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Abstract

Selection bias, arising from the systematic inclusion or exclusion of certain samples,
poses a significant challenge to the validity of causal inference. While Barein-
boim et al. [2022] introduced methods for recovering unbiased observational and
interventional distributions from biased data using partial external information,
the complexity of the backdoor adjustment and the method’s strong reliance on
observational data limit its applicability in many practical settings. In this paper,
we formally discover the recoverability of P (Y ∗

X∗) under selection bias with ex-
perimental data. By explicitly constructing counterfactual worlds via Structural
Causal Models (SCMs), we analyze how selection mechanisms in the observa-
tional world propagate to the counterfactual domain. We derive a complete set of
graphical and theoretical criteria to determine that the experimental distribution
remain unaffected by selection bias. Furthermore, we propose principled methods
for leveraging partially unbiased observational data to recover P (Y ∗

X∗) from biased
experimental datasets. Simulation studies replicating realistic research scenarios
demonstrate the practical utility of our approach, offering concrete guidance for
mitigating selection bias in applied causal inference.

1 Introduction

Selection bias (Heckman [1979]) arises when the analyzed sample systematically fails to represent the
target population due to a non-random selection mechanism. Typically driven by unobserved factors
that influence both sample inclusion and outcomes, selection bias distorts observed associations and
obscures true treatment effects, thereby critically undermining the validity of causal estimations
across all causal layers defined by Pearl [2009]. Even randomized controlled trials within a selected
subgroup cannot fully eliminate such bias, as entry into the subgroup is itself governed by a selection
mechanism. For instance, researchers may preferentially recruit patients with severe or complex
conditions to test a novel targeted therapy, neglecting those with mild symptoms. As a result, any
inference regarding probabilities of causation (i.e., counterfactuals) (Balke and Pearl [1994]) based
on this subgroup systematically deviates from reality.

Such preferential selection poses challenges to inference in many domains, including epidemiol-
ogy(Enzenbach et al. [2019], Millard et al. [2023]), artificial intelligence(Schnabel et al. [2016],

Preprint. Under review.



Huang et al. [2022], Gururangan et al. [2018], Geva et al. [2019]), economics(LaLonde [1986], ), and
even the hottest large language models(Bender et al. [2021],Manela et al. [2021], McMilin [2022]).
More fundamentally, selection bias undermines the foundations of causal and statistical inference,
rendering advanced causal estimands and statistical measures, such as the Effect of Treatment on
the Treated (Rubin [1974]), Probability of Necessity, Probability of Sufficiency, and Probability of
Necessity and Sufficiency (Pearl [2022b]) derived from biased datasets inherently unreliable.

Over the past years, substantial advances have been made in correcting selection bias from a causal
standpoint. Bareinboim et al. [2022] introduced the rigorous theory of s-recoverability, precisely char-
acterizing the graphical and algebraic conditions under which biased observational and interventional
distributions can be re-weighted to recover unbiased causal estimands via integration over selected
subpopulations. Rosenbaum and Rubin [1983]’s propensity score theory provides a theoretically
rigorous and practically implementable framework for recovering unbiased average causal effects,
such as the Average Treatment Effect (ATE) and the Average Treatment Effect on the Treated (ATT)
(Rubin [1974]), from non-randomized observational data. Moreover, the “Graphical Models for
Inference with Missing Data” framework introduced by Mohan et al. [2013] can likewise be viewed
as an alternative approach to modeling selection bias.

The selection-backdoor adjustment, as proposed by Bareinboim et al. [2022], allows for identifying
the distribution P (Yx) using a combination of an unbiased observational distribution P (Z) and
a biased observational distribution P (Y |x, z, S = 1). However, in practice, observational data
P (Y |x, z, S = 1) are often not more accessible than experimental data. For instance, after a
new drug is released, it may be difficult to obtain sufficient observational follow-up, leaving only
biased experimental data available. In such cases, the assumptions required by selection-backdoor
adjustment break down. To overcome this limitation, we turn to counterfactual reasoning via a
twin-network formulation, which enables the recovery of the unbiased distribution P (Yx) based on
biased experimental data, without requiring access to observational distributions P (Y |x, z, S = 1).

In summary, our paper makes the following key contributions:

Contributions:

• Nonparametric recoverability criterion and theorem. We introduce a nonparametric definition
and theorem that exactly characterize whether selection bias perturbs the distribution P (Y ∗

X∗), and
how to recover distribution P (Y ∗

X∗) using biased experimental data.

• Twin-Network recoverability framework. Leveraging Pearl’s twin-network, we decouple identi-
fication from recovery process and reconstruct an unbiased P (Yx) from biased subgroup data and
external distribution P (Z).

• Scalable validation. Extensive simulations (varying sample size and seeds) show rapid convergence
to ground truth and large reductions in bias across multiple metrics.

2 Preliminary

2.1 Modeling Selection Bias in Causal Graphs

S

X Y

Figure 1: Causal graph with
selection node

As shown in Figure 1, Bareinboim and Pearl [2012] introduced
an explicit selection node S into the underlying causal DAG, with
directed edges from all variables hypothesized to influence sample
inclusion (e.g. Treatment X and Outcome Y ). The node S is a
binary indicator representing sample inclusion, with S = 1 denoting
a selected sample and S = 0 denoting exclusion. Directed edges
clearly illustrate which nodes influence sample selection. In this
study, we adopt this foundational setup and extend it explicitly into
the counterfactual domain.

2.2 Twin network

Another key tool employed in our analysis is the twin network introduced by Pearl [2009]. The
twin network is a representation that extends the original causal graph by constructing a parallel

2



S

X

Y

US

UY

UX

S∗
X∗

Y ∗

(a)

X

Y

S

W

US

UW

UY

W ∗

S∗

X∗

Y ∗

Ux

(b)

X

Y

W

S

UW

US

Ux

UY

W ∗

X∗

Y ∗

S∗

(c)

Figure 2: Figures (a) and (c) satisfy natural experimental s-recoverability, whereas in Figure (b), the
confounder W introduces selection bias into the counterfactual variable Y ∗.

counterfactual graph. As shown in Figure 2, the counterfactual counterparts of the original variables
share the same exogenous factors as their factual versions. This construction provides a unified
framework to simultaneously reason about factual and counterfactual quantities. In our work, the twin
network plays a critical role, as our theoretical analysis and algorithmic developments rely heavily on
its structure for properly encoding the relationships between variables and ensuring the validity of
d-separation conditions in the counterfactual domain.

It is worth noting that within the twin network, counterfactual variables are denoted using starred
variables; for instance, X∗ and Y ∗ represent the counterfactual versions of the treatment and outcome,
respectively. However, the counterfactual statement "Variable Y would have the value y had X been
x" is used to be denoted as YX=x = y, abbreviated as yx". To prevent confusion, we introduce the
starred notation P (Y ∗

X∗) specifically to denote the experimental distribution in counterfactual logic.

In an ideal experimental setting free of unmeasured confounding, the distribution of P (Y ∗
X∗) is

identical to the interventional (or experimental) distribution (Pearl [2022a]). Therefore, in the twin
network, the distribution P (y∗x∗) can be expressed in the following form:

P (y∗x∗) = P (Y ∗
X∗=x = y) = P (Y = y|do(X = x)),

Furthermore, when we refer to the independence between the variable S and the Y ∗
X∗ , it is equivalent

to stating that, within the twin network, the node corresponding to S is d-separated (Pearl [2014])
from the node corresponding to Y ∗

X∗ .

3 Recoverability using counterfactual logic

In this section, we will systematically discuss how to determine whether the current experimental
distribution is affected by selection bias when there is indeed selection bias in the experimental
process. Additionally, we will explore how to recover an unbiased experimental distribution using an
unbiased distribution provided by partially observable external data when facing a biased experimental
distribution.

3.1 Recoverability without external data

Definition 1 (Natural experimental s-Recoverability). Given a causal graph Gs augmented with a
node S encoding the selection mechanism. The experimental distribution Q = P (Y ∗

X∗) is said to be
naturally recoverable in Gs if, for every experimental distribution P (Y ∗

X∗) compatible with Gs, the
following condition holds naturally: P (Y ∗

X∗ |S = 1) = P (Y ∗
X∗) > 0.

It is noteworthy that a causal graph, as an abstract representation of structural causal models, essen-
tially encapsulates a family of structural causal equations that share a consistent causal logic. In
practical applications, the true structural causal equations are often difficult to obtain, and their intri-
cate forms and underlying details may incur significant computational complexity while introducing
potential biases through additional assumptions. In contrast, employing a nonparametric approach
via causal graphs to analyze the impact of selection bias on experimental outcomes enables a more
efficient revelation of the global causal structure among variables without being encumbered by the
complexities of specific model formulations.
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Figure 3: Figures (b) satisfies natural experimental s-recoverability, whereas in Figure (a) and (c),
Selection bias is introduced into the counterfactual variable Y ∗.

More specifically, by augmenting the original causal graph to construct a twin network and utilizing
d-separation as a nonparametric criterion, we can effectively identify those causal graphs that satisfy
natural recoverability, or discern the causal pathways and substructures through which selection bias
might propagate to the experimental outcomes. In other words, this methodology affords an intuitive
and efficient means to analyze the properties of the experimental distribution P (Y ∗

X∗).

Consider the Figure 2a, the data collection process is exclusively associated with the X∗ node.
This might suggest that employing a dataset subject to selection bias might significantly perturb
the experimental outcome distribution P (Y ∗

X∗), as evidenced by the inequality P (Y ∗
X∗ |S = 1) ̸=

P (Y ∗
X∗). However, by constructing a twin network that incorporates shared exogenous variables, it

can be demonstrated that the selection bias in Figure 2a does not affect the true exogenous variable
Uy. Consequently, in the corresponding counterfactual domain, the distribution P (Y ∗

X∗) remains
invariant with respect to the selection variable S; that is, the experimental distribution P (Y ∗

X∗) is
determined solely by X∗ and exogenous variable, thereby avoiding the effect of selection bias in
this causal graph. More generally, when experiments are conducted using selection-biased data,
the selection mechanism, when regarded as prior information, does not perturb the variables that
decide the experimental distribution. Accordingly, the distribution P (Y ∗

X∗) compatible with Figure 2a
satisfies natural s-recoverability, obviating the necessity for external data in its recovery.

Lemma 1. Confounder Irrelevance for Natural experimental s-Recoverability

In a causal DAG Gs, the presence of a node W that confounds X and Y (i.e., with edges W → X
and W → Y ) neither necessarily prevents the natural s–recoverability of P (Y ∗

X∗), nor does the
absence of any such W necessarily ensure its natural s–recoverability.

Proof: Consider Figure 2c, in which a confounder W exists between nodes X and S. This suggests
the possibility that selection bias may propagate to the distribution P (Y ∗

X∗) through node W and its
associated exogenous variable UW . However, under intervention on node X∗ in the counterfactual
scenario, no active path exists between nodes S and Y ∗

X∗ . Consequently, the equality P (Y ∗
X∗ |S =

1) = P (Y ∗
X∗) remains valid. Therefore, Figure 3b satisfies natural counterfactual s-recoverability

while still containing a confounder in the causal graph structure.

Consider Figure 3a, in which no confounders are present. Nevertheless, by constructing a twin
network via shared exogenous variables, it becomes evident that selection bias can directly influence
the experimental distribution P (Y ∗

X∗) through the Y node. Consequently, the presence of confounders
is neither necessary nor sufficient for natural s-recoverability.

Theorem 1. The distribution P (Y ∗
X∗) is naturally s-recoverable from Gs if (S ⊥⊥ Y ∗

X∗).

Proof: It is obvious that if X d-separates S from Y ∗ in Gs, P (Y ∗
X∗) is nature counterfactual

s-recoverable.

Theorem 1 provides an efficient and straightforward criterion for verifying whether a distribution
satisfies natural s-recoverability. Specifically, it indicates that no external data are necessary for
recovering the distribution P (Y ∗

X∗). The procedure involves constructing a twin network with shared
exogenous variables and examining whether the nodes S and Y ∗

X∗ are d-separated given the empty
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set. If the d-separation condition S ⊥⊥ Y ∗
X∗ |∅ holds in the twin network, then the distribution P (Y ∗

X∗)
satisfies natural s-recoverability.

Although, according to Lemma 1, the absence of confounders is neither a sufficient nor a necessary
condition for natural counterfactual s-recoverability. However, treating confounder nodes as potential
mediators for transmission of selection bias is reasonable, and confounder is highly likely to transmit
selection bias to the experimental distribution. Consider Figure 2b. By constructing a twin network
via shared exogenous nodes, it becomes evident that the selection node S exerts influence on the
experimental distribution P (Y ∗

X∗) through a spurious pathway mediated by the confounding variable
W and its counterfactual counterpart W ∗. Specifically, when a confounder W induces a spurious
association between nodes X and Y , the selection node S will influence the experimental distribution
P (Y ∗

X∗) via the shared exogenous variable Uw. Consequently, this mechanism leads to the activation
of selection bias, violating the condition of natural s-recoverability for P (Y ∗

X∗).

3.2 Recoverability with external data

When the experimental distribution P (Y ∗
X∗), compatible with a given causal graph Gs, fails to satisfy

natural experimental s-recoverability, does this imply permanent impossibility in recovering P (Y ∗
X∗)?

Not necessarily. If we have access to external unbiased data, such as the distribution P (Gender)
easily obtainable from population census records, there exists an opportunity for recovering the
experimental distribution P (Y ∗

X∗). In this section, we systematically analyze how to determine,
from a known causal graph, the precise types of external unbiased data required for restoring the
experimental distribution P (Y ∗

X∗). Furthermore, we propose a concrete algorithm for identifying the
set of external data variables necessary to recover the experimental distribution P (Y ∗

X∗).

Despite the elegant property of natural counterfactual s-recoverability, that is, the fact that P (Y ∗
X∗) =

P (Y ∗
X∗ |S = 1) and no external data are required, in practice we often encounter scenarios where

external data are necessary to recover P (Y ∗
X∗) from P (Y ∗

X∗ |S = 1).

Consider Figure 3c. Suppose our ultimate goal is to recover the experimental distribution P (Y ∗
X∗)

encoded in Figure 3c. By constructing a twin network via shared exogenous variables, Theorem 1
immediately reveals that the distribution P (Y ∗

X∗) in Figure 3c does not satisfy natural counterfactual
s-recoverability. Consequently, the only viable strategy is to incorporate external data to recover an
unbiased experimental distribution. In particular, the set {W1,W3} d-separates the selection node
S from the counterfactual node Y ∗

X∗ , implying that external measurements of W = {W1,W3} are
sufficient for recovery. Therefore, the target experimental distribution can be expressed as

P (Y ∗
X∗) =

∑
w1,w3

P
(
Y ∗
X∗ |w1, w3

)
P (w1, w3)

=
∑

w1,w3

P
(
Y ∗
X∗ |w1, w3, S = 1

)
P (w1, w3).

The validity of above equation arises from the conditional independence relation Y ∗
X∗ ⊥⊥ S|{W1,W3}

within the twin network constructed via shared exogenous variables. Consequently, the experimental
distribution P (Y ∗

X∗) can be explicitly decomposed into two components: the first being the biased
experimental data distribution P (Y ∗

X∗ |W1,W3, S = 1), and the second representing unbiased obser-
vational data P (W1,W3). Hence, in Figure 3c, the inclusion of unbiased observational data allows
us to recover the unbiased experimental distribution from biased experimental data. More abstractly,
this recovery procedure can be viewed as a correction mechanism, in which unbiased observational
distributions are employed to adjust the biased experimental distribution.
Definition 2. General experimental s-recoverability Let Gs be a causal graph augmented with a
selection node S, and let V denote the set of observed variables. Suppose M,W ⊆ V , where M
(with distribution P (M |S = 1)) represents the biased experimental data and W (with distribution
P (W )) represents the unbiased data, allowing W = ∅. We say that the experimental distribution
P (Y ∗

X∗) is generally s-recoverable in Gs if, for any two distributions P1 and P2 that are compatible
with Gs and satisfy P1(M |S = 1) = P2(M |S = 1) > 0 and P1(W ) = P2(W ) > 0, it
follows that P1(Y

∗
X∗) = P2(Y

∗
X∗).

The example in Figure 3c illustrates that one can attempt to identify a set of variables measurable at the
population level in order to obtain an unbiased distribution. Under ideal conditions, such an unbiased
observational distribution can be leveraged to recover the biased experimental distribution P (Y ∗

X∗).

5



However, in practice it is unrealistic to assume that every node is measurable at the population level.
For instance, if P (W3) is unobservable, is there a method to determine whether an equivalent set
exists within the current causal graph that ensures the s-recoverability of P (Y ∗

X∗)?

Algorithm 1: General experimental s-recoverability of P (Y ∗
x∗)

Require: External unbiased variable set W
1: Twin Network Construction: Create a twin network by sharing exogenous variables and remove

all edges entering the counterfactual node X ′.
2: if Y ∗

x∗ ⊥⊥ S|∅ then
3: return P (Y ∗

x∗) is naturally experimental s-recoverable.
4: end if
5: for each set Z ∈M do
6: if Y ∗

x∗ ⊥⊥ S|Z

P (Y ∗
x∗) = P (Y ∗

x∗ |Z, S = 1)P (Z).

then
7: if Z ∈W then
8: return P (Y ∗

x∗) is experimental s-recoverable.
9: else

10: Call RC(Z, ∅) (See Appendix for Algorithm RC)
11: if RC(Z, ∅) is True then
12: return P (Y ∗

x∗) is experimental s-recoverable.
13: else
14: return FAILURE.
15: end if
16: end if
17: end if
18: end for
19: return FAILURE.

According to Algorithm 1, it is straightforward to deduce that in Figure 3c the set {W1,W4} is also a
valid candidate for ensuring that P (Y ∗

X∗) satisfies s-recoverability. Thus, if W3 is unobservable at
the population level, W4 may serve as an alternative, preserving the possibility that P (Y ∗

X∗) remains
s-recoverable. Moreover, Algorithm 1 provides experimenters with a flexible recovery strategy,
allowing them to select the admissible set that is most advantageous, convenient, and cost-effective
for achieving unbiased s-recovery of P (Y ∗

X∗).

Theorem 2. Let Gs be a causal graph augmented with a selection node S, and let V denote the set of
all variables. Suppose there exists a subset Z ⊆ V that is measured in both the biased experiment and
at the population level, and that Y ∗

X∗ ⊥⊥ S|Z. Then, the experimental distribution is s-recoverable:
P (Y ∗

X∗) =
∑

z P (Y ∗
X∗ |Z, S = 1)P (Z).

Theorem 2 precisely characterizes how biased experimental distributions can be systematically
integrated with external unbiased distributions, yielding a straightforward yet generalizable recovery
method. This theorem not only establishes a theoretically sound and directly implementable criterion
for recovering experimental distributions but also provides a practical roadmap for empirical research
design and data analysis.

Lemma 2. If experimental distribution P (Y ∗
X∗) in Gs is not s-recoverable, then P (Y ∗

X∗) is not
s-recoverable in the graph G

′

s resulting from adding a single edge to Gs.

This illustrates that when it is determined that a graph structure does not satisfy counterfactual
s-recoverability, simply by adding structural information to this graph will not help the graph obtain
counterfactual s-recoverability. Therefore, when we exclude a graph from satisfying counterfactual
s-recoverability, we also exclude a class of graphs derived by adding edges to this graph, This provides
us with a convenient condition for judging complex graphs. Once we find that a subgraph of the
complex graph violates counterfactual s-recoverability, it is equivalent to the complex graph violating
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counterfactual s-recoverability, because the complex graph can be regarded as recursively adding an
edge to the subgraph.

4 Experiments

4.1 Discrete example

We consider a scenario involving the assessment of a novel medicine aimed at treating a specific type
of pneumonia and there are not enough clinical observational data about the novel medicine available.
Recovery from this disease is known to depend jointly on the administration of the novel treatment,
the presence of potential comorbidities, and disease severity. Researchers aim to determine whether
the new treatment is generally superior in effectiveness compared to a standard generic drug. To
study this question, real-world patients are recruited into an experimental group with probabilities
dependent explicitly on their severity levels: severely ill patients have a 70% probability of inclusion,
whereas mildly ill patients have only a 30% probability. Consequently, this differential selection
process systematically induces selection bias, posing significant methodological challenges for the
unbiased estimation of treatment efficacy.

Notation: Let X ∈ {0, 1} be the treatment indicator (1=novel drug, 0=standard); W ∼ Bern(0.5)
the comorbidity marker (1=present, 0=absense); Z ∼ Bern(0.5) the disease severity (1=severe,
0=mild); S ∈ {0, 1} the selection indicator with P (S = 1|Z=1) = 0.7, P (S = 1|Z=0) = 0.3; and
Y ∈ {0, 1} the recovery outcome (1=recover, 0=failure).

Table 1a provides the ideal distribution underlying our experimental setup, while Table 1b summarizes
the biased experimental subgroup information. In our experiment, patients were randomly assigned
with equal probability to either the standard therapy or the novel drug.

Table 1: The ideal distribution information and biased dataset for the experiment

W Z P (Y = 1|X = 0, w, z) P (Y = 1|X = 1, w, z)

0 0 0.90 0.95
0 1 0.50 0.80
1 0 0.70 0.90
1 1 0.30 0.60

(a) Theoretical recovery probabilities by subgroup

X W Z Not Recovered Recovered

0 0 0 12 141
0 0 1 174 180
0 1 0 42 100
0 1 1 245 110
1 0 0 8 158
1 0 1 73 266
1 1 0 10 146
1 1 1 146 218

(b) Recovery information in experiment group with
selection bias

To obtain the theoretical distribution P (Y ∗
x∗), we apply the back-door adjustment over the risk marker

W (See Appendix for detailed calculation):

P (Y ∗
x∗) =

∑
w∈{0,1}

P
(
Y |do(X = x),W = w

)
P (W = w)

=⇒

{
P (Y ∗

x=1 = 1) = 0.8125;P (Y ∗
x=1 = 0) = 0.1875

P (Y ∗
x=0 = 1) = 0.60;P (Y ∗

x=0 = 0) = 0.40

By Theorem 2 . We only need external distribution for Z to restore the biased experimental distribution
to an unbiased one. From the open external source dataset, researchers know that Z ∼ Bernoulli(0.5).

Prec(Y
∗
x∗) =

∑
z

P
(
Y ∗
x∗ |Z = z, S = 1

)
P (Z = z)

=⇒

{
P (Yx=1 = 1) ≈ 0.816;P (Yx=1 = 0) ≈ 1− 0.816 = 0.184

P (Yx=0 = 1) ≈ 0.613;P (Yx=0 = 0) ≈ 1− 0.613 = 0.387
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Table 2: Biased experimental distribution and relative errors
Treatment P (Y ∗

x∗ |S = 1) Relative Error

X P (Y ∗
X∗ = 1|S = 1) P (Y ∗

X∗ = 0|S = 1) REbias RErec

Standard (X = 0) 531
531+473 ≈ 0.529 1− 0.529 = 0.471 −11.8% +2.2%

Novel (X = 1) 788
788+237 ≈ 0.768 1− 0.768 = 0.232 −5.5% +0.4%

The researchers calculated the relative errors based on the recovery of the experimental distribution
Prec(Y

∗
x∗) and the biased experimental distribution, respectively. For detailed data, see Table 2. We

observe that the relative error of the recovered experimental distribution (RErec) is substantially
smaller than that of the biased observed distribution (REbias). Specifically, the relative error for
the standard treatment improves notably from −11.8% to +2.2%, while for the novel treatment it
improves from −5.5% to merely +0.4%. This simulated experiment thus demonstrates the practical
effectiveness of leveraging external distribution information to correct for selection bias, validating
the applicability of our theoretical framework in realistic settings.

4.2 Continuous example

In this study, we simulate a clinical trial designed to evaluate a novel therapy for a specific pulmonary
condition without enough observational data. Participants are recruited based on their baseline
inflammatory biomarker levels, denoted by Z. During enrollment, researchers preferentially select
units with higher Z values, thereby introducing systematic selection bias. Once enrolled, treatment
assignment X (novel drug:X=1 vs. standard care:X=0) is randomized via a Bernoulli draw. We
formalize this data-generating process with the following structural causal model (SCM), which
serves as our ground-truth SCM for subsequent simulation studies. (See Appendix for corresponding
causal graph)

Table 3: Summary of our SCM variables.
Symbol Meaning Generation

X Treatment X = 1{γWXW + UX > 0}; UX ∼ Uniform(0, 1)
W Latent health (e.g. prior lung function) W = UW ; UW ∼ N (0, 1)
Z Baseline inflammation severity Z = UZ ; UZ ∼ N (0, 1)
Y Observed change in inflammation Y = αX + βZ + γWY W + UY ; UY ∼ N (0, σ2

Y )
S Selection indicator S = 1{γZZ + US > c}; US ∼ N (0, σ2

S)

To better reflect realistic constraints, we assume that investigators can collect biased experimental
cohorts of sizes n ∈ {100, 200, 500, 1000, 2000, 4000}. For each n, we draw 50 independent samples
(using distinct random seeds) from the full synthetic dataset, computing and recording the average
recovered experimental distribution P̂rec(Y

∗
x∗), its average error relative to the ground truth, and the

average biased experimental distribution P̂bias(Y
∗
x∗). Crucially, from the researchers’ perspective

only the biased experimental data and a limited set of external unbiased observational measurements
are available; all performance metrics are evaluated under this information regime.

According to Theorem 2, P (y∗x∗) = P (y∗x∗ |Z, S = 1)P (Z). Furthermore, since intervening on
X does not effect the distribution of S = 1 (as the distribution of S = 1 depends solely on Z, it
follows thatP (y∗x∗ |Z, S = 1) = P (y|do(x), Z, S = 1) , this conditional distribution can be directly
estimated from the biased experimental data collected by researchers using kernel density estimation
(KDE) (See Appendix for KDE graph).

From Figure 4, the average recovered distribution steadily approaches the theoretical true distribution
with increasing sample size, while the biased distribution remains consistently far from the true
distribution, illustrating our method’s capability to accurately reconstruct experimental distributions
under biased sampling. Furthermore, Table 4 and Figure 5 show rapid decreases in error metrics for
the recovered distribution as sample sizes grow, indicating clear convergence and consistency; by
contrast, errors in the biased distribution remain stable at high levels without signs of convergence.
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Figure 4: Density comparison of average recovered P (Y ∗
x∗), average conditional P (Y ∗

x∗ |S = 1), and
theoretical P (Y ∗

x∗) for sample sizes n ∈ {100, 200, 500, 1000, 2000, 4000}.

102 103

Sample size (N)

10 1

3 × 10 2

4 × 10 2

6 × 10 2

E
rr

or
 / 

D
iv

er
ge

nc
e

L1 Error

102 103

Sample size (N)

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

L2 Error

102 103

Sample size (N)

10 3

Jensen Shannon

102 103

Sample size (N)

10 1

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1

WassersteinRecovered Biased

Figure 5: Comparison of averaged error metrics between the recovered experimental distribution and
the biased follow-up distribution across sample sizes n. Figures (a)–(d) display, respectively, (a) L1
error, (b) L2 error, (c) Jensen–Shannon divergence, and (d) Wasserstein distance, averaged over 50
random seeds.

These results confirm the efficacy and statistical consistency of our proposed nonparametric approach
in addressing selection bias.

5 Conclusion

In this work, leveraging Pearl’s twin-network construction, we provide a clear, rigorous framework for
recovering experimental distributions under systematic selection bias. we first introduce Theorem 1
to determine which selection bias leaves the experimental distribution P (Yx) invariant. We then
introduce Theorem 2 specifying precisely when unbiased experimental distributions can be recon-
structed using biased subgroup experimental data combined with external unbiased observational
distributions. Additionally, our proposed algorithm systematically identifies the valid set of external
unbiased variables required for accurate recovery.

Extensive simulation studies demonstrate the stability and efficiency of our approach across varying
sample sizes and random seeds. Compared to uncorrected biased estimates, our recovered experimen-
tal densities converge rapidly to the ground truth, significantly reducing multiple error metrics. We
believe this unified framework provides a robust theoretical and practical foundation for reasoning in
complex, non-randomized sampling environments.

Although our approach systematically recovers unbiased experimental distributions, it still relies on
precise knowledge of external unbiased distributions and accurate conditional density estimation
in high-dimensional or small-sample scenarios. Future research will focus on relaxing these strong
identification requirements by considering weaker assumptions, such as partial or bounded knowledge
of conditional distributions or identifiable bounds, to enhance practical applicability and robustness.
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A Appendix

A.1 Background

Our entire research is built on an understanding of the third level of causal inference: counterfactuals.
Pearl (Pearl et al. [2000]) introduces the three-level causal hierarchy : association, intervention, and
counterfactual, commonly known as the “Ladder of Causation”. Therefore, we will introduce the
background of causal inference to understand the observational and interventional distribution and
experimental distribution, which are frequently mentioned in the paper, from a causal inference
perspective.
Definition 3 (d-separation (Pearl [1988])). Let X , Y , and Z be three disjoint subsets of nodes in a
DAG D. Then Z is said to d-separate X from Y , denoted I(X,Z, Y )D, if and only if there is no
undirected path from a node in X to a node in Y along which all of the following hold:

1. Every node on the path with two arrowheads meeting (“collider”) either is in Z or has a
descendant in Z.

2. Every other node on the path is outside Z.

if and only if Z blocks every path from a node in X to a node in Y and is denoted by Y ⊥⊥ X|Z.
Theorem 3 (Soundness & Completeness of d-separation (Pearl [2014], Geiger et al. [1990], Verma
and Pearl [2022])). Let G be a DAG and P a joint distribution over its nodes. If P satisfies the
global Markov property w.r.t. G and the faithfulness assumption, then for any disjoint node sets
X,Y, Z ⊆ V (G),

X ⊥d Y |Z ⇐⇒ X ⊥⊥ Y |Z.
Definition 4 (do-Operator (Pearl [2009])). Let G be a causal DAG over variables V. For any subset
X ⊆ V and values x, the intervention do(X = x) is defined by:

1. Remove all incoming edges into each node in X to obtain the mutilated graph Gdo(X).

2. Fix each X ∈ X to the value x, while all other variables remain governed by their original
structural equations.

The resulting interventional (or experimental) distribution is

P
(
Y |do(X = x), Z = z

)
= PGdo(X)

(
Y |Z = z, X = x

)
,

which generally differs from the observational conditional P (Y |X = x,Z = z).
Definition 5 (Counterfactuals Pearl et al. [2000]). Given a structural causal model M and observed
evidence e, a counterfactual query

Yx′(u) = y

is read as “had we set X to x′ in the unique background context u consistent with e, Y would (or
would not) take value y.” Formally:

1. Identify the unique exogenous assignment u satisfying the evidence e.

2. Modify the model M by replacing the structural equations of each X ∈ X with the constant
x′, yielding the mutilated model Mx′ .

3. Evaluate the sentence
(
Y (u)y

)
in Mx′ .

Pearl defines this as “the ultimate level of causal hierarchy” and denotes such queries as

P
(
Yx′ = y|e

)
.

Definition 6 (s-recoverability(Bareinboim et al. [2022])). Given a causal graph Gs augmented with a
node S encoding the selection mechanism Bareinboim and Pearl [2012], the distribution Q = P (y|x)
is said to be s-recoverable from selection-biased data in Gs if the assumptions embedded in the causal
model render Q expressible in terms of the distribution under selection bias P (v|S = 1). Formally,
for any two probability distributions P1 and P2 that are compatible with Gs, if

P1(v|S = 1) = P2(v|S = 1) > 0,
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then
P1(y|x) = P2(y|x).

Definition 7 (s-Recoverability with external data (Bareinboim et al. [2022])). Given a causal graph
GS augmented with a node S, the distribution Q = P (y|x) is said to be s-recoverable from selection
bias in GS with external information over T ⊆ V and selection-biased data over M ⊆ V (for short,
s-recoverable) if the assumptions embedded in the causal model render Q expressible in terms of
P (m|S = 1) and P (t), both positive. Formally, for every two probability distributions P1 and P2

compatible with GS , if they agree on the available distributions,

P1(m|S = 1) = P2(m|S = 1) > 0, P1(t) = P2(t) > 0,

then they must agree on the query distribution,

P1(y|x) = P2(y|x).

RC Algorithm (Bareinboim et al. [2022])

For W,Z ⊆ M , consider the problem of recovering P (W |Z) from P (T ) and P (M |S = 1), and
define procedure RC(W,Z) as follows:

1. If W ∪ Z ⊆ T , then P (W |Z) is s-recoverable.
2. If

S ⊥⊥W
∣∣ Z,

then P (W |Z) is s-recoverable as

P (W |Z) = P (W |Z, S = 1).

3. For minimal C ⊆M such that S ⊥⊥W
∣∣ Z ∪ C,

P (W |Z) =
∑
c

P (W |Z, c, S = 1) P (c|Z).

If C ∪ Z ⊆ T , then P (W |Z) is s-recoverable. Otherwise, call RC(C,Z).
4. For some W ′ ⊂W ,

P (W |Z) = P
(
W ′|W \W ′, Z

)
P
(
W \W ′|Z

)
.

Call RC
(
W ′, {W \W ′} ∪ Z

)
and RC

(
W \W ′, Z

)
.

5. Exit with FAIL (to s-recover P (W |Z)) if for a singleton W , none of the above operations
are applicable.

A.2 Lemmas and Proofs

X

Y

S

W M M∗ W ∗

S∗

X∗

Y ∗

UM

US

UW

UY

UX

Figure 6: There are direct path, indirect path, and spurious path between Y and S.

Lemma 2. If experimental distribution P (Y ∗
X∗) in Gs is not s-recoverable, then P (Y ∗

X∗) is not
s-recoverable in the graph G

′

s resulting from adding a single edge to Gs.

Proof. Suppose that in the original selection-augmented graph Gs, the experimental distribution
P (Y ∗

X∗) is not s-recoverable. Then there must exist two structural causal models M1 and M2 such
that, under the biased experimental distribution given S = 1,
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• PM1

Gs
(M|S = 1) = PM2

Gs
(M|S = 1)

• PM1(Y ∗
X∗) ̸= PM2(Y ∗

X∗)

Now construct a new augmented graph G′
s by adding a single directed edge to the original graph

Gs. We will show that the new graph G′
s remains non-experimentally s-recoverable. Specifically, we

set the parameters associated with the newly added edge to zero, effectively neutralizing this edge.
Consequently, we can retain exactly the same structural models M1 and M2 from Gs in the new
graph G′

s, maintaining that

PM1

G′
s
(M|S = 1) = PM2

G′
s
(M|S = 1) and PM1

G′
s
(Y ∗

X∗) ̸= PM2

G′
s
(Y ∗

X∗).

This establishes that adding a single edge to a graph that is not experimentally s-recoverable cannot
render the new graph experimentally s-recoverable.
Lemma 3. If P (Y ∗

X∗) is naturally experimental s-recoverable, no direct and indirect path exists
between the S and Y nodes in the corresponding Gs.

Proof: Since direct and indirect paths are practically equivalent in this problem. Indirect paths can be
considered as a subdivision of direct paths. I will only numerically prove the case related to direct
paths here, and will provide the proof and analysis based on d-separation later.

Consider the subgraph Gs of Figure 6 consisting only of (S,X, Y ). Now construct the graph
G′

s to set the parameter of the path pointing from S to Y to 0. Now consider the distribution
P1 that is compatible with Gs, and the distribution P2 that is compatible with G′

s. and make
P1(Y

∗
X∗ |S = 1) = P2(Y

∗
X∗).

Assume Yx ∈ {0, 1} with P (Y ∗
x = 1) = P (Y ∗

x = 0) = 1
2 in the unbiased population. Define

α = P (S = 1|Y ∗
x = 1), β = P (S = 1|Y ∗

x = 0),

and suppose 0 < α < β < 1.

By Bayes’ rule,

P2(Y
∗
x ) = P1(Y

∗
x |S = 1) =

P (S = 1|Y ∗
x )P (Y ∗

x )

P (S = 1)
=

P (S = 1|Y ∗
x )P (Y ∗

x )∑
y P (S = 1|Y ∗

x = y)P (Y ∗
x = y)

P1(Y
∗
x = 1|S = 1) =

α · 12
α · 12 + β · 12

=
α

α+ β
̸= 1

2

Hence P1(Y
∗
x |S = 1) ̸= P2(Y

∗
x ), and the model with Yx → S is not naturally experimental

s-recoverable.

Analysis: Consider Figure 6, where both direct and indirect paths exist between nodes S and Y . By
constructing a twin network through shared exogenous variables, it becomes clear that node S can
directly affect the counterfactual node Y ∗

X∗ in the counterfactual scenario. Consequently, the presence
of either direct or indirect paths connecting nodes S and Y disrupts the natural s-recoverability of
the corresponding distribution P (Y ∗

X∗). For instance, if the selection criterion for data collection
explicitly depends upon the experimental outcomes, unbiased estimation of causal effects becomes
inherently impossible.

Notably, the scenario involving spurious paths between nodes S and Y is more nuanced. Consider
Figure 2c: although a spurious pathway connects S and Y , the distribution P (Y ∗

X∗) compatible
with Figure 2c still satisfies natural experimental s-recoverability due to the intervention on the
counterfactual variable X . Conversely, in Figure 6, the confounder M propagates selection bias
toward Y ∗

X∗ via node Y and its corresponding exogenous variable UY . Therefore, no straightforward
criterion exists to determine whether a spurious path between S and Y necessarily violates natural
s-recoverability.

Theorem 2. Let Gs be a causal graph augmented with a selection node S, and let V denote the set of
all variables. Suppose there exists a subset Z ⊆ V that is measured in both the biased experiment and
at the population level, and that (Y ∗

X∗ ⊥⊥ S|Z.) Then, the experimental distribution is s-recoverable:
P (Y ∗

X∗) =
∑

z P (Y ∗
X∗ |Z, S = 1)P (Z).
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Proof : We can condition on set Z:

P (Y ∗
X∗) =

∑
z

P (Y ∗
X∗ |Z)P (Z)

=
∑
z

P (Y ∗
X∗ |Z, S = 1)P (Z)

Where the last equation follows that Y ∗ ⊥⊥ S|Z.

A.3 Experimental and Computational Details

A.3.1 computational detail of discrete experiment

Here is the computational detail of experiment 4.1.

P (Y ∗
x∗) = P

(
Y |do(X = x)

)
=

∑
w∈{0,1}

P
(
Y |do(X = x),W = w

)
P (W = w)

=
∑

w∈{0,1}

P
(
Y |X = x,W = w

)
P (W = w)

=⇒



P (Y ∗
x∗=1 = 1) = 1

2

[
0.95+0.80

2 + 0.90+0.60
2

]
= 0.8125

P (Y ∗
x∗=1 = 0) = 1− P (Y ∗

x∗=1 = 1) = 0.1875

P (Y ∗
x∗=0 = 1) 12

[
0.90+0.50

2 + 0.70+0.30
2

]
= 0.60

P (Y ∗
x∗=0 = 0) = 1− P (Y ∗

x∗=0 = 1) = 0.40

By Theorem 2 . We only need external distribution for Z to restore the biased experimental distribution
to an unbiased one. From the open source dataset, we know that Z ∼ Bernoulli(0.5).

Prec(Y
∗
x∗) =

∑
z

P
(
Y ∗
x∗ |Z = z, S = 1

)
P (Z = z)

=⇒


P (Y ∗

x∗=1 = 1) = 1
2

[
158+146

158+146+8+10 + 266+218
266+218+73+146

]
≈ 0.816

P (Y ∗
x∗=0 = 1) = 1

2

[
141+100

141+100+12+245 + 180+110
180+110+174+245

]
≈ 0.613

P (Y ∗
x∗=1 = 0) = 1− P (Y ∗

x∗=1 = 1) ≈ 1− 0.816 = 0.184

P (Y ∗
x∗=0 = 0) = 1− P (Y ∗

x∗=0 = 1) ≈ 1− 0.613 = 0.387

By experimental data, it is easy to obtain:

P
(
Y ∗
x∗=0 = 1|S = 1

)
=

531

531 + 473
≈ 0.529

P
(
Y ∗
x∗=0 = 0|S = 1

)
= 1− 0.529 = 0.471

P
(
Y ∗
x∗=1 = 1|S = 1

)
=

788

788 + 237
≈ 0.768

P
(
Y ∗
x∗=1 = 0|S = 1

)
= 1− 0.768 = 0.232

The formula for calculating relative error is as follows:

REbias(x) =
Pbias(Y

∗
x∗ = 1|S = 1)− Ptrue(Y

∗
x∗ = 1)

Ptrue(Y ∗
x∗ = 1)

,

RErec(x) =
P̂rec(Y

∗
x∗ = 1)− Ptrue(Y

∗
x∗ = 1)

Ptrue(Y ∗
x∗ = 1)

.
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A.3.2 Computational detail of continuous experiment

We provide the full derivation of the experimental distribution P (Yx) under a linear structural causal
model (SCM) with Gaussian noise.

Structural Equations. Let the SCM be defined as:

Y = αX + βW + γZ + UY

where α, β, γ ∈ R are fixed coefficients, and UY ∼ N (0, σ2
Y ) is an independent exogenous variable

term. We assume the covariates:

W ∼ N (0, σ2
W ), Z ∼ N (0, σ2

Z), W ⊥ Z ⊥ UY

Intervention. To compute the experimental distribution P (Yx), we apply the do-operator do(X =
x), which modifies the SCM by setting X = x and removing any edges into X . The structural
equation becomes:

Y ∗
X∗=x = αx+ βW + γZ + UY

Distribution of Y ∗
X∗=x We now compute the distribution of Y ∗

X∗=x by leveraging the independence
and Gaussianity of W,Z,UY . Since Y ∗

X∗=x is a linear combination of independent Gaussian variables,
it is also Gaussian:

Y ∗
X∗=x ∼ N (µ, σ2)

We compute the mean:

E[Y ∗
X∗=x] = E[αx+ βW + γZ + UY ]

= αx+ βE[W ] + γE[Z] + E[UY ]

= αx

since E[W ] = E[Z] = E[UY ] = 0.

The variance is:

Var(Yx) = Var(βW + γZ + UY )

= β2Var(W ) + γ2Var(Z) + Var(UY )

= β2σ2
W + γ2σ2

Z + σ2
Y

Conclusion. Thus, the experimental distribution Y ∗
X∗=x is:

Y ∗
X∗=x = N

(
αx, β2σ2

W + γ2σ2
Z + σ2

Y

)
In our continuous experiment where σ2

W = σ2
Z = 1, this simplifies to:

Y ∗
X∗=x = N

(
αx, β2 + γ2 + σ2

Y

)
As long as the above SCM model is met, the theoretical experimental distribution can be calculated
by simply bringing in different parameters.

A.4 Algorithm failure analysis

Using Algorithm 1, we can conduct a more systematic analysis of whether the distribution P (Y ∗
x∗) is

s-recoverable. For instance, when unbiased distributions for certain nodes are not readily available,
the current algorithm may fail to yield a simple set of variables that guarantees the experimemtal
s-recoverability of P (Y ∗

x∗). In such cases, one may employ a recursive procedure to recover the
unbiased distributions for these nodes, or even resort to a chain rule factorization of conditional
probabilities in order to identify a more complex yet effective solution. The core principle of the
algorithm remains rooted in the notion of d-separation.
Lemma 4. Algorithm 1 does not guarantee a valid output on all graphs.

There exist graphs for which no set of variables can d-separate S and Y ∗
x∗ . Consequently, the

algorithm is not universally applicable, and it cannot guarantee a valid solution for every graph.
Consider, for example, Figure 7. In the corresponding twin network, there exists the following path:

S ←W2 ← UW2
→W ∗

2 → Y ∗,
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Figure 7

which necessitates conditioning on W2 to block the influence of S on Y ′. Unfortunately, conditioning
on W2 simultaneously opens up a previously blocked path:

S ← X →W1 →W2 ← UW2 →W ∗
2 → Y ∗,

since W2 functions as a collider on this path. Alternatively, if one attempts to condition on W1 to
block this route, a new path is activated:

S ← X →W1 ← UW1
→W ∗

1 →W ∗
2 → Y ∗,

Therefore, this algorithm fails on this causal graph, and The algorithm does not guarantee a valid
output on all graphs.

A.5 Supplementary Experiments

A.5.1 Supplementary figures in continuous experiment
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Figure 8: Kernel density estimates of P
(
Y ∗
X∗=1 = 1|Z, S = 1

)
obtained via 50 independent random

seeds at each sample size.
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Figure 10: Both Figures (a) and (b) can satisfy the experimental s-recoverability by partial external
data.
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Figure 9: Counts information in each (w, c) cells in biased continuous example.

Figure 9 shows the counts in each (W,Z) bin under selection bias for sample sizes n ∈
{100, 200, 500, 1000, 2000, 4000}. For small samples (n = 100, 200), most bins record zero
observations, with only a few central bins containing minimal counts. At medium sample
sizes (n = 500, 1000), central bins rise to the tens, while peripheral bins remain sparse. At
large sample sizes (n = 2000, 4000), central bins accumulate counts in the hundreds, and even
moderate-probability bins reach tens of observations, providing sufficient support for KDE. The
evolution of these counts corresponds directly to the KDE estimates’ convergence from high noise to
smooth accuracy, highlighting that, under selection bias, adequate coverage of the covariate space is
critical for recovering conditional distributions.

A.5.2 Advanced continuous example

Note: All experiments conducted in this paper can be reproduced on PC and Linux systems with no
computational resource requirements.

Follow the continuous exmaple in section 4.2, we simulate a clinical trial designed to evaluate a
novel therapy for a specific pulmonary condition. Participants are recruited based on their baseline
inflammatory biomarker levels, denoted by Z, and latent health level, denoted by W . Once enrolled,
treatment assignment X (novel drug:X=1 vs. standard care:X=0) is randomized via a Bernoulli draw.
The researchers have updated their selection policy to also take patients’ latent health status Z into
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account when recruiting patients; consequently, we obtain a new generative mechanism for S:

S = 1
{
γW W + γZ Z + US > c} , US ∼ N (0, σ2

S).

All other parts of the SCM remain unchanged (Figure 10b shows the corresponding causal diagrams).
In this experiment, we furthermore make no assumptions about the SCM’s functional form or the
distributions of its exogenous variables, thereby stress-testing our estimator’s ability to recover
P (Y ∗

x∗) purely from data in the absence of any prior structural knowledge.

We adopted the same experimental logic as for the experiments in section 4.2. We assume that
investigators can collect biased experimental cohorts of sizes n ∈ {100, 200, 500, 1000, 2000, 4000}.
For each n, we draw 50 independent samples (using distinct random seeds) from the full synthetic
dataset, computing and recording the average recovered experimental distribution P̂rec(Y

∗
x∗), its

average error relative to the ground truth, and the average biased experimental distribution P̂bias(Y
∗
x∗).

For all simulations, we fix N = 20000, α = 2.0, β = 1.0, γWY = 1.0, σY = 1.0, γZ = 0.5,
γW = 0.5, σS = 1.0, c = 0.2, and pX = 0.5.
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Figure 11: Density comparison of average recovered P (Y ∗
x∗) of advanced version, average conditional

P (Y ∗
x∗ |S = 1), and theoretical P (Y ∗

x∗) for sample sizes n ∈ {100, 200, 500, 1000, 2000, 4000}.
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Figure 12: Comparison of error metrics of advanced version between the recovered experimental
distribution and the biased follow-up distribution across sample sizes N .Figures (a)–(d) display,
respectively, (a) L1 error, (b) L2 error, (c) Jensen–Shannon divergence, and (d) Wasserstein distance,
averaged over 50 random seeds.
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Table 5: Error metrics comparing recovered and biased distributions.
N L1_rec L1_ias L2_rec L2_bias JS_rec JS_bias Wass_rec Wass_bias

|rule 100 0.0880 0.3346 0.0306 0.1191 0.0019 0.0224 0.1961 0.7357
200 0.0771 0.3428 0.0265 0.1221 0.0015 0.0233 0.1735 0.7458
500 0.0605 0.3439 0.0207 0.1234 0.0010 0.0237 0.1383 0.7400

1000 0.0499 0.3442 0.0174 0.1238 0.0007 0.0238 0.1099 0.7345
2000 0.0398 0.3399 0.0141 0.1229 0.0005 0.0232 0.0873 0.7237
4000 0.0318 0.3404 0.0116 0.1237 0.0004 0.0234 0.0703 0.7224

The experiments validate the efficacy of our proposed nonparametric approach for correcting experi-
mental distributions distorted by complex selection mechanisms. Although the selection indicator S
depends jointly on variables W and Z, inducing significant systematic bias, our method leverages
externally available unbiased marginal distributions P (W ) and P (Z) to reweight and integrate
the conditional density. The recovered experimental distribution P (Y ∗

x∗) significantly outperforms
the original biased distribution across multiple error metrics, including L1, L2, Jensen–Shannon
divergence, and Wasserstein distance, and rapidly converges toward the theoretical distribution as the
sample size increases. This result demonstrates that our approach achieves robustness and consistency
without relying on structural assumptions or parametric models, thus providing a reliable and broadly
applicable method for experimental distribution correction in practical causal inference settings.

A.6 Discussion

It is worth emphasizing that the identification of experimental distributions is not required in our
recovery procedure. This principle is rigorously adhered to in both our definitions and algorithms, as
we avoid explicitly converting the experimental distribution P (Y ∗

x∗) into the form P (y|do(x)) and
subsequently attempting identification. Such conversions often introduce complex and intertwined
problems of identification and estimation from observational distributions. Instead, our objective
remains strictly to recover the unbiased distribution P (Y ∗

x∗) directly from the available biased
experimental data P (Y ∗

x∗ |S = 1). Although the equivalence between P (Y ∗
x∗) and P (y|do(x)) is well-

established, no analogous equivalence necessarily holds between P (Y ∗
x∗ |S = 1) and P (y|do(x), S =

1). Therefore, one cannot straightforwardly reduce the task of recovering P (Y ∗
x∗ |S = 1) to recovering

P (y|do(x), S = 1).

Consider, for example, an integrated approach that couples identification and recovery:

P (Y ∗
x∗) = P (y|do(x))

=
∑
z

P (y|do(x), Z)P (Z|do(x))

=
∑
z

P (y|do(x), Z, S = 1)P (Z|do(x))

=
∑
z

P (y|do(x), Z, S = 1)P (Z|do(x))

=
∑

z,w,m

P (y|do(x), Z, w, S = 1)P (w|x, Z, S = 1)P (Z|M,do(x))P (M |do(x))

=
∑

z,w,m

P (y|x, Z,w, S = 1)P (w|x, Z, S = 1)P (Z|M,x)P (M |x).

Such an approach conflates the unbiased recovery of a distribution with its identification. It relies
on the equivalence of P (Y ∗

x∗) and P (y|do(x)), and involves identifying a node set that d-separates
Y and S in the residual graph obtained by removing incoming edges to X . Subsequently, the
method conditions on a complex observational set W, thereby accomplishing identification. While
this approach recovers P (Y ∗

x∗) through a combination of biased and unbiased observational data, it
faces significant drawbacks: first, identifying suitable sets Z,W and M is computationally intensive,
dramatically increasing complexity; second, coupling recovery and identification obscures error
attribution, hindering clarity in experimental analysis; third, overly complicated conditioning sets W
are often difficult to obtain.
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In contrast, our method directly recovers the unbiased experimental distribution P (Y ∗
x∗) from the

biased experimental data P (Y ∗
x∗ |S = 1) by leveraging readily available unbiased observational data.

This decoupling of recovery from the identification process not only simplifies the overall estimation
procedure but also enhances both interpretability and practical applicability.
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