COT 5405: Fall 2006

Lecture 26

Maximum Flow Problem

Flow Networks

Definition: A flow network G=(V, E) is a directed graph where each edge $(u, v) \in E$ has a non-negative capacity $c(u, v) \ge 0$.

- o If $(u, v) \notin E$, then we take c(u, v) = 0.
- o Two special vertices, s, $t \in V$, $s \ne t$, are denoted as the *sink* and *source* respectively.
- o For every $v \in V$, there is a path from s to t through v.
 - o So, $|E| \ge |V| 1$.

Definition: A flow is $f: V \times V \rightarrow \mathcal{R}$ that satisfies the following constraints:

- Capacity constraint: $\forall u, v \in V$, $f(u v) \leq c(u, v)$.
- o Skew symmetry: $\forall u, v \in V$, f(u, v) = -f(v, u).
- o Flow conservation: $\forall u \in V \{s, t\}, \Sigma_{v \in V} f(u, v) = 0.$

Definition: The value of a *flow f* is defined as $|f| = \sum_{v \in V} f(s, v)$.

Maximum flow problem: Given a flow network, find a flow of maximum value.

 Multiple sources/multiple sinks maximum flow problem can be solved by creating a supersink (and a supersource) with edges to (and from) the sinks (and sources) having infinite capacities.

Implicit summation notation: $f(X, Y) = \sum_{x \in X} \sum_{y \in Y} f(x, y)$, when $X, Y \subseteq V$.

Lemma 26.1

- 1. $\forall X \subseteq V$, f(X, X) = 0.
- 2. $\forall X, Y \subseteq V, f(X, Y) = -f(Y, X)$.
- 3. $\forall X, Y, Z \subseteq V$ with $X \cap Y = \emptyset$, $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$.

Proof for #1 (the rest are review questions):

Label the vertices in X as $x_1, x_2, ..., x_k$.

$$f(X, X) = \sum_{x \in X} \sum_{y \in X} f(x, y) = \sum_{i=1}^{k} \sum_{j \neq i} f(x_i, x_j) = \sum_{i=1}^{k} \sum_{j > i} f(x_i, x_j) + \sum_{i=1}^{k} \sum_{j < i} f(x_i, x_j)$$

$$= \sum_{i=1}^{k} \sum_{j > i} f(x_i, x_j) - \sum_{i=1}^{k} \sum_{j < i} f(x_j, x_i) = \sum_{i=1}^{k} \sum_{j > i} f(x_i, x_j) - \sum_{j=1}^{k} \sum_{i > j} f(x_j, x_i)$$

$$= \sum_{i=1}^{k} \sum_{j > i} f(x_i, x_j) - \sum_{i=1}^{k} \sum_{j > i} f(x_i, x_j) - \sum_{i=1}^{k} \sum_{j > i} f(x_i, x_j) - f(x_i, x_j) = 0.$$