COT5405: Fall 2006

Lecture 6

A linear programming example

Objective function:

Maximize $x_1 + x_2$

Constraints: (Subject to)

$$2 x_1 + x_2 \le 10$$

(1)

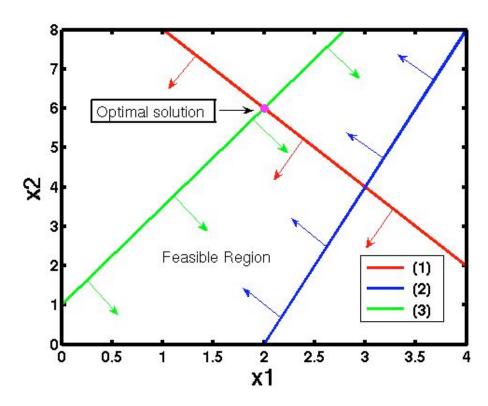
$$4 x_1 - x_2 \leq 8$$

(2)

$$4 x_1 - x_2 \le 8
5 x_1 - 2 x_2 \ge -2$$

(3)

$$x_1, x_2 \ge 0$$
 Non-negativity constraint

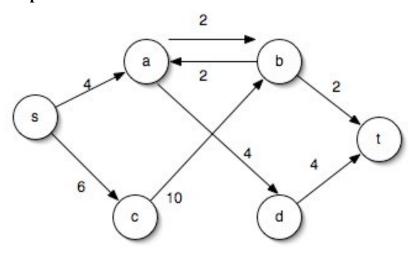


- *Optimal solution* is (2,6) with optimal *objective value* 8.
- (0,0) is a *feasible solution* with objective value 0.

Integer linear program: x_i should be integers.

Formulating Max-Flow as a Linear Program

Max-Flow example:



We are given a directed graph (V, E) with a non-negative capacity c for each edge (u, v) in E. The numbers on the *edges* give the capacities, in the above figure. We can take the capacity for edges *not in E* as 0. The vertex **s** above is called the *source*, and the vertex **t** is called the *sink*. We want to maximize the flow from the source to the sink by assigning flow values f to each edge satisfying the following constraints:

- Capacity constraint: For each u, v in $V, f(u, v) \le c(u, v)$
- Skew symmetry: For all u, v in V, f(u, v) = -f(v, u)
- Flow Conservation: For all u in $V \{s, t\}$, $\sum_{v \mid n \mid V} f(u, v) = 0$

We wish to maximize $\Sigma_{v \text{ in } V} f(s, v)$. For more details, see section 26.1 of CLR.

Formulation of Max-Flow as a linear program:

Let us introduce variables f_{uv} corresponding to the flows f(u, v) for each u, v in V. Let $c_{uv} = c(u, v)$.

Maximize: $\Sigma_{v in V} f_{sv}$

Subject to:

$$f_{uv} \le c_{uv}$$
 for all u, v in V
 $f_{uv} = -f_{vu}$ for all u, v in V
 $\sum_{v \text{ in } V} f_{vu} = 0$ for all u in $V - \{s, t\}$