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Abstract

Probabilities of causation are proven to be critical in modern
decision-making. This paper deals with the problem of estimat-
ing the probabilities of causation when treatment and effect are
not binary. Pearl defined the binary probabilities of causation,
such as the probability of necessity and sufficiency (PNS), the
probability of sufficiency (PS), and the probability of necessity
(PN). Tian and Pearl then derived sharp bounds for these prob-
abilities of causation using experimental and observational
data. In this paper, we define and provide theoretical bounds
for all types of probabilities of causation with multivalued
treatments and effects. We further discuss examples where our
bounds guide practical decisions and use simulation studies
to evaluate how informative the bounds are for various data
combinations.

Introduction

In many areas of industry, marketing, and health science, the
probabilities of causation are widely used to solve decision-
making problems. For example, Li and Pearl (Li and Pearl
2019) proposed the “benefit function”, which is the pay-
off/cost associated with selecting an individual with given
characteristics to identify a set of individuals who are most
likely to exhibit a desired mode of behavior. In Li and Pearl’s
paper, the benefit function is a linear combination of the prob-
abilities of causation with binary treatment and effect. For
another example, Mueller and Pearl (Mueller and Pearl 2022)
demonstrated that the probabilities of causation should be
considered in personalized decision-making.

Consider the following motivating scenario: an elderly pa-
tient with cancer is faced with the choice of treatment to
pursue. The options include surgery, chemotherapy, and ra-
diation. The outcomes include ineffective, cured, and death.
Given that the elderly patient has a high risk of death from
cancer surgery, the patient wants to know the probability that
he would be cured if he chose radiation, would die if he chose
surgery, and nothing would change if he chose chemotherapy.
Let X denotes the treatment, where z; denotes surgery, xs
denotes chemotherapy, and x3 denotes radiation. Let Y de-
notes the outcome, where ¥; denotes ineffective, yo denotes
cured, and y3 denotes death. The probability that the patient
desires is the probability of causation, P(ys,,,Y1.,, Y2z, )-
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Pearl (Pearl 1999) first defined three binary probabilities
of causation (i.e., PNS, PN, and PS) using structural causal
model (SCM) (Galles and Pearl 1998; Halpern 2000; Pearl
2009). Tian and Pearl (Tian and Pearl 2000) then used obser-
vational and experimental data to bound those three proba-
bilities of causation. Li and Pearl (Li and Pearl 2019, 2022b)
provided formal proof of those bounds. Mueller, Li, and Pearl
(Mueller, Li, and Pearl 2022) recently proposed using covari-
ate information and the causal structure to narrow the bounds
of the probability of necessity and sufficiency. Dawid et al.
(Dawid, Musio, and Murtas 2017) also proposed using co-
variate information to narrow the bounds of the probability
of necessity.

All the above-mentioned studies are restricted to binary
treatment and effect, limiting the application of probabilities
of causation. One can easily extend Tian and Pearl’s bounds
(Tian and Pearl 2000) to a non-binary situation by apply-
ing Balke’s linear programming again. However, the vertex
enumeration algorithm within Balke’s linear programming
(Balke 1995), involving an exponential number of variables,
renders the task impractical.

Zhang, Tian, and Bareinboim (Zhang, Tian, and Barein-
boim 2022), as well as Li and Pearl (Li and Pearl 2022a),
proposed nonlinear programming-based solutions to com-
pute the bounds of nonbinary probabilities of causation nu-
merically. However, the theoretical foundation of nonbinary
probabilities of causation is still required, not only because
numerical methods are limited by computational power but
also because people are interested in the theoretical founda-
tion due to further development and analysis. In this paper,
we will introduce the theoretical bounds of any probabilities
of causation defined using SCM without restricting them to
binary treatment and effect.

Preliminaries

In this section, we review the definitions for the three aspects
of binary causation, as defined in (Pearl 1999). We use the
language of counterfactuals in SCM, as defined in (Galles
and Pearl 1998; Halpern 2000).

We use Y, = y to denote the counterfactual sentence
“Variable Y would have the value y, had X been z”. For
the remainder of the paper, we use y, to denote the event
Y. = y, yu to denote the event Y, = y, y, to denote the
event Y, = ¢/, and ¥/, to denote the event Y,y = y'. We



assume that experimental data will be summarized in the
form of the causal effects such as P(y, ) and observational
data will be summarized in the form of the joint probability
function such as P(z,y). If not specified, the variable X
stands for treatment and the variable Y stands for effect.
Three prominent probabilities of causation are as follows:

Definition 1 (Probability of necessity (PN)). Let X andY
be two binary variables in a causal model M, let x and y
stand for the propositions X = true and Y = true, respec-
tively, and x’ and v’ for their complements. The probability
of necessity is defined as the expression (Pearl 1999)

PN P(Y, = false|X = true,Y = true)
P(y;” ‘(E7 y)

Definition 2 (Probability of sufficiency (PS)). (Pearl 1999)

> 1>

PS 2 P(y,ly',2")

Definition 3 (Probability of necessity and sufficiency (PNS)).
(Pearl 1999)

PNS £ P(y,y,)

PNS stands for the probability that y would respond to x
both ways, and therefore measures both the sufficiency and
necessity of x to produce y.

Tian and Pearl (Tian and Pearl 2000) provided tight bounds
for PNS, PN, and PS using Balke’s program (Balke 1995)
(we will call them Tian-Pearl’s bounds). Li and Pearl (Li and
Pearl 2019, 2022b) provided theoretical proof of the tight
bounds for PNS, PS, PN, and other binary probabilities of
causation.

PNS, PN, and PS have the following tight bounds:

0,
P(yz) — P(yar),

WA Ply) — Ply,), [ STNO
P(yx) - P(y)
P(y.),
P(y..),
PNS <min<{ P(z,y)+ P(z,y),
P(yz) — P(yar

0,
max{ P(y)—P(y,/) } < PN
P(z,y)

1,
PN < min { P(y.)—P(' ) }
P(z,y)

Note that we only consider PNS and PN here because the
bounds of PS can easily be obtained by exchanging x with
2’ and y with ¢ in the bounds of PN. To obtain bounds for a
specific population defined by a set C of characteristics, the
expressions above should be modified by conditioning each
term on C' = c.

However, the above three probabilities of causation are
unable to answer the query in our motivating example. In this
paper, we demonstrate the bounds of any type of probabil-
ity of causation. We illustrate the theorems by order of the
number of hypothetical terms (i.e., the number of y, terms
in the probability of causation). For example, the number of
hypothetical terms in P(y,,y’,) is 2.

Probabilities of Causation with Single
Hypothetical Term

We start with four simple probabilities of causation with
a single hypothetical term. Let X denotes the treatment
with potential values x1,...,z,, and Y denotes the effect
with potential values ¥y, ..., y,. The four probabilities of
causation with a single hypothetical term are P(yiwj,yi)’
P(yixj ) yk)a S.t.,1 7& k, P(yu:] ) l'k), S't'7j 7& k, and
P(yixj7yk,:cm), s.t.,m # j. The following theorems de-
fine their bounds using observational and experimental data.
These bounds are sharp in the sense that there exists an SCM
for each point inside the bounds such that the probability of
causation is equal to that point.

Theorem 4 (Probability of preservation(i, j) (PPre(i, j))).
Suppose variable X has m values 1, ...,x,, and Y hasn
values yi, ..., Yn, then the probability of preservation(i, j)
P(yimj ,Yi), where 1 < i < n,1 < j <m, has the following
sharp bounds:
P(Z‘ j 5 yz)v
max{ P(yi,,) ‘F]P(yz) -1 } < PlYia,» v3)

P(Yiy, yi) < min{ P](Dy(%% }

Note that the conditional probability P(y;,, |y;) is simple

to obtain by PPre(¢,j)/P(y;), and it stands for the proba-
bility that y; would have been preserved if X were set to
Zj-
Theorem 5 (Probability of replacement(i, j, k) (PRep(i, j,
k))). Suppose variable X has m values x1, ..., T, and' Y
has n values y1, ..., yn, then the probability of replacement(i,
Jo k) P(Yig, s yr), where 1 < i,k < n,1 < j < m,i#k,
has the following sharp bounds:

0,
P(yia,) + Plyr) — 1,
0,
max P(yiz,)
2<pmpry MAX Y +P(2p, 1)
-1 + P(x])
7P(Ija yl)

i P( ”“) B P(ij, i)a
P(Yig, yr) < mln{ P?ykj) B P(yk7xyj) }

Note that the conditional probability P(y;,_ |yx) is simple

to obtain by PRep(i, j, k) /P (yx), and it stands for the prob-
ability that y;, would have been replaced by y; if X were



set to x;. In addition, one can interpret the probability of re-
placement(i, j, k) as the nonbinary version of the probability
of disablement and the probability of enablement defined by
Pearl (Pearl 1999).

Theorem 6 (Probability of substitute(i, j, k) (PSub(i, j, k))).
Suppose variable X has m values 1, ...,x,, and Y hasn
values vy, ..., Yyn, then the probability of substitute(i, j, k)
P(yimj,xk), where 1 < i <n,1 <jk<m,j#k, has the
following sharp bounds:

0,
max ¢ P(yi,,) — Pz, y:)

S P(ylz]7xk)

: P(yli) - P(xj7yi)7
P(yizj,zk) < mm{ Play) }

Note that the conditional probability P(y;,, |zx) is simple

to obtain by PSub(%, j, k) / P(xy), and it stands for the proba-
bility that y; would have happened if z;, were substituted by
$j.
Theorem 7 (Probability of necessity(i, j, k, p) (PN(i,j,k,p))).
Suppose variable X has m values x1, ..., Ty, and Y has n
values y1, ..., Yn, then the probability of necessity(i, j, k, p)
P(yixj7yk'7xl))’ Whé‘l"e 1 S ka S Tl,l S jvp S m7j 7é D,
has the following sharp bounds:

0,
max P(yiz,) + P2p, yr)

S P(yzzr] y Yk xp)
=1+ P(x;) — P(x;, 1)

P(xpayk)

PN(i,j,k,p) is the nonbinary version of PN and
PS defined by Pearl. Note that the conditional
probability  P(y;, |zp,yx) is simple to obtain by
PN(%, 4, k,p)/P(zp,yr), and it stands for the proba-
bility of that y;, would have been replaced by y; if x,, were
substituted by ;.

Note that there is no theorem for the probability of
causation P(y;,, ;) because P(y;, ,x;) simply equals
P(y;,x;). The proofs for all the theorems, including those
in the next section, are provided in the appendix. The key
concept of the proof is to employ the Frechet inequalities and
the consistency rule (i.e., P(y,,z) = P(z,y)) to simplify
the probabilities of causation into a combination of experi-
mental distributions (P(y,)) and observational distributions
(P(z,y)). This process primarily involves mathematical in-
equality reasoning, without any exceptional elements.

Py, ) — P(x:,y:),
P(yimj,yk,mgmm{ (Yiz,) — Plx; y»}

Probabilities of Causation with Multi
Hypothetical Terms

In this section, we deal with four complicated prob-
abilities of causation with multi-hypothetical terms.

They are P(yhg;]-la-"ayikzjk)’ P(yha;]-la"-ayikzjkaxp)’
P(yille7~~'7yikxjkqu)’ and P(yhmjl?"'7yikxjk7xp7yq)’

s.t.,js # pand js # jypif s Zwforl < s,w < k. Unlike
the bounds in single hypothetical term cases, the bounds in
this section are bounded recursively with cases of a smaller
number of hypothetical terms. Consequently, we lose the
sharpness of the bounds because it is hard to satisfy the equal-
ity conditions of Frechet inequalities for all recursive steps.

Theorem 8 (Probability of necessity and sufficiency(k)
(PNS(k))). Suppose variable X has m values 1, ..., Ty,
and'Y has n values y1, ..., yn, then the probability of neces-
sity and sufficiency(k) P(yim]_1 s Ying, ), where 1 < iy <
1 < js < myjs # Jwifs # wforl < s,w < k, is
bounded as following:

0,
Z1gt§k P(yitxjt) —k+1,

maXlStSk(LB(P(yil @iy Yiy_1 T, 3

yit+1xjt+1 LA ylk mjk ))
max ‘HD(yimit) -1),
21 <p<m. st Iri<r<kp—i,
LB(P(yilzjl PR yir—lxjr_l ’
yir+1ij+1 3oy ywm]k y Lo yzr))+

1<p<m,s.t..,p£j17#...#Jk
LB(P(yilxh PERRS) yikwjk 5 mp))

S P(yhgpjl ) ---ayikzjk)

P(y’ilgjjl ) "'7y’ikcg]»k) S

ming<¢<g P(yimh ),

minlStSk UB(P(y’ur 7"'7yit—1$v )
71 Jt—1
ylt+1xjt+1 RS ylkwjk) 9
min Z
1<p<m,s.t.,3r,1<r<k,p=j,
UB(P(y“ @i yir_ler 5

-1
Yirpa w0 Yis T Ljs yu))‘i’

1<p<m,s.t..p#j1#...#Jk
UB(P(yh @0 yikzjk 3 xp))

where, LB(f) denotes the lower bound of a function [ and
UB( f) denotes the upper bound of a function f. The bounds
Of P(yzl T 0 yirflij_l y Yirga Tjpin y ooy Yig, T, Lj,.s yzr)
are given by Theorem 7 or 11, the bounds of
P(yimj1 s Ying, xp) are given by Theorem 6 or 9, and
the bounds of P(y;, wgy e Yieag,

7yit+1$, a"'ayikzL)
1 Jt+1 k
are given by Theorem 8 or experimental data if k = 2 (i.e.,
P(Yiry, ) or P(Yiny, )
Note that PNS(k) is the nonbinary higher-order version
of PNS. For example, PNS(2) (nonbinary PNS) stands for

the probability that y;, would respond to x;, and y;, would
respond to z,.



Theorem 9 (Probability of substitute(k,p) (PSub(k,p))).
Suppose variable X has m values x1,...,T,, and Y has
n values 11, ..., Yn, then the probability of substitute(k,p)
P(yille,...7yikxjk7xp), where 1 < iy < n,1 < jgo,p <
m,js # p,Jjs # jwif s # wforl < s,w < k, is bounded
as following:

0,

Di<i<k P(yimh) + P(zp) — k,

max
ma‘XlStSk(LB(P(yilleﬂ"'5y’it—lmjt V

yit‘*'ll’jt = 7yzk$“))

FLB(P . 1) — 1)
S P(y’hxh ) "'7yika;jk7xp)

P(yille LA yikwjk ) xp) S

miny<i<p P(yimjt)»
P(a:p),

min § ming<¢<g UB(P(yilxj1 v Yirg,

miny <<k UB(P(yi, ,,, » ¥p))

where, LB(f) denotes the lower bound of a function f and
UB( f) denotes the upper bound of a function f. The bounds

Of P(yi1 @i yitthﬂ ) yit+1¢1;jt+l 3 ey yzm% ) are given
by Theorem 8 or experimental data if k = 2 and the bounds
ofP(yimif , &p) are given by Theorem 6.

Theorem 10 (Probability of replacement(k,q) (PRep(k,q))).
Suppose variable X has m values x1,...,%,, and Y hasn
values Y1, ..., Yn, then the probability of replacement(k,q)
P(yille7~-~7yim7.k7yq), where 1 S isaq S n71 S js S
m,js #* Juwifs # wforl < s,w < k, is bounded as
following:

0,
Yor<i<k PWia, ) + Plyg) — K,

maXlStSk(LB(P(yhzjl PREXT) yitflxjt_la

yit+1$jt .’ "‘7yikxjk))

max +LB(P(yim7,t 'Yq)) — 1),

2 1<p<m I 1<r<k p=ii g=is
LB(P(yilmh?"'?yirfler )

—1
yir+1mjr+1 R yikwjk,mj’r" yi'r))+

1<p<m,s.t.,pAj17#...#jk
LB(P(thJl PREET) yikxjk y Tp, yq))

S P(yilzjl ) ~-~7yimjkqu)

P(y’hle B "’7yik3:jk7yq) S

ming <¢<g P(yimjt ),

P(yq),

minlgtgk UB(P(yillew-wyitax“ 1’

ylt+1$jt+1 ey yw,xjk ))7

min miny << UB(P (i, o, > Yq)),

ZISPSm,&t.,3T71Sr§k,p:j7-,q:i7-
UB(P(yll @0 yirr—l;cjr 5

1
yi7~+1 Tirin 5oy Yig xj, Zj,, ylv))+

1<p<m,s.t..p#j1#...#jk
UB(P(yilz“ 3 ey yi’“ljk » Lpy yq))

where, LB(f) denotes the lower bound of a function f and
UB( f) denotes the upper bound of a function f. The bounds
Of P(yzl T y”’l%'rfl ) yir+1:1;jT+1 3 erey ylki]k s Ly yjr);
P(yim]1 soos Ying,  Tpy Yyq) are given by Theorem 7 or 11,
k
the bounds ofP(yimj1 s y“”%‘t-l s Yiesn R Yixa,, )
are given by Theorem 8 or experimental data if k = 2, and
the bounds of P(y;,,. ,Yyq) are given by Theorem 4 or 5.
it

Theorem 11 (Probability of necessity(k, p, q) (PN(k,p,q))).
Suppose variable X has m values x1,...,2.,, and Y has
n values y1, ..., yn, then the probability of necessity(k, p,
q) P(yila;ha"'ayikwjka'rp7yq)’ where 1 < s, q < n71 <

JssP S My js # P, Js # Jwifs # wforl < s,w <k, is
bounded as following:

0,

Zlgtgk P(yimh) + P(xp,yq) — K,

max
maxy <<k (LB(PYis g oo Yooy,
.

yl’f,+1ggjtJr 7"'7yikxjk))
+LB(P(yitmit7xpayq)) - 1)

S P(yilel ) "'7yikmjk7xpayq)

P(Yiry, s oo Yy, Tps Ya) <
ming <¢<g P(ynzjt)v
P(xp’ yq)v

min min1§t§k UB(P(yimjl7...71/“719%_1,

yit+1:cjt+1 ) ""yikzjk))v

miny <i<k UB(P(Yi, 4, > Tp; Yq))

where, LB(f) denotes the lower bound of a function f and
UB( f) denotes the upper bound of a function f. The bounds

of P(yil% s yit*l%‘f-l , yitﬂﬁﬂl s yzkx]k) are given



by Theorem 8 or experimental data if k = 2 and the bounds
of P(Yi,,, »Tp,Yq) are given by Theorem 7.

Note that the PSub(k,p), PRep(k,q), PN(k,p,q)
are the higher order of PSub(i,j, k), PRep(s,j,k),
PN(i, j, k,p), respectively. We simply have that
PSub(1,p) =PSub(iy, j1,p), PRep(1l,q) =PRep(iy, j1,q),
and PN(1,p,q) =PN(i1,j1,p,q). Also, the recursive
parts in theorems are guaranteed to reduce the number
of hypothetical terms in the probabilities of causation
by 1; therefore, the recursive parts can reach the single
hypothetical term cases in Theorems 4 to 7.

Besides, as mentioned in the introduction section, when
extending Balke’s linear programming, the explicit form of
the bounds for these probabilities of causation can be derived
by solving a linear programming problem with mn"" vari-
ables, as pointed out by Tian (Tian and Pearl 2000). This
is impractical due to the vertex enumeration algorithm with
exponential number of variables. For example, if both m and
n are set to 10, the vertex enumeration algorithm would re-
quire handling 10 x 10'° variables for a simple query like
P(Y14,:Y22,)-

Concerns about computational complexity might also arise
for Theorems 8 to 11. However, if we consider the number of
hypothetical terms as k, the maximum number of probabili-
ties of causation considered in the recursion is 2(*72) with
k typically being small.

Examples

In this section, we show how the presented theorems can be
used in applications. We start with our motivating example.

Choice of Treatment

An elderly patient with cancer is faced with the choice of
treatment. The options from the hospital include surgery,
chemotherapy, and radiation. The outcomes include ineffec-
tive, cured, and death. Given the elderly patient’s high risk
of death from cancer surgery, the doctor of the hospital sug-
gested radiation for the patient. So, the patient wants to know
the probability that he would be cured if he chose radiation,
that he would die if he chose surgery, and that nothing would
change if he chose chemotherapy.

Let X denotes the treatment, where z; denotes surgery,
denotes chemotherapy, and x3 denotes radiation. Let Y de-
notes the outcome, where ¥; denotes ineffective, yo denotes
cured, and y3; denotes death. The probability that the patient
desires is the PNS(3), P(y3,,, Y14, Y22, )-

The doctor provided an experimental study of 900 elderly

patients where all the patients were forced to take treatment.
The results are shown in Table 1.

The doctor also provided an observational study of 900
elderly patients, where all the patients were open to all treat-
ments and chose the treatment by themselves. The results are
shown in Table 2.

Surgery | Chemotherapy | Radiation
Ineffective 80 184 87
Cured 7 29 189
Death 213 87 24
Overall 300 300 300

Table 1: Experimental data collected by the hospital. Here,
300 patients were forced to receive surgery, 300 patients were
forced to receive chemotherapy, and 300 patients were forced
to receive radiation.

Surgery | Chemotherapy | Radiation
Ineffective 238 10 147
Cured 20 7 72
Death 7 259 70
Overall 265 346 289

Table 2: Observational data collected by the hospital. Here,
900 patients were free to choose one of the three treatments
by themselves; 265 patients chose surgery, 346 patients chose
chemotherapy, and 289 patients chose radiation.

The experimental data provide the following estimates:

P(y1,,) = 80/300, P(y2,,) = 7/300,
P(ys,,) = 213/300, P(y1,,) = 184/300,
P(y2,,) = 29/300, P(ys,,) = 87/300,
P(y1,,) = 87/300, P(y2,,) = 189/300,
P(y3,,) = 24/300.

Here, all three experimental estimates, P(ys,, ), P(y1,)
and P(ys,, ), in the target probability of causation are higher
than 0.5, which may give us the sense that the target proba-
bility of causation, P(ys,, ,¥1,,,Y2,,). would be high.

The observational data provide the following estimates:

P(z1,y1) = 238/900, P(z1,y2) = 20/900,
P(z1,y3) = 7/900, P(z2,y1) = 10/900,
P(x9,y2) = 77/900, P(x2,ys) = 259/900,
P(xl’nyl) = 147/9007 P(Z‘g, 2/2) = 72/9007
P(J,‘g,, yg) = 70/900

We then plug the estimates into Theorem 8 (see the ap-

pendix for the detailed calculations). We obtain the bounds
of the target probability of causation as follows:

0 < P(Y3p,Yley» Y2,,) < 0.099

In conclusion, the probability that the patient would
be cured if he chose radiation, that he would die if he
chose surgery, and that nothing would change if he chose
chemotherapy is below 0.099, implying that the patient
should not consider radiation as a treatment option.

Change of Institute

Bob is looking for a job in the job market. There are three
institutes, say A, B, and C, that offer courses to help people
prepare for job searches. Bob went to one of the institutes,



Success | Failure | Overall
No institute 53 247 300
Institute A 269 31 300
Institute B 234 66 300
Institute C 151 149 300

Table 3: Experimental data collected by Bob. Here, 300 peo-
ple were forced to take no course, 300 people were forced to
take a course at institute A, 300 people were forced to take
a course at institute B, and 300 people were forced to take a
course at institute C.

Success | Failure | Overall
No institute 92 58 150
Institute A 55 118 173
Institute B 24 231 255
Institute C 599 23 622

Table 4: Observational data collected by Bob. Here, 1200
people were open to all institutes, 150 people chose to take
no course, 173 people chose to take a course at institute A,
255 people chose to take a course at institute B, and 622
people chose to take a course at institute C.

A, and took the course, but he still failed on the job market.
Thus, Bob wonders if these courses improve his chance of
getting a job. What would happen if he chose the other two
institutes?

Let X denotes which institute a person is chosen, where x|
denotes that no institute is chosen, x5 denotes institute A, 3
denotes institute B, and x4 denotes institute C. Let Y denotes
whether a person gets a job, where y; denotes success in
job seeking, and ¥y denotes failure in job seeking. Therefore,
Bob’s questions become the following two probabilities of
causation, P(y1,, |T2,y2) and P(y1,, |T2,2).

All institutes provided experimental and observational
studies to illustrate their effectiveness. Bob summarized the
studies in Tables 3 and 4.

The experimental data provide the estimates:

P(ylzl) = 53/300, P(ygzl) = 247/300,
P(ylm) = 269/300,P(y2m2) = 31/300,
P(y1,,) = 234/300, P(y2,,,) = 66/300,
P(y1,,) = 151/300, P(ys,,) = 149/300.

The observational data provide the estimates:

P(21,y1) = 92/1200, P(z1, y2) = 58/1200,
P(22,y1) = 55/1200, P(2, y2) = 118/1200,
P(x3,y1) = 24/1200, P(x3, y2) = 231/1200,
P(24,y1) = 599/1200, P(z4, y2) = 23/1200.

Based on the experimental study, institute A claims that
taking their course increased the success rate of finding a job
from 0.177 to 0.897 and institute B claims that taking their
course increased the success rate of finding a job from 0.177
to 0.780. Based on the observational study, institute C claims
that taking their course increased the success rate of finding

Vaccinated | Unvaccinated
Uninfected 205 27
Asymptomatic 46 122
Mild Symptoms 343 87
Severe Condition 6 364
Overall 600 600

Table 5: Experimental data of the clinical study. Here, 600
people were forced to take the vaccine and 600 people were
forced to take no vaccine.

a job from 0.613 to 0.963. All of these seem useful to the
job seeker, which is why Bob chose institute A previously.
However, he still failed in the job market.

Now, consider the following two probabilities of causation,

P(y1,,|72,92) = P(Y14,, v2,y2)/ P(22,92),
P(y1,,|z2,92) = P(y14,,v2,y2)/ P(2,92),

What would be the probability of success if he had chosen
the other two institutes?

We plug the experimental and observational estimates into
Theorem 7 to obtain the following bounds:

0720 S P(y1x3|3§‘2,y2) S 1,
0 < P(y1,,|m2,y2) < 0.042.

Now Bob can see why he should change the institute to B.

Effectiveness of Vaccine

A clinical study is conducted to test the effectiveness of the
vaccine. The treatment includes vaccinated and unvaccinated.
The outcomes include uninfected by the virus, asymptomatic
infected, infected with mild symptoms, and infected in a
severe condition.

The goal of the clinical study is to learn the probability that
a patient would be infected in a severe condition if unvacci-
nated and would be uninfected if vaccinated, the probability
that a patient would be infected in a severe condition if unvac-
cinated and would be asymptomatic infected if vaccinated,
and the probability that a patient would be infected in a severe
condition if unvaccinated and would be infected with mild
symptoms if vaccinated.

Let X denotes vaccination with x; being vaccinated and
9 being unvaccinated and Y denotes the outcome, where
y1 denotes uninfected by the virus, yo denotes asymptomatic
infected, y3 denotes infected with mild symptoms, and ¥4
denotes infected in a severe condition. The probabilities of
causation we want to evaluate are PNS(2): P(y1,,,Y4,,)-
P(Y24,5 Yaq,)> and P(ys,, , yag, )-

The experimental and observational data of the clinical
study are summarized in Tables 5 and 6, respectively.

Based on the clinical study, the researcher of the vaccine
claimed that the vaccine is effective in controlling the severe
condition, and the number of patients with a severe conditions
dropped from 364 to only 6. Besides, some of the patients
would be even uninfected because the number of uninfected
people increased from 27 to 205.



Vaccinated | Unvaccinated
Uninfected 6 52
Asymptomatic 74 243
Mild Symptoms 632 147
Severe Condition 5 41
Overall eV 483

Table 6: Observational data of the clinical study. Here, 1200
people were free to access the vaccine. 717 people chose to
take the vaccine and 483 people chose to take no vaccine.

Now, consider the probability that a patient would be in a
severe condition if unvaccinated and would be uninfected by
the virus if vaccinated, P(y1,,,¥4,). the probability that a
patient would be in a severe condition if unvaccinated and
would be asymptomatic infected if vaccinated, P(y2,,,, ¥4, ),
and the probability that a patient would be in a severe condi-
tion if unvaccinated and would be infected with mild symp-
toms if vaccinated, P(y3,.,, ¥4z, )-

The experimental data provide the following estimates:

P(y1,,) = 205/600, P(y2,,) = 46/600,
P(ys,,) = 343/600, P(ya,,) = 6/600,
P(y1,,) = 27/600, P(y2,,) = 122/600,
P(y3,,) = 87/600, P(y4,,) = 364/600.
The observational data provide the following estimates:
P(z1,y1) = 6/1200, P(z1,y2) = 74/1200,
P(z1,y3) = 632/1200, P(z1,y4) = 5/1200,
P(xza,y1) = 52/1200, P(x2,y2) = 243/1200,
P(xq,y3) = 147/1200, P(z4,y4) = 41/1200.
We plug the estimates into Theorem 8 to obtain the bounds:

0< P(Y1y,,Yap,) < 0.039
0.037 < P(yay,, Ya,,) < 0.077
0.502 < P(y3,,,Yay,) < 0.561.

Thus, the probability of causation that a patient would be
in a severe condition if unvaccinated and would be uninfected
if vaccinated is at most 0.039, the probability that a patient
would be in a severe condition if unvaccinated and would be
asymptomatic infected if vaccinated is at most 0.077, and the
probability that a patient would be in a severe condition if
unvaccinated and would be infected with mild symptoms if
vaccinated is at least 0.502.

We conclude that the vaccine is effective in controlling the
severe condition but can only make it infected with mild
symptoms. The vaccine is ineffective for uninfected and
asymptomatic infected if the patient is in a severe condition
if unvaccinated.

Simulated Results

In this section, we show the quality of the proposed bounds
of the probabilities of causation.

We set m = 2 (i.e., X has two values) and n = 3 (i.e.,
Y has three values). We focus on the probability of causa-
tion, P(y1,,,Y1,,). We randomly generated 1000 samples of
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Figure 1: Bounds of the P(y1,,,¥1,,) for 100 samples out
of 1000.

P(Y1,,,Y14,)- For each sample, we then generated sample
distributions (observational data and experimental data) com-
patible with the P(y1,,,%1,,) (see the appendix for the gen-
erating algorithm). The advantage of this generating process
is that we have the real value of the probability of causation
for comparison. The generating algorithm ensures that the ex-
perimental data and observational data satisfy the general re-
lation (i.e., P(z, y|c) < P(yz|c) < P(z,y|c) +1— P(z|c)).
For a sample 4, let [a;, b;] be the bounds of the P(y1,,,¥y1,,)
obtained from the proposed theorems. We summarized the
following criteria for each sample as illustrated in Figure 1:

* lower bound : a;;

* upper bound : b;;

* midpoint : (a; + b;)/2;
 real value;

From Figure 1, it is clear that the proposed bounds are
a good estimation of the real probability of causation. The
lower and upper bounds are closely around the real value,
and the midpoints are almost identified with the real value.
Besides, the average gap of the bounds, %, is 0.228,
which make the bounds convincing.

Conclusion

We demonstrated how to obtain bounds for any probabilities
of causation defined using SCM with nonbinary treatment
and effect. We derived eight theorems for delivering rea-
sonable bounds. Both examples and simulated studies are
provided to support the proposed theorems. It is important to
note that the objective of this paper is to establish the most
comprehensive bounds applicable to various forms of proba-
bilities of causation. Future research may concentrate on the
tightness of the bounds presented in Theorems 8 to 11, or
on narrowing the bounds of probabilities of causation under
specific graphical conditions.
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