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Abstract

The problem of individualization is crucial in almost
every field of science. Identifying causes of specific
observed events is likewise essential for accurate
decision making as well as explanation. However,
such tasks invoke counterfactual relationships, and
are therefore indeterminable from population data.
For example, the probability of benefiting from a
treatment concerns an individual having a favor-
able outcome if treated and an unfavorable outcome
if untreated; it cannot be estimated from experi-
mental data, even when conditioned on fine-grained
features, because we cannot test both possibilities
for an individual. Tian and Pearl provided bounds
on this and other probabilities of causation using a
combination of experimental and observational data.
Those bounds, though tight, can be narrowed signifi-
cantly when structural information is available in the
form of a causal model. This added information may
provide the power to solve central problems, such
as explainable AI, legal responsibility, and personal-
ized medicine, all of which demand counterfactual
logic. This paper derives, analyzes, and character-
izes these new bounds, and illustrates some of their
practical applications.

1 Introduction
Machine learning advances have enabled tremendous capa-
bilities of learning functions accurately and efficiently from
enormous quantities of data. These functions allow for better
policies, like whether a surgery, chemotherapy, or radiation
therapy is most effective for a population of given character-
istics such as age, sex, and type of symptoms. However, this
mapping from characteristics to efficacy can be quite mislead-
ing when applied to individual decision making, even when
the data originate from a randomized controlled trial (RCT).
To see why let’s follow the example treated in [Mueller and
Pearl, 2020]. Imagine a novel vaccine for a deadly virus in
the midst of a pandemic is in short supply. We want to admin-
ister the vaccine to people most likely to benefit from it. In
other words, we need to identify the group most likely to both
survive if vaccinated and succumb if unvaccinated.

A clinical study is conducted to test the effectiveness of
the vaccine. For simplicity, let’s assume a binary age classi-
fication: sixty years old and under and over sixty years old.
Older people survive 57% of the time when vaccinated and
37% of the time when unvaccinated, while younger people
survive 55% of the time when vaccinated and 45% of the time
when unvaccinated. A naı̈ve interpretation is that the vaccine
is 10 percentage points more effective for older people and,
therefore, they should be vaccinated first.

However, a different picture emerges if we assess the per-
centage of beneficiaries in the two groups. These percent-
ages, known as Probability of Necessity and Sufficiency (PNS)
[Pearl, 1999], can be tightly bounded [Tian and Pearl, 2000]
and falls, given the data above, between 20% and 57% for the
older patients and between 10% and 55% for the younger pa-
tients. We see that it’s anything but clear which group should
be vaccinated first.

What is more remarkable is these bounds can be narrowed
significantly if data from observational studies is also available,
and may even flip priority from the elderly to the young. Ob-
servational studies reflect outcomes for individuals who decide
on their own whether to get vaccinated or not. In our example,
one can show that the bounds for over-sixties and under-sixties
may become [20%, 40%] and [40%, 55%], respectively, thus
reversing the naı̈ve priorities above, and clearly show priority
to vaccinate the young, not the elderly.

Since Tian and Pearl [Tian and Pearl, 2000], the problem
of bounding probabilities of causation was analyzed by com-
bining only two sources of information: experimental data
and observational studies, making no assumptions whatsoever
about the model generating the data. This paper shows1 that,
surprisingly, knowing the structure of the causal graph allows
us to narrow these bounds, despite the fact that the graph
may seem redundant; i.e., we already know the causal effects.
Moreover, the graph adds information about an individual,
although it describes properties of the population. Knowledge
of the causal structure and data allows us to narrow bounds
because we can then partition bounds on subsets of covari-
ates and mediators, obtain local bounds on the partitions, and
combine the bounds. This partitioning gives us a finer-grained
perspective on possible values for probabilities of causation.

1Supplementary material is available at https://ftp.cs.ucla.edu/
pub/stat ser/r505-sup.pdf

https://ftp.cs.ucla.edu/pub/stat_ser/r505-sup.pdf
https://ftp.cs.ucla.edu/pub/stat_ser/r505-sup.pdf


The analysis of causes of effects can now take advantage of
the causal diagram.

2 Preliminaries and Related Work
In this section, we review the definitions for the three aspects
of causation as defined in [Pearl, 1999]. We use the causal
diagrams [Pearl, 1995; Spirtes et al., 2000; Pearl, 2009; Koller
and Friedman, 2009] and the language of counterfactuals in its
structural model semantics, as given in [Balke and Pearl, 2013;
Galles and Pearl, 1998; Halpern, 2000].

We use Yx = y to denote the counterfactual sentence “Vari-
able Y would have the value y, had X been x.” For simplicity
purposes, in the rest of the paper, we use yx to denote the
event Yx = y, yx′ to denote the event Yx′ = y, y′x to denote
the event Yx = y′, and y′x′ to denote the event Yx′ = y′. For
notational simplicity, we limit the discussion to binary X and
Y . sco

Three prominent probabilities of causation are the following:

Definition 1 (Probability of necessity (PN)). Let X and Y be
two binary variables in a causal model M , let x and y stand
for the propositions X = true and Y = true, respectively,
and x′ and y′ for their complements. The probability of
necessity is defined as the expression [Pearl, 1999]

PN =∆ P (Yx′ = false|X = true, Y = true)

=∆ P (y′x′ |x, y) (1)

Definition 2 (Probability of sufficiency (PS)). [Pearl, 1999]

PS =∆ P (yx|y′, x′) (2)

Definition 3 (Probability of necessity and sufficiency (PNS)).
[Pearl, 1999]

PNS =∆ P (yx, y
′
x′) (3)

PNS stands for the probability that y would respond to x
both ways, and therefore measures both the sufficiency and
necessity of x to produce y.

Tian and Pearl [Tian and Pearl, 2000] provide tight bounds
for PNS, PN, and PS without a causal diagram using Balke’s
program [Balke and Pearl, 1997] (we will call them Tian-
Pearl bounds). Li and Pearl [Li and Pearl, 2019] provide a
theoretical proof of the tight bounds for PNS, PS, PN, and
other probabilities of causation without a causal diagram.

PNS, PN, and PS have the following tight bounds:

PNS ≥ max


0

P (yx)− P (yx′)
P (y)− P (yx′)
P (yx)− P (y)

 (4)

PNS ≤ min


P (yx)
P (y′x′)

P (x, y) + P (x′, y′)
P (yx)− P (yx′)+

+P (x, y′) + P (x′, y)

 (5)

PN ≥ max

{
0

P (y)−P (yx′ )
P (x,y)

}
(6)

PN ≤ min

{
1

P (y′
x′ )−P (x′,y′)

P (x,y)

}
(7)

Note that we only consider PNS and PN here because the
bounds of PS can be easily obtained by exchanging x with x′

and y with y′ in the bounds of PN.
To obtain bounds for a specific population, defined by a set

C of characteristics, the expressions above should be modified
by conditioning each term on C = c. In this paper, how-
ever, we obtain narrower bounds of PNS by leveraging another
source of knowledge – the causal diagram behind the data,
together with measurements of a set Z of covariates in that
diagram. We provide graphical conditions under which the
availability of such measurements would improve the bounds
and demonstrate, both analytically and by simulation, the
degree of improvement achieved. Narrower bounds and graph-
ical criteria can be obtained for PN and PS through the same
mechanism detailed in the proofs in the appendix.

3 Bounds with Causal Diagram
3.1 Non-descendant Covariates
Theorems 4 and 5 below provide bounds for PNS when a set
Z of variables can be measured which satisfy only one simple
condition: Z contains no descendants of X . This condition is
important because if X was set to x and Z contains a descen-
dant of X , then Z could be altered as well and P (yx|z) would
be unmeasurable. If the descendant is independent of Yx, then
P (yx|z) would be measurable, but that descendant wouldn’t
contribute to any narrowing of bounds. These bounds are al-
ways contained within the Tian-Pearl bounds of equations 4,
5, 6, and 7.

Theorem 4. Given a causal diagram G and distribution com-
patible with G, let Z be a set of variables that does not contain
any descendant of X in G, then PNS is bounded as follows:

PNS ≥
∑
z

max


0,

P (yx|z)− P (yx′ |z),
P (y|z)− P (yx′ |z),
P (yx|z)− P (y|z)

× P (z) (8)

PNS ≤
∑
z

min


P (yx|z),
P (y′x′ |z),

P (x, y|z) + P (x′, y′|z),
P (yx|z)− P (yx′ |z)

+ P (x, y′|z) + P (x′, y|z)

× P (z)

(9)

Proof. See Appendix.
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Figure 1: Z is not a descendant of X
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Figure 2: Mediator Z with direct effect

Note that, unlike the subpopulation bounds, where each
term is conditioned on C = c, here PNS is not conditioned on
Z = z. This is because the measurement of Z is conducted in
the study, but may not be available for the individual seeking
advice. Examples are illustrated in Section 4.

Note also that if only experimental data are available
(i.e., P (Y ), P (Y,X), P (Y |Z), P (Y,X|Z) are not measured),
arguments to the max or min functions involving ob-
servational data can be disregarded. For example, the
lower bounds of Theorem 4 would become max{P (yx) −
P (yx′),

∑
z max{0, P (yx|z)− P (yx′ |z)} × P (z)}.

Sufficient Covariates
In Figures 1a and 1b, Z is not a descendant of X and addition-
ally satisfies the back-door criterion. For such cases the PNS
bounds can be simplified:

Theorem 5. Given a causal diagram G and distribution com-
patible with G, let Z be a set of variables satisfying the back-
door criterion [Pearl, 1993] in G, then the PNS is bounded as
follows:

PNS ≥
∑
z

max{0, P (y|x, z)− P (y|x′, z)} × P (z) (10)

PNS ≤
∑
z

min{P (y|x, z), P (y′|x′, z)} × P (z) (11)

Proof. See Appendix.

The significance of Theorem 5 is due to the ability to com-
pute bounds using purely observational data.

3.2 Mediation
Partial Mediator
In Figure 2, Z is a descendant of X , so we cannot use Theo-
rems 4 and 5. However, the absence of confounders between
Z and Y and between X and Y permits us to bound PNS as
follows:

Z

X Y

Figure 3: Mediator Z with no direct effect

Theorem 6. Given a causal diagram G and distribution
compatible with G, let Z be a set of variables such that
∀x, x′ ∈ X : x ̸= x′, (Yx ⊥⊥ X ∪ Zx′ | Zx) in G, then
the PNS is bounded as follows:

PNS ≥ max


0,

P (yx)− P (yx′),
P (y)− P (yx′),
P (yx)− P (y)

 (12)

PNS ≤ min



P (yx),
P (y′x′),

P (x, y) + P (x′, y′),

P (yx)− P (yx′)
+ P (x, y′) + P (x′, y),∑

z

∑
z′ min{P (y|x, z),

P (y′|x′, z′)}×
min{P (zx), P (z′x′)}


(13)

Proof. See Appendix.

Note that although this lower bound is unchanged from
Tian and Pearl, the upper bound contains a vital additional
argument to the min function. This new term can significantly
reduce the upper bound. The rest of the terms are included
because sometimes Tian and Pearl’s bounds are superior. The
following Theorem has the same quality.

Pure Mediator
Figure 3 is a special case of Figure 2, in which X has no direct
effect on Y . The resulting bounds for PNS read:

Theorem 7. Given a causal diagram G in Figure 3 and dis-
tribution that compatible with G, then PNS are bounded as
follow:

PNS ≥ max


0,

P (yx)− P (yx′),
P (y)− P (yx′),
P (yx)− P (y)

 (14)

PNS ≤ min



P (yx),
P (y′x′),

P (x, y) + P (x′, y′),

P (yx)− P (yx′)
+ P (x′, y) + P (x, y′),

ΣzΣz′ ̸=z min{P (y|z), P (y′|z′)}×
min{P (z|x), P (z′|x′)}


(15)



Drug No Drug

Women 1 out of 110
recovered (1%)

13 out of 120
recovered (11%)

Men 313 out of 354
recovered (88%)

114 out of 116
recovered (98%)

Overall 314 out of 464
recovered (68%)

127 out of 236
recovered (54%)

Table 1: Results of a drug study with gender taken into account

Proof. See Appendix.

The core terms for Theorems 6 and 7 added to the upper
bounds notably only require observational data.

4 Examples
4.1 Credit to the Treatment
The manufacturer of a drug wants to claim that a non-trivial
number of recovered patients who were given access to the
drug owe their recovery to the drug. So they conduct an obser-
vational study; they record the recovery rates of 700 patients.
464 patients chose to take the drug and 236 patients did not.
The results of the study are in table 1. The manufacturer claims
success for their drug because the overall recovery rate from
the observational study has increased from 54% to 68% for
non-drug-takers to drug-takers.

The number of recovered patients that should credit the
drug for their recovery are those who would recover if they
had taken the drug and would not recover if they had not taken
the drug. This is the PNS.

Let X = x denote the event that the patient took the drug
and X = x′ denote the event that the patient did not take
the drug. Let Y = y denote the event that the patient has
recovered and Y = y′ denote the event that the patient has not
recovered. Let Z = z represent female patients and Z = z′

represent male patients. Suppose we know an additional fact,
estrogen has a negative effect on recovery, so women are less
likely to recover than men, regardless of the drug. Additionally,
as we can see from the data, men are significantly more likely
to take the drug than women are. The causal diagram is shown
in Figure 1a.

Node Z on the graph satisfies the back-door criterion, there-
fore we can compute the causal effect P (yx) and P (y′x) via
the adjustment formula [Pearl, 1993] and observational data
from table 1, where,

P (yx) =
∑
z

P (y|x, z)P (z) = 0.597,

P (yx′) =
∑
z

P (y|x′, z)P (z) = 0.696,

P (y′x′) = 1− P (yx′) = 0.304.

Therefore, the bounds of PNS computed using equations 4
and 5 are 0 ≤ PNS ≤ 0.297, where the diagram was used
only to identify the causal effects yx and yx′ . These bounds
aren’t informative enough to conclude whether or not the drug
was the cause of recovery for a meaningful number of patients.
They suggest that the fraction of beneficiaries can be as low

as 0% or as high as 29.7%. Now, consider the bounds in
Theorem 5 which takes into account the position of Z in the
diagram. Since Z satisfies the back-door criterion, we can
use equations 10 and 11 to compute 0 ⩽ PNS ⩽ 0.01. The
conclusion now is obvious. At most 7 out of 314 patients’
recoveries can be credited to the drug. This is strong evidence
that counters the manufacturer’s claim.

4.2 Inflammation Mediator
As before, let X and Y represent drug consumption and recov-
ery. Let Z represent acute inflammation with z being present
and z′ being absent. The drug reduces inflammation. However,
in some people the drug causes acute inflammation, which has
adverse effects on recovery. The causal structure is depicted in
Figure 3. We observe the following proportions among drug
takers, non-takers, with inflammation, and without inflamma-
tion:

P (y|z) = 0.5,

P (y|z′) = 0.5,

P (z|x) = 0.1,

P (z|x′) = 0.1.

The Tian-Pearl PNS upper bound is:

PNS ⩽ min {P (y|x), P (y′|x′)} = 0.5.

Given that the lower bound is 0, these bounds are not very
informative. If we knew that an individual would react to
the drug with acute inflammation, we would only look at the
data comprising of people reacting to the drug with acute
inflammation. Since we are conditioning on z, PNS = 0
because the outcome, Y , will have the same result regardless
of whether the person consumed the drug. So knowing a
person’s inflammation response to the drug narrows PNS from
a wide [0, 0.5] to a point estimate of 0. Imagine, for this drug,
that we can’t know ahead of time how a person will react
inflammation-wise. We can only observe acute inflammation
after the drug is administered. Since we have population data
from patients who have already taken the drug, we can utilize
this mediator to bound the PNS for new patients who haven’t
yet taken the drug:

PNS ⩽ min


P (y|z) · P (z|x) + P (y|z′) · P (z|x′),
P (y|z) · P (z′|x′) + P (y|z′) · P (z′|x),
P (y′|z′) · P (z|x) + P (y′|z) · P (z|x′),
P (y′|z′) · P (z′|x′) + P (y′|z) · P (z′|x)


= 0.1.

The mediator-improved PNS upper bound is significantly
smaller than what the Tian-Pearl upper bound provides, 0.1
vs 0.5. The new upper bound can now be effectively weighed
against other factors like cost and side-effects.

4.3 Ancestral Covariate
Let’s continue from the introduction, where X represents vac-
cination with x being vaccinated and x′ being unvaccinated
and Y represents survival with y is surviving and y′ is suc-
cumbing to the pandemic. Instead of classifying by age, let’s
assume our machine learning algorithm uncovers a correlation
between survival and ancestry. Let Z represent ancestry and,
for simplicity, there are only two ancestries, z and z′. Either
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Figure 4: Causal diagrams for simulation

graph of Figure 1 is representative of this. Our RCT data
reveals:

P (Z = z) = 0.5,
P (yx|Z = z) = 0.75,
P (yx′ |Z = z) = 0.2,

P (yx|Z = z′) = 0.25,

P (yx′ |Z = z′) = 0.6.

We now have four different bounds on PNS:

Tian-Pearl =⇒ 0.1 ⩽ PNS ⩽ 0.5

Covariate-improved =⇒ 0.275 ⩽ PNS ⩽ 0.5

Person has ancestry z =⇒ 0.55 ⩽ PNS ⩽ 0.75

Person has ancestry z′ =⇒ 0 ⩽ PNS ⩽ 0.25

As expected, using the causal diagram and ancestral Z yields
narrower bounds than the Tian-Pearl bounds. However, it’s
surprising that knowing a person has either ancestry z or z′
gives us bounds outside of our new bounds. In fact, they
are completely outside the wider Tian-Pearl bounds. This is
discussed in section 6.

In the meantime, it’s important to recognize that the last two
ancestry-specific PNS bounds are what should be referred to
if an individual knows their ancestry. The covariate-improved
PNS bounds should only be referred to if a person’s ancestry is
unknown. This might be because the person was adopted with
no hint as to whether they’re from ancestry z or z′ (physical
features are right in between or indistinguishable).

5 Simulation Results
We randomly generated 100000 sample distributions compati-
ble with each the causal diagrams depicted in Figures 4a, 1a,
4b, and 3 for Theorems 4, 5, 6, and 7, respectively. Given
sample distribution i, let [ai, bi] be the bounds utilizing the
proposed Theorems and [ci, di] be the traditional Tian-Pearl
bounds [Li and Pearl, 2021]. The following is computed for
each causal diagram as summarized in Table 2:

• Average increased PNS lower bound:
∑

(ai−ci)
100000

• Average decreased PNS upper bound:
∑

(di−bi)
100000

• Average gap in Tian-Pearl PNS bounds:
∑

(di−ci)
100000

• Average gap utilizing Theorems 4, 5, 6, and 7:
∑

(bi−ai)
100000

• Number of sample distributions benefiting from The-
orems 4, 5, 6, and 7:

∑
ei, where ei = 1 if (ai >

ci) or (bi < di), ei = 0 otherwise.

Incr’d
lower
bound

Decr’d
upper
bound

Tian-Pearl
PNS gap

Theorems
PNS gap

Samples
benefiting

Non-desc 0.0238 0.0237 0.2673 0.2197 85.622%
Suff covar 0.0266 0.0264 0.2197 0.1668 75.025%
Part med 0.0000 0.0047 0.2289 0.2242 12.532%
Part med 2 0.0000 0.0382 0.2768 0.2386 100.00%
Pure med 0.0000 0.0935 0.2605 0.1670 100.00%

Table 2: Performance metrics for Theorems 4 (Non-desc), 5 (Suff
covar), 6 (Part med & Part med 2), and 7 (Pure med)

Figure 5: PNS bounds for causal diagram of Figure 4a

For each causal diagram, 100 out of 100000 sample distribu-
tions are randomly selected, sorted by lower and upper PNS
bound, and then drawn with and without considering the causal
diagram (Figures 5 to 8).

Table 2 shows the average gaps between Tian-Pearl PNS
bounds and Theorem 6’s bounds are similar for the partial me-
diator of Figure 4b (Part med in Table 2). This is because only
12.532% of samples are narrowed by the proposed Theorem 6.
A second set of sample distributions were generated repeatedly
until 100000 narrowed samples were available (Part med 2 in
Table 2). This time the difference in gaps were significant,
which is important if the costs of including partial mediator
data are low.

6 Discussion
We have shown that knowledge of a causal structure enables
narrower PNS bounds to be estimated, compared with the
tight bounds of Tian and Pearl which were derived without
such knowledge. However, it must be emphasized that this
narrowing is only applicable to individuals whose Z charac-
teristics are not known at decision time. If their Z values are
known, the bounds of equations 4 and 5, conditioned on those
values, should be consulted. Example 4.3 provides a scenario
where people who know their ancestry have very different
PNS bounds than people who don’t know their ancestry. You
would expect the additional information of ancestral knowl-
edge would further narrow the bounds, but they change the
bounds to a different non-overlapping range. This violates
the heuristic that additional information should narrow the
bounds or, at worst, not widen them. To rephrase, if you don’t



Figure 6: PNS bounds for causal diagram of Figure 1a

Figure 7: PNS bounds for causal diagram of Figure 4b among nar-
rowed samples referenced by part med 2 in Table 2

know someone’s ancestry, the probability they benefit from
this drug is between 0.275 and 0.5. Once you acquire the
additional information that the person is of ancestry z, the
probability they benefit from this treatment becomes between
0.55 and 0.75. How is this possible? Was the person’s prob-
ability of benefiting never really between 0.275 and 0.5 that
we calculated before knowing their ancestry?

The reason for this seeming inconsistency is that we’re
asking different questions. When we didn’t know the ancestry,
we were asking, “what is the probability of benefiting for a
person regardless of ancestry?” When we found out the person
is of ancestry z, we then asked a different question, “what is
the probability of benefiting for a person of ancestry z?” The
additional information of the person’s ancestry didn’t help the
first question and the second question isn’t answerable without
the additional information.

The following example will illuminate the reasons for this
phenomenon [Pearl, 2009, p. 296]. Let the covariate Z stand
for the outcome of a fair coin toss, so P (Z = heads) = 0.5.
Without knowing what treatment X and success Y represent,
let’s assume the following measurements are taken:

P (yx) = 0.5,
P (yx|Z = heads) = 1,
P (yx|Z = tails) = 0,

P (yx′) = 0.5,
P (yx′ |Z = heads) = 0,
P (yx′ |Z = tails) = 1.

Figure 8: PNS bounds for causal diagram of Figure 3

Tian-Pearl bounds gives us 0 ⩽ PNS ⩽ 0.5 and the
bounds utilizing Z are 0.5 ⩽ PNS ⩽ 0.5 or PNS = 0.5.

Now, let’s uncover the functional mechanism, x represents
betting $1 on heads, x′ represents betting $1 on tails, y repre-
sents winning $1, and y′ represents losing $1. It should now
be clear why P (yx) = P (yx′) = 0.5. Without knowing the
coin toss result, Z, the odds of winning $1 are 50/50 whether
you bet on heads or tails. PNS is also 0.5 because benefiting
from betting on heads is true only when the coin toss was
heads. The coin toss is heads 50% of the time.

This brings us back to the PNS bounds when we have the
additional information of what the coin toss result was. If
we know the coin toss resulted in heads, then the probability
of benefiting from betting on heads is 100%. Similarly, if
we know the coin toss resulted in tails, then the probability
of benefiting from betting on heads is 0%. In other words
PNS(heads) = 1 and PNS(tails) = 0. If the coin toss is heads,
winning only happens when betting on heads. Even though
the bounds are completely different when we provided with
the very useful additional information of the coin toss, there
is clearly no contradiction here. There was a 50% probability
of benefiting from betting on heads when we didn’t know the
coin toss result and a 100% probability of benefiting from
betting on heads when we knew the coin toss resulted in heads.
We were asking two separate questions. The first question was,
“what is the probability of benefiting regardless of coin toss
result?” The second question was, “what is the probability of
benefiting for a coin toss of heads?”

7 Conclusion
In this work, we have developed a graphical method of learning
individualized functions (representing PNS, PN, and PS) from
population data, based on the structure of the causal graph.
These methods generalize the PN, PS, and PNS bounds de-
rived in [Tian and Pearl, 2000], the bounds derived in [Kuroki
and Cai, 2011], and the PN bounds derived in [Dawid et al.,
2017]. Often these functions return bounds rather than point
estimates. This paper shows nevertheless that the bounds ob-
tained can be quite informative. Machine learning algorithms
can easily incorporate these techniques to achieve both data
interpretability and decision making accuracy for situation-
specific cases.
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