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The unit selection problem aims to identify a set of individuals who are most likely to

exhibit a desired mode of behavior, which is defined in counterfactual terms. A typical

example is that of selecting individuals who would respond one way if encouraged and a

different way if not encouraged. Unlike previous works on this problem, which rely on ad-hoc

heuristics, we approach this problem formally, using counterfactual logic, to properly capture

the nature of the desired behavior. This formalism enables us to derive an informative

selection criterion which integrates experimental and observational data. We show that a

more accurate selection criterion can be achieved when structural information is available

in the form of a causal diagram. We further discuss data availability issue regarding the

derivation of the selection criterion without the observational or experimental data. We

demonstrate the superiority of this criterion over A/B-test-based approaches.
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CHAPTER 1

Introduction

The problem of selecting individuals with a desired response pattern is encountered in many

areas of industry, marketing, and health science. For example, in customer relationship

management (CRM), it is of interest to predict which customers are about to churn but are

likely to change their minds if enticed toward retention [BST99, Lej01, HYW06, TL09]. The

cost associated with such programs compels the management to limit the enticements to

customers who are most likely to exhibit the behavior of interest. In online advertising, as

another example, companies are interested in identifying users who would click on an adver-

tisement if and only if the advertisement is highlighted [YLW09, BPQ13, LCK14, SWY15].

The difficulty in identifying such users stems from the fact that the desired response pattern

is not observed directly but rather is defined counterfactually in terms of what the individual

would do under hypothetical unrealized conditions. For example, when we observe that a

user has clicked on a highlighted advertisement, we do not know whether they would click

on that same advertisement if it was not highlighted.

Individual behaviors are classified into four response types: complier, always-taker, never-

taker, and defier [AIR96, BP97a]. Compliers are individuals who would respond positively

if encouraged and negatively if not encouraged. Always-takers are individuals who always

respond positively whether or not they are encouraged. Never-takers are individuals who

always respond negatively whether or not they are encouraged. Defiers are individuals who

would respond negatively if encouraged and positively if not encouraged.

A typical objective of the unit selection problem is to select individuals with the population-
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specific characteristics that maximize the percentage of compliers because compliers repre-

sent the effectiveness of the encouragement.

A common solution that is explored in the literature is the A/B-test-based approach,

where a controlled experiment is performed and the result is used as a criterion for selection.

Specifically, users are randomly split into two groups called the control and treatment. Users

in the control group are served unhighlighted advertisements, whereas those in the treatment

group are served highlighted advertisements. Then, the population-specific characteristics

that result in a higher difference between the two groups are used as predictors for the benefit

of selection.

Departing from the prevailing literature, we treat the unit selection problem using the

structural causal model (SCM) [Pea09], which accounts for the counterfactual nature of

the desired behavior, and in which a large body of theoretical work has been established

[GP98, Hal00].

The unit selection problem entails two subproblems, evaluation and search. The evalua-

tion problem is to devise an estimable objective function that, if optimized over the set of

population-specific characteristics C, would ensure an optimal counterfactual behavior for

the selected group. The search task is to devise a search algorithm to select individuals

(or population-specific characteristics) based on both their observed characteristics and the

objective function devised above. This task is nontrivial due to the large number of char-

acteristics available for each individual and the sparsity of data available in each cell (of

characteristics).

Herein, we focus on the evaluation subproblem. In Chapter 4, we define a counterfactual

expression that serves as the objective function for selection. This expression consists of

probabilities of causation, such as the probability of necessity and sufficiency (PNS), which

was studied in [Pea99, TP00, KC11].

Next, we provide two conditions under which the prevailing heuristic used in the literature
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can become optimal. Our analysis shows that a selection criterion based on the A/B test

heuristic can be made optimal (by fine tuning) under the condition of monotonicity or

gain equality, which is defined formally in Chapter 5.2.

In general cases, however, counterfactual expressions are not identifiable. In Chapter 5.1,

we derive tight bounds for this expression based on experimental and observational data and

use the midpoint of the bounds as a selection criterion. Finally, through simulations, we

demonstrate that sets of individuals selected by the derived criterion yield greater overall

benefit than those selected using standard methods.

Recently, Mueller, Li, and Pearl [MLP21] proposed that information on covariates along

with a causal structure could narrow the bounds of PNS. A similar technique could apply to

our objective function. We then provide three graphical conditions under which the selection

criterion could be improved.

3



CHAPTER 2

Motivating and Related Works

2.1 Motivating Example

Consider a mobile carrier that wants to identify customers likely to discontinue their services

within the next quarter based on customer characteristics. The company management has

access to user data, such as income, age, usage, and monthly payments. The carrier will then

offer these customers a special renewal deal to dissuade them from discontinuing their services

and to increase their service renewal rate. These offers provide considerable discounts to the

customers, and the management prefers that the offers be made only to those customers who

would continue their service if and only if they receive the offer. Note that some customers

may discontinue service if and only if offered the renewal discount. Reasons for this could

include being reminded that they are paying for a service they no longer want, feeling that

discounts cheapen the service, reflecting on how much they are paying, being turned off by

the promotional wording, or being annoyed by the process to claim the discount.

A typical aim is to select a subset of individuals with population-specific characteristics

(we call it population-specific because the characteristics are only for categorizing individ-

uals) c (a concrete instantiation of population-specific characteristics) that maximizes the

percentage of compliers and minimizes that of defiers, always-takers, and never-takers among

the selected customers (compliers are the customers who would continue the service if they

received special offers and would not otherwise; defiers are the customers who would continue

the service if they received no special offers and would not otherwise; always-takers are the
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customers who would continue the service whether or not they received special offers; never-

takers are the customers who would not continue the service whether or not they received

special offers).

2.2 Related Works

There are two main approaches to the unit selection problem as extensively described in

books, articles, and software packages.

The first approach relies on A/B testing and statistical analysis [SNO98, BCS01, Win01,

RZS06, LR14]. Specifically, an experiment is conducted on a randomized controlled group

of individuals. Then, the desired individuals (with concrete instantiation c of population-

specific characteristics) are identified by maximizing the difference in the probability P (postive

response|c, encouraged)− P (positive response|c, not encouraged). However, the counterfac-

tual nature of the desired behavior is not handled properly. A linear combination of P (postive

response|c, encouraged) and P (positive response|c, not encouraged) does not maximize the

percentage of compliers and minimize that of defiers, always-takers, and never-takers among

the selected individuals. This is because the first term comprises compliers and always-takers

and the second term comprises always-takers and defiers.

The second approach is based on machine-learning. Hung [HYW06] summarized and

compared the most popular methods for churn prediction, including the regression, decision

tree, and neural network methods. Using these approaches, a model is constructed using

historical data to identify which customers are likely to discontinue their services. Then, the

carrier offers a special renewal deal to the customers identified by the model as most likely

to churn. However, an analysis of the set of customers who have accepted the special deal

(hence, not churned) does not immediately reveal the customers who would have continued

their services anyway and the customers who renewed their services only because of the

special deal. Although another A/B test can be conducted, it leads to the same scenario as

5



that encountered when employing the above statistical approach.

The approach employed here differs fundamentally from those of previous studies by

appealing to SCM, which is more robust and less prone to model misspecifications. First,

the SCM model makes no assumptions about the data-generating process. Second, in most

cases, experimental data can be evaluated in terms of observational data when a causal

diagram is available. In such a case, observational data alone are sufficient for this approach.

Third, and most importantly, the SCM properly accounts for the counterfactual nature of

the desired behavior.

6



CHAPTER 3

Preliminaries

In this chapter, we review the counterfactual logic [GP98, Hal00, Pea09] associated with

Pearl’s SCM, which is used in the rest of this paper. Readers who are familiar with SCM

may want to skip this chapter.

3.1 Do Calculus

We first review the do calculus, back-door and front-door criteria, and their associated

adjustment formulas [Pea93, Pea95]. We use the causal diagrams in [Pea95, SGS00, Pea09,

KF09].

The critical problem in causal analysis is to predict the results of interventions, such as

those resulting from medical treatments or social programs, and this problem is denoted by

do(X = x) [Pea95]. We distinguish between cases in which a variable X takes a value x

naturally and cases in which X = x is fixed by denoting the latter as do(X = x). Therefore,

P (Y = y|X = x) is the probability that Y = y is conditional on the observation of X = x,

and P (Y = y|do(X = x)) is the probability that Y = y when we intervene to ensure that

X = x. P (Y = y|do(X = x)) can be interpreted as experimental data.

A key concept of a causal diagram is d-separation [Pea14].

Definition 1 (d-separation). In a causal diagram G, a path p is blocked by a set of nodes Z

if and only if

1. p contains a chain of nodes A −→ B −→ C or a fork A←− B −→ C such that the middle
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node B is in Z (i.e., B is conditioned on), or

2. p contains a collider A −→ B ←− C such that the collision node B is not in Z, and no

descendant of B is in Z.

If Z blocks every path between two nodes X and Y , then X and Y are d-separated conditional

on Z, and thus are independent conditional on Z, denoted as X ⊥⊥ Y | Z.

With the concept of d-separation in a causal diagram, Pearl proposed the back-door and

front-door criteria as follows:

Definition 2 (Back-door criterion). Given an ordered pair of variables (X, Y ) in a directed

acyclic graph G, a set of variables Z satisfies the back-door criterion relative to (X, Y ), if

no node in Z is a descendant of X, and Z blocks every path between X and Y that contains

an arrow into X.

If a set of variables Z satisfies the back-door criterion for X and Y , the causal effects of

X on Y are given by the adjustment formula:

P (y|do(x)) =
∑
z

P (y|x, z)P (z). (3.1)

Definition 3 (Front-door criterion). A set of variables Z is said to satisfy the front-door

criterion relative to an ordered pair of variables (X, Y ) if:

• Z intercepts all directed paths from X to Y ;

• there is no back-door path from X to Z; and

• all back-door paths from Z to Y are blocked by X.

If a set of variables Z satisfies the front-door criterion for X and Y , and P (x, Z) > 0,

then the causal effects of X on Y are given by the adjustment formula:

P (y|do(x)) =
∑
z

P (z|x)
∑
x′

P (y|x′, z)P (x′). (3.2)
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The back-door and front-door criteria are powerful tools for estimating causal effects;

however, causal effects are not identifiable if the set of adjustment variables Z is not fully

observable. [TP00] provided the naivest bounds for causal effects (Equation 3.3), regardless

of the causal diagram.

P (x, y) ≤ P (y|do(x)) ≤ 1− P (x, y′). (3.3)

3.2 Counterfactual Logic

The basic counterfactual statement associated with model M is denoted by Yx(u) = y, and

stands for: “Y would be y had X been x in unit U = u.” Let Mx denote a modified version

of M , with the equation(s) of set X replaced by X = x (i.e., all edges that go into X have

been removed). Then, the formal definition of the counterfactual Yx(u) is as follows:

Yx(u) , YMx(u). (3.4)

In words, the counterfactual Yx(u) in model M is defined as the solution of Y in the

“modified” submodel Mx. In [GP98, Hal00], a complete axiomatization of structural coun-

terfactuals embracing both recursive and nonrecursive models is given.

Equation 3.4 implies that the distribution P (u) induces a well-defined probability for

the counterfactual event Yx = y, written as P (Yx = y), which equals the probability that

a random unit u would satisfy the equation Yx(u) = y. Therefore, the probability of the

event “Y would be y had X been x,” P (Yx = y), is well-defined and P (Yx = y) = P (Y =

y|do(X = x)). P (Y = y|do(X = x)) can be interpreted as experimental data [Pea95]. With

the same reasoning, the SCM assigns a probability to every counterfactual or combination

of counterfactuals defined using the variables in SCM.

Using the above formal language for the counterfactual expression, all events involving a

counterfactual scenario can be well defined because the event represented by the subscript

does not actually occur. For example, P (Yx = y|X = x′) defines the probability of the event

9



“Y would be y had X been x if we observed X = x′” (note that x and x′ is a counterfactual

scenario), P (Yx = y, Yx′ = y′) defines the probability of the event “Y would be y had X

been x and Y would be y′ had X been x′” (note that x and x′ is a counterfactual scenario,

as well as y and y′), and P (Yx = y|X = x′, Y = y′) defines the probability of the event “Y

would be y had X been x, if we observed X = x′ and Y = y′.”

For simplicity, in the rest of the paper, we use y to denote the event Y = y, y′ for the

event Y = y′, x for the event X = x, x′ for the event X = x′, yx for the event Yx = y, yx′ for

the event Yx′ = y, y′x for the event Yx = y′, and y′x′ for the event Yx′ = y′.
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CHAPTER 4

Counterfactual Formulation of Unit Selection Problem

Our objective is to find a set of population-specific characteristics c that maximizes the

benefit associated with the resulting mixture of compliers, defiers, always-takers, and never-

takers. Suppose the benefit of selecting a complier is β, the benefit of selecting an always-

taker is γ, the benefit of selecting a never-taker is θ, and the benefit of selecting a defier is

δ. We call (β, γ, θ, δ) the benefit vector. Our objective, then, is to find c that maximizes the

following expression:

argmaxc βP (complier|c) + γP (always-taker|c) + θP (never-taker|c) + δP (defier|c).

Let A = a denote that encouragement is received and A = a′ denote that encouragement is

not received, and R = r denote a positive response and R = r′ denote a negative response.

Then, the objective function that maximizes the benefit on average of the selected individuals

(the benefit function) can be formulated as follows:

argmaxc βP (ra, r
′
a′|c) + γP (ra, ra′ |c) + θP (r′a, r

′
a′ |c) + δP (r′a, ra′ |c). (4.1)

Most importantly, this objective function can be bounded using observational and exper-

imental data, as demonstrated in the following chapters.
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CHAPTER 5

Selection Criterion without Causal Diagram

In this chapter, we derive an explicit solution to the unit selection problem using the benefit

function with observational and experimental data.

5.1 General Selection Criterion

The first theorem (Theorem 4) is the most general theorem for evaluating the benefit func-

tion, which the only requirement is that population-specific characteristics C do not contain

any descendant of a encouragement X.

Theorem 4. The benefit function f(c) = βP (yx, y
′
x′|c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′|c) +

δP (yx′ , y
′
x|c) is bounded as follows:

max{p1, p2, p3, p4} ≤ f ≤ min{p5, p6, p7, p8} if σ < 0,

max{p5, p6, p7, p8} ≤ f ≤ min{p1, p2, p3, p4} if σ > 0,
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where σ, p1, ..., p8 are given by,

σ = β − γ − θ + δ,

p1 = (β − θ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

p2 = γP (yx|c) + δP (y′x|c) + (β − γ)P (y′x′|c),

p3 = (γ − δ)P (yx|c) + δP (yx′|c) + θP (y′x′|c) + (β − γ − θ + δ)[P (y, x|c) + P (y′, x′|c)],

p4 = (β − θ)P (yx|c)− (β − γ − θ)P (yx′ |c) + θP (y′x′ |c) +

+ (β − γ − θ + δ)[P (y, x′|c) + P (y′, x|c)],

p5 = (γ − δ)P (yx|c) + δP (yx′|c) + θP (y′x′|c),

p6 = (β − θ)P (yx|c)− (β − γ − θ)P (yx′ |c) + θP (y′x′ |c),

p7 = (γ − δ)P (yx|c)− (β − γ − θ)P (yx′|c) + θP (y′x′|c) + (β − γ − θ + δ)P (y|c),

p8 = (β − θ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c)− (β − γ − θ + δ)P (y|c).

Notably, the population-specific characteristics C cannot contain any descendant of X

because if X is set to x and C contains a descendant of X, then C could be altered and

P (yx|c) would be another unmeasurable counterfactual term.

The midpoint of the bounds in Theorem 4 is always used as the selection criterion.

However, the lower (upper) bound can also be used, which can be interpreted as the average

minimal (maximal) benefit gained from selecting one individual from the group.

5.2 Identifiability under Additional Assumptions

Herein, we show that the benefit function in Equation 4.1 can be evaluated precisely from

pure experimental data under either of the conditions of monotonicity (Definition 5) and

gain equality (Definition 7). Moreover, both conditions yield the same result.

13



5.2.1 Monotonicity

Monotonicity expresses the assumption that a change from X = false to X = true cannot,

under any circumstance, change Y from true to false [TP00]. In epidemiology, this assump-

tion is often expressed as “no prevention,” that is, no individual in the population can be

helped by exposure to the risk factor.

Definition 5. (Monotonicity) A variable Y is said to be monotonic relative to variable X

in a causal model M iff

y′x ∧ yx′ = false.

Theorem 6. Given that Y is monotonic relative to X, the benefit function f(c) is given by

f(c)

= βP (yx, y
′
x′|c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (yx′ , y

′
x|c)

= (β − θ)P (yx|c) + (γ − β)P (yx′|c) + θ.

5.2.2 Gain Equality

Gain equality states that the benefit of selecting a complier and a defier is the same as the

benefit of selecting an always-taker and a never-taker (i.e., β + δ = γ + θ).

Definition 7. (Gain equality) The benefit of selecting a complier (β), an always-taker (γ),

a never-taker(θ), and a defier (δ) (benefit vector) is said to satisfy gain equality iff

β + δ = γ + θ.
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Theorem 8. Given that the benefit vector (β, γ, θ, δ) satisfies the gain equality, the benefit

function f(c) is given by

f(c)

= βP (yx, y
′
x′|c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (yx′ , y

′
x|c)

= (β − θ)P (yx|c) + (γ − β)P (yx′|c) + θ.

Note that for the special case where the perceived benefit is proportional to the final

number of customers in the system, the A/B heuristic maximizes the expression (H −D)×

P (yx|c) − H × P (yx′ |c), where H is the unit profit per remaining customer and D is the

discount offered. This case corresponds to the following parameters in our notation β =

H −D, γ = −D, θ = 0, δ = −H, therefore, Theorem 8 implies an identical benefict function

f = (H − D) × P (yx|c) − H × P (yx′|c). In other words, the A/B heuristic is optimal for

this special case. For slightly more elaborate combinations of (β, γ, θ, δ), however, Theorem

8 dictates a benefit function that is not captured by A/B heuristics.

Without either monotonicity or gain equality, we can only obtain bounds for the benefit

function. However, in the next section, we demonstrate (by simulation) that taking the

midpoint of the bounds as a selection criterion greatly improves the selection of individuals.

5.3 Examples

In this section, we present two simulated examples. One demonstrates that the midpoint

of the bounds of the benefit function given by Theorem 4 are adequate for selecting the

desired individuals, and the other demonstrates the case that satisfies the gain equality.

In addition, we illustrate that, individuals selected using the traditional A/B-test-based

statistical approach differ from those selected using the proposed approach, and they have

a lower benefit on average.
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5.3.1 Example in Churn Management

First, let us consider the motivating example in Chapter 2. Let A = a denote the event

that a customer receives the special deal, A = a′ denote the event that a customer receives

no special deal, R = r denote the event that a customer continues the services, R = r′

denote the event that a customer discontinues the services, and C (a set of variables) denote

the population-specific characteristics of a customer (e.g., income, age, usage, and monthly

payments). Figure 5.1 depicts the customer selection model.

The management estimates that the benefit of selecting a complier is $100 as the profit is

$140 but the discount is $40, the benefit of selecting an always-taker is −$60 as the customer

would continue the service anyway (so the company loses the value of the discount and an

extra cost $20 because the always-taker may require additional discounts in the future), the

benefit of selecting a never-taker is $0 as the cost of issuing the discount is negligible, and

the benefit of selecting a defier is −$140 as we lose a customer due to the special offer.

C

A R

Figure 5.1: Causal diagram for the customer selection model.

Suppose they have two groups of customers, group 1 with characteristics c1 and group 2

with characteristics c2, and they have prior information that P (r|c1) = 0.7 and P (r|c2) = 0.3.

They randomly select 700 customers from each group and offer the special renewal deal to

350 customers in each group. Table 5.1 summarizes the results.

Let us compare three selection strategies, each using a different objective function. The

first is based on a simple A/B test heuristic, that is

Obj1 = argmaxcf1(c)

= argmaxc100× P (r|c, do(a))− 100× P (r|c, do(a′)).
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Table 5.1: Results of a simulated study for churn management.

do(a) do(a′)

Group 1
r 262 175

r′ 88 175

Group 2
r 87 52

r′ 263 298

Table 5.2: Results of three objective functions based on the data from the simulated study.

f1 f2 f3

Group 1 $25 $4.86 -$2.63

Group 2 $10 $4.06 $3.09

The second is based on a weighted A/B test heuristic approach, where

Obj2 = argmaxcf2(c)

= argmaxc100× P (r|c, do(a))− 140× P (r|c, do(a′)).

The third is based on the analysis of this study, where Equation 4.1 yields

Obj3 = argmaxcf3(c)

= argmaxc100× P (ra, r
′
a′ |c) + (−60)× P (ra, ra′ |c) +

+0× P (r′a, r
′
a′|c) + (−140)× P (r′a, ra′|c).

Then, we enter the data in Table 5.1 into the objective functions of groups 1 and 2. Table

5.2 summarizes the results (note that the midpoint of the bounds is used as the selection

criterion for Obj3 and P (ra|c) = P (r|c, do(a))). The proposed approach selected group 2;

however, the first and second objective functions selected group 1 as the desired individuals.

An informer with access to the fractions of compliers, always-takers, never-takers, and

defiers in both groups (as summarized in Table 5.3, and these numbers are never known
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Table 5.3: Percentages of four response types in each group for churn management.

Complier Always-taker Never-taker Defier

Group 1 30% 45% 20% 5%

Group 2 20% 5% 65% 10%

in reality) would easily conclude that the A/B-test-based approach had reached a wrong

conclusion. In detail, the expected benefit of selecting an individual in group 1 is 100 ×

0.3− 60× 0.45 + 0× 0.2− 140× 0.05 = −$4, which means offering the special deal to group

1 would reduce the profit. The expected benefit of selecting an individual in group 2 is

100× 0.2− 60× 0.05 + 0× 0.65− 140× 0.1 =$3. Thus, the management should only offer

the special deal to group 2.

Furthermore, Figure 5.2 depicts the benefit of group 1 from objective functions as a

function of δ (β, γ, and θ are fixed), with each curve representing an objective function. The

first two objective functions are the most common heuristics in the A/B-test-based approach.

The third objective function is the real expected benefit. The last objective function is the

midpoint of the bounds for the proposed objective function. We see that the midpoint of

the bounds for the proposed objective function is the closest to the real benefit.

5.3.2 Example in Online Advertisement

5.3.2.1 Task 1

The management of a search engine company wants to decide whether it is worth sending

an advertisement to a group of users, so as to maximize overall satisfaction. The manage-

ment estimates that the satisfaction of recommending an advertisement to a complier is 2

degrees, as users would gain new information that they needed, that of recommending the

advertisement to an always-taker is 1 degree, as users got a shortcut to the advertisement,

that of recommending the advertisement to a never-taker is −1 degrees, as users got unnec-
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Figure 5.2: Benefit calculated from objective functions versus δ of group 1 in the churn

management model.
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Table 5.4: Results of a simulated study for advertisement recommendation.

do(a) do(a′)

r 140 175

r′ 210 175

essary information, and that of recommending the advertisement to a defier is −2 degrees,

as the recommendation would prevent users to get needed information (compliers are the

users who would click on the advertisement if the advertisement is recommended and would

not if otherwise; always-takers are the users who would click on the advertisement whether

or not the advertisement is recommended; never-takers are the users who would not click on

the advertisement whether or not the advertisement is recommended; defiers are the users

who would click on the advertisement if the advertisement is not recommended and would

not if otherwise).

Let A = a denote the event that the given advertisement is recommended, A = a′ denote

the event that the given advertisement is not recommended, R = r denote the event that a

user clicks on the advertisement, and R = r′ denote the event that a user does not click on

the advertisement.

Since no other data about the users are available, the management decides to conduct

a randomized experiment and measure the degree to which the recommendation increases

the users’ click rate. The study involved 700 randomly selected users of whom 350 were

recommended the advertisement. The results are listed in Table 5.4.

A simple A/B test heuristic approach concluded that recommending the advertisement

to this group of users would increase the user satisfaction because

(satisfaction with recommendation)×P (r|do(a))−(satisfaction without recommendation)×

P (r|do(a′)) = 2× 0.4− 1× 0.5 = 0.3.

However, an informer with access to the fractions of compliers, always-takers, never-
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Table 5.5: Percentages of four response types for advertisement recommendation.

Complier Always-taker Never-taker Defier

30% 10% 20% 40%

takers, and defiers in the group (as summarized in Table 5.5, note that we will never know

these numbers in reality because there is no monotonicity) claimed that the simple A/B

test approach had reached the wrong conclusion. According to the company’s assessment,

the expected satisfaction per customer for recommending the advertisement to this group

is 2 × 0.3 + 1 × 0.1 − 1 × 0.2 − 2 × 0.4 = −0.3. This analysis shows that recommending

the advertisement to this group of users would reduce the satisfaction. This is because only

30% of users are compliers and 10% are always-takers; therefore, a lot of advertisements are

recommended to never-takers and defiers, which makes the recommendation reduce satisfac-

tion.

In contrast, considering the benefit vector (2, 1,−1,−2), we see that it satisfies the gain

equality, which means that we can obtain the true average satisfaction even though we cannot

determine the fraction of individuals in each response type. Accordingly, applying the benefit

function of Theorem 8, we obtain that the expected satisfaction per user of recommending the

advertisement to the group is 3×P (r|do(a))−1×P (r|do(a′))−1 = 3×0.4−1×0.5−1 = −0.3,

which is precisely the satisfaction computed knowing the type distribution. This implies that

the company should NOT recommend the advertisement to the group.

5.3.2.2 Task 2

Here, we consider two groups, c1 and c2. A study by the same company was conducted with

1400 randomly selected users (700 in each group), where the advertisement was recommended

to 700 of those users (350 in each group). Table 5.6 summarizes the results.

A simple A/B test heuristic approach concluded that recommending the advertisement

21



Table 5.6: Results of a simulated study for advertisement recommendation with two groups.

do(a) do(a′)

Group 1
r 140 88

r′ 210 262

Group 2
r 192 210

r′ 158 140

to both group of customers would increase the satisfaction because

(satisfaction with recommendation)×P (r|do(a), c1)−(satisfaction without recommendation)

× P (r|do(a′), c1) = 2 × 0.4 − 1 × 0.25 = 0.55, and (satisfaction with recommendation) ×

P (r|do(a), c2)−(satisfaction without recommendation)×P (r|do(a′), c2) = 2×0.55−1×0.6 =

0.5.

However, an informer with access to the fractions of compliers, always-takers, never-

takers, and defiers in both groups (as summarized in Table 5.7, note that we will never know

these numbers in reality) claimed that the simple A/B test heuristic approach had reached

a wrong conclusion. In detail, the expected satisfaction per user for recommending the

advertisement to group 1 is 2×0.2+1×0.2−1×0.55−2×0.05 = −0.05, which implies that

recommending the advertisement to this group of users would reduce the satisfaction. The

expected satisfaction per user for recommending the advertisement to group 2 is 2×0.3+1×

0.25− 1× 0.1− 2× 0.35 = 0.05, which implies that recommending the advertisement to this

group of users would increase the satisfaction. Thus, the company should only recommend

the advertisement to group 2.

In contrast, considering the benefit vector (2, 1,−1,−2), we see that it satisfies the gain

equality, which implies that we can obtain the true average satisfaction even though we

cannot determine the fraction of individuals in each response type. Accordingly, applying

the benefit function of Theorem 8, we obtain that the expected satisfaction per user for

recommending the advertisement to the group 1 is 3×P (r|do(a), c1)−1×P (r|do(a′), c1)−1 =
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Table 5.7: Percentages of four response types in each group for advertisement recommenda-

tion.

Complier Always-taker Never-taker Defier

Group 1 20% 20% 55% 5%

Group 2 30% 25% 10% 35%

3× 0.4− 1× 0.25− 1 = −0.05, and the expected satisfaction per user for recommending the

advertisement to the group 2 is 3× P (y|do(x), c2)− 1× P (y|do(x′), c2)− 1 = 3× 0.55− 1×

0.6 − 1 = 0.05, which is precisely the satisfaction computed knowing the type distribution.

This implies that the company should NOT recommend the advertisement to group 1.

5.4 Discussion

In this section, we discuss additional features of the counterfactual-logic-based approach.

First, as discussed in Chapter 4, the objective function properly accounts for the counter-

factual nature of the desired behavior. Theorem 8 provides theoretical assurance that the

A/B-test-based approach can be made optimal under certain conditions. However, the sec-

ond simulated experimental example demonstrates that this approach selected individuals

with a lower expected benefit when the cost-benefit structure is ignored. Although the pro-

posed objective function is, in general, not identifiable and cannot be used in selection, the

previous section shows that the midpoint of the tight bounds in Theorem 4 is adequate for

selecting the desired individuals.

Second, considering a causal diagram and a set of observed variables that satisfies the

back-door or front-door criterion (Definitions 2 and 3), Theorem 4 can be applied using

purely observational data via the adjustment formula (Equations 3.1 and 3.2).

Third, the proposed approach could be used to evaluate machine learning models as well

as to generate labels for machine learning models. The accuracy of such machine learning
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models would be high because they consider counterfactual scenarios.

Fourth, Theorem 8 provides a way for identifying the weight coefficients in the extensively

used statistical approach when the additional assumption is satisfied.

Finally, the proposed approach is applicable universally to any application in which the

manager can assess the benefits associated with selecting a unit in each of the four response

types of units (benefit vector). Theorem 4 ensures that for any benefit vector input, we

obtain the desired output. The benefit vector input is not determined by the model but by

the manager who can use the algorithm for any combination of inputs.
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CHAPTER 6

Selection Criterion with Graphical Conditions

The unit selection problem discussed in Chapter 5 does not require the information of co-

variates, and the variables C in Theorems 4 and 8 are only population-specific variables

and categorize populations. Therefore, Theorems 4 and 8 can be employed in any appli-

cation, provided the population-specific variables C contain no descendant of X. Recently,

Mueller, Li, and Pearl [MLP21] proposed that the information of covariates along with a

causal structure could narrow the bounds of PNS. A similar technique could apply to the

benefit function.

6.1 Motivating Example

Consider that a carwash company wants to offer a discount to Google employees. The

manager of the company wants to maximize the total profit, including the nonimmediate

profit. The management estimates that the benefit of selecting a complier is $100 as the profit

is $140 but the discount is $40, that of selecting an always-taker is −$60 as the customer

would use the service anyway (so the company loses the value of the discount and an extra

cost $20 because the always-taker may require additional discounts in the future), that of

selecting a never-taker is $0 as the cost of issuing the discount is negligible, and that of

selecting a defier is −$140 as a customer is lost due to the discount. The manager has both

experimental and observational data from the Google company associated with the age of

customers. The manager wants to know the average profit if they offer the discount to the

Google employees.
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Let A = a denote the event that a customer receives the discount, A = a′ denote the

event that a customer receives no discount, R = r denote the event that a customer uses the

services, R = r′ denote the event that a customer does not use the services, C = c denote

a Google customer, C = c′ denote a Facebook customer, Z = z denote a younger costumer

(age below or equal to 50), and Z = z′ denote a older costumer (age above 50). The model

is as shown in Figure 6.1.

Z

C

A R

Figure 6.1: Company selection model.

The manager collected the data listed in Tables 6.1 and 6.2 from Google, and the benefit

vector is (100,−60, 0,−140). The benefit function can easily be applied to Equation 4.1 as

follows:

argmaxc 100P (ra, r
′
a′ |c)− 60P (ra, ra′ |c) + 0P (r′a, r

′
a′ |c)− 140P (r′a, ra′ |c). (6.1)

From Theorem 4, we enter the data in Tables 6.1 and 6.2 into the benefit function. The

bounds of the benefit function are [−0.377, 2.892], and the midpoint is 1.635. It suggests

that the carwash company would gain $1.635 profit from each individual from Google if they

offer Google employees the discount. Besides, the majority of the bounded area is positive,

which provided more confidence that the conclusion is correct. However, Theorem 4 only

uses the overall data in Tables 6.1 and 6.2. We will illustrate later that considering the

covariate (age), the bounds of the benefit function would reduce to [−0.122,−0.046], and

the midpoint is −0.084. It suggests that the carwash company would lose $0.084 profit from

each individual from Google if they offer Google employees the discount. Notably, the upper

bound (−0.046) is negative, which means that the company must lose the profit.
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Table 6.1: Experimental data collected by the carwash company.

Discount No Discount

Young 44.6% used the service 4.5% used the service

Elder 99.5% used the service 72.0% used the service

Overall 83.7% used the service 52.5% used the service

Table 6.2: Observational data collected by the carwash company.

Discount No Discount

Young
90 out of 152

used the service (59.2%)

9 out of 50

used the service (18%)

Elder
157 out of 159

used the service (98.7%)

239 out of 339

used the service (70.5%)

Overall
247 out of 311

used the service (79.4%)

248 out of 389

used the service (63.8%)
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6.2 Selection Criteria with Causal Diagrams

6.2.1 Causal Diagram with Nondescendant Covariates

Theorem 9 provides bounds for the benefit function when a set Z of variables can be mea-

sured, which satisfy only one condition: both population-specific variables C and covariates

Z contain no descendant of X. This condition is important because if X is set to x and

C ∪ Z contains a descendant of X, then C ∪ Z could be altered and P (yx|z, c) would be

another unmeasurable counterfactual term. If the descendant is independent of Yx, then

P (yx|z, c) would be measurable, but the descendant would not contribute to any narrowing

of the bounds. These bounds are always contained within the bounds of the benefit function

in Theorem 4.

Theorem 9. Given a causal diagram G and distribution compatible with G, let Z ∪ C be a

set of variables that does not contain any descendant of X in G, then the benefit function

f(c) = βP (yx, y
′
x′|c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (yx′ , y

′
x|c) is bounded as follows:

W + σU ≤ f ≤ W + σL if σ < 0,

W + σL ≤ f ≤ W + σU if σ > 0,
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where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′|c) + θP (y′x′|c),

L =
∑
z

max



0,

P (yx|z, c)− P (yx′|z, c),

P (y|z, c)− P (yx′|z, c),

P (yx|z, c)− P (y|z, c)


× P (z|c),

U =
∑
z

min



P (yx|z, c),

P (y′x′|z, c),

P (y, x|z, c) + P (y′, x′|z, c),

P (yx|z, c)− P (yx′ |z, c) + P (y, x′|z, c) + P (y′, x|z, c)


× P (z|c).

Notably, C can be interpreted as the population-specific variables, and Z are the contri-

butions in each population.

Now, we consider the motivating example at the beginning of this chapter. From Theorem

9, we enter the data in Tables 6.1 and 6.2 into the benefit function, the bounds of the benefit

function is [−0.122,−0.046], where the midpoint is −0.084. This suggests that the carwash

company would lose $0.084 profit from each individual from Google if they offer Google

employees the discount. Notably, the upper bound (−0.046) is negative, which means that

the carwash company must lose the profit.

6.2.2 Causal Diagram with Mediators

6.2.2.1 Partial Mediators

In Figure 6.2, Z is a descendant of X; thus, we cannot use Theorem 9. However, the absence

of confounders between Z and Y and between X and Y permits us to bound the benefit

function as follows:
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Z

X Y

C

Figure 6.2: Mediator Z with direct effects.

Theorem 10. Given a causal diagram G and distribution compatible with G, let Z be a set of

variables such that ∀x, x′ ∈ X : x 6= x′, (Yx ⊥⊥ X ∪Zx′ | Zx, C) in G, and C does not contain

any descendant of X in G, then the benefit function f(c) = βP (yx, y
′
x′|c) + γP (yx, yx′|c) +

θP (y′x, y
′
x′ |c) + δP (yx′ , y

′
x|c) is bounded as follows:

W + σU ≤ f ≤ W + σL if σ < 0,

W + σL ≤ f ≤ W + σU if σ > 0,

where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max



0,

P (yx|c)− P (yx′ |c),

P (y|c)− P (yx′ |c),

P (yx|c)− P (y|c)


,

U = min



P (yx|c),

P (y′x′|c),

P (y, x|c) + P (y′, x′|c),

P (yx|c)− P (yx′|c) + P (y, x′|c) + P (y′, x|c),∑
z

∑
z′ min{P (y|z, x, c), P (y′|z′, x′, c)} ×min{P (zx|c), P (z′x′|c)}


.

Note that although this lower bound is unchanged from that in Theorem 4, the upper

bound contains a vital additional argument to the min function. This new term can signif-

icantly reduce the upper bound. The rest of the terms are included because sometimes the
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bounds of Theorem 4 are superior. The following theorem has the same quality.

6.2.2.2 Pure Mediators

Figure 6.3 is a special case of Figure 6.2, in which X has no direct effects on Y . The resulting

bounds for the benefit function are as follows:

Theorem 11. Given a causal diagram G in Figure 6.3 and distribution compatible with G,

and C does not contain any descendant of X, then the benefit function f(c) = βP (yx, y
′
x′ |c)+

γP (yx, yx′ |c) + θP (y′x, y
′
x′|c) + δP (yx′ , y

′
x|c) is bounded as follows:

C

Z
X Y

Figure 6.3: Mediators Z with no direct effects.

W + σU ≤ f ≤ W + σL if σ < 0,

W + σL ≤ f ≤ W + σU if σ > 0,
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where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′|c) + θP (y′x′|c),

L = max



0,

P (yx|c)− P (yx′|c),

P (y|c)− P (yx′|c),

P (yx|c)− P (y|c)


,

U = min



P (yx|c),

P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),

P (yx|c)− P (yx′ |c) + P (y, x′|c) + P (y′, x|c),

ΣzΣz′ 6=z min{P (y|z, c), P (y′|z′, c)} ×min{P (z|x, c), P (z′|x′, c)}


.

The core terms for Theorem 11 added to the upper bound notably only require observa-

tional data.

6.3 Simulation Study

In this section, we illustrate that the bounds of the benefit function are improved by Theorem

9 in a simple causal diagram, as shown in Figure 6.4.

Z

C
X Y

Figure 6.4: Causal diagram such that C ∪ Z is not a descendant of X.

We randomly generated 100000 sample distributions (observational data and experimen-

tal data) compatible with the causal diagram by Algorithm 1 (X, Y, Z are binary). The
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algorithm ensures that the experimental data satisfies the general relation with the obser-

vational data in Equation 3.3. We set the benefit vector (β, γ, θ, δ) to be the most common

one (1,−1,−1,−1) with the aim to encourage compliers while avoiding always-takers, never-

takers, and defiers. For sample distribution i, let [ai, bi] be the bounds with the causal dia-

gram from Theorem 9 and [ci, di] be the bounds without the causal diagram from Theorem

4. We summarized the following criteria:

• Average increased lower bound :
∑

(ai−ci)
100000

;

• Average decreased upper bound :
∑

(di−bi)
100000

;

• Average gap without the causal diagram :
∑

(di−ci)
100000

;

• Average gap with the causal diagram :
∑

(bi−ai)
100000

;

• Number of sample distributions in which the decision was flipped :
∑
ei where, ei = 1

if (ai + bi)× (ci + di) < 0 and ei = 0 otherwise;

• Number of sample distributions in which the bounds with the causal diagram from

Theorem 9 were narrower :
∑
fi where, fi = 1 if (ai 6= ci) or (bi 6= di) and fi = 0

otherwise.

The results are summarized in Table 6.3. We then randomly picked 100 out of 100000

sample distributions to draw the graph of bounds with and without the causal diagram. The

results are shown in Figure 6.5.
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Algorithm 1: Generate sample distributions compatible with the causal diagrams

6.4 and 7.1.
input : n, number of sample distributions needed.

output: n sample distributions (observational data and experimental data).

begin

for i← 1 to n do

t1 ← random-uniform(0,1)×1000;

t2 ← random-uniform(0,1)×(1000− t1);

t3 ← random-uniform(0,1)×(1000− t1 − t2);

t4 ← 1000− t1 − t2 − t3;

o1 ← random-uniform(0,1)×t1;

o2 ← random-uniform(0,1)×t2;

o3 ← random-uniform(0,1)×t3;

o4 ← random-uniform(0,1)×t4;

P (y|do(x), z)[i] ← random-uniform(0,1)× t2
t1+t2

+ o1
t1+t2

;

P (y|do(x′), z)[i] ← random-uniform(0,1)× t1
t1+t2

+ o2
t1+t2

;

P (y|do(x), z′)[i] ← random-uniform(0,1)× t4
t3+t4

+ o3
t3+t4

;

P (y|do(x′), z′)[i] ← random-uniform(0,1)× t3
t3+t4

+ o4
t3+t4

;

P (x, y, z)[i] ← o1/1000;

P (x, y, z′)[i] ← o3/1000;

P (x, y′, z)[i] ← (t1 − o1)/1000;

P (x, y′, z′)[i] ← (t3 − o3)/1000;

P (x′, y, z)[i] ← o2/1000;

P (x′, y, z′)[i] ← o4/1000;

P (x′, y′, z)[i] ← (t2 − o2)/1000;

P (x′, y′, z′)[i] ← (t4 − o4)/1000;

end

end
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Table 6.3: Simulation results of 100000 sample distributions compatible with the causal

diagram in Figure 6.4.

Average

increased

lower

bound

Average

decreased

upper

bound

Average

gap by

Theorem 4

Average

gap by

Theorem 9

Decision

flipped

Bounds

narrower

0.0494 0.0496 0.4342 0.3352 920 93688

From Figure 6.5, we can see that the bounds of the benefit function are improved in most

of the samples with the causal diagram. We can see in Table 6.3 that the average gap without

the causal diagram is 0.4342, while the average gap with the causal diagram is 0.3352, and

both the lower bound and upper bound are improved by roughly 0.05. The decisions flipped

(i.e., the results of Theorem 4 suggest gain profit, while the results of Theorem 9 suggest

lose profit, or the reverse) are 920/100000 ≈ 1% of the samples, which means that at least

1% of the applications would have the wrong decision if we do not consider covariates. The

bounds with the causal diagram are actually narrower in 93688/100000 ≈ 93.7% of the

samples. Therefore, if a set of Z is available that satisfies Theorem 9, the bounds of the

benefit function are more useful as the gap is narrower.
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Figure 6.5: Bounds of the benefit function for 100 samples in the causal diagram of Figure

6.4, where the general bounds are obtained from Theorem 4 and the bounds with the causal

diagram are obtained from Theorem 9.
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CHAPTER 7

Data Availability

In previous chapters, we showed how to bound the benefit function using observational data

and experimental data. However, in reality, we may not have both data. In this chapter, we

will illustrate how to evaluate the benefit function with only experimental or observational

data.

7.1 Unit Selection with Experimental Data

Consider the situation that only experimental data are available to us. This is very common

in reality, for example, a new drug that was never developed in the world and only went

through an experimental study. It is not easy to estimate observational data from the

experimental data. Therefore, the first step is to check if the benefit vector (β, γ, θ, δ)

satisfies the gain equality or if the outcome is monotonic relative to the encouragement in

Theorem 8; if so, the benefit function then becomes a point estimate and only depends on the

experimental data. Otherwise, although the observational data is difficult to estimate from

the experimental data, the experimental data play a major role in Theorem 4. Therefore, we

can simply remove the observational data terms in the theorem and still have informative

bounds for the benefit function. Theorem 4 then becomes as follows:

Theorem 12. The benefit function f(c) = βP (yx, y
′
x′ |c) + γP (yx, yx′|c) + θP (y′x, y

′
x′|c) +
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δP (yx′ , y
′
x|c) is bounded as follows:

max{p1, p2} ≤ f ≤ min{p3, p4} if σ < 0,

max{p3, p4} ≤ f ≤ min{p1, p2} if σ > 0,

where σ, p1, ..., p4 are given by,

σ = β − γ − θ + δ,

p1 = (β − θ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

p2 = γP (yx|c) + δP (y′x|c) + (β − γ)P (y′x′|c),

p3 = (γ − δ)P (yx|c) + δP (yx′|c) + θP (y′x′|c),

p4 = (β − θ)P (yx|c)− (β − γ − θ)P (yx′ |c) + θP (y′x′ |c).

Notably, there is no experimental data only version of Theorems 9, 10, and 11 because

covariates Z itself require observational data; at least P (Z|C) is needed. Further, if we have

observational data partially available, the corresponding observational terms in Theorem 4

could be added back to Theorem 12.

7.1.1 Simulation Study

In this section, we illustrate that the bounds of the benefit function given by Theorem 12

are still informative by simulation in a simple causal diagram as shown in Figure 7.1.

C

X Y

Figure 7.1: Simple causal diagram with population-specific variable C.

Similarly as that in Chapter 6.3, we randomly generated 100000 sample distributions

(observational data and experimental data) compatible with the causal diagram in Figure 7.1
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using Algorithm 1 (summing over Z with the outputs of the algorithm). We set the benefit

vector (β, γ, θ, δ) to be the most common one (1,−1,−1,−1) with the aim to encourage

compliers while avoiding always-takers, never-takers, and defiers. For sample distribution i,

let [ai, bi] be the bounds with the experimental data and observational data from Theorem 4

and [ci, di] be the bounds with the experimental data only from Theorem 12. We summarized

the following criteria:

• Average decreased lower bound :
∑

(ai−ci)
100000

;

• Average increased upper bound :
∑

(di−bi)
100000

;

• Average gap with the experimental data only :
∑

(di−ci)
100000

;

• Average gap with the experimental data and observational data :
∑

(bi−ai)
100000

;

• Number of sample distributions in which the decision was flipped :
∑
ei where, ei = 1

if (ai + bi)× (ci + di) < 0 and ei = 0 otherwise;

• Number of sample distributions in which the bounds with the experimental data only

from Theorem 12 were wider :
∑
fi where, fi = 1 if (ai 6= ci) or (bi 6= di) and fi = 0

otherwise.

The results are summarized in Table 7.1. We then randomly picked 100 out of 100000

sample distributions to draw the graph of the bounds with and without the observational

data. The results are shown in Figure 7.2.

From Figure 7.2, we can see that although the bounds of the benefit function are wider in

most of the samples in the absence of observational data, the bounds with the experimental

data only are still valid estimates of the benefit function. We can see in Table 7.1 that

the average gap with the experimental data and observational data is 0.4346, while the

average gap with the experimental data only becomes 0.5490; both the lower bound and

upper bound are affected by roughly 0.06. The decisions flipped (i.e., the results from
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Figure 7.2: Bounds of the benefit function for 100 sample distributions compatible with the

causal diagram in Figure 7.1, where the general bounds are obtained from Theorem 4 and

the bounds with the experimental data only are obtained from Theorem 12.
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Table 7.1: Simulation results of 100000 sample distributions compatible with the causal

diagram in Figure 7.1.

Average

decreased

lower

bound

Average

increased

upper

bound

Average

gap by

Theorem 12

Average

gap by

Theorem 4

Decision

flipped

Bounds

wider

0.0569 0.0575 0.5490 0.4346 1148 74834

Theorem 4 suggest gain profit, while the results from Theorem 12 suggest lose profit, or

the reverse) are 1148/100000 ≈ 1.1% of the samples, which is acceptable. Also, there are

74834/100000 ≈ 74.8% of the samples that the bounds with the experimental data only

are wider. Therefore, even the bounds are wider in the absence of observational data, the

bounds are still valid as they are not affected significantly.

7.2 Unit Selection with Observational Data

In contrast to the situation that only experimental data are available, if there are only

observational data, the effectiveness of the bounds are unacceptable if all the experimental

data terms in Theorem 4 are removed. Therefore, we need a way to estimate experimental

data from observational data. The rest of this chapter investigates how experimental data

can be estimated from observational data.

7.2.1 Identifiable Experimental Data

In the case when a causal diagram G is available, and there is either a set of variables that

satisfies the back-door criterion in Definition 2 or there is a set of variables that satisfies the

front-door criterion in Definition 3, we could estimate experimental data easily using the
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adjustment formula in Equation 3.1 or 3.2.

7.2.2 Unidentifiable Experimental Data

In the case that a set of variables that satisfies back-door or front-door criterion is unavailable,

we could bound experimental data. The naivest bounds (Tian-Pearl bounds) of experimental

data are given in Equation 3.3. In the rest of the chapter, we will discuss that when partially

observable back-door or front-front variables are available, we could narrow the bounds of

experimental data. The bounds of experimental data would keep getting narrower if we

have more back-door or front-door variables being observed, and when the full set of back-

door or front-door variables are observed, the bounds shrink into a point estimate. We

will demonstrate how the bounds of causal effects (i.e., experimental data, P (y|do(x))) can

be obtained by non-linear optimizations with partially observable back-door or front-door

variables.

7.2.2.1 Partially Observable Back-Door Variables

Theorem 13. Given a causal diagram G and a distribution compatible with G, let W ∪U be

a set of variables satisfying the back-door criterion in G relative to an ordered pair (X, Y ),

where W ∪U is partially observable, i.e., only probabilities P (X, Y,W ) and P (U) are given,

the causal effects of X on Y are then bounded as follows:

LB ≤ P (y|do(x)) ≤ UB
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where LB is the solution to the non-linear optimization problem in Equation 7.1 and UB is

the solution to the non-linear optimization problem in Equation 7.2.

LB = min
∑
w,u

aw,ubw,u
cw,u

, (7.1)

UB = max
∑
w,u

aw,ubw,u
cw,u

, (7.2)

where,∑
u

aw,u = P (x, y, w),
∑
u

bw,u = P (w),
∑
u

cw,u = P (x,w) for all w ∈ W ;

and for all w ∈ W and u ∈ U,

bw,u ≥ cw,u ≥ aw,u,

max{0, p(x, y, w) + p(u)− 1} ≤ aw,u ≤ min{P (x, y, w), p(u)},

max{0, p(w) + p(u)− 1} ≤ bw,u ≤ min{P (w), p(u)},

max{0, p(x,w) + p(u)− 1} ≤ cw,u ≤ min{P (x,w), p(u)}.

7.2.2.2 Partially Observable Front-Door Variables

Theorem 14. Given a causal diagram G and distribution compatible with G, let W ∪ U be

a set of variables satisfying the front-door criterion in G relative to an ordered pair (X, Y ),

where W ∪ U is partially observable, i.e., only probabilities P (X, Y,W ) and P (U) are given

and P (x,W,U) > 0, the causal effects of X on Y are then bounded as follows:

LB ≤ P (y|do(x)) ≤ UB
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where LB is the solution to the non-linear optimization problem in Equation 7.3 and UB is

the solution to the non-linear optimization problem in Equation 7.4.

LB = min
∑
w,u

bx,w,u
P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
, (7.3)

UB = max
∑
w,u

bx,w,u
P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
, (7.4)

where,∑
u

ax,w,u = P (x, y, w),
∑
u

bx,w,u = P (x,w) for all x ∈ X and w ∈ W ;

and for all x ∈ X,w ∈ W , and u ∈ U,

bx,w,u ≥ ax,w,u,

max{0, p(x, y, w) + p(u)− 1} ≤ ax,w,u ≤ min{P (x, y, w), p(u)},

max{0, p(x,w) + p(u)− 1} ≤ bx,w,u ≤ min{P (x,w), p(u)}.

Notably, if any observational data (e.g., P (U)) are unavailable in the above theorems, we

can remove that term, and the rest of non-linear optimization problems still provide valid

bounds for the causal effects. In general, midpoints of bounds on causal effects are effective

estimates. However, the lower (upper) bounds are also informative, which can be interpreted

as the minimal (maximal) causal effects.

7.2.3 Example

Herein, we present a simulated example to demonstrate that the midpoints of the bounds

on causal effects given by Theorem 13 are adequate for estimating the causal effects.

7.2.3.1 Causal Effects of a Drug

Drug manufacturers want to know the causal effect of recovery when a drug is taken. Thus,

they conduct an observational study. Here, the recovery rates of 700 patients were recorded.
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A total of 192 patients chose to take the drug and 508 patients did not. The results of the

study are shown in Table 7.2. Blood type (type O or not) is not the only confounder of

taking the drug and recovery. Another confounder is age (below the age of 70 or not). The

manufacturers have no data associated with age. They only know that 85.43% of people in

their region are below the age of 70.

Table 7.2: Results of an observational study considering blood type.

Drug No Drug

Blood

type O

23 out of 36

recovered

(63.9%)

145 out of 225

recovered

(64.4%)

Not blood

type O

135 out of 156

recovered

(86.5%)

152 out of 283

recovered

(53.7%)

Overall

158 out of 192

recovered

(82.3%)

297 out of 508

recovered

(58.5%)

Because both age and blood type are confounders of taking the drug and recovery, and

the data associated with age are unobservable, the causal effect is not identifiable.

Let X = x denote the event that a patient took the drug, X = x′ denote the event that

a patient did not take the drug, Y = y denote the event that a patient recovered, Y = y′

denote the event that a patient did not recover, W = w represent a patient with blood type

O, W = w′ represent a patient without blood type O, U = u represent a patient below the

age of 70, and U = u′ represent a patient above the age of 70. The causal diagram is shown

in Figure 7.3.

An option for the manufacturers could be estimating the causal effect through the Tian-
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U

W
X Y

Figure 7.3: Needed the causal effects of X on Y when U is unobserved and independent with

W .

Pearl bounds in Equation 3.3 and the observational data from Table 7.2, where

P (x, y) =
∑
w

P (y|x,w)P (x|w)P (w) = 0.2257,

1− P (x, y′) = 1−
∑
w

P (y′|x,w)P (x|w)P (w) = 0.9514.

Therefore, the bounds on the causal effect estimated using Equation 3.3 are 0.2257 ≤

P (y|do(x)) ≤ 0.9514, where the causal information of the covariate W and the prior in-

formation P (U) are not used. These bounds are not sufficiently informative to conclude the

actual causal effect. Although one may believe that we can use the midpoint of the bounds

(i.e., 0.5886), the gap (i.e., 0.9514−0.2257 = 0.7257) between the bounds is not small; hence,

this point estimate is unconvincing.

Now, considering the proposed bounds in Theorem 13 with the observational data from

Table 7.2. W ∪ U satisfies the back-door criterion, and P (X, Y,W ) and P (U) are available.

We have 12 optimal variables in each objective function, because W and U are binary. With

the help of the “SLSQP” solver [Kra88] in the scipy package [Sci20], we obtain the bounds

on the causal effect, which are 0.4728 ≤ P (y|do(x)) ≤ 0.9514. The lower bound actually

increased significantly, and reached close to 0.5, which can help make decisions. The midpoint

is 0.7121. Our conclusion is then that the causal effect of recovery when taking the drug is

0.7121. We show in the following section that this estimate of the causal effect is extremely

close to the actual causal effect.
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7.2.3.2 Informer View of the Causal Effect

An informer with access to the fully observed data, as summarized in Table 7.3 (Note that

although it can be verified that the data in Table 7.3 are compatible with those in Table

7.2, we will never know these numbers in reality), would easily calculate the causal effect

of recovery when taking the drug using the adjustment formula in Equation 3.1 (shown

in Equation 7.5). The error of the estimate of the causal effect using Theorem 13 is only

(0.7518− 0.7121)/0.7518 ≈ 5.28%.

P (y|do(x)) =
∑
z,u

P (y|x, z, u)P (z, u) = 0.7518. (7.5)

Table 7.3: Informer view of the observational data considering blood type and age.

Drug No Drug

Blood type O

and Age below 70

3 out of 4

recovered (75.0%)

141 out of 219

recovered (64.4%)

Blood type O

and Age above 70

20 out of 32

recovered (62.5%)

4 out of 6

recovered (66.7%)

Not blood type O

and Age below 70

135 out of 151

recovered (89.4%)

117 out of 224

recovered (52.2%)

Not blood type O

and Age above 70

0 out of 5

recovered (0.0%)

35 out of 59

recovered (59.3%)

Overall
158 out of 192

recovered (82.3%)

297 out of 508

recovered (58.5%)

7.2.4 Simulation Study

Here, we further illustrate that the midpoints of the proposed bounds on the causal effects

are sufficient for estimating the causal effects, and the midpoints of the proposed bounds in
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W
X Y

Figure 7.4: Needed the causal effects of X on Y when U is unobserved.

Theorem 13 are better than the midpoints of the Tian-Pearl bounds in Equation 3.3 based

on a random simulation.

We employ the simplest causal diagram in Figure 7.4 with binary W , U , such that

W ∪ U satisfies the back-door criterion. We randomly generated 1000 sample distributions

compatible with the causal diagram using Algorithm 2 with random uniform distribution D.

The average gap (upper bound − lower bound) of the Tian-Pearl bounds with 1000 samples

is 0.487, and the average gap of the proposed bounds with 1000 samples is 0.383. We then

randomly picked 100 out of 1000 sample distributions to draw the graph of the actual causal

effects, the midpoints of the Tian-Pearl bounds, and the midpoints of the proposed bounds.

The results are shown in Figure 7.5.
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Algorithm 2: Generate-cpt()

input : n causal diagram nodes (X1, ..., Xn)

Distribution D

output: n conditional probability tables for P (Xi|Parents(Xi))

begin

for i← 1 to n do
s ← num-instantiates(Xi)

p ← num-instantiates(Parents(Xi))

for k ← 1 to p do
sum ← 0

for j ← 1 to s do
aj ← sample(D)

sum ← sum + aj

end

for j ← 1 to s do

P (xij |Parents(Xi)k) ← aj/sum

end

end

end

end

From Figure 7.5, although both midpoints of the bounds on the causal effects are good

estimates of the actual causal effects, the midpoints of the proposed bounds are much closer to

the actual causal effects, particularly when the causal effects are close to 0 and 1. The average

gap (upper bounds − lower bounds), 0.383, of the proposed bounds with 1000 samples is

much smaller than the average gap, 0.487, of the Tian-Pearl bounds with 1000 samples. This

means that the midpoints of the proposed bounds are more convincing, because the bounds

are narrower.
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Figure 7.5: Estimates of the causal effects of 100 samples with partially observed confounders,

where the Tian-Pearl bounds are obtained from Equation 3.3 and the proposed bounds are

obtained through Theorem 13.
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Z

X Y

Figure 7.6: Needed the causal effects of X on Y when Z has high dimensionality.

7.2.5 High Dimensionality of Adjustment Variables

Consider the problem of estimating the causal effects of X on Y when a sufficient set Z,

which satisfies the back-door or front-door criterion, is fully observable (e.g., see Figure

7.6) in a causal diagram G but has high dimensionality (e.g., Z has 1024 instantiates),

a prohibitive large sample size would be required to estimate the causal effects, which is

generally recognized to be impractical. Herein, we propose a new framework to achieve

dimensionality reduction.

7.2.5.1 Equivalent Causal Diagram with Observational data

Definition 15 (Equivalent causal diagram with observational data). Let G,G′ be causal

diagrams both containing nodes X, Y . O are observational data compatible with G, and O′

are observational data compatible with G′. We say that (G,O) is equivalent to (G′, O′) if the

causal effects of X on Y with (G,O) is equal to the causal effects of X on Y with (G′, O′).

This equivalent tuple (G′, O′) is easy to obtain. We can simply add two new nodes W and

U , and remove a node Z in G to obtain G′. Let the arrows entering Z in G now enter both

W and U in G′, and let the arrows exiting Z in G now exit both W and U in G′. Finally,

add an arrow from U to W . It is easy to show that (G,O) and (G′, O′) are equivalent if the

states of Z are the Cartesian product of the states of W and the states of U . Formally, we

have the following theorem,

Theorem 16. Let G be a causal diagram containing nodes {V1, ..., Vn−3, X, Y, Z}. Let O be

any observational data compatible with G. Suppose there exists a set of variables that satisfies
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the back-door or front-door criterion relative to (X, Y ) in G, then, (G,O) is equivalent to

(G′, O′) (G′ containing nodes {V1, ..., Vn−3, X, Y,W,U}; O′ are observational data compatible

with G′), where the number of states in W times the number of states in U is equal to the

number of states in Z, and the structure of G′ and the observational data O′ are obtained as

follows:

Structure of G′:

Let ParentsG(H) be the parents of H in causal diagram G.

ParentsG′(U) = ParentsG(Z),

ParentsG′(W ) = ParentsG(Z) ∪ {U}.

For H ∈ {V1, ..., Vn−3, X, Y },

ParentsG′(H) = ParentsG(H) if Z /∈ ParentsG(H),

ParentsG′(H) = ParentsG(H) \ {Z} ∪ {W,U} if Z ∈ ParentsG(H).

Note that, let Q be the set of variables in G that satisfies the back-door or front-door

criterion relative to (X, Y ), then Q′ satisfies the back-door or front-door criterion relative to

(X, Y ) in G′ , where

Q′ = Q if Z /∈ Q,

Q′ = Q \ {Z} ∪ {W,U} if Z ∈ Q.

Observational data:

Let p be the number of states in W , and let q be the number of states in U .

The states of Z are the Cartesian product of the states of W and the states of U.

In detail,

(wj, uk) is equivalent to z(j−1)∗q+k,

wj is equivalent to ∨qk=1(wj, uk) = ∨qk=1z(j−1)∗q+k,

uk is equivalent to ∨pj=1(wj, uk) = ∨pj=1z(j−1)∗q+k,

P (wj, uk, V ) = P (z(j−1)∗q+k, V ) for any V ⊆ {V1, ..., Vn−3, X, Y }.

For example, consider the causal diagram in Figure 7.6 and the observational data in
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Figure 7.7: Causal diagram of an equivalent problem.

Table 7.5 (in the form of conditional probability tables (CPTs), where X, Y are binary, and

Z has 4 states). The causal effect, P (y|do(x)), through the adjustment formula in Equation

3.1, is 0.47. Based on the construction (details are shown in Table 7.4) in Theorem 16, we

have the causal diagram in Figure 7.6 with the observational data in Table 7.5 is equivalent

to the causal diagram in Figure 7.7 with the observational data in Table 7.6 (all nodes are

binary), and we can verify that the causal effect, P (y|do(x)), in the causal diagram in Figure

7.7 with the observational data in Table 7.6 is also 0.47.

Notably, the equivalent tuple is not unique and is transitive (i.e., if (G,O) is equivalent

to (G′, O′), and (G′, O′) is equivalent to (G′′, O′′), then (G,O) is equivalent to (G′′, O′′)).

7.2.5.2 Dimensionality Reduction

Now, consider the problem in the beginning of Section 7.2.5. First, we transform the causal

diagram G with compatible observational data O into an equivalent tuple (G′, O′) using

Algorithm 3 based on the construction in Theorem 16 (note that the algorithm only con-

struct the structure of G′ and assigning meanings to the states W and U , the corresponding

observational data O′ are then easy to obtain), then the new problem (G′, O′) has the same

causal effects of X on Y as in (G,O). By picking the dimensionality of W (p in Algorithm

3), we can control the dimensionality of the new problem.

Note that, if Z = (Z1, Z2, ..., Zm) in G is a set of variables, we can repeat Algorithm 3

for each variable in Z, and finally obtain W = (W1,W2, ...,Wm) and U = (U1, U2, ..., Um),
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Table 7.4: Construction of the observational data based on Theorem 16.

P (u,w) = P (z1)

P (u,w′) = P (z2)

P (u′, w) = P (z3)

P (u′, w′) = P (z4)

P (u) = P (u,w) + P (u,w′) = P (z1) + P (z2) = 0.5

P (w|u) = P (u,w)/p(u) = P (z1)/P (u) = 0.3/0.5 = 0.6

P (w|u′) = P (u′, w)/p(u′) = P (z3)/(1− P (u)) = 0.2/0.5 = 0.4

P (x|u,w) = P (x|z1) = 0.1

P (x|u,w′) = P (x|z2) = 0.4

P (x|u′, w) = P (x|z3) = 0.5

P (x|u′, w′) = P (x|z4) = 0.7

P (y|x, u, w) = P (y|x, z1) = 0.2

P (y|x′, u, w) = P (y|x′, z1) = 0.3

P (y|x, u, w′) = P (y|x, z2) = 0.7

P (y|x′, u, w′) = P (y|x′, z2) = 0.1

P (y|x, u′, w) = P (y|x, z3) = 0.6

P (y|x′, u′, w) = P (y|x′, z3) = 0.5

P (y|x, u′, w′) = P (y|x, z4) = 0.5

P (y|x′, u′, w′) = P (y|x′, z4) = 0.4

where the multiplication of the number of states in W is equal to p.

We then treat the new problem (G′, O′) as a partially observable back-door or front-door

variables problem in Sections 7.2.2.1 and 7.2.2.2, where P (X, Y,W ) and P (U) are given,

and we can then obtain the bounds of the causal effects through Theorems 13 and 14. We

claim that the midpoints of the bounds are good estimates of the original causal effects. In

addition, the bounds themselves will help make decisions.
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Table 7.5: Observational data in CPTs compatible with the causal diagram in Figure 7.6.

P (z1) 0.3

P (z2) 0.2

P (z3) 0.2

P (z4) 0.3

P (x|z1) 0.1

P (x|z2) 0.4

P (x|z3) 0.5

P (x|z4) 0.7

P (y|x, z1) 0.2

P (y|x′, z1) 0.3

P (y|x, z2) 0.7

P (y|x′, z2) 0.1

P (y|x, z3) 0.6

P (y|x′, z3) 0.5

P (y|x, z4) 0.5

P (y|x′, z4) 0.4

Table 7.6: Observational data in CPTs compatible with the causal diagram in Figure 7.7.

P (u) 0.5

P (w|u) 0.6

P (w|u′) 0.4

P (x|u,w) 0.1

P (x|u,w′) 0.4

P (x|u′, w) 0.5

P (x|u′, w′) 0.7

P (y|x, u, w) 0.2

P (y|x′, u, w) 0.3

P (y|x, u, w′) 0.7

P (y|x′, u, w′) 0.1

P (y|x, u′, w) 0.6

P (y|x′, u′, w) 0.5

P (y|x, u′, w′) 0.5

P (y|x′, u′, w′) 0.4

7.2.5.3 Example

Considering the problem in Figure 7.6, where X and Y are binary and Z has 256 states. We

randomly generated a distribution P (X, Y, Z) that is compatible with the causal diagram

using Algorithm 2. Because we know the exact distribution, we can easily obtain the causal

effects through Equation 3.1. The causal effect P (y|do(x)) is 0.5527.
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Algorithm 3: Generate Equivalent Tuple

input : A n nodes, (X1, X2, ..., Xn−3, X, Y, Z), causal diagram G and compatible O,

p, the number of states in W in G′ of the equiv. tuple (G′, O′).

output: A n+ 1 nodes, (X1, X2, ..., Xn−3, X, Y,W,U), causal diagram G′,

Maping relation M1 : state of W −→ state of Z,

Maping relation M2 : state of U −→ state of Z.

begin

m ← num states in G(Z);

if m mod p = 0 then

q ← m/p;

end

else

q ← m/p+ 1;

end

/ / Set the virtual states for Z such that the probaility is 0;

num states in G(Z) ← p× q;

for H in {X1, ..., Xn−3, X, Y } do

num states in G’(H) ← num states in G(H);

if Z ∈Parents in G(H) then

Parents in G’(H) ← Parents in G(H)\{Z} ∪ {W,U};

end

else

Parents in G’(H) ← Parents in G(H);

end

end

num states in G’(W) ← p;

num states in G’(U) ← q;

Parents in G’(W) ← Parents in G(Z)∪{U};

Parents in G’(U) ← Parents in G(Z);

for i← 1 to p do

M1(wi) ← ∨qk=1z(i−1)∗q+k;

end

for i← 1 to q do

M2(ui) ← ∨pj=1z(j−1)∗q+i;

end

end
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Now, we transform the causal diagram with the observational data into an equivalent

tuple (G′, O′) (G′ is shown in Figure 7.7) using Algorithm 3 (p = 16). We obtain a variable

W of 16 states and a variable U of 16 states in G′ ((wj, uk) is equivalent to z(j−1)∗16+k). We

are then forced to use only observational data P (X, Y,W ) and P (U) (the construction of the

data is shown in the next paragraph), and based on Theorem 13, with the “SLSQP” solver,

we obtain the bounds on the causal effect, which are 0.4595 ≤ P (y|do(x)) ≤ 0.7012. We see

the midpoint, 0.5804, is extremely close to the actual causal effect, 0.5527.

Instead of providing the resulting 1024 rows of the observational data, we provide the

details for regenerating the observational data as following steps:

• Generate P (X, Y, Z) using Algorithm 2;

• Let P (X, Y,wj, uk) = P (X, Y, z(j−1)∗16+k);

• Let P (X, Y,wj) =
∑q

k=1 P (X, Y,wj, uk);

• Let P (X, Y, uk) =
∑p

j=1 P (X, Y,wj, uk);

• Let P (uk) =
∑

X,Y P (X, Y, uk).
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For example,

P (u1) =
∑
X,Y

P (X, Y, u1)

= P (x, y, u1) + P (x, y′, u1) + P (x′, y, u1) + P (x′, y′, u1)

=
16∑
j=1

P (x, y, wj, u1) +
16∑
j=1

P (x, y′, wj, u1) +

+
16∑
j=1

P (x′, y, wj, u1) +
16∑
j=1

P (x′, y′, wj, u1)

=
16∑
j=1

P (x, y, z(j−1)∗16+1) +
16∑
j=1

P (x, y′, z(j−1)∗16+1) +

16∑
j=1

P (x′, y, z(j−1)∗16+1) +
16∑
j=1

P (x′, y′, z(j−1)∗16+1),

P (x, y, w1) =
16∑
k=1

P (x, y, w1, uk)

=
16∑
k=1

P (x, y, zk).

Finally, lets consider how many samples are required for each method. According to

[Ros75], each state needs at least 30 samples, and therefore, the exact solution by Equation

3.1 requires 2 × 2 × 256 × 30 = 30720 samples. However, the proposed bounds based on

Theorem 13 only requires max(2× 2× 16, 16)× 30 = 1920 samples. If the sample size is still

unacceptable, we can use another equivalent tuple with W having 8 states and U having 32

states, we then only require max(2× 2× 8, 32)× 30 = 960 samples to obtain the bounds on

the causal effects.

7.2.5.4 Simulation Study

Similarly to the previous simulation, we further illustrate that the bounds on the causal

effects of the proposed framework are sufficient for estimating the original causal effects.

Once again, by employing the simplest causal diagram in Figure 7.6, where X and Y are
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binary and Z has 256 states. We randomly generated 100 sample distributions compatible

with the causal diagram using Algorithm 2. The average gap (upper bound − lower bound)

of the Tian-Pearl bounds in Equation 3.3 with 100 samples is 0.5102, and the average gap

of the proposed bounds through Theorems 16 and 13 with 100 samples is 0.0676. We then

draw the graph of the actual causal effects, the midpoints of the Tian-Pearl bounds, and the

midpoints of the proposed bounds through Theorems 16 and 13. The results are shown in

Figure 7.8.

From Figure 7.8, both midpoints of the bounds on the causal effects are good estimates of

the actual causal effects, whereas the midpoints of the proposed bounds are slightly closer to

the actual causal effects, particularly when the causal effects are close to 0 and 1. Although

the trend of the Tian-Pearl bounds is also close to the actual causal effects, the Tian-Pearl

bounds are more likely to be parallel with the x-axis. Here, the Tian-Pearl bounds perform

well because, in high-dimensionality cases, the randomly generated distributions are more

likely to yield causal effects of approximately 0.5. However, the average gap of the proposed

bounds with 100 samples, 0.0676, is much smaller than the average gap of the Tian-Pearl

bounds with 100 samples, 0.5102. This means that the midpoints of the proposed bounds

are more convincing, because the bounds are narrower.

7.2.6 Discussion

Here, we discuss additional features of bounds on causal effects.

First, if a whole set of back-door or front-door variables are unobserved, the causal effects

have the naivest bounds in Equation 3.3. When the back-door or front-door variables are

gradually observed, the bounds of the causal effects become increasingly narrow. Finally,

when the back-door or front-door variables are fully observed, the bounds shrink into point

estimates, which are identifiable. This also tells us that, when we pick p in Algorithm 3, we

should pick the largest p for which the sample size is sufficient to estimate the observational

distributions.
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Figure 7.8: Estimates of the causal effects of 100 samples with high dimensionality data,

where the Tian-Pearl bounds are obtained from Equation 3.3 and the proposed bounds are

obtained through Theorems 16 and 13.
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Next, the bounds in Theorems 13 and 14 are given by non-linear optimizations. There-

fore, the quality of the bounds also depends on the optimization solver. The examples and

simulated results in this paper are all obtained from the simplest “SLSQP” solver from 1988.

The quality of the bounds can be improved if more advanced solvers are applied. Inspired by

the idea of Balke’s linear programming [BP97b], we may obtain parametric solutions to non-

linear optimizations in Theorems 13 and 14, we then do not need a non-linear optimization

solver. However, the problem related to a non-linear optimization solver is not the scope of

this study.

In addition, the constraints in Theorems 13 and 14 are only based on the basic back-door

or front-door criterion. We can also add constraints of independencies in a specific graph.

For instance, W and U are independent in the causal diagram of Figure 7.3, we can then add

the constraints that reflect P (W ) and P (U) as being independent. The greater the number

of constraints that are added to the optimizations, the better the bounds we can obtain.

Moreover, if one believes they have a sufficient sample size to estimate causal effects with

high dimensionality adjustment variables, the framework in Section 7.2.5 could be evidence

validating whether the sample size is indeed sufficient.

Next, in Section 7.2.5, we transformed (G,O) into (G′, O′) to obtain bounds on causal

effects with high dimensionality adjustment variables. However, for a tuple (G,O), multiple

equivalent tuples exist by picking the different p in Algorithm 3, and each of the equivalent

tuple has bounds for the original causal effects. We can compute the bounds for as many

equivalent tuples as we want and take the maximal lower bounds and the minimal upper

bounds.

Finally, based on numerous experiments, we realized that when P (U) or P (W ) is specific

(i.e., closer to 0 or 1), the proposed bounds are almost identified (i.e., the bounds shrink to

point estimates). Therefore, in practice, we can always pick the equivalent tuple to transform,

in which the P (U) or P (W ) is close to 0 or 1.
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CHAPTER 8

Applications

Recall that the benefit vector in Chapter 4 is not determined by the model but by the one who

uses the model. In this chapter, we illustrate several common applications showing how to

set the benefit vector. We categorize the applications based on the quality of A/B-test-based

approaches.

8.1 Cases in which Simple A/B-test-based Approaches are Cor-

rect

8.1.1 Number of Increased Customers

Consider a mobile carrier that wants to identify customers likely to discontinue their services

within the next quarter based on customer characteristics (the company management has

access to user data, such as income, age, usage, and monthly payments). The carrier will

then offer these customers a special renewal deal to dissuade them from discontinuing their

services and to increase their service renewal rate.

Let A = a denote the event that a customer receives the special deal, A = a′ denote

the event that a customer receives no special deal, R = r denote the event that a customer

continues the services, R = r′ denote the event that a customer discontinues the services,

and C (a set of variables) denote the population-specific characteristics of a customer (e.g.,

income, age, usage, and monthly payments).
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If the manager only wants to maximize the number of increased customers due to the

offer in the next quarter regardless of the total profit, then they should assign 1 to a complier

because the company gains one customer due to the offer, assign 0 to an always-taker and

a never-taker because the company gains no customer due to the offer, and assign −1 to a

defier because the company loses one customer due to the offer.

Therefore, the benefit vector above is (1, 0, 0,−1), and using Theorem 8, when the benefit

vector satisfies the gain equality (1 − 1 = 0 + 0), the benefit function is f(c) = P (ra|c) −

P (ra′|c). This is the most common A/B test heuristic in literature.

8.1.2 Number of Total Customers

If the manager only wants to maximize the total number of customers in the next quarter

regardless of the total profit, then they should assign 1 to a complier and an always-taker

because the company has one customer in the next quarter and assign 0 to a never-taker

and a defier because the company has no customer in the next quarter.

Therefore, the benefit vector above is (1, 1, 0, 0), and using Theorem 8, when the benefit

vector satisfies the gain equality (1 + 0 = 1 + 0), the benefit function is f(c) = P (ra|c). This

is another common A/B test heuristic in literature, which is the causal effect of the offer to

the number of customers.

8.1.3 Immediate Profit

If the manager wants to maximize the total immediate profit due to the offer. The man-

agement estimates that the benefit of selecting a complier is $100 as the profit is $140 but

the discount is $40, the benefit of selecting an always-taker is −$40 as the customer would

continue the service anyway and the company loses the value of the discount, the benefit of

selecting a never-taker is $0 as the cost of issuing the discount is negligible, and the benefit

of selecting a defier is −$140 as they lose a customer due to the special offer.
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Therefore, the benefit vector above is (100,−40, 0,−140), using Theorem 8, when the

benefit vector satisfies the gain equality (100 − 140 = −40 + 0), the benefit function is

f(c) = 100P (ra|c) − 140P (ra′ |c). This result is the same as the popular method in the

industry, which is called revenue difference. The profit of a continuing customer if issued

the special offer is $100 and the profit of a continuing customer if no special offer is issued

is $140; therefore, the revenue difference is 100P (ra|c)− 140P (ra′|c).

8.2 Cases in which Simple A/B-test-based Approaches are not

Correct

8.2.1 Nonimmediate Profit

If the manager wants to maximize the total profit including the nonimmediate profit due

to the offer. The management estimates that the benefit of selecting a complier is $100 as

the profit is $140 but the discount is $40, the benefit of selecting an always-taker is −$60

as the customer would continue the service anyway (so the company loses the value of the

discount and an extra cost $20 because the always-taker may require additional discounts in

the future), the benefit of selecting a never-taker is 0 as the cost of issuing the discount is

negligible, and the benefit of selecting a defier is −$140 as they lose a customer due to the

special offer.

Therefore, the benefit vector above is (100,−60, 0,−140), and this is the example we have

illustrated in Chapter 5.3.1, where the simple A/B-test-based approach is NOT correct.

8.2.2 Minimize the Number of Ineffective Patients and the Number of Serious

Side-effect Patients

A pharmaceutical factory invents a new medicine and wants to identify patients so as to

minimize the number of ineffective patients plus the number of patients who have serious
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side-effect, with focus on the patients who have serious side-effect (the side-effect may lead

to death).

Therefore, they should assign unit 0 to a complier because the complier is the patient

cured by the medicine, assign unit −1 to an always-taker and a never-taker because the

always-taker and never-taker are the ineffective patients that do not respond to the medicine,

and assign unit −2 to a defier because the defier is the patient who have serious side-effect

(may lead to death).

Let A = a denote the event that a patient receives the medicine, A = a′ denote the

event that a patient receives no medicine, R = r denote the event that a patient recovered,

R = r′ denote the event that a patient does not recover, and C (a set of variables) denote

the population-specific characteristics of a patient.

The benefit vector above is (0,−1,−1,−2), using Theorem 8, when the benefit vector

satisfies the gain equality (0−2 = −1−1), the benefit function is f(c) = P (ra|c)−P (ra′|c)−

1 = −P (r′a|c)− P (ra′|c).

Notably, even the benefit function is a point estimate and only requires experimental

data but it is difficult to determine the coefficients using a simple A/B-test-based approach.

8.2.3 Maximize Users Satisfaction

The management of a search engine company wants to decide whether it is worth sending

an advertisement to a group of users, so as to maximize overall satisfaction. The manage-

ment estimates that the satisfaction of recommending an advertisement to a complier is 2

degrees, as users would gain new information that they needed, that of recommending the

advertisement to an always-taker is 1 degree, as users got a shortcut to the advertisement,

that of recommending the advertisement to a never-taker is −1 degrees, as users got unnec-

essary information, and that of recommending the advertisement to a defier is −2 degrees,

as the recommendation would prevent users to get needed information (compliers are the
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users who would click on the advertisement if the advertisement is recommended and would

not if otherwise; always-takers are the users who would click on the advertisement whether

or not the advertisement is recommended; never-takers are the users who would not click on

the advertisement whether or not the advertisement is recommended; defiers are the users

who would click on the advertisement if the advertisement is not recommended and would

not if otherwise).

Therefore, the benefit vector above is (2, 1,−1,−2), and this is the example we have

illustrated in Chapter 5.3.2, where a simple A/B-test-based approach is NOT correct because

the coefficients are difficult to be determined.

8.2.4 Maximize Difference between the Number of Effective Patients and the

Number of Ineffective Patients

A pharmaceutical factory invents a new medicine and wants to identify patients so as to

maximize difference between the number of effective patients and the number of ineffective

patients.

Therefore, they should assign 1 to a complier because the complier is the patient cured

by the medicine, assign −1 to an always-taker, a never-taker, and a defier because they are

all ineffective patients. The benefit vector is then (1,−1,−1,−1).

Let A = a denote the event that a patient receives the medicine, A = a′ denote the

event that a patient receives no medicine, R = r denote the event that a patient is cured,

R = r′ denote the event that a patient is not cured, and C (a set of variables) denote the

population-specific characteristics of a patient.

Suppose they have two groups of patients, group 1 with characteristics c1 and group 2

with characteristics c2. In addition, they have prior information that P (r|c1) = 0.3 and

P (r|c2) = 0.1. They randomly select 700 patients from each group and offer the medicine to

350 customers in each group. Table 8.1 summarizes the results.
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Table 8.1: Results of a simulated study on patients.

do(a) do(a′)

Group 1
r 210 105

r′ 140 245

Group 2
r 217 129

r′ 133 221

Table 8.2: Results of the two objective functions based on the data from the simulated study.

f1 f2 real

Group 1 0.3 −0.1 −0.2

Group 2 0.25 0.14 0.2

Let us compare the two selection strategies, each using a different objective function.

The first is a simple A/B test heuristic, that is:

Obj1 = argmaxcf1(c)

= argmaxcP (r|c, do(a))− P (r|c, do(a′)).

The second is the proposed approach, that is:

Obj2 = argmaxcf2(c)

= argmaxc1× P (ra, r
′
a′ |c) + (−1)× P (ra, ra′ |c) +

(−1)× P (r′a, r
′
a′|c) + (−1)× P (r′a, ra′|c).

Then, we enter the data in Table 8.1 into the objective functions of groups 1 and 2. Table

8.2 summarizes the results (note that we use the midpoint of the bounds from Theorem 4

as the selection criterion for Obj2). The proposed approach selected group 2; however, the

first objective function selected group 1 as the desired patients.
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Table 8.3: Percentages of four response types in each group for patients.

Complier Always-taker Never-taker Defier

Group 1 40% 20% 30% 10%

Group 2 60% 2% 3% 35%

An informer with access to the fractions of compliers, always-takers, never-takers, and

defiers in both groups (as summarized in Table 8.3, and these numbers are never known in

reality) would easily conclude that the A/B test heuristic had reached a wrong conclusion. In

detail, the expected benefit of selecting a patient in group 1 is 1×0.4−1×0.2−1×0.3−1×0.1 =

−0.2, which means offering the medicine to group 1 would have negative difference; the

expected benefit of selecting a patient in group 2 is 1×0.6−1×0.02−1×0.03−1×0.35 = 0.2.

Thus, the pharmaceutical factory should only offer the medicine to group 2.
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CHAPTER 9

Conclusion

We demonstrated the advantages of the SCM framework in addressing the unit selection

problem. We defined an objective function for selection that properly accounts for the

counterfactual nature of the desired behavior. We derived tight bounds (Theorem 4) to

ensure that the objective function can be evaluated using experimental and observational

data. We further identified using Theorem 8 the conditions under which the standard A/B

test heuristic used in the literature can become optimal. We then provided the graphical

conditions (Theorem 9, 10, and 11) such that the bounds of the objective function can be

narrower with additional covariates. We also discussed data availability issue, i.e., how to

evaluate the objective function in the absence of either observational data or experimental

data. We finally demonstrated how to set up the benefit vector by applications. In summary,

we have analyzed and demonstrated what can be gained by exploiting causal knowledge,

when solving the unit selection problem.
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APPENDIX A

Proofs for Chapter 5

Lemma 17. The c-specific PNS P (yx, y
′
x′ |c) is bounded as follows:

max



0,

P (yx|c)− P (yx′|c),

P (y|c)− P (yx′|c),

P (yx|c)− P (y|c)


≤ c-PNS, (A.1)

min



P (yx|c),

P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),

P (yx|c)− P (yx′ |c) + P (y, x′|c) + P (y′, x|c)


≥ c-PNS. (A.2)

Proof. Since for any three events A, B and C, we have,

P (A,B|C) ≥ max[0, P (A|C) + P (B|C)− 1], (A.3)

therefore, we have,

c-PNS ≥ max[0, P (yx|c) + P (y′x′|c)− 1]

= max[0, P (yx|c)− P (yx′|c)].
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Also,

c-PNS = P (yx, y
′
x′ , x|c) + P (yx, y

′
x′ , x

′|c)

= P (y, y′x′ , x|c) + P (yx, y
′, x′|c) (A.4)

= P (x, y|c)− P (x, y, yx′|c) + P (yx, y
′, x′|c)

= P (x, y|c)− P (y, yx′|c) + P (x′, y, yx′ |c) + P (yx, y
′, x′|c)

= P (x, y|c)− P (y, yx′|c) + P (x′, y|c) + P (yx, y
′, x′|c)

= P (y|c)− P (y, yx′ |c) + P (x′, y′, yx|c) (A.5)

= P (y|c)− P (y, yx′ |c) + P (y′, yx|c)− P (x, y′, yx|c)

= P (y|c)− P (y, yx′ |c) + P (y′, yx|c)− P (x, y′, y|c)

= P (y|c)− P (y, yx′ |c) + P (y′, yx|c). (A.6)

By (A.6),

c-PNS ≥ P (y|c)− P (y, yx′|c)

≥ P (y|c)− P (yx′|c).

Also by (A.6) and (A.3),

c-PNS ≥ P (y|c)− P (y|c) + P (y′, yx|c)

≥ P (y′|c)− P (y′x|c)

= P (yx|c)− P (y|c).

Thus, the lower bounds are proved.

And since for any three events A, B and C, we have,

P (A,B|C) ≤ min[P (A|C), P (B|C)], (A.7)

therefore, we have,

c-PNS ≤ min[P (yx|c), P (y′x′|c)].
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Also, by (A.4),

c-PNS ≤ P (x, y|c) + P (x′, y′|c).

Similarly to (A.5), we have,

c-PNS = P (y′|c)− P (y′, y′x|c) + P (x, y, y′x′|c)

= P (y′, yx|c) + P (x, y, y′x′ |c)

= P (yx|c)− P (y, yx|c) + P (x, y, y′x′ |c)

= P (yx|c)− P (y, yx|c) + P (x, y|c)− P (x, y, yx′|c)

= P (yx|c)− P (y, yx|c) + P (x, y|c)− P (yx′|c) + P (x′, y, yx′|c) +

P (x, y′, yx′ |c) + P (x′, y′, yx′ |c)

= P (yx|c)− P (y, yx|c) + P (x, y|c)− P (yx′|c) + P (x′, y|c) + P (x, y′, yx′ |c)

= P (yx|c)− P (yx′ |c) + P (x′, y|c) + P (x, y|c)− P (y, yx|c) + P (x, y′, yx′ |c)

= P (yx|c)− P (yx′ |c) + P (x′, y|c) + P (x, y|c)− P (x, y, yx|c)− P (x′, y, yx|c) +

P (x, y′|c)− P (x, y′, y′x′ |c)

= P (yx|c)− P (yx′ |c) + P (x′, y|c) + P (x, y′|c)− P (x, y′, y′x′|c)− P (x′, y, yx|c)

≤ P (yx|c)− P (yx′ |c) + P (x′, y|c) + P (x, y′|c).

Thus, the upper bounds are proved.

Lemma 18.

P (yx, y
′
x′ |c)− P (y′x, yx′|c)

= P (yx|c)− P (yx′|c) (A.8)
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Proof.

P (yx, y
′
x′|c)− P (yx′ , y

′
x|c)

= P (yx, y
′
x′ , x|c) + P (yx, y

′
x′ , x

′|c)− P (yx′ , y
′
x, x|c)− P (yx′ , y

′
x, x

′|c)

= P (y, y′x′ , x|c) + P (yx, y
′, x′|c)− P (yx′ , y

′, x|c)− P (y, y′x, x
′|c)

= P (y, y′x′ , x|c)− P (yx′ , y
′, x|c) + P (yx, y

′, x′|c)− P (y, y′x, x
′|c)

= P (x, y|c)− P (y, yx′ , x|c)− P (yx′ , y
′, x|c) + P (yx, y

′, x′|c) + P (y, yx, x
′|c)− P (x′, y|c)

= P (x, y|c)− P (yx′ , x|c) + P (yx, x
′|c)− P (x′, y|c)

= P (x, y|c)− P (yx′|c) + P (yx′ , x
′|c) + P (yx|c)− P (yx, x|c)− P (x′, y|c)

= P (x, y|c)− P (yx′|c) + P (y, x′|c) + P (yx|c)− P (y, x|c)− P (x′, y|c)

= P (yx|c)− P (yx′ |c).

Lemma 19. The counterfactual expression f(α) = αP (yx, y
′
x′|c) − (1 − α)P (yx′ , y

′
x|c) for

any real number α is bounded as follows.

Case 1: α ∈ (−∞, 0.5),

max



αP (yx|c)− (1− α)P (yx′|c),

(1− α)P (yx|c) + αP (y′x′|c) + α− 1,

(2α− 1)P (y, x|c) + (2α− 1)P (y′, x′|c)] + (1− α)[P (yx|c)− P (yx′|c)],

α[P (yx|c)− P (yx′ |c)] + (2α− 1)P (y, x′|c) + (2α− 1)P (y′, x|c)


≤ f(α),

(A.9)

min



(1− α)[P (yx|c)− P (yx′ |c)],

α[P (yx|c)− P (yx′|c)],

(2α− 1)P (y|c) + (1− α)P (yx|c)− αP (yx′|c),

αP (yx|c)− (1− α)P (yx′ |c)− (2α− 1)P (y|c)


≥ f(α). (A.10)
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Case 2: α ∈ [0.5,∞),

max



(1− α)[P (yx|c)− P (yx′ |c)],

α[P (yx|c)− P (yx′ |c)],

(2α− 1)P (y|c) + (1− α)P (yx|c)− αP (yx′|c),

αP (yx|c)− (1− α)P (yx′ |c)− (2α− 1)P (y|c)


≤ f(α), (A.11)

min



αP (yx|c)− (1− α)P (yx′|c),

(1− α)P (yx|c) + αP (y′x′|c) + α− 1,

(2α− 1)P (y, x|c) + (2α− 1)P (y′, x′|c)] + (1− α)[P (yx|c)− P (yx′|c)],

α[P (yx|c)− P (yx′ |c)] + (2α− 1)P (y, x′|c) + (2α− 1)P (y′, x|c)


≥ f(α).

(A.12)

Proof. By lemma 18,

f(α)

= αP (yx, y
′
x′ |c)− (1− α)P (yx′ , y

′
x|c)

= αP (yx, y
′
x′ |c)− (1− α)(P (yx, y

′
x′ |c)− P (yx|c) + P (yx′|c))

= (2α− 1)P (yx, y
′
x′|c) + (1− α)(P (yx|c)− P (yx′ |c)). (A.13)

By lemma 17, substituting (A.1) and (A.2) into (A.13), case 1 and 2 in lemma 19 hold.

Theorem 4. The benefit function f(c) = βP (yx, y
′
x′|c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′|c) +

δP (yx′ , y
′
x|c) is bounded as follows:

max{p1, p2, p3, p4} ≤ f ≤ min{p5, p6, p7, p8} if σ < 0,

max{p5, p6, p7, p8} ≤ f ≤ min{p1, p2, p3, p4} if σ > 0,
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where σ, p1, ..., p8 are given by,

σ = β − γ − θ + δ,

p1 = (β − θ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

p2 = γP (yx|c) + δP (y′x|c) + (β − γ)P (y′x′|c),

p3 = (γ − δ)P (yx|c) + δP (yx′|c) + θP (y′x′|c) + (β − γ − θ + δ)[P (y, x|c) + P (y′, x′|c)],

p4 = (β − θ)P (yx|c)− (β − γ − θ)P (yx′ |c) + θP (y′x′ |c) +

(β − γ − θ + δ)[P (y, x′|c) + P (y′, x|c)],

p5 = (γ − δ)P (yx|c) + δP (yx′|c) + θP (y′x′|c),

p6 = (β − θ)P (yx|c)− (β − γ − θ)P (yx′ |c) + θP (y′x′ |c),

p7 = (γ − δ)P (yx|c)− (β − γ − θ)P (yx′|c) + θP (y′x′|c) + (β − γ − θ + δ)P (y|c),

p8 = (β − θ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c)− (β − γ − θ + δ)P (y|c).

Proof.

f(c)

= βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (y′x, yx′|c)

= βP (yx, y
′
x′ |c) + γ[P (yx|c)− P (yx, y

′
x′ |c)] + θ[P (y′x′)− P (yx, y

′
x′|c)] + δP (y′x, yx′ |c)

= γP (yx|c) + θP (y′x′ |c) + (β − γ − θ)P (yx, y
′
x′|c)− (−δ)P (y′x, yx′ |c). (A.14)

By lemma 19, let α = β−γ−θ
β−γ−θ−δ , substituting (A.9) to (A.12) into (A.14), theorem 4 hold.

Theorem 6. Given that Y is monotonic relative to X, the benefit function f(c) is given by

f(c)

= βP (yx, y
′
x′|c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (yx′ , y

′
x|c)

= (β − θ)P (yx|c) + (γ − β)P (yx′|c) + θ.
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Proof.

f(c)

= βP (yx, y
′
x′|c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (y′x, yx′|c)

= β[P (yx|c)− P (yx, yx′ |c)] + γ[P (yx′|c)− P (y′x, yx′ |c)] +

θ[P (y′x|c)− P (y′x, yx′ |c)] + δP (y′x, yx′|c)

= β[P (yx|c)− P (yx′|c) + P (y′x, yx′ |c)] + γ[P (yx′ |c)− P (y′x, yx′|c)] +

θ[P (y′x|c)− P (y′x, yx′|c)] + δP (y′x, yx′|c)

= βP (yx|c) + (γ − β)P (yx′ |c) + θP (y′x|c) + (β + δ − γ − θ)P (y′x, yx′|c).

Thus, if monotonicity, we have,

P (yx′ , y
′
x|c) = 0. (A.15)

Therefore, theorem 6 holds.

Theorem 8. Given that the benefit vector (β, γ, θ, δ) satisfies the gain equality, the benefit

function f(c) is given by

f(c)

= βP (yx, y
′
x′|c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (yx′ , y

′
x|c)

= (β − θ)P (yx|c) + (γ − β)P (yx′|c) + θ.
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Proof.

f(c)

= βP (yx, y
′
x′|c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (y′x, yx′|c)

= β[P (yx|c)− P (yx, yx′ |c)] + γ[P (yx′|c)− P (y′x, yx′ |c)] +

θ[P (y′x|c)− P (y′x, yx′ |c)] + δP (y′x, yx′|c)

= β[P (yx|c)− P (yx′|c) + P (y′x, yx′ |c)] + γ[P (yx′ |c)− P (y′x, yx′|c)] +

θ[P (y′x|c)− P (y′x, yx′|c)] + δP (y′x, yx′|c)

= βP (yx|c) + (γ − β)P (yx′ |c) + θP (y′x|c) + (β + δ − γ − θ)P (y′x, yx′|c).

Thus, with β + δ = γ + θ, theorem 8 hold.
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APPENDIX B

Proofs for Chapter 6

Lemma 20. Given a causal diagram G and distribution compatible with G, let Z∪C be a set

of variables that does not contain any descendant of X in G, then c-specific PNS P (yx, y
′
x′ |c)

is bounded as follows:

∑
z

max



0,

P (yx|z, c)− P (yx′|z, c),

P (y|z, c)− P (yx′|z, c),

P (yx|z, c)− P (y|z, c)


× P (z|c) ≤ c-PNS, (B.1)

∑
z

min



P (yx|z, c),

P (y′x′ |z, c),

P (y, x|z, c) + P (y′, x′|z, c),

P (yx|z, c)− P (yx′|z, c) + P (y, x′|z, c) + P (y′, x|z, c)


× P (z|c) ≥ c-PNS.

(B.2)

Proof.

c-PNS = P (yx, y
′
x′|c)

=
∑
z

P (yx, y
′
x′|z, c)× P (z|c). (B.3)

78



From Lemma 17, replace c with (z, c), we have the following:

max



0,

P (yx|z, c)− P (yx′|z, c),

P (y|z, c)− P (yx′|z, c),

P (yx|z, c)− P (y|z, c)


≤ P (yx, y

′
x′ |z, c), (B.4)

min



P (yx|z, c),

P (y′x′ |z, c),

P (y, x|z, c) + P (y′, x′|z, c),

P (yx|z, c)− P (yx′|z, c) + P (y, x′|z, c) + P (y′, x|z, c)


≥ P (yx, y

′
x′|z, c).

(B.5)

Substituting B.4 and B.5 into B.3, Lemma 20 holds.

Note that since we have,
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∑
z

max{0, P (yx|z, c)− P (yx′ |z, c),

P (y|z, c)− P (yx′ |z, c), P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

0× P (z|c)

= 0,

∑
z

max{0, P (yx|z, c)− P (yx′ |z, c),

P (y|z, c)− P (yx′|z, c), P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

[P (yx|z, c)− P (yx′ |z, c)]× P (z|c)

= P (yx|c)− P (yx′ |c),

∑
z

max{0, P (yx|z, c)− P (yx′|z, c),

P (y|z, c)− P (yx′|z, c), P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

[P (y|z, c)− P (yx′ |z, c)]× P (z|c)

= P (y|c)− P (yx′ |c),

∑
z

max{0, P (yx|z, c)− P (yx′|z, c),

P (y|z, c)− P (yx′|z, c), P (yx|z, c)− P (y|z, c)} × P (z|c)

≥
∑
z

[P (yx|z, c)− P (y|z, c)]× P (z|c)

= P (yx|c)− P (y|c),

then the lower bound in Lemma 20 is guaranteed to be no worse than the lower bound in

Lemma 17. Similarly, the upper bound in Lemma 20 is guaranteed to be no worse than the

upper bound in Lemma 17. Also note that, since Z ∪ C does not contain a descendant of

X, the term P (yx|z, c) refers to experimental data under population z, c.
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Lemma 21.

f(c) = βP (yx, y
′
x′ |c) + γP (yx, yx′|c) + θP (y′x, y

′
x′|c) + δP (yx′ , y

′
x|c)

= W + σP (yx, y
′
x′|c). (B.6)

where,

W = (γ − δ)P (yx|c) + δP (yx′|c) + θP (y′x′|c),

σ = β − γ − θ + δ.

Proof.

f(c)

= βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (y′x, yx′|c)

= βP (yx, y
′
x′|c) + γ[P (yx|c)− P (yx, y

′
x′ |c)] + θ[P (y′x′)− P (yx, y

′
x′ |c)] + δP (y′x, yx′ |c)

= γP (yx|c) + θP (y′x′ |c) + (β − γ − θ)P (yx, y
′
x′|c) + δP (y′x, yx′ |c). (B.7)

By Lemma 18, we have,

P (y′x, yx′ |c) = P (yx, y
′
x′ |c)− P (yx|c) + P (yx′ |c). (B.8)

Substituting B.8 into B.7, we have,

f(c)

= γP (yx|c) + θP (y′x′ |c) + (β − γ − θ)P (yx, y
′
x′|c) + δP (y′x, yx′ |c)

= γP (yx|c) + θP (y′x′ |c) + (β − γ − θ)P (yx, y
′
x′|c) + δ[P (yx, y

′
x′ |c)− P (yx|c) + P (yx′|c)]

= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) + (β − γ − θ + δ)P (yx, y
′
x′|c).
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Theorem 9. Given a causal diagram G and distribution compatible with G, let Z ∪ C be a

set of variables that does not contain any descendant of X in G, then the benefit function

f(c) = βP (yx, y
′
x′|c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (yx′ , y

′
x|c) is bounded as follows:

W + σU ≤ f ≤ W + σL if σ < 0,

W + σL ≤ f ≤ W + σU if σ > 0,

where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′|c) + θP (y′x′|c),

L =
∑
z

max



0,

P (yx|z, c)− P (yx′|z, c),

P (y|z, c)− P (yx′|z, c),

P (yx|z, c)− P (y|z, c)


× P (z|c),

U =
∑
z

min



P (yx|z, c),

P (y′x′|z, c),

P (y, x|z, c) + P (y′, x′|z, c),

P (yx|z, c)− P (yx′ |z, c) + P (y, x′|z, c) + P (y′, x|z, c)


× P (z|c).

Proof. By Lemmas 20 and 21,

substituting B.1 and B.2 into B.6, theorem holds.

Note that, if we substituting Lemma 17 into 21, we have the same results as in Theorem

4. We showed that in Lemma 20 that the bounds in Lemma 20 is guaranteed to be no worse

than the bounds in Lemma 17, therefore, the bounds in Theorem 9 is guaranteed to be no

worse than the bounds in Theorem 4.

Lemma 22. Given a causal diagram G and distribution compatible with G, let Z ∪ C be a

set of variables such that ∀x, x′ ∈ X : x 6= x′, (Yx ⊥⊥ X ∪ Zx′ | Zx, C) in G, then the c-PNS
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P (yx, y
′
x′|c) is bounded as follows:

max



0,

P (yx|c)− P (yx′|c),

P (y|c)− P (yx′|c),

P (yx|c)− P (y|c)


≤ c-PNS, (B.9)

min



P (yx|c),

P (y′x′|c),

P (y, x|c) + P (y′, x′|c),

P (yx|c)− P (yx′|c) + P (y, x′|c) + P (y′, x|c),∑
z

∑
z′ min{P (y|z, x, c), P (y′|z′, x′, c)} ×min{P (zx|c), P (z′x′|c)}


≥ c-PNS.

(B.10)

Proof.

c-PNS

= P (yx, y
′
x′ |c)

= ΣzΣz′P (yx, y
′
x′ , zx, z

′
x′ |c)

= ΣzΣz′P (yx, y
′
x′|zx, z′x′ , c)× P (zx, z

′
x′ |c)

≤ ΣzΣz′ min{P (yx|zx, z′x′ , c), P (y′x′ |zx, z′x′ , c)} ×min{P (zx|c), P (z′x′ |c)}

= ΣzΣz′ min{P (yx|zx, c), P (y′x′|z′x′ , c)} ×min{P (zx|c), P (z′x′|c)} (B.11)

= ΣzΣz′ min{P (y|zx, x, c), P (y′|z′x′ , x′, c)} ×min{P (zx|c), P (z′x′|c)} (B.12)

= ΣzΣz′ min{P (y|z, x, c), P (y′|z′, x′, c)} ×min{P (zx|c), P (z′x′|c)}.

Combined with the bounds in Lemma 17, Lemma 22 holds. Note that equation B.11 is due to

Yx ⊥⊥ Zx′ | Zx, C and Yx′ ⊥⊥ Zx | Zx′ , C. Equation B.12 is due to ∀x ∈ X, Yx ⊥⊥ X |Zx, C.

Theorem 10. Given a causal diagram G and distribution compatible with G, let Z be a set of

variables such that ∀x, x′ ∈ X : x 6= x′, (Yx ⊥⊥ X ∪Zx′ | Zx, C) in G, and C does not contain
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any descendant of X in G, then the benefit function f(c) = βP (yx, y
′
x′|c) + γP (yx, yx′|c) +

θP (y′x, y
′
x′ |c) + δP (yx′ , y

′
x|c) is bounded as follows:

W + σU ≤ f ≤ W + σL if σ < 0,

W + σL ≤ f ≤ W + σU if σ > 0,

where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max



0,

P (yx|c)− P (yx′ |c),

P (y|c)− P (yx′ |c),

P (yx|c)− P (y|c)


,

U = min



P (yx|c),

P (y′x′|c),

P (y, x|c) + P (y′, x′|c),

P (yx|c)− P (yx′|c) + P (y, x′|c) + P (y′, x|c),∑
z

∑
z′ min{P (y|z, x, c), P (y′|z′, x′, c)} ×min{P (zx|c), P (z′x′|c)}


.

Proof. By Lemmas 22 and 21,

substituting B.9 and B.10 into B.6, theorem holds.

Lemma 23. Given a causal diagram G in Figure B.1 and distribution that compatible with

G, and C is not a descendant of X, then c-PNS P (yx, y
′
x′ |c) is bounded as follow:
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C

Z
X Y

Figure B.1: Mediator Z with no direct effects.

max



0,

P (yx|c)− P (yx′|c),

P (y|c)− P (yx′|c),

P (yx|c)− P (y|c)


≤ c-PNS, (B.13)

min



P (yx|c),

P (y′x′|c),

P (y, x|c) + P (y′, x′|c),

P (yx|c)− P (yx′|c) + P (y, x′|c) + P (y′, x|c),

ΣzΣz′ 6=z min{P (y|z, c), P (y′|z′, c)} ×min{P (z|x, c), P (z′|x′, c)}


≥ c-PNS.

(B.14)

Proof. First we show that in graph G, if an individual is a c-complier from X to Y , then

Zx|c and Zx′ |c must have the different values. This is because the structural equations

for Y and Z are fy(z, uy, c) and fz(x, uz, c), respectively. If an individual has the same

Zx|c and Zx′ |c value, then fz(x, uz, c) = fz(x
′, uz, c). This means fy(fz(x, uz, c), uy, c) =

fy(fz(x
′, uz, c), uy, c), i.e., Yx|c and Yx′|c must have the same value. Thus this individual is
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not a c-complier. Therefore,

c-PNS

= P (yx, y
′
x′ |c)

= ΣzΣz′ 6=zP (yz, y
′
z′|c)× P (zx, z

′
x′|c)

≤ ΣzΣz′ 6=z min{P (yz|c), P (y′z′|c)} ×min{P (zx|c), P (z′x′ |c)}

= ΣzΣz′ 6=z min{P (y|z, c), P (y′|z′, c)} ×min{P (z|x, c), P (z′|x′, c)}.

Combined with the bounds in Lemma 17, Lemma 23 holds.

Theorem 11. Given a causal diagram G in Figure B.1 and distribution compatible with G,

and C does not contain any descendant of X, then the benefit function f(c) = βP (yx, y
′
x′|c)+

γP (yx, yx′ |c) + θP (y′x, y
′
x′|c) + δP (yx′ , y

′
x|c) is bounded as follows:

W + σU ≤ f ≤ W + σL if σ < 0,

W + σL ≤ f ≤ W + σU if σ > 0,

where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′|c) + θP (y′x′|c),

L = max



0,

P (yx|c)− P (yx′|c),

P (y|c)− P (yx′|c),

P (yx|c)− P (y|c)


,

U = min



P (yx|c),

P (y′x′|c),

P (y, x|c) + P (y′, x′|c),

P (yx|c)− P (yx′ |c) + P (y, x′|c) + P (y′, x|c),

ΣzΣz′ 6=z min{P (y|z, c), P (y′|z′, c)} ×min{P (z|x, c), P (z′|x′, c)}


.
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Proof. By Lemmas 23 and 21,

substituting B.13 and B.14 into B.6, theorem holds.
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APPENDIX C

Proofs for Chapter 7

Theorem 12. The benefit function f(c) = βP (yx, y
′
x′|c) + γP (yx, yx′|c) + θP (y′x, y

′
x′|c) +

δP (yx′ , y
′
x|c) is bounded as follows:

max{p1, p2} ≤ f ≤ min{p3, p4} if σ < 0, (C.1)

max{p3, p4} ≤ f ≤ min{p1, p2} if σ > 0, (C.2)

where σ, p1, ..., p4 are given by,

σ = β − γ − θ + δ,

p1 = (β − θ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

p2 = γP (yx|c) + δP (y′x|c) + (β − γ)P (y′x′|c),

p3 = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

p4 = (β − θ)P (yx|c)− (β − γ − θ)P (yx′ |c) + θP (y′x′ |c).

Proof. Theorem 12 directly follows Theorem 4 by removing all P (X, Y |c) and P (Y |c) parts.

Because the L.H.S. of the Equations C.1 and C.2 are max functions, and the R.H.S. are min

functions, therefore, we loose the bounds by removing terms, and thus the bounds are still

vaild.

Theorem 13. Given a causal diagram G and a distribution compatible with G, let W ∪U be

a set of variables satisfying the back-door criterion in G relative to an ordered pair (X, Y ),

where W ∪U is partially observable, i.e., only probabilities P (X, Y,W ) and P (U) are given,
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the causal effects of X on Y are then bounded as follows:

LB ≤ P (y|do(x)) ≤ UB

where LB is the solution to the non-linear optimization problem in Equation C.3 and UB is

the solution to the non-linear optimization problem in Equation C.4.

LB = min
∑
w,u

aw,ubw,u
cw,u

, (C.3)

UB = max
∑
w,u

aw,ubw,u
cw,u

, (C.4)

where,∑
u

aw,u = P (x, y, w),
∑
u

bw,u = P (w),
∑
u

cw,u = P (x,w) for all w ∈ W ;

and for all w ∈ W and u ∈ U,

bw,u ≥ cw,u ≥ aw,u,

max{0, p(x, y, w) + p(u)− 1} ≤ aw,u ≤ min{P (x, y, w), p(u)},

max{0, p(w) + p(u)− 1} ≤ bw,u ≤ min{P (w), p(u)},

max{0, p(x,w) + p(u)− 1} ≤ cw,u ≤ min{P (x,w), p(u)}.

Proof. To show that the non-linear optimization bounds the actual causal effects, we only

need to show that there exists a point in feasible space that
∑

w,u
aw,ubw,u

cw,u
is equal to the

actual causal effects.

Since W ∪ U satisfies the back-door criterion, by adjustment formula in Equation 3.1, we

have,

P (y|do(x)) =
∑
w,u

P (y|x,w, u)P (w, u)

=
∑
w,u

P (x, y, w, u)P (w, u)

P (x,w, u)
.
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Let

aw,u = P (x, y, w, u),

bw,u = P (w, u),

cw,u = P (x,w, u).

We now show that the above set of aw,u, bw,u, cw,u are in feasible space.

We have,

for w ∈ W,∑
u

aw,u =
∑
u

P (x, y, w, u) = P (x, y, w),∑
u

bw,u =
∑
u

P (w, u) = P (w),∑
u

cw,u =
∑
u

P (x,w, u) = P (x,w),

and for all w ∈ W and u ∈ U,

bw,u = P (w, u) ≥ P (x,w, u) = cw,u,

cw,u = P (x,w, u) ≥ P (x, y, w, u) = aw,u,

aw,u = P (x, y, w, u) ≤ min{P (x, y, w), p(u)},

bw,u = P (w, u) ≤ min{P (w), p(u)},

cw,u = P (x,w, u) ≤ min{P (x,w), p(u)},

aw,u = P (x, y, w, u) ≥ max{0, p(x, y, w) + p(u)− 1},

bw,u = P (w, u) ≥ max{0, p(w) + p(u)− 1},

cw,u = P (x,w, u) ≥ max{0, p(x,w) + p(u)− 1}.

Therefore, the above set of aw,u, bw,u, cw,u are in feasible space, and thus, the UB and LB

bound the actual causal effects.

Theorem 14. Given a causal diagram G and distribution compatible with G, let W ∪ U be

a set of variables satisfying the front-door criterion in G relative to an ordered pair (X, Y ),
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where W ∪ U is partially observable, i.e., only probabilities P (X, Y,W ) and P (U) are given

and P (x,W,U) > 0, the causal effects of X on Y are then bounded as follows:

LB ≤ P (y|do(x)) ≤ UB

where LB is the solution to the non-linear optimization problem in Equation C.5 and UB is

the solution to the non-linear optimization problem in Equation C.6.

LB = min
∑
w,u

bx,w,u
P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
, (C.5)

UB = max
∑
w,u

bx,w,u
P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
, (C.6)

where,∑
u

ax,w,u = P (x, y, w),
∑
u

bx,w,u = P (x,w) for all x ∈ X and w ∈ W ;

and for all x ∈ X,w ∈ W , and u ∈ U,

bx,w,u ≥ ax,w,u,

max{0, p(x, y, w) + p(u)− 1} ≤ ax,w,u ≤ min{P (x, y, w), p(u)},

max{0, p(x,w) + p(u)− 1} ≤ bx,w,u ≤ min{P (x,w), p(u)}.

Proof. To show that the non-linear optimization bounds the actual causal effects, we only

need to show that there exists a point in feasible space that
∑

w,u
bx,w,u

P (x)

∑
x′

ax′,w,uP (x′)

bx′,w,u
is equal

to the actual causal effects.

Since W ∪ U satisfies front-door criterion and P (u,W,U) > 0, by adjustment formula in

Equation 3.2, we have,

P (y|do(x)) =
∑
w,u

P (w, u|x)
∑
x′

P (y|x′, w, u)P (x′)

=
∑
w,u

P (x,w, u)

P (x)

∑
x′

P (x′, y, w, u)P (x′)

P (x′, w, u)
.

Let

ax,w,u = P (x, y, w, u),

bx,w,u = P (x,w, u).
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Similarly to the proof of Theorem 13, it is easy to show that the above set of ax,w,u, bx,w,u

are in feasible space, and therefore, LB and UB bound the actual causal effects.

Theorem 16. Let G be a causal diagram containing nodes {V1, ..., Vn−3, X, Y, Z}. Let O be

any observational data compatible with G. Suppose there exists a set of variables that satisfies

the back-door or front-door criterion relative to (X, Y ) in G, then, (G,O) is equivalent to

(G′, O′) (G′ containing nodes {V1, ..., Vn−3, X, Y,W,U}; O′ is observational data compatible

with G′), where the number of states in W times the number of states in U is equal to the

number of states in Z, and the structure of G′ and the observational data O′ are obtained as

follows:

Structure of G′:

Let ParentsG(H) be the parents of H in causal diagram G.

ParentsG′(U) = ParentsG(Z),

ParentsG′(W ) = ParentsG(Z) ∪ {U}.

For H ∈ {V1, ..., Vn−3, X, Y },

ParentsG′(H) = ParentsG(H) if Z /∈ ParentsG(H),

ParentsG′(H) = ParentsG(H) \ {Z} ∪ {W,U} if Z ∈ ParentsG(H).

Note that, let Q be the set of variables in G that satisfies the back-door or front-door

criterion relative to (X, Y ), then Q′ satisfies the back-door or front-door criterion relative to

(X, Y ) in G′ , where

Q′ = Q if Z /∈ Q,

Q′ = Q \ {Z} ∪ {W,U} if Z ∈ Q.

Observational data:

Let p be the number of states in W , and let q be the number of states in U .

The states of Z are the Cartesian product of the states of W and the states of U.

In detail,

(wj, uk) is equivalent to z(j−1)∗q+k,

wj is equivalent to ∨qk=1(wj, uk) = ∨qk=1z(j−1)∗q+k,
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uk is equivalent to ∨pj=1(wj, uk) = ∨pj=1z(j−1)∗q+k,

P (wj, uk, V ) = P (z(j−1)∗q+k, V ) for any V ⊆ {V1, ..., Vn−3, X, Y }.

Proof. First, we show that Q′ satisfies the back-door or front-door criterion relative to (X, Y )

in G′. If Q satisfies the back-door criterion relative to (X, Y ) in G, we need to show that,

• no node in Q′ is a descendant of X.

• Q′ blocks every path between X and Y that contains an arrow into X.

It is easy to show that if there is a node in Q′ that is a descendant of X in G′, then there

is a node in Q that is a descendant of X in G. And if there is a path between X and Y

that contains an arrow into X does not blocked by Q′ in G′, then there is a path between

X and Y that contains an arrow into X does not blocked by Q in G. Thus, Q′ satisfies the

back-door criterion relative to (X, Y ) in G′. Similarly, we can show that if Q satisfies the

front-door criterion relative to (X, Y ) in G, then Q′ satisfies the front-door criterion relative

to (X, Y ) in G′.

Now, we show that (G,O) is equivalent to (G′, O′), i.e., show that P (y|do(x)) is the same

between (G,O) and (G′, O′). Suppose Q satisfies the back-door criterion relative to (X, Y )

in G. By adjustment formula in Equation 3.1, we have,

P (y|do(x)) =
∑

q∈Q P (y|do(x), q)× P (q).

And in G′,

P (y|do(x)) =
∑

q∈Q′ P (y|do(x), q)× P (q),

it is obviously that these two causal effects are the same,

because P (wj, uk, V ) = P (z(j−1)∗q+k, V ) for any V ⊆ {V1, ..., Vn−3, X, Y }.

Similarly, we can show that if Q satisfies the front-door criterion relative to (X, Y ) in G,

(G,O) is equivalent to (G′, O′).
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Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson.
“Counterfactual reasoning and learning systems: The example of computational
advertising.” The Journal of Machine Learning Research, 14(1):3207–3260, 2013.

[BST99] Alex Berson, Stephen Smith, and Kurt Thearling. Building data mining applica-
tions for CRM. McGraw-Hill Professional, 1999.

[GP98] David Galles and Judea Pearl. “An axiomatic characterization of causal counter-
factuals.” Foundations of Science, 3(1):151–182, 1998.

[Hal00] Joseph Y Halpern. “Axiomatizing causal reasoning.” Journal of Artificial Intel-
ligence Research, 12:317–337, 2000.

[HYW06] Shin-Yuan Hung, David C Yen, and Hsiu-Yu Wang. “Applying data mining to
telecom churn management.” Expert Systems with Applications, 31(3):515–524,
2006.

[KC11] Manabu Kuroki and Zhihong Cai. “Statistical Analysis of ‘Probabilities of
Causation’ Using Co-variate Information.” Scandinavian Journal of Statistics,
38(3):564–577, 2011.

[KF09] Daphne Koller and Nir Friedman. Probabilistic graphical models: Principles and
techniques. MIT press, 2009.

[Kra88] Dieter Kraft. A software package for sequential quadratic programming. Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungs-
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