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ABSTRACT
Machine-learning (ML) models are ubiquitously used to make a
variety of inferences, a common application being to predict and
categorize user behavior. However, ML models often suffer from
only being exposed to biased data – for instance, a search ranking
model that uses clicks to determine how to rank will suffer from
position bias. The difficulty arises due to user feedback only being
observed for one treatment and not existing counterfactually for
other potential treatments. In this work, we discuss a real-world sit-
uation in which a binary classification model is used in production
in order to make decisions about how to treat users. We introduce
the model and discuss the limitations of our modeling approach. We
show that by using unit selection criterion we can do a better job
classifying users. Following, we propose a causal modeling method
in which we can take the existing data and use it to derive bounds
that can be used to modify the objective function in order to incor-
porate causal learning into our training process. We demonstrate
the effectiveness of this approach in a real-world setting.
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1 INTRODUCTION
Correctly predicting and categorizing user behavior is critical in
many industry areas. For example, in online advertising [4, 11, 15,
18], there are companies whom are interested in identifying users
who would only click on an advertisement if and only if the said
advertisement is highlighted. Another example lies in customer
relationship management [7, 16], where it’s desirable to predict
which customers are about to churn but are likely to change their
minds if enticed towards retention. A common difficulty in pre-
dicting and categorizing behavior arises due to user feedback only
being observed for one treatment and not defined counterfactually
in terms of what the individual would do under hypothetically
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unrealized conditions. For example, if we see that a user clicked
on a promoted advertisement, we don’t know if they would have
clicked on that advertisement had it not been highlighted.

To better categorize user behavior for prediction, it’s useful to
classify individual behavior into four response types, labeled com-
plier, always-taker, never-taker, and defier [2, 3]. Compliers are in-
dividuals who would respond positively had they been encouraged
and negatively if not encouraged. Always-takers and never-takers
always respectively respond positively/negatively whether or not
they get encouragement. Defiers are individuals who response neg-
atively if encourage and positively if not encouraged.1 Commonly,
unit selection is used to target compliers since that would result in
the most effective treatment.

[9] treats the unit selection problem using the structural causal
model (SCM) [14] in order to take into account the counterfactual
nature of the desired behavior, similar to [5, 6], and found that unit
selection can derive selection criteria that allows for ways to decide
which group to expose to a treatment in order to yield greater
benefit than standard methods. In the work of [9], they found that
the unit selection problem entails two sub-problems of evaluation
and search, and propose a solution for the evaluation sub-problem
– theoretically useful, but often impractical in a real world setting
where treatments need to be made at the individual level.

In this work, we propose a method in which the search sub-
problem can be approximately solved by computing a group-wise
attribute (e.g. a label for a group of users) with causal unit-selection
derived bounds. In other words, we modify the learning objective
function in order to train a better performing decision-making
model by providing counterfactual information to the training pro-
cess. We applied this methodology to an application where the
goal is to balance search quality with resource utilization, and saw
a significant improvement over models trained with the baseline
procedure.

At a high level, our work deals with the bias present in the
implicit feedback, similar to the rich literature in unbiased and
counterfactual learning [1, 8, 10]. However, our work is unique that
1) unlike work that focuses on presentation bias (e.g. position bias
[8]) that is constant for all users, we focus on the model-induced
bias when targeting individual users, and 2) unlike existing coun-
terfactual learning methods [12] that depend on propensity score
weighting (typically using online randomization), to the best of our
knowledge, our work is the first to apply a principled causal logic
for personalized decision making under purely observational data.

This paper is structured as follows: we first provide background
knowledge on the motivating real-world example and discuss how
unit selection can help. Next, we present background for the coun-
terfactual logic associated with SCM and show how it can be used

1For instance, a user who would click an advertisement if only it wasn’t promoted.
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to represent the unit selection problem. Following, we present our
novel methodology of modifying the training objective to incor-
porate unit-selection derived selection criteria into the training
process. We conclude with experimental results of our approach.

2 BACKGROUND
2.1 Real-world Motivating Example
There is a search bar in GMail that shows “instant” results, where
every keypress may trigger different email search results to render.
In addition to this, the search bar may also show search results
from users’ Google Drive accounts, as seen in Figure 1.

Since not all users who use GMail necessarily will use Drive, a
decision to make is whether or not to display the Drive section, as
if it’s not displayed we can suppress that additional call to Drive
to prevent wasting resources. For consistent user experience, after
deciding whether or not to suppress that section, we lock that
decision for a window of time. The more users we enable the section
for, the more effective the search system is, whereas the fewer users
we enable the section for, the more efficient our search system
becomes, thus putting us in a position to trade off effectiveness and
efficiency, similar to [17].

Figure 1: Example search bar with suggestions and search
results. Results from both GMail and Drive are shown, with
Drive results in a “Drive section” bounded in the green box.

Initially, there was a heuristic method set up to enable/disable
the Drive section based on statistics of user’s past activities (how
often they click on the Drive section, how often they click on Drive
documents). We then developed a machine-learned (ML) model in
order to decide whether or not to suppress the Drive section.

At a high level, we model this as a binary classification problem
where we are determining which users should and shouldn’t have
their Drive section suppressed, with an objective that considers both
click and resources-used (using the logged number of keypresses
per-search as a proxy). Each training data point is at user level, with
the input features being the frequency of user activities (e.g. the
number of views, edits, creates on Drive documents). At serving
time, our model needs to decide whether or not to suppress the

user’s Drive section. Note that because of the method in which
initial heuristic model was deployed, offline training and evaluation
data is biased – i.e. if the heuristic rule turns the Drive section off
for a user, we will not get any clicks on the Drive section, which is
an important factor on whether to enable/disable the Drive section.

To get labels for the training data, we consider click and keypress,
respectively the number of clicks on Drive section and number of
keypresses from the user in the searchbar. The per-user objective
function, given positive hyperparameters α and β is:

((α ∗ click − keypress) > 0?1 : 0) (1)

which we treat as the objective function for binary classification,
where each example is weighted by:

β ∗ abs(α ∗ click − keypress) (2)

This results in an intuitive setting: if a user has many clicks but
a low number of key-presses, then the weight in Equation 2 is high
and the label is positive, which means it’s especially important for
the model to predict this user as positive during training (turn on
the Drive section). If a user does not have many clicks but has a
lot of keypresses, the weight is also high and label is negative, the
model is more likely to disable the Drive section for the user, saving
resources while not losing clicks.

This model led to performance gains but suffered from the bias
problem. There are methods which allow for running experiments,
including with contextual bandit approaches [11], in order to col-
lect unbiased data to train a fairer model. These methods typically
need some exploration (perhaps via randomization) to have a newly
trained model make a different decision. However, these existing
methods are often not practical since they would harm user experi-
ence (exposing to multiple confusing treatments).

This motivates us to look for alternative methods in order to
more accurately predict whether or not a user really needs the Drive
section enabled. This can be determined with the unit selection
problem discussed in the introduction, where if we are able to infer
the latent user type, we can have an additional dimension that our
model can be trained on in order to make more accurate predictions.

2.2 Counterfactual Logic
In this section, we review the counterfactual logic [5, 6, 14] asso-
ciated with Pearl’s SCM, which is used in the remainder of this
paper. The basic counterfactual statement associated with model
M is denoted by Yx (u) = y, and stands for: “Y would be y had X
been x in unit U = u,”. Let Mx denote a modified version of M ,
with the equation(s) of set X replaced by X = x (i.e., all edges that
go into X have been removed). Then, the formal definition of the
counterfactual Yx (u) is as follows:

Yx (u) ≜ YMx (u) (3)

In words, the counterfactual Yx (u) in modelM is defined as the
solution of Y in the “modified” submodelMx . In [5, 6], a complete
axiomatization of structural counterfactuals, embracing both recur-
sive and nonrecursive models, is given.

Equation (3) implies that the distribution P(u) induces a well-
defined probability for the counterfactual event Yx = y, written as
P(Yx = y), which is equal to the probability that a random unit u
would satisfy the equation Yx (u) = y. Therefore, the probability
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of the event “Y would be y had X been x”, P(Yx = y), is well-
defined and P(Yx = y) is also equivalent to P(Y = y |do(X = x)).
P(Y = y |do(X = x)) can be interpreted as experimental data [13].
With the same reasoning, the SCM model assigns a probability to
every counterfactual or combination of counterfactuals that are
defined using the variables in SCM.

Using the above formal language for the counterfactual expres-
sion, all events involving a counterfactual scenario can be well de-
fined, because the event represented by the subscript does not actu-
ally occur. For example, P(Yx = y |X = x ′)) defines the probability of
the event “Y would bey hadX been x if we observedX = x ′)” (note
that x and x ′) are counterfactual scenarios), P(Yx = y,Yx ′) = y′)
defines the probability of the event “Y would be y had X been
x and Y would be y′ had X been x ′)” (note that x and x ′) is a
counterfactual scenario; y and y′ is a counterfactual scenario), and
P(Yx = y |X = x ′),Y = y′) defines the probability of the event “Y
would be y had X been x , if we observed X = x ′) and Y = y′”.

In the rest of the paper, let y denote that the user would click the
Drive link and y′ denotes that the user would not click the Drive
link. Let x denote that the Drive section is shown to the user and
x ′) denotes that the Drive section is not shown to the user. As such,
we use yx to denote the event Yx = y (user would click if Drive
section was shown), yx ′) to denote the event Yx ′) = y (user would
click if Drive section wasn’t shown – meaning the user had to go
to Drive app to click), y′x to denote the event Yx = y′ (user would
not click if Drive section was shown), and y′x ′)

to denote the event
Yx ′) = y

′ (user would not click if Drive section wasn’t shown).

3 CAUSAL METHODOLOGY
3.1 Motivation
Unit selection based on counterfactual logic has been proven in
[9] to be effective in the unit selection problem, where a decision
maker must determine which group of users should receive an
experimental treatment. We draw inspiration from this to derive a
new method that allows for extending a training objective function
to incorporate unit selection counterfactual logic.

With the previously introduced notation and groups defined
in [2, 3], we have the following individuals to consider for our
decision-making problem:

• Complier (yx ,y′x ′)
): Users who would access Drive files if

and only if the Drive section was shown.
• Always-taker (yx ,yx ′)): Users who would access Drive files
whether or not the Drive section was shown.

• Never-taker (y′x ,y′x ′)
): Users who would not access Drive

files whether or not Drive section was shown.
• Defier (yx ′),y

′
x ): users who would access Drive files if and

only if Drive section wasn’t shown.

By modeling users this way, we can see that it’s optimal to
provide the Drive section to the always-taker (as the first priority)
and then show Drive section to compliers as a short-cut (as second
priority if there are enough resources). Never-takers should clearly

never be shown the Drive section, and defiers in this scenario we
believe to be not practical or necessary to consider.2

Note that the previously introduced ML model was not trained
on this kind of counterfactual information. The key takeaway here:
although we can never know the response type for a particular
user, we can bound their probabilities if we have experimental and
observational data P(yx ), P(yx ′)), and P(x ,y), and this bound can
be incorporated into the naive objective function of Equation 1.

3.2 Causal Model
Our objective is to find a subset of users that maximizes the benefit
associated with the resulting mixture of compliers, defiers, always-
takers, and never-takers. Our ideal objective, then, should be

α ∗ click − keypress + β ∗ P(yx ,y
′
x ′)

) + γ ∗ P(yx ,yx ′))+

θ ∗ P(y′x ,y
′
x ′)

) + δ ∗ P(y′x ,yx ′))
(4)

Note that in this application, we set

β > γ > 0 = δ > θ

to indicate that always-taker is the first priority and complier
is the second priority. δ = 0 is set to express that for this scenario
we don’t consider defiers to be a valid group to consider. (for the
most accuracy model, we should set δ to be negative) We would set
θ < 0 to penalize never-takers.

3.3 Simplified Causal Model
Equation 4 is the ideal modeling objective to train our model on
since it allows us to exactly assign utility to each type of user we
encounter. Unfortunately, the type of the user is latent and only
can be estimated with bounds, as is discussed in [9]. Theoretically,
we could infer the user type by running a variety of experiments to
disable/enable the Drive section for a user in order to measure the
effect. Practically, we have limited data availability which constrains
our ability to infer user type.

Instead of attempting to infer the above terms (e.g. P(yx ,y′x ′)
)),

we focus our efforts on a more manageable term: P(yx |y′). In other
words, if we observed that a user has no Drive file clicks, the prob-
ability that this user would click on a Drive result if we had shown
the Drive section. We could then use this proxy objective function:

α ∗ click − keypress + β ∗ P(yx |y
′) (5)

Including the term P(yx |y
′) has two benefits:

• we will only turn off users who previously had the Drive
section enabled and did not click there.

• users with newly-enabled Drive section have higher proba-
bility to click there.

3.3.1 Computing a practical bound. Since P(yx |y′) is still intractable
and cannot actually be computed, we need to find a way to evaluate
this term by the available data.

2Previous work which classified users into these response types used examples of
targeting advertisement to a user – defier in this setting would make more intuitive
sense, but can be ignored in this scenario.
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We can bound P(yx |y′) as following:

P(yx |y
′) =

P(yx ,y
′)

P(y′)

≥
[P(yx ) − P(y)]

P(y′)

Although we have the data for P(yx ) from experimental data,
we do not have P(y), as it is biased observational data. We can also
infer P(y) with a proxy variablew – denoting whether or not a user
has Drive activity. We have P(y) = P(w,y) + P(w ′,y) = P(w,y),
because if we have Drive section click, we have Drive activity, thus:

P(yx |y
′) ≥

[P(yx ) − P(y)]

P(y′)

=
[P(yx ) − P(y,w)]

P(y′)

≥
[P(yx ) − P(w)]

1
(6)

3.3.2 Group-level to user-level objective function. P(yx |y′) is clearly
a group-level term, i.e. for a group of users, we can evaluate this
term among the group, and all users in the group have the same
value of P(yx |y′). Therefore, given some training data with n users,
we can only identify a group of m < n users that maximize the
objective function. However, in an ML model that is serving live
traffic, we need to be able to have a user-level decision for whether
or not to serve the Drive section, rendering the group-level objective
function we derived to be non-trivial to apply.

Given that there are 2n subsets of the users, there is at least
one subset that maximize P(yx |y′). We postulate that whether or
not a user is in the desired subset is partially determined by the
users attributes. Our methodology consists of finding the subset
of users to maximize the group-level objective function defined in
Equation 6, and then taking their group membership into account
into the training loss function. In other words, if we provide a 0/1
label indicating whether the user is in the desired subset to the ML
model, the training process would have additional information to
be able to exploit the relation between the user attributes with this
counterfactual logic.

Therefore, we modified our model training process to use the
following objective function in place of Equation 1:

α ∗ click − keypress + β ∗ Φ[member] (7)

where Φ[member] is an indicator function that returns 1 iff the user
is in the group that maximize P(yx |y′) and 0 otherwise.

3.3.3 Group determination method. We need a simple closed-form
labeling method that can determine a group of users that comes
close to maximizing Equation 6. Let a be the number of users who
have a Drive section click, b be the number of users with the Drive
section displayed, c be the number of users who have Drive activity,
and n be the number of users. Then we have:

P(yx ) − P(w) =
a

b
−
c

n

The key insight here is that whether or not we add a user with
Drive section click and Drive activity to the target group depends
on the relation of a

b to c
n . We propose the group determination

method shown in Figure 2, as it is the simplest condition to make

Figure 2: Group determination method

P(yx ) − P(w) larger, because if (click,drive) = (1, 0), we have the
following:

(P(yx ) − P(w))new − (P(yx ) − P(w))old

=
a + 1
b

−
c + 1
n + 1

− (
a

b
−
c

n
)

=
n2 + n − nb + c

bn(n + 1)
≥ 0

and if (click,drive) = (1, 1) and (c − a ≥ n − b), we have:

(P(yx ) − P(w))new − (P(yx ) − P(w))old

=
a + 1
b + 1

−
c + 1
n + 1

− (
a

b
−
c

n
)

=
b − a

b(b + 1)
−

n − c

n(n + 1)
≥ 0

3.4 Experimental Results
We ran experiments to compare the standard ML model that is used
in production against the causal-trained model. We trained a model
using the objective function defined in Equation 7 and compared
it to the normal ML-model (which was trained with the objective
function defined in Equation 1). We ran a week-long experiment
and found that the causal-trained model led to to a statistically
significant 9.15% increase in Drive section click-through rate (CTR)
with a non-significant increase of 1.4% in terms of resource usage.

This is a significant improvement – to contrast this with previous
improvements, we previously saw that the initial deployment of
the first machine-learned model led to 2.5% relative increase in
Drive section click-through rate (CTR) with a further saving of
-6.5% resource saving.

4 CONCLUSION AND FUTUREWORK
We introduced a novel method in which we can incorporate causal
information into the model training process for a real-world deci-
sion making problem. This method allows us to deal with bias in
implicit feedback without needing to do any randomization. Ad-
ditionally, we demonstrate that we see empirical wins from using
this method in live traffic experiments. For future work, we plan
to compare against other work that focuses on learning with bias
in implicit feedback and prove theoretically that such methods are
robust by running various experiments over both synthetic and
actual data in different domains.

560



Training Machine Learning Models With Causal Logic WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Aman Agarwal, Kenta Takatsu, Ivan Zaitsev, and Thorsten Joachims. 2019. A Gen-

eral Framework for Counterfactual Learning-to-Rank. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 5–14.

[2] Joshua D Angrist, Guido W Imbens, and Donald B Rubin. 1996. Identification of
causal effects using instrumental variables. Journal of the American statistical
Association 91, 434 (1996), 444–455.

[3] Alexander Balke and Judea Pearl. 1997. Bounds on treatment effects from studies
with imperfect compliance. J. Amer. Statist. Assoc. 92, 439 (1997), 1171–1176.

[4] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max
Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013.
Counterfactual reasoning and learning systems: The example of computational
advertising. The Journal of Machine Learning Research 14, 1 (2013), 3207–3260.

[5] David Galles and Judea Pearl. 1998. An axiomatic characterization of causal
counterfactuals. Foundations of Science 3, 1 (1998), 151–182.

[6] Joseph Y Halpern. 2000. Axiomatizing causal reasoning. Journal of Artificial
Intelligence Research 12 (2000), 317–337.

[7] Shin-Yuan Hung, David C Yen, and Hsiu-Yu Wang. 2006. Applying data mining
to telecom churn management. Expert Systems with Applications 31, 3 (2006),
515–524.

[8] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
learning-to-rank with biased feedback. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining. 781–789.

[9] Ang Li and Judea Pearl. 2019. Unit selection based on counterfactual logic.
In Proceedings of the Twenty-Eighth International Joint Conference on Artificial

Intelligence (IJCAI’19). AAAI Press, 1793–1799.
[10] Lihong Li, Shunbao Chen, Jim Kleban, and Ankur Gupta. 2014. Counterfactual

estimation and optimization of click metrics for search engines. arXiv preprint
arXiv:1403.1891 (2014).

[11] Lihong Li, Shunbao Chen, Jim Kleban, and Ankur Gupta. 2015. Counterfactual
estimation and optimization of click metrics in search engines: A case study.
In Proceedings of the 24th International Conference on World Wide Web. ACM,
929–934.

[12] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2016. Hyperband: A novel bandit-based approach to hyperparameter
optimization. arXiv preprint arXiv:1603.06560 (2016).

[13] Judea Pearl. 1995. Causal diagrams for empirical research. Biometrika 82, 4 (1995),
669–688.

[14] Judea Pearl. 2009. Causality. Cambridge university press.
[15] Wei Sun, Pengyuan Wang, Dawei Yin, Jian Yang, and Yi Chang. 2015. Causal

Inference via Sparse Additive Models with Application to Online Advertising.. In
AAAI. 297–303.

[16] Chih-Fong Tsai and Yu-Hsin Lu. 2009. Customer churn prediction by hybrid
neural networks. Expert Systems with Applications 36, 10 (2009), 12547–12553.

[17] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A cascade ranking model
for efficient ranked retrieval. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval. ACM, 105–114.

[18] Jun Yan, Ning Liu, Gang Wang, Wen Zhang, Yun Jiang, and Zheng Chen. 2009.
How much can behavioral targeting help online advertising?. In Proceedings of
the 18th international conference on World wide web. ACM, 261–270.

561


	Abstract
	1 Introduction
	2 Background
	2.1 Real-world Motivating Example
	2.2 Counterfactual Logic

	3 Causal Methodology
	3.1 Motivation
	3.2 Causal Model
	3.3 Simplified Causal Model
	3.4 Experimental Results

	4 Conclusion and Future Work
	References

