at time three, ten requests were processed by the original
web server which is the information read from the master log file, the next ten requests
from the request log file would be issued by the web client.

The WebClient program uses the master log to determine the number of requests
to read from the request log file at a specific time. By the end of the trace, all requests
from the request log file had been issued in the appropriate order and at the appropriate
relative time intervals. To access our file system with encrypted file names, the file
names appearing in the log file were also encrypted using the SHA-1 algorithm [7].

The WebClient must efficiently represent many users accessing the web server.
Each WebClient request is handled as a separate connection to the web server, with an
associated thread, or single execution stream. A thread pool, or collection of threads, is
maintained and the individual threads within the pool are kept alive for reuse. This
reduces the overhead of creating new threads.

Another purpose of the WebClient is to report detailed performance numbers of
the web server. Each client thread reports statistics about the individual request. These
metrics can be found in Section 4.6. This is implemented through various performance
monitors. The performance monitoring contained within the WebClient must not impact
the retrieval of requests which could skew the results of the test.

Finally, the WebClient offers some additional options to be used when running
tests. The first option is to limit the number of connections that can be opened at any
time between the client and server. The server already has a maximum number of
connections that it can handle at any given time and there is no need to overload the
server, since users would not use servers with such high latencies. Also, we are testing
the power consumption and performance of hard drives, not the number of connections
the server can handle at one time.

4.5 Power Setup

Measuring the power consumption of any electrical device is based off Ohms
Laws shown in Figure 5. These two laws state that if you can monitor the voltage drops
across any device within a circuit, and if you have access to a resistor, then you can
determine the amount of current that is used by the device and the power consumed. To

15

do this one must create a closed circuit and
insert a resistor in series at the beginning of
the circuit as shown in Figure 4. A
multimeter measures the voltage drop across
the resistor by measuring the voltage at the
beginning of the resistor and the voltage at
the end of the resistor and subtracting the
two: allowing you to calculate the amount
of current used by the resistor, which is the
same amount of current used by the device.
By measuring the voltage drop across the
device, one can then use Ohms Laws and the
current previously calculated from the
voltage drop of the resistor to determine the
amount of power consumed at that time.

)(*)()(

)(Re/)Re()(

CurrentIDriveofDropVoltageVPowerP

sistorRsistorofDropVoltageVCurrentI

d

r

=
=

Figure 5: Ohms Laws

For measuring the power consumption of a hard drive, an independent power
supply is provided that connects to an adapter for the server-class disk. Since the adapter
consumes no power itself, all power from the power supply is directly translated to the
disk. We then inserted a resistor in series between the power supply and the adapter by
cutting the power cable of both the 12V and 5V lines. By using a multimeter with several
channels, which allows the multimeter to take more than one reading at a time, we can
measure the voltage drop across the resistor to calculate the current and the voltage drop
across the drive. From Ohms laws we then calculate the amount of power consumed.

Several considerations must be taken into account when taking power
measurements for a disk drive. Disks that have requests sent to them constantly are
busier than those disks that are have requests sent to them on occasions. Because of this,
power measurement replies on the timing of request intervals. Therefore, overloading the
system to test the peak performance will not demonstrate any power benefits. Similarly,
a system that is serving a very low volume of requests or remains idle can turn off all
disks to save power, which is not representative of a typical server. Thus, when
measuring the power consumption of a server, the trace must show load fluctuations that
are representative of the usage patterns of a server. The drives of a server that has higher
activity in the afternoon should also exhibit higher power consumption while the drives
during lower activity exhibit lower power consumption.

The accuracy of power measurements must also be taken into account.
Multimeters with higher sampling rates can take more readings over a given time period
and produce more accurate results than multimeters with lower sampling rates. However,
such multimeters may not be affordable for research purposes. Additionally, these

16

multimeters must have the ability to send the results to a separate data logging device,
minimizing the interference on the performance or sampling rate of the multimeter.

The multimeter must also have the ability to monitor more than one channel at
once. Each drive contains a 5V line for circuitry and a 12V line for the spindle, arm, and
head movement that must be monitored. However, monitoring more channels requires
greater overhead, so the multimeter must maintain a sufficient sampling rate for each
channel when taking the power measurements. The framework must also be able to
measure the system- wide power consumption.

4.6 Metrics

A benchmark produces information that can be used to compare design
alternatives. This process produces several metrics for the analysis of the power
consumption of the drives and performance of the server. The framework allows us to
monitor each drive individually, which produces a per drive power consumption.
Combining the individual drives power consumption produces the aggregate power
consumption of the drives. Finally, combining the aggregate power consumption of the
drives with the power consumption of the server allows us to calculate the total power
consumption of the server at any given time.

The performance information obtained through the WebClient program are called
end-to-end client-server metrics. End-to-end metrics are more reflective of user
experience compared to server-only metrics. The performance metrics encompass both
the entire server performance and per request performance. We measure the elapsed time
to receive the first response from the server (latency) and the elapsed time between
sending the first byte of the request to receiving the last byte of the response for every
request. We also record the total number of connections completed per second, the total
number of open connections between the client and server at a given time (concurrent
connections), and the number of bytes sent by the server during a given time period
(throughput). The performance goal for servers is to maintain a high number of
connections per second and throughput while maintaining a low average latency and file
completion time.

5.0 Implementation

To test the framework we used the Florida State Computer Science Web Server,
websrv2, as the basis for our implementation. We tried to match the original web server
as much as possible taking into account differences that must be handled to maintain
privacy and the software used for the development of the entire project. We obtained the
file system snapshot along with the web log trace from websrv2 also.

5.1 Hardware Setup

We obtained two computers from Dell that have the specifications listed in table
2. The web server is a Dell PowerEdge 2600 and the client is a Dell PowerEdge 700.

17

We connected the client directly to the web server via a CAT-6 crossover cable. This
allowed us to minimize any noise that might have occurred when both computers are
connected to the Computer Science network. The CAT-6 crossover cable also allowed us
to take full advantage of the gigabit Ethernet cards in both the client and server reducing
the chance of a network bottleneck.

Web Server Client
Processor Intel Xeon 2.8 Ghz Intel Pentium 4 2.8 Ghz
Memory 2 Gigabytes 1 Gigabytes
Network Gigabit Ethernet Gigabit Ethernet
Drives 36.7 GB 15k RPM SCSI Ultra 320 160 GB 7200 RPM SATA

Table 2

We obtained a digital multimeter that is capable of sampling at a reasonable rate
and is able to log the data to a compute for processing. The multimeter is connected
directly to the client computer. The multimeter takes several samples per channel per
second but only logs the average to the computer approximately once every second. The
number of samples that can be logged in a given time period is limited by the interface
between the multimeter and the client. The total number of samples that can be logged is
limited by the software used for gathering the data.

Each hard drive was removed from the
web server and connected to an adapter that
provides an interface that connects the 80 pin
SCSI Ultra 320 hard drives to the 68 pin Ultra
320 SCSI cable as shown in Figure 6. The
SCSI cable is connected directly to the
motherboard which allows the SCSI cable to
maintain the same performance as if the drives
were connected directly to the backplane

To measure the power of the hard drives we inserted a low 0.1 Ohm resistor in
series with between the power supply and the adapter for each 12V+ and 5V+ line of the
hard drives we were measuring. We attached one set of probes to each side of the resistor
and another set of probes to both the positive and negative lines to the drive. This
allowed the multimeter to measure the voltage drop across the resistor and voltage drop
of the drive. From the voltage drop of the resistor we calculated the current of the drive.
Although we have the ability to constantly measure the voltage drop across the drive, the
voltage drop across the drive remains constant from test to test because of Ohms laws.

5.2 Software

The Computer Science web server uses a combination of the Linux Operating
System along with the Apache Web Server to serve requests to users. We have decided
to use Linux Kernel version 2.6.5 as the development environment since both websrv2
and the development of our Power Aware RAID use a version of the 2.6.X family. We
are also using Apache version 2.0.52 as this is the same version as websrv2. The Apache

18

Web Server uses the same configuration file as websrv2 with slight modifications to
reflect the SHA-1 file system. Since most web users use Microsoft Windows, the client
is using Microsoft Windows XP with service pack 2. The entire WebClient program is
designed using Java version 1.5.

We used software RAID for all RAID personalities tested as there is no hardware
to implement all of them. Software RAID is implemented through the modified Linux
raid-tools. We ran the Linux ext2 file system on the RAID device as this provided good
file system performance for a web server.

5.3 File System

The file system was obtained from websrv2 in late November. The file system
contains approximately 47GB of data with close to 38GB of total user data that can be
served by the web server. The file system contains approximately 44,000 directories,
509,000 regular files, and approximately 9,000 linked files. The file system represents all
files that can be accessed from websrv2 by any student, professor, or faculty member that
has a Computer Science account.

5.4 Web Access Logs

The web access log file was obtained from websrv2 in late November. The
access log contains websrv2 traffic from August 2005 to November 2005. All dates
containing possible server attacks were removed from the possibilities of dates used for
replay as the server attacks provide useless traffic that do not affect the disk in terms of
requests sent to the disk.

We looked at all dates and chose September 23rd as the date for replay for our
trace. It exhibited a higher number of requests than other days and as figure 7 shows, it
contains the periodic affect necessary to exhibit the possible power savings of the
different RAID personalities. The trace consisted of approximately 450MB worth of data
transmitted in 17,000 requests over a 24 hour period. We also contained the last six
hours of September 22nd in the log file to provide a warm up period for the web server
cache and contained the first two hours of September 24th to provide a cool down period
and allow the last requests of September 23rd to finish. The total length of the trace
consisted of approximately 30 hours of web server activity.

Figure 7

We noticed when
running the trace in real time
that the disks were under
utilized. Because of this we
decided to speed the trace up
by a factor of 8 to show the
peaks and valleys of the usage
patterns contained within the
trace. Speeding up a trace too

19

much can remove the human interaction between requests. As mentioned before, the
trace should exhibit periods of high usage and low usage and the drives should reflect
that. We also limited the number of concurrent connections to the web server to 1022
which is the maximum number of connections that can be handled at one time by our web
server. This number was determined by using the httperf test tool.

6.0 Case Study and Validation

We used the framework to test the power consumption and performance of a new
Power Aware RAID (PARAID) system developed at Florida State University. We
compared RAID-0, to Least Recently Used (LRU) RAID-0 to PARAID. RAID-0
provides uniform striping of data across all disks with no redundancy. LRU is RAID-0
where each disk spins down after being idle for a certain time threshold. PARAID uses
skewed striping and different disk configurations to provide the same performance as
RAID-0 but reduce the power consumption of the web server.

6.1 RAID Personalities

RAID-0 distributes data across all disks and provides no data redundancy for the
RAID device. Without redundancy, any single disk failure will result in loss of data.
Since in its current implementation PARAID performs no redundancy, RAID-0 is the
closest implementation and is used as the baseline for all tests conducted. LRU RAID-0
is a modification of RAID-0 and is based on previous studies, which spin-down
individual drives based on a certain time threshold if the drive has not received any
requests within the time threshold. The time threshold must be long enough such that
spinning down the disks provides a power savings. Disks that are spun down
immediately after a request may spin back up immediately. This causes the disk to
consume more power as spinning up a disk consumes more power than keeping the disk
in an idle state.

Power Aware RAID (PARAID) uses a skewed striping pattern such that certain
file portions are replicated, so that a variable number of powered-on drives can deliver
the same content at different speeds. The number of active disks is based on the current
disk configuration. For our measurements we altered between two PARAID
configurations, where the first configuration contained all four disks and the second
configuration contained only two disks. Depending on drive utilization of the drive, a
monitoring tool would switch the disk configuration to either all four disks or to only two
disks.

6.2 Power Consumption

Figure 8 shows the power consumption comparisons between all three RAID
personalities. Note that the power consumption of the drives reflects the usage patterns
of the web server as shown in Figure 7. The power consumption of the drives is
calculated at 15 second intervals. Greater disk drive power consumption occurs during

20

what would be considered the midday hours of the trace while where more traffic is
occurring than during the early morning and mid evening hours.

From this graph you can also determine when a four-disk configuration was used
and when a two-disk configuration was used. One would assume that when the load on
the server increases, drive utilization also increases, which would switch the disk
configuration to four disks. This occurs around the midday hours. When the load of the
server decreases, drive utilization also decreases, which then switches the disk
configuration back to only two disks.

Using RAID-0 as a baseline suggests that LRU will save power on average of
about three percent. However, power savings as much as 46% were obtained when

running LRU, which may be
attributed to caching. The
average power savings for LRU
was approximately 5%.
PARAID actually saves between
15% to 40% power consumption
when compared to RAID-0. On
average, PARAID saves
approximately 23% of the power
consumed by RAID-0. At worse,
PARAID has the same power
consumption of RAID-0.

Figure 8

The power consumption by the drives is within the five percent margin as
described by the hard drive manufacturer. The power consumption of the drives were
tested during both the idle and active states. The spin-up of the drives also reaches the
five percent margin as described by the manufacturer with the additional power
consumed by the hard drive.

6.3 Performance

Preliminary numbers show that RAID-0 successfully completed approximately
54% of the requests it issued. Successful requests are defined as requests that were not
cancelled due to either server errors such as files not found or server timeouts. A
successful request is also a request that is not stopped by the client. This compares
favorably to the 56% of requests that were served successfully during the analysis of the
actual log file. The difference in requests can be attributed to the removal of dynamic
content and the use of encryption. PARAID also served the same number of requests
successfully as RAID-0 while LRU served 52% of the files successfully. LRU contained
a more server timeouts, approximately 4%, due to the spin-up of the drives.

Total Power Consumption

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

Time (s)

P
o

w
er

 (
W

)

RAID-0

LRU

PARAID

21

Figure 9 shows the
cumulative distribution function
(CDF) of the latency of the requests
while figure 10 shows the CDF of
the total file completion times. The
graph is read as the percentage of
files (the vertical axis) completed
within a certain time period (the
horizontal axis). A high
performance web server will serve a
high percentage of files within a
small period of time. This means
that a web server has both a low
latency and a low total file completion time. Figure 9

Preliminary numbers show that the latency of LRU is higher than that of RAID-0.
For LRU the maximum latency for a successful request was over 150 times greater than
that of RAID-0. Approximately 10% of the successfully completed files for LRU had a
greater latency than the maximum latency for RAID-0. This is because the drives must
spin-up before they can serve a request if the drives are not already active. For larger
files that are striped across all four disks,
this process takes approximately 20
seconds which is greater than the web
server timeout. Preliminary numbers for
PARAID shows that it performs slightly
better than RAID-0. This is may be due
to the fact that the latency and file
completion time are as fast as the
slowest drive. If only two drives are
running rather than the four drives,
statistically the two drives would have a
faster response time than the four drives.

Figure 10

Preliminary numbers also show that LRU is the worst performer for the total file
completion time when compared to RAID-0, while PARAID performed slightly better.
The performance of LRU can once again be contributed to the spin-up of the disks as
discussed above. When compared to RAID-0, the maximum file completion time was
over 50 times greater than the maximum file completion time of RAID-0. Approximately
15% of the successfully completed files for LRU had a higher total file completion time
than the maximum file completion time of RAID-0. PARAID once again performs
slightly better than RAID-0 and may be attributed to the facts above.

For both the file completion time and the latency, LRU and PARAID initially
perform much better than RAID-0. However, as the amount of time increases, RAID-0

Latency (CDF)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Time (ms)

Fi
le

 P
er

ce
nt

ag
e

RAID-0

RAID-0 Min

RAID-0 Max

LRU

LRU Min

LRU Max

PARAID

PARAID Min

PARAID Max

Total Completion Time (CDF)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

Time (ms)

Fi
le

 P
er

ce
nt

ag
e

RAID-0

RAID-0 Min

RAID-0 Max

LRU

LRU Min

LRU Max

PARAID

PARAID Min

PARAID Max

22

catches up to the latency and completion time of PARAID while LRU then starts to
suffer do to the spin-up of the drives from an idle state. The experiments run suggest that
a 90% confidence exists with the number of tests already run. We expect 90% of the
tests to fall within the minimum and maximum values on the graphs in both Figure 9 and
Figure 10.

7.0 Future Work

Although this project is in a stable state, there are several improvements that can
be made to the software and further tests that should be conducted to test the different
types of workloads available. There are still many unanswered questions that could
affect web server performance that this framework can be used to test.

7.1 Workloads

As mentioned before the workload used is from an academic web server. We
wish to find a workload that is better suited to the web server hardware in our possession,
so that we do not have to speedup the trace. We would like to test a workload that
contains a higher load that we can run in real-time without the speedup and still see the
peaks and valleys associated with the usage patterns of the users. We would also like to
test the framework with different workloads from other academic servers, commercial
servers, and government servers. These workloads all have different trends and usage
patterns than the workload from websrv2.

We also need to determine how dynamic content affects the power consumption
and performance of the drives. Since dynamic content is processed on the server side and
then sent to the client side, additional power could be consumed by the hard drives with
workloads that have a high amount of dynamic content. Our current implementation does
not have a way to study dynamic data due to the encrypted file names and the
randomness of the data contained within the file. Along with dynamic content we must
test traces that contain writes. When writing files to disk, updates must occur with
metadata, which may make disks consume more power.

7.2 File System Performance

Various file system performances can also occur. We must first identify the effect
of using encrypted file names. With the current implementation, the encrypted file names
are exactly forty characters long. However, those files that exist between both our web
server and websrv2 are random in length. File names that are longer may take more
operating system resources and cause longer lookup times and significant performance
overhead. We would ultimately like to find a file system that does not require SHA-1
encryption. This would allow us to test the effect of encryption on the file system.

Also, we would like to streamline the file recreation process. Currently it takes
approximately six hours to recreate all the directories, files, and links. This time element
is due to the possibility that any specific file may depend on whether a directory or other

23

file has already been created. Additional time is required to create the randomness of the
files with a random number generator and table lookup takes time.

7.3 WebClient Improvements

Performing real-time performance analysis would benefit the WebClient program
and the user since post-processing takes quite some time. These improvements mainly
include total server performance metrics such as total server throughput. This is a tricky
task as requests may overlap and last through multiple tracking intervals.

Additional WebClient improvements relate directly to the performance of the
WebClient itself. The initial design of the WebClient used Java due to the ease of
implementation. However, rewriting the program in a more performance-efficient
programming language such as C may increase the overall performance. A second
feature is to support stay-alive connections. For those requests that are waiting to be
issued, should a request have the same IP address as the previous request, then the same
connection could be used to avoid reopening a connection to the server.

The design of the WebClient has given it the ability to be extensible and test other
network server architectures including proxy servers, e-mail servers, and file servers.
Through the interface options with Java, a generic ServerClient can be created that
implements a specific version to test a specific type of server. Many of the metrics
between all servers are similar so the same performance metrics would be appropriate but
other metrics could be added to fit the needs of any user.

7.4 Automation

The biggest improvements can be made are in the area of automation of data
gathering and processing. Currently it takes approximately 30 minutes to an hour to
process just one test run of the WebClient. By integrating additional performance
calculations to the WebClient itself, this process can be reduced as long as the associated
overheads do not affect the overall performance of the WebClient. For information that
cannot be processed within the WebClient, automated scripts can be written as
information reported by both the WebClient and the power logging utilities are in formats
that are easy to parse.

Finally, creating one package to gather and encrypt the file system would be
beneficial. Developing another package to recreate the file system, as well as split and
encrypt the web log files would also be beneficial. By creating these separate packages, a
network administrator would only have to run the first package to gather the information
for a researcher while the researcher would only have to run the second package to
recreate everything.

24

8.0 Conclusion

We have created a framework that is easy to implement and run to gather
information on the power and performance of server class disks. The framework
provides straightforward replay of workloads based on real traffic patterns for both the
energy consumption and performance of server class disks. The workloads are realistic,
repeatable, and privacy-aware and match the hardware and software environments that
are used within the framework. Although this framework was used to test the power and
performance of a web server, the framework can be easily extended to test other network
servers.

9.0 References

1. Abreu, Elinor. “Down on the Server Farm – Industry Trend or Event.” The Industry
Standard. 19 Feb. 2001 [online] http://www.findarticles.com/p/articles/
mi_m0HWW/is_7_4/ai_70740553

2. Carrera et al. “Conserving Disk Energy in Network Servers.” Technical Report DCS-
TR-511. Department of Computer Science, Rutgers University. Nov. 2002

3. McLamb, Eric. “Fossils vs. Renewals: Energy’s Future Today.” Ecology
Communications Incorporated. 2003 [online] http://www.ecology.com/feature-
stories/nuclear-energy-challenge/

4. Elnozahy et al. “Energy Conservation Policies for Web Servers.” Low-Power
Computer Research Center, IBM Research. Mar 2003.

5. Arlitt et al. “Web Server Workload Characterization the Search for Invariants.”
Department of Computer Science, University of Saskatchewan. 15 Mar 1996.

6. Seltzer et al. “A Self-Scaling and Self-Configuring Benchmark for Web Servers.”
Department of Computer Science, Harvard University. 17 Mar 1997

7. RFC-3174 – US Secure Hash Algorithm 1 (SHA1). Sep 2001. [online]
http://www.faqs.org/rfcs/rfc3174.html

8. WebStone Benchmark [online] http://www.mindcraft.com/webstone/

9. SPECWeb 99 Benchmark [online] http://www.spec.org/osg/web99/

10. HTTPerf [online] http://www.hpl.hp.com/personal/David_Mosberger/httperf.html

