COT 5405: Fall 2006

Lecture 27

Ford-Fulkerson Method

Residual Networks

Given a flow, the residual network consists of edges that can admit more flow.

Definition: The residual capacity of edge (u, v) is given by $c_t(u, v) = c(u, v) - f(u, v)$.

Definition: A residual network is defined by $G_f = (V, E_f)$, where $E_f = \{(u, v) \in V \times V \mid c_f(u, v) > 0\}$.

Lemma: If f is the flow for G = (V, E) and $G_f = (V, E_f)$ is the induced residual network with flow f, then f+f, defined by (f+f)(u, v) = f(u, v) + f'(u, v), is a flow in G with value |f+f'| = |f| + |f'|.

Proof: We will prove that f+f' has all the properties of a flow, and then determine that value of this flow.

Capacity constraints: $(f+f')(u, v) = f(u, v) + f'(u, v) \le f(u, v) + c_f(u, v)$ = f(u, v) + (c(u, v) - f(u, v)) = c(u, v).

Skew symmetry: (f+f')(u, v) = f(u, v) + f'(u, v) = -f(v, u) - f(v, u) = -(f(v, u) + f'(v, u))= -(f+f')(v, u).

Flow conservation: Let $u \in V - \{s, t\}$. $\Sigma_{v \in V}(f+f)(u, v) = \Sigma_{v \in V}(f(u, v) + f(u, v))$ = $\Sigma_{v \in V}f(u, v) + \Sigma_{v \in V}f(u, v) = 0 + 0 = 0$.

Flow value: $|f+f'| = \sum_{v \in V} (f+f')(s, v) = \sum_{v \in V} (f(s, v) + f'(s, v)) = \sum_{v \in V} f(s, v) + \sum_{v \in V} f'(s, v) = |f| + |f'|.$

Augmenting Path

Definition: Given G = (V, E) and flow f, an augmenting path p is a simple path from s to t in G_c

Definition: The residual capacity of an augmenting path p is given by $c_f(p) = \min\{c_f(u, v) \mid (u, v) \in p\}$.

Lemma: Define $f_p: V \times V \to \mathcal{H}$ by $f_p(u, v) = (i) c_f(p)$ if $(u, v) \in p$, $(ii) -c_f(p)$ if $(v, u) \in p$, and (iii) 0 otherwise. The f_p is a flow in G_f with value $|f_p| = c_f(p) > 0$.

Corrollary: $f' = f + f_p$ is a flow in G with value $|f'| = |f| + |f_p| > |f|$.

Cuts of Flow Networks

Definition: A cut (S, T) of G = (V, E) is a partition of V into S and T such that T = V - S, $S \in S$ and $t \in T$.

Definition: The *net flow* across the cut (S, T) is defined as f(S, T).

Definition: The cut capacity is c(S, T).

Definition: A minimum cut is a cut with minimum capacity.

Lemma: Flow across any cut (S, T) is f(S, T) = |f|.

Proof:
$$f(S, T) = f(S, V) - f(S, S) = f(S, V) = f(s, V) + f(S-s, V) = f(s, V) = |f|$$
. (Note that $f(S-s, V) = 0$ by flow conservation.)

Corrollary: The value of any flow is bounded above by the capacity of any cut.

Max-Flow Min-Cut Theorem: If f is a flow in a flow network G = (V, E) with source s and sink t, then the following are equivalent:

- 1. f is a max flow in G.
- 2. G_f contains no augmenting path.
- 3. |f| = c(S, T) for some cut (S, T) of G.

Proof:

 $1 \Rightarrow 2$: Assume the contrary. The flow sum $f + f_p$ is a valid flow with $|f + f_p| > |f|$, leading to a contradiction.

 $2 \Rightarrow 3$: Define $S = \{v \text{ in } V | \exists \text{ a path from } s \text{ to } V \text{ in } G_f\}$ and T = V - S. For each $u \in S$ and $v \in T$, f(u, v) = c(u, v). So |f| = f(S, T) = c(S, T).

 $3 \Rightarrow 1$: $|f| \le c(S, T)$ for all cuts. So, if |f| = c(S, T), then the flow is the maximum possible.