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Abstract

The unit selection problem aims to identify a set of individuals
who are most likely to exhibit a desired mode of behavior or
to evaluate the percentage of such individuals in a given popu-
lation, for example, selecting individuals who would respond
one way if encouraged and a different way if not encouraged
(Li and Pearl 2019). Using a combination of experimental and
observational data, Li and Pearl solved the binary unit selec-
tion problem (binary treatment and effect) by deriving tight
bounds on the “benefit function,” which is the payoff/cost as-
sociated with selecting an individual with given characteristics.
This paper extends the benefit function to the general form
such that the treatment and effect are not restricted to binary.
We then propose an algorithm to test the identifiability of the
nonbinary benefit function and an algorithm to compute the
bounds of the nonbinary benefit function using experimental
and observational data.

Introduction
Several areas of industry, marketing, and health science face
the unit selection dilemma. For example, in customer rela-
tionship management (Berson, Smith, and Thearling 1999;
Lejeune 2001; Hung, Yen, and Wang 2006; Tsai and Lu
2009), it is useful to determine the customers who are going
to leave but might reconsider if encouraged to stay. Due to
the high expense of such initiatives, management is forced
to limit inducement to customers who are most likely to ex-
hibit the behavior of interest. As another example, companies
are interested in identifying users who would click on an
advertisement if and only if it is highlighted in online adver-
tising (Yan et al. 2009; Bottou et al. 2013; Li et al. 2014;
Sun et al. 2015). The challenge in identifying these users
stems from the fact that the desired response pattern is not
observed directly but rather is defined counterfactually in
terms of what the individual would do under hypothetical
unrealized conditions. For example, when we observe that a
user has clicked on a highlighted advertisement, we do not
know whether they would click on that same advertisement
if it were not highlighted.

The binary benefit function for the unit selection problem
was defined by Li and Pearl (Li and Pearl 2019) (we will call
this Li-Pearl’s model), and it properly captures the nature of
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the desired behavior. Using a combination of experimental
and observational data, Li and Pearl derived tight bounds of
the benefit function. The only assumption is that the treat-
ment has no effect on the population-specific characteristics.
Inspired by the idea of Mueller, Li, and Pearl (Mueller, Li,
and Pearl 2022) and Dawid et al. (Dawid, Musio, and Mur-
tas 2017) that the bounds of probabilities of causation could
be narrowed using covariates information, Li and Pearl (Li
and Pearl 2022c) narrowed the bounds of the benefit func-
tion using covariates information and their causal structure.
However, the abovementioned studies are based on binary
treatment and effect. Recently, researchers have shown inter-
est in developing bounds for probabilities of causation with
nonbinary treatment and effect. Zhang, Tian, and Bareinboim
(Zhang, Tian, and Bareinboim 2022), as well as Li and Pearl
(Li and Pearl 2022a), proposed nonlinear programming-based
solutions to compute the bounds of nonbinary probabilities
of causation numerically. Li and Pearl (Li and Pearl 2022b)
provided the theoretical bounds of nonbinary probabilities
of causation. The benefit function is a linear combination of
probabilities of causation; therefore, in this paper, we focus
on discovering the bounds of any benefit function without
restricting them to binary treatment and effect.

Consider the following motivating scenario: a clinical
study is conducted to test the effectiveness of a vaccine.
The treatments include vaccinated and unvaccinated. The
outcomes include uninfected, asymptomatic infected, and
infected in a severe condition. The benefited individuals in-
clude the following: the individual who would be infected in a
severe condition if unvaccinated and would be asymptomatic
infected if vaccinated, the individual who would be infected
in a severe condition if unvaccinated and would be uninfected
if vaccinated, and the individual who would be asymptomatic
infected if unvaccinated and would be uninfected if vacci-
nated. The harmed individuals include the following: the indi-
vidual who would be asymptomatic infected if unvaccinated
and would be infected in a severe condition if vaccinated,
the individual who would be uninfected if unvaccinated and
would be infected in a severe condition if vaccinated, and
the individual who would be uninfected if unvaccinated and
would be asymptomatic infected if vaccinated. All others are
unaffected individuals. The researcher performing the clinical
study has collected both experimental and observational data.
The researcher then wants to know the expected difference



between benefited and harmed individuals to emphasize the
effectiveness of the vaccine.

We cannot apply Li-Pearl’s model because we have two
treatments and three outcomes. In this paper, we extend Li-
Pearl’s benefit function to general form without restricting
them to binary treatment and effect. We will provide an al-
gorithm to test the identifiability of the nonbinary benefit
function and an algorithm to compute the bounds of the non-
binary benefit function using experimental and observational
data.

Preliminaries
In this section, we review Li and Pearl’s binary benefit func-
tion of the unit selection problem (Li and Pearl 2019), and the
theoretical bounds of the probabilities of causation recently
proposed by Li and Pearl (Li and Pearl 2022b).

In this paper, we use the language of counterfactuals in
structural model semantics, as given in (Galles and Pearl
1998; Halpern 2000). we use Yx = y to denote the counter-
factual sentence “Variable Y would have the value y, had X
been x”. For simplicity purposes, in the rest of the paper, we
use yx to denote the event Yx = y, yx′ to denote the event
Yx′ = y, y′x to denote the event Yx = y′, and y′x′ to denote
the event Yx′ = y′. We assume that experimental data will be
summarized in the form of the causal effects such as P (yx)
and observational data will be summarized in the form of the
joint probability function such as P (x, y). If not specified,
the variable X stands for treatment, and the variable Y stands
for effect.

Individual behavior was classified into four response types:
labeled complier, always-taker, never-taker, and defier. Sup-
pose the benefit of selecting one individual in each cate-
gory are β, γ, θ, δ respectively (i.e., the benefit vector is
(β, γ, θ, δ)). Li and Pearl defined the objective function of
the unit selection problem as the average benefit gained per
individual. Suppose x and x′ are binary treatments, y and
y′ are binary outcomes, and c are population-specific char-
acteristics, the objective function (i.e., benefit function) is
following (If the goal is to evaluate the average benefit gained
per individual for a specific population c, argmaxc can be
dropped.):

argmaxc βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) +

+θP (y′x, y
′
x′ |c) + δP (y′x, yx′ |c).

Using a combination of experimental and observational data,
Li and Pearl established the most general tight bounds on
this benefit function (which we refer to as Li-Pearl’s Theo-
rem in the rest of the paper). The only constraint is that the
population-specific characteristics are not a descendant of the
treatment.

Li and Pearl (Li and Pearl 2022b) provided eight theorems
to compute bounds for any type of probability of causation
with nonbinary treatment and effect. Suppose variable X has
m values and Y has n values, the following (Equations 1
to 8) probabilities of causation are bounded. Besides, if the
probabilities of causation are conditioned on a population-
specific variable c that is not affected by X , then all the
theorems still hold (we provided the extended theorems from
Li and Pearl in the appendix).

P (yixj
, yi), (1)

s.t., 1 ≤ i ≤ n, 1 ≤ j ≤ m,

P (yixj
, yk), (2)

s.t., 1 ≤ i, k ≤ n, 1 ≤ j ≤ m, i ̸= k

P (yixj
, xk), (3)

s.t., 1 ≤ i ≤ n, 1 ≤ j, k ≤ m, j ̸= k

P (yixj
, yk, xp), (4)

s.t., 1 ≤ i, k ≤ n, 1 ≤ j, p ≤ m, j ̸= p

P (yi1xj1
, ..., yikxjk

), (5)

s.t., 1 ≤ i1, ..., ik ≤ n, 1 ≤ j1, ..., jk ≤ m, j1 ̸= ... ̸= jk

P (yi1xj1
, ..., yikxjk

, xp), (6)

s.t., 1 ≤ i1, ..., ik ≤ n, 1 ≤ j1, ..., jk, p ≤ m,

j1 ̸= ... ̸= jk ̸= p

P (yi1xj1
, ..., yikxjk

, yq), (7)

s.t., 1 ≤ i1, ..., ik, q ≤ n, 1 ≤ j1, ..., jk ≤ m,

j1 ̸= ... ̸= jk

P (yi1xj1
, ..., yikxjk

, xp, yq), (8)

s.t., 1 ≤ i1, ..., ik, q ≤ n, 1 ≤ j1, ..., jk, p ≤ m,

j1 ̸= ... ̸= jk ̸= p.

The benefit function is a linear combination of the prob-
abilities of causation; therefore, we define the general ben-
efit function for the unit selection problem based on Li and
Pearl’s results.

Counterfactual Formulation of the Unit
Selection Problem

Based on Li and Pearl (Li and Pearl 2019), the objective is to
find a set of characteristics c that maximizes the benefit asso-
ciated with the resulting mixture of different response types
of individuals. Let X denotes the treatment with m values
and Y denotes the effect with n values. Therefore, we have
nm different response types (i.e., one response type means
assigning one effect to each of the treatments). Suppose the
benefit of selecting an individual are (α1, ..., αnm) (we call
(α1, ..., αnm) as benefit vector). Our objective, then, should
be to find c that maximizes the following expression (If the
goal is to evaluate the average benefit gained per individual
for a specific population c, argmaxc can be dropped):

argmaxc α1P (y1x1
, y1x2

, ..., y1xm
|c) +

α2P (y1x1
, y1x2

, ..., y2xm
|c) + ...

αnP (y1x1
, y1x2

, ..., ynxm
|c) + ...

αnm−1+1P (y2x1
, y1x2

, ..., y1xm
|c) + ...

αnmP (ynx1
, ynx2

, ..., ynxm
|c).

Note that c can be interpreted as the population-specific
variable, the only assumption is that the treatment X has
no effect on the population-specific variable. Recall from Li
and Pearl’s paper (Li and Pearl 2019), the benefit vector is
provided by the decision-maker who uses the model.



In the next section, we will provide an algorithm that could
check whether a given benefit function with the benefit vector
is identifiable with purely experimental data (i.e., we can find
the exact value of the benefit function rather than bounds). If
it is not identifiable, we will then provide an algorithm that
computes the bounds of the benefit function given the benefit
vector using experimental and observational data.

Main Results
Identifiability of Benefit Function
Recall that in the binary case, the conditions of identifiable
are gain equality (i.e., β + δ = γ + θ) or monotonicity (i.e.,
P (yx′ , y′x) = 0) (Li and Pearl 2019). Here, it is complicated
in nonbinary cases; therefore, we provide an algorithm to test
whether a given benefit function with the benefit vector is
identifiable with purely experimental data.

Theorem 1. Suppose variables X has m values x1, ..., xm

and Y has n values y1, ..., yn. Then the benefit function f(c)
is identifiable if Algorithm 1 returns (True, res), and res is
the value of the benefit function.

f(c) = α1P (y1x1
, y1x2

, ..., y1xm
|c) +

α2P (y1x1
, y1x2

, ..., y2xm
|c) + ...

αnP (y1x1
, y1x2

, ..., ynxm
|c) + ...

αnm−1+1P (y2x1
, y1x2

, ..., y1xm
|c) + ...

αnmP (ynx1
, ynx2

, ..., ynxm
|c).

The correctness of the algorithm simply follow the fact
that

∑
nm−1terms P (..., yixj

, ...|c) = P (yixj
|c). Therefore, if

there exist such nm−1 terms in the benefit function, then
we can obtain an equivalent benefit function by replacing
one of the nm−1 terms with experimental data P (yixj

|c).
We exhausted all equivalent benefit functions to check if we
could replace all the counterfactual terms with experimental
data (i.e., identifiable).

For example, consider m = n = 2 and the benefit func-
tion:

7P (y1x1
, y1x2

|c) + 2P (y1x1
, y2x2

|c) +
4P (y2x1

, y1x2
|c)− P (y2x1

, y2x2
|c)

= 7P (y1x1
|c)− 5P (y1x1

, y2x2
|c) +

4P (y2x1
, y1x2

|c)− P (y2x1
, y2x2

|c)
= 7P (y1x1

|c)− 5P (y1x1
, y2x2

|c) +
4P (y2x1

|c)− 5P (y2x1
, y2x2

|c)
= 7P (y1x1

|c)− 5P (y2x2
) + 4P (y2x1

|c).

Bounds of Benefit Function
If Algorithm 1 returns false, we then need to compute
the bounds of the benefit function using experimental
and observational data. We first obtain the bounds of
the probabilities of causation, P (y1x1

, y1x2
, ..., y1xm

|c), ...,
P (y1x1

, y1x2
, ..., ynxm

|c), ..., P (y2x1
, y1x2

, ..., y1xm
|c), ...,

P (ynx1
, ynx2

, ..., ynxm
|c), by Li and Pearl’s theorems (Li

and Pearl 2022b). We then have the following theorem.

Algorithm 1: Check identifiability of the benefit function
Input: a, the benefit function,where a[i] is a m + 1
tuple that stands for ith term in the benefit function.
If the ith term is αiP (yi1x1

, yi2x2
, ..., yimxm

|c), then
a[i] = (αi, i1, i2, ..., im).

d[1, ...,m][1, ..., n], the experimental data, where
d[i][j] = P (yjxi

|c).

e, the adjusted value of the benefit function, 0 for initial call.

The initial call of the algorithm is
IBF (a[1, ..., nm], d[1, ...,m][1, ..., n], 0), where
a[1, ..., nm] corresponding to the original benefit func-
tion.

All lists in this algorithm start with index 1.

Output: (identifiable, value), a tuple, where identifiable =
True if the given benefit function is identifiable and value is
the value of the benefit function.

Function IBF (a, d, e):
1: mark = True;
2: l = length(a);
3: // Base case, if all benefit vector equals to (0, ..., 0), then

the input benefit function is identifiable, and its value
equals to the adjusted value.

4: for i = 1 to l do
5: if a[i][1] ̸= 0 then
6: mark = False;
7: break;
8: end if
9: end for

10: if mark == True then
11: Return(True, e);
12: end if
13: // Build an equivalent benefit function by the fact that

if ∃2 ≤ r ≤ (m + 1)s.t., a[j1][r] = ... = a[jnm−1 ][r],
then the sum of these nm−1 terms without coefficients
is equal to P (ya[j1][r]xr

), we then recursively solve the
equivalent benefit function.

14: for every nm−1 pair in a, (a[j1], ..., a[jnm−1 ]), s.t., there
∃2 ≤ r ≤ (m+ 1)s.t., a[j1][r] = ... = a[jnm−1 ][r] do

15: for k = 1 to nm−1 do
16: na = a;
17: nc = e+ a[jk][1] ∗ d[r − 1][a[j1][r]];
18: for t = 1 to nm−1 do
19: if t ̸= k then
20: na[jt][1] = na[jt][1]− na[jk][1];
21: end if
22: end for
23: Remove(na[jk]);
24: res = IBF (na, d, nc);
25: if res[0] == True then
26: Return res
27: end if
28: end for
29: end for
30: Return (False, e);



Vaccinated Unvaccinated
Uninfected 52 329

Asymptomatic 512 58
Severe Condition 36 213

Overall 600 600

Table 1: Experimental data of the clinical study. Here, 600
people were forced to take the vaccine and 600 people were
forced to take no vaccine.

Vaccinated Unvaccinated
Uninfected 14 121

Asymptomatic 933 65
Severe Condition 6 61

Overall 953 247

Table 2: Observational data of the clinical study. Here, 1200
people were free to access the vaccine. 953 people chose to
take the vaccine and 247 people chose to take no vaccine.

Theorem 2. Suppose variables X has m values x1, ..., xm

and Y has n values y1, ..., yn. Then the bounds of the benefit
function f(c) is obtained by Algorithm 2.

f(c) = α1P (y1x1
, y1x2

, ..., y1xm
|c) +

α2P (y1x1
, y1x2

, ..., y2xm
|c) + ...

αnP (y1x1
, y1x2

, ..., ynxm
|c) + ...

αnm−1+1P (y2x1
, y1x2

, ..., y1xm
|c) + ...

αnmP (ynx1
, ynx2

, ..., ynxm
|c).

Again, the correctness of the algorithm simply follows
the fact that

∑
nm−1terms P (..., yixj

, ...|c) = P (yixj
|c). We

exhausted all equivalent benefit functions and took the max-
imum of all the lower bounds and the minimum of all the
upper bounds of equivalent benefit functions.

Example: Effectiveness of a Vaccine
Recall the motivating example at the beginning; a clinical
study is conducted to test the effectiveness of a vaccine. The
treatments include vaccinated and unvaccinated. The out-
comes include uninfected, asymptomatic infected, and in-
fected in a severe condition. The researcher of the clinical
study has collected both experimental and observational data.

Task 1
The researcher wants to know the expected difference be-
tween benefited and harmed individuals to emphasize the
effectiveness of the vaccine.

Let X denotes vaccination with x1 being vaccinated and
x2 being unvaccinated and Y denotes outcome, where y1
denotes uninfected, y2 denotes asymptomatic infected, and
y3 denotes infected in a severe condition. The experimental
and observational data of the clinical study are summarized
in Tables 1 and 2.

Based on the clinical study, the researcher of the vaccine
claimed that the vaccine is effective in controlling the se-

Algorithm 2: Compute the bounds of the benefit function
Input: a, the benefit function,where a[i] is a m + 1
tuple that stands for ith term in the benefit function.
If the ith term is αiP (yi1x1

, yi2x2
, ..., yimxm

|c), then
a[i] = (αi, i1, i2, ..., im).

lb, the lower bound of all possible terms obtained from
Li-Pearl’s theorems, where lb[(i1, i2, ..., im)] is the lower
bound of P (yi1x1

, yi2x2
, ..., yimxm

|c).

ub, the upper bound of all possible terms obtained from
Li-Pearl’s theorems, where ub[(i1, i2, ..., im)] is the upper
bound of P (yi1x1

, yi2x2
, ..., yimxm

|c).

e, the adjusted value of the benefit function, 0 for initial call.

The initial call of the algorithm is
BBF (a[1, ..., nm], lb, ub, 0), where a[1, ..., nm] corre-
sponding to the original benefit function.

All lists in this algorithm start with index 1.

Output: (lo, up), lower and upper bound of the benefit
function.

Function BBF (a, lb, ub, e):
1: l = length(a);
2: // Base case, compute the bounds.
3: up = e, lo = e;
4: for i = 1 to l do
5: if a[i][1] < 0 then
6: lo = lo+ a[i][1] ∗ ub[(a[i][2], ..., a[i][m+ 1])];
7: up = up+ a[i][1] ∗ lb[(a[i][2], ..., a[i][m+ 1])];
8: else
9: lo = lo+ a[i][1] ∗ lb[(a[i][2], ..., a[i][m+ 1])];

10: up = up+ a[i][1] ∗ ub[(a[i][2], ..., a[i][m+ 1])];
11: end if
12: end for
13: // Build an equivalent benefit function by the fact that

if ∃2 ≤ r ≤ (m + 1)s.t., a[j1][r] = ... = a[jnm−1 ][r],
then the sum of these nm−1 terms without coefficients
is equal to P (ya[j1][r]xr

), we then recursively solve the
equivalent benefit function.

14: for every nm−1 pair in a, (a[j1], ..., a[jnm−1 ]), s.t., there
∃2 ≤ r ≤ (m+ 1)s.t., a[j1][r] = ... = a[jnm−1 ][r] do

15: for k = 1 to nm−1 do
16: na = a;
17: nc = e+ a[jk][1] ∗ d[r − 1][a[j1][r]];
18: for t = 1 to nm−1 do
19: if t ̸= k then
20: na[jt][1] = na[jt][1]− na[jk][1];
21: end if
22: end for
23: Remove(na[jk]);
24: res = BBF (na, lb, ub, nc);
25: lo = max{lo, res[0]}
26: up = min{up, res[1]}
27: end for
28: end for
29: Return (lo, up);



vere condition, and the number of severe condition patients
dropped from 213 to only 36.

Now consider the expected difference between benefited
and harmed individuals. Recall the benefited individuals in-
clude the individual who would be infected in a severe condi-
tion if unvaccinated and would be asymptomatic infected if
vaccinated, the individual who would be infected in a severe
condition if unvaccinated and would be uninfected if vac-
cinated, and the individual who would be asymptomatic in-
fected if unvaccinated and would be uninfected if vaccinated.
The harmed individuals include the individual who would be
asymptomatic infected if unvaccinated and would be infected
in a severe condition if vaccinated, the individual who would
be uninfected if unvaccinated and would be infected in a
severe condition if vaccinated, and the individual who would
be uninfected if unvaccinated and would be asymptomatic
infected if vaccinated. All others are unaffected individu-
als. In order to maximize the difference between benefited
and harmed individuals; therefore, we assign 1 to benefited
individuals, assign −1 to harmed individuals, and 0 to all oth-
ers in the benefit vector. The objective function (i.e., benefit
function) is then

f(c) = 0P (y1x1
, y1x2

|c) + P (y1x1
, y2x2

|c) +
P (y1x1

, y3x2
|c)− P (y2x1

, y1x2
|c) +

0P (y2x1
, y2x2

|c) + P (y2x1
, y3x2

|c)−
−P (y3x1

, y1x2
|c)− P (y3x1

, y2x2
|c) +

0P (y3x1
, y3x2

|c).
The experimental data in Table 1 provide the following

estimates:

P (y1x1
|c) = 52/600 = 0.087

P (y2x1
|c) = 512/600 = 0.853

P (y3x1
|c) = 36/600 = 0.060

P (y1x2
|c) = 329/600 = 0.548

P (y2x2
|c) = 58/600 = 0.097

P (y3x2
|c) = 213/600 = 0.355

The observational data Table 2 provide the following esti-
mates:

P (x1, y1|c) = 14/1200 = 0.012

P (x1, y2|c) = 933/1200 = 0.778

P (x1, y3|c) = 6/1200 = 0.005

P (x2, y1|c) = 121/1200 = 0.101

P (x2, y2|c) = 65/1200 = 0.054

P (x2, y3|c) = 61/1200 = 0.051

We plug the estimates and the benefit function into The-
orem 1, the Algorithm 1 returns false (i.e., not identifiable
by experimental data). We then plug the estimates and the
benefit function into Theorem 2 to obtain the bounds

−0.228 ≤ f(c) ≤ −0.107

Thus, the expected difference between benefited and
harmed individuals is at most −0.107 per individual. We
can conclude that the vaccine is ineffective for the virus.

Task 2
The researcher of the clinic study claimed that the individual
who would be infected in a severe condition if unvaccinated
and would be uninfected if vaccinated and the individual who
would be uninfected if unvaccinated and would be infected
in a severe condition if vaccinated should be twice important
than other individuals. Based on the clinical study, the number
of severe condition patients dropped from 213 to only 36;
therefore, the vaccine should be effective for the virus.

Now consider the expected difference between benefited
and harmed individuals. The benefit vector should be the
same except assigning 2 to the individual who would be in-
fected in a severe condition if unvaccinated and would be
uninfected if vaccinated and assigning −2 to the individ-
ual who would be uninfected if unvaccinated and would be
infected in a severe condition if vaccinated.

The objective function (i.e., benefit function) is then

f(c) = 0P (y1x1
, y1x2

|c) + P (y1x1
, y2x2

|c) +
2P (y1x1

, y3x2
|c)− P (y2x1

, y1x2
|c) +

0P (y2x1
, y2x2

|c) + P (y2x1
, y3x2

|c)−
−2P (y3x1

, y1x2
|c)− P (y3x1

, y2x2
|c) +

0P (y3x1
, y3x2

|c).

We plug the estimates and the benefit function into The-
orem 1, the Algorithm 1 returns true (i.e., identifiable by
experimental data) with value −0.167. The benefit function
can be simplified as follow:

f(c) = 2P (y1x1
|c) + P (y2x1

|c)−
−2P (y1x2

|c)− P (y2x2
|c)

= −0.167.

Thus, the expected difference between benefited and
harmed individuals is exactly −0.167 per individual. We
can conclude that the vaccine is still ineffective for the virus.

Simulated Results
In this section, we show the quality of the bounds of the
benefit function obtained by Theorem 2 using four common
benefit vectors.

First, we set m = 2 (i.e., X has two values) and n = 3
(i.e., Y has three values). We set the benefit vector to one of
the most common ones, (0, 1, 1,−1, 0, 1,−1,−1, 0), which
is to evaluate the expected difference between benefited and
harmed individuals. We randomly generated 1000 popula-
tions where each population consists of different fractions of
nine response types of individuals. For each population, we
then generated sample distributions (observational data and
experimental data) compatible with the fractions of response
types (see the appendix for the generating algorithm). The
advantage of this generating process is that we have the real
benefit value (because we know the fractions of the response
types) for comparison. Each sample population represents a
different instantiate of the population-specific characteristics
C in the model. The generating algorithm ensures that the ex-
perimental data and observational data satisfy the general re-
lation (i.e., P (x, y|c) ≤ P (yx|c) ≤ P (x, y|c)+1−P (x|c)).



Figure 1: Bounds of the benefit function for 100 sam-
ple populations out of 1000 with the benefit vector
(0, 1, 1,−1, 0, 1,−1,−1, 0).

For a sample population i, let [ai, bi] be the bounds of the
benefit function from the proposed theorem. We summarized
the following criteria for each population as illustrated in
Figure 1:

• lower bound : ai;
• upper bound : bi;
• midpoint : (ai + bi)/2;
• real benefit : dot product of the benefit vector and the

fractions of response types;

From Figure 1, it is clear that the proposed bounds obtained
from Theorem 2 are a good estimation of the real benefit. The
lower and upper bounds are closely around the real benefit,
and the midpoints are almost identified with the real benefit.
Besides, the average gap of the bounds,

∑
(bi−ai)
1000 , is 0.330,

which is also small compared to the largest possible gap of 6.
Second, we set the benefit vector to another common

one, (−1, 1, 1,−1,−1, 1,−1,−1,−1), which is to evalu-
ate the expected difference between benefited and unben-
efited (i.e., unaffected and harmed) individuals. We again
randomly generated 1000 populations where each popula-
tion consists of different fractions of nine response types.
The data-generating process and all other factors remain the
same. We summarized the same criteria for each population
as illustrated in Figure 2.

From Figure 2, it is clear that the proposed bounds obtained
from Theorem 2 are a good estimation of the real benefit. The
lower and upper bounds are closely around the real benefit,
and the midpoints are almost identified with the real benefit.
Besides, the average gap of the bounds,

∑
(bi−ai)
1000 , is 0.6520,

which is also small compared to the largest possible gap of 9.
Third, we set the benefit vector to another common one,

(0, 1, 1, 0, 0, 1, 0, 0, 0), which is to evaluate the expected ben-
efited individuals. We again randomly generated 1000 popu-
lations where each population consists of different fractions

Figure 2: Bounds of the benefit function for 100 sam-
ple populations out of 1000 with the benefit vector
(−1, 1, 1,−1,−1, 1,−1,−1,−1).

of nine response types. The data-generating process and all
other factors still remain the same. We summarized the same
criteria for each population as illustrated in Figure 3.

From Figure 3, it is clear that the proposed bounds obtained
from Theorem 2 are a good estimation of the real benefit. The
lower and upper bounds are closely around the real benefit,
and the midpoints are almost identified with the real benefit.
Besides, the average gap of the bounds,

∑
(bi−ai)
1000 , is 0.3284,

which is also small compared to the largest possible gap of 3.
Lastly, we set the benefit vector to the last common

one, (0, 0, 0,−1, 0, 0,−1,−1, 0), which is to evaluate the
expected harmed individuals (we set the benefit vector to
−1 because we want to minimize the harmed individuals).
We again randomly generated 1000 populations where each
population consists of different fractions of nine response
types. The data-generating process and all other factors still
remain the same. We summarized the same criteria for each
population as illustrated in Figure 4.

From Figure 4, it is clear that the proposed bounds obtained
from Theorem 2 are a good estimation of the real benefit. The
lower and upper bounds are closely around the real benefit,
and the midpoints are almost identified with the real benefit.
Besides, the average gap of the bounds,

∑
(bi−ai)
1000 , is 0.3266,

which is also small compared to the largest possible gap of 3.

Discussion
We have shown that the proposed theorems are a good es-
timation of the non-binary benefit function using examples
and simulated studies. One may concern about the computa-
tion complexity of Algorithms 1 and 2. They are for sure in
exponential time. However, the m and n (i.e., values of X
and Y ) are usually small constants; therefore, we do not need
to worry about too much.

Moreover, one may wonder why we need to investigate
the bounds of the linear combination of the probabilities of



Figure 3: Bounds of the benefit function for 100 sam-
ple populations out of 1000 with the benefit vector
(0, 1, 1, 0, 0, 1, 0, 0, 0).

Figure 4: Bounds of the benefit function for 100 sam-
ple populations out of 1000 with the benefit vector
(0, 0, 0,−1, 0, 0,−1,−1, 0).

causation because Li and Pearl have already proposed the
bounds for all the probabilities of causation (Li and Pearl
2022b). Note that the linear combination of the probabili-
ties of causation is not a simple extension of the theoretical
bounds for any single probability of causation. First, all single
probabilities of causation are not identifiable with no further
assumption. Here in this paper, the benefit function becomes
identifiable to a point estimation with a certain relationship
of the benefit vector detected by Algorithm 1. In other words,
the benefit vector provides identifiability conditions. Second,
say a probability of causation A has bounds [a, b] and another
probability of causation B has bounds [c, d], then the bounds
of A + B is not simply [a + c, b + d]. We have to use the
properties of probabilities of causation (i.e., in Algorithm 2)
to obtain non-trivial bounds (the new bounds might be even
narrower than both [a, b] and [c, d]). Besides, compared to
(Li and Pearl 2019), as the response types increased from 4
to exponential many, the identifiability conditions became
non-unique, and the difficulty of obtaining the narrow bounds
raised rapidly.

Another concern is why we do not apply linear
programming-based approaches to the proposed problem,
such as in (Balke 1995). The reason is that such an approach
would necessitate a linear programming formulation with an
exponential number of variables (mnm variables), rendering
it impractical in terms of both computational time and accu-
racy. However, in contrast, even though our approach still
involves exponential run-time, we have successfully reduced
the objective function using Algorithm 2 to the pre-computed
probabilities of causation as proposed by Li and Pearl (Li
and Pearl 2022b).

Conclusion and Future Work

We demonstrated the formalization of the general benefit
function with nonbinary treatment and effect. We provided
the algorithm to compute the bounds of the general benefit
function and the algorithm to check whether the benefit func-
tion is identifiable with purely experimental data. Examples
and simulation results are provided to support the proposed
theorems.

Future studies could assess the statistical properties of the
proposed bounds. How tight would the bounds be? Does it
sufficient to make decisions? Which data, experimental or
observational, would affect the bounds more? How would the
number of values in treatment and effect affect the quality of
the bounds?

Another future direction could be to improve the bounds
using covariate information as Li and Pearl (Li and Pearl
2019) did for the binary benefit function.
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