COT5405: Fall 2006

Lecture 9

Approximation guarantee for the primal-dual algorithm

Note: Some of the statements here are informal. Please read the handout from **AA** for the formal statements and proofs.

Primal	Dual
Min: $\Sigma_j c_j x_j$	$Max: \Sigma_i b_i y_i$
Subject to:	Subject to:
$\Sigma_j a_{ij} x_j \ge b_i$, i = 1,, m	$\sum_{i} a_{ij} y_i \le c_j, j = 1,, n$
$x_j \ge 0, j = 1,, n$	$y_i \ge 0, j = 1,, n$
Complementary slackness	
$x_j = 0 \text{ or } \Sigma_i a_{ij} y_i = c_j$	$y_i = 0 \text{ or } \Sigma_j a_{ij} x_j = b_i$
Relaxed slackness	
$x_j = 0 \text{ or } c_j/\alpha \le \sum_i a_{ij} y_i \le c_j, \ \alpha \ge 1 $ (1)	$y_i = 0 \text{ or } b_i \le \sum_j a_{ij} x_j \le \beta b_i, \ \beta \ge 1$ (2)

Proposition 15.1: If x is feasible for the primal, y is feasible for the dual, and they satisfy the relaxed slackness conditions (1) and (2), then $\sum_i c_i x_i \le \alpha \beta \sum_i b_i y_i \le \alpha \beta OPT$.

Proof:

$$\begin{split} \Sigma_{j} c_{j} x_{j} &\leq \alpha \ \Sigma_{j} (\Sigma_{i} a_{ij} y_{i}) \ x_{j} \ (\text{from } (1)) \\ &= \alpha \ \Sigma_{i} \ \Sigma_{j} a_{ij} y_{i} \ x_{j} = \alpha \ \Sigma_{i} \ y_{i} \ \Sigma_{j} a_{ij} \ x_{j} \\ &\leq \alpha \beta \ \Sigma_{i} \ y_{i} b_{i} \ (\text{from } (2)) \leq \alpha \beta \ OPT. \end{split}$$

Note: Even though we can take $c_j/\alpha \le \Sigma_i a_{ij} y_i$ only when $x_j > 0$, $x_j c_j/\alpha \le x_j \Sigma_i a_{ij} y_i$ when $x_j \ge 0$. Similarly, $y_i \Sigma_j a_{ij} x_j \le y_i \beta b_i$ when $y_i \ge 0$.

Approximation factor for Set Cover Primal-Dual approximation algorithm: Its relaxed slackness conditions have $\alpha = 1$ and $\beta = f$ in proposition 15.1, yielding a factor f approximation.