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Abstract

Probabilities of causation play a crucial role in
modern decision-making. This paper addresses the
challenge of predicting probabilities of causation
for subpopulations with insufficient data using ma-
chine learning models. Tian and Pearl first defined
and derived tight bounds for three fundamental
probabilities of causation: the probability of neces-
sity and sufficiency (PNS), the probability of suffi-
ciency (PS), and the probability of necessity (PN).
However, estimating these probabilities requires
both experimental and observational distributions
specific to each subpopulation, which are often
unavailable or impractical to obtain with limited
population-level data. We assume that the probabil-
ities of causation for each subpopulation are deter-
mined by its characteristics. To estimate these prob-
abilities for subpopulations with insufficient data,
we propose using machine learning models that
draw insights from subpopulations with sufficient
data. Our evaluation of multiple machine learning
models indicates that, given sufficient population-
level data and an appropriate choice of machine
learning model and activation function, PNS can
be effectively predicted. Through simulation stud-
ies, we show that our multilayer perceptron (MLP)
model with the Mish activation function achieves a
mean absolute error (MAE) of approximately 0.02
in predicting PNS for 32,768 subpopulations using
data from around 2,000 subpopulations.

1 INTRODUCTION

Understanding causal relationships and estimating proba-
bilities of causation are crucial in fields such as healthcare,
policy evaluation, and economics [Pearl, 2009, Imbens and
Rubin, 2015, Heckman and Pinto, 2015]. Unlike correlation-

based methods, causal inference enables decision-makers to
determine whether an action or intervention directly leads
to a desired outcome. This is particularly essential in per-
sonalized medicine, where accurately assessing treatment
effects ensures both efficacy and safety [Mueller and Pearl,
2023]. Moreover, causal reasoning enhances machine learn-
ing applications by improving accuracy [Li et al., 2020],
interpretability, and fairness [Plecko and Bareinboim, 2022]
in automated decision-making. Despite its broad signifi-
cance, estimating probabilities of causation remains chal-
lenging due to data limitations. In this paper, we address
this challenge by leveraging machine learning techniques to
predict probabilities of causation for subpopulations with
insufficient data.

The study of probabilities of causation began around 2000
when Pearl [1999] first defined three fundamental probabili-
ties—PNS, PS, and PN—within Structural Causal Models
[Galles and Pearl, 1998, Halpern, 2000, Pearl, 2009]. Sub-
sequently, Tian and Pearl [2000] derived tight bounds for
these probabilities using Balke’s linear programming [Balke,
1995], incorporating both observational and experimental
data. Nearly two decades later, Li and Pearl [2019] for-
mally proved these bounds and introduced the unit selection
model, a decision-making framework based on their linear
combination. More recently, Li and Pearl [2024b] extended
the definitions and bounds to a more general form. Addition-
ally, Mueller et al. [2022], as well as Dawid et al. [2017],
demonstrated that these bounds could be further refined
given specific causal structures.

However, any above estimation of the probabilities of cau-
sation requires both observational and experimental data.
Additionally, estimating (sub)populations, based on Li et al.
[2022c]’s suggestions, requires approximately 1,300 en-
tries of both data types for each (sub)population, making
the process impractical. Li et al. [2022a,b] demonstrated the
potential of machine learning models to achieve accurate
estimations for (sub)populations. In this research, we select
five diverse machine learning models based on the charac-
teristics of the probabilities of causation. We then evaluate



their performance in accomplishing the task.

1.1 CONTRIBUTIONS

Despite the extensive theoretical research on probabilities of
causation, practical estimation methods have remained un-
explored. Our work provides the first systematic approach to
predicting probabilities of causation using machine learning.
Specifically, we make the following contributions:

e First Machine Learning Pipeline for Predicting
Probabilities of Causation: We propose a novel ma-
chine learning framework to estimate the bounds of
PNS, PS, and PN, filling a critical gap between theo-
retical causal inference and practical applications.

* First Accurate Machine Learning Model for PNS
Prediction: We demonstrate that a MLP can accurately
predict PNS, proving that machine learning is a fea-
sible and effective tool for estimating probabilities of
causation.

¢ First Dataset for PNS Bound Prediction: We con-
struct and release the first synthetic dataset specifically
designed to evaluate machine learning models for esti-
mating PNS, providing a foundation for future research
in this area.

To the best of our knowledge, no prior work has applied ma-
chine learning to the problem of predicting probabilities of
causation. Our study establishes a new research direction by
bridging causal inference and machine learning for practical
estimation tasks.

The remainder of the paper is structured as follows: first, we
review key causal inference concepts to provide necessary
context. Next, we introduce the model and dataset used in
our study. Finally, we present our five machine learning
models developed for the task. All code for data generation
and machine learning models is included in the appendix.

2 PRELIMINARIES

In this section, we review the fundamental concepts of
causal inference necessary for understanding the rest of
the paper. We begin by discussing the definitions of PNS,
PS, and PN as introduced by Pearl [1999], followed by the
definitions of identifiability and the conditions required to
identify PNS, PS, and PN [Tian and Pearl, 2000]. Addition-
ally, we examine the tight bounds of PNS, PS, and PN in
cases where they are unidentifiable [Tian and Pearl, 2000].
Readers already familiar with these concepts may skip this
section.

Similar to the works mentioned above, we adopt the causal
language of Structural Causal Models (SCMs) [Galles and
Pearl, 1998, Halpern, 2000]. In this framework, the counter-
factual statement “Variable Y would have the value y had

X been x” is denoted as Y, = y, abbreviated as y,. We
consider two types of data: experimental data, expressed as
causal effects P(y, ), and observational data, represented
by the joint probability function P(z,y). Unless otherwise
specified, we assume X and Y are binary variables in a
causal model M, with x and y denoting the propositions
X = true and Y = true, respectively, and 2’ and 3’ rep-
resenting their complements. For simplicity, we focus on
binary variables; extensions to multi-valued cases are dis-
cussed by Pearl [2009] (p. 286, footnote 5) and Li and Pearl
[2024a].

First, the definitions of three basic probabilities of causation
defined using SCM are as follow [Pearl, 1999]:

Definition 1 (Probability of necessity (PN)). Let X and Y
be two binary variables in a causal model M, let x and y
stand for the propositions X = true and Y = true, respec-
tively, and 2’ and 3’ for their complements. The probability
of necessity is defined as the expression

PN P(Yx=rase = false|X =true,Y = true)

P(y,|z,y)

Definition 2 (Probability of sufficiency (PS)). Let X and
Y be two binary variables in a causal model M, let x and y
stand for the propositions X = true and Y = true, respec-
tively, and =’ and v’ for their complements. The probability
of sufficiency is defined as the expression

> 1>

PS P(Yx—true = true|X = false,Y = false)

P(y.|2',y")

Definition 3 (Probability of necessity and sufficiency
(PNS)). Let X and Y be two binary variables in a causal
model M, let z and y stand for the propositions X = true
and Y = true, respectively, and 2’ and 4’ for their com-
plements. The probability of necessity and sufficiency is
defined as the expression

> 1>

PNS 2 P(Yx=true = true, Yx=yq1se = false)
A
2 P yy)
Then, we review the identification conditions for PNS, PS,
and PN [Tian and Pearl, 2000].

Definition 4. (Monotonicity) A Variable Y is said to be
monotonic relative to variable X in a causal model M iff

yh Ay, = false.

Theorem 5. IfY is monotonic relative to X, then PNS, PN,
and PS are all identifiable, and

PNS = P(y,) — P(ya),

_ Ply) — Plyw)
PN =y
PS — P(yr) 7P(y)

P(a',y")



If PNS, PN, and PS are not identifiable, informative bounds
are given by Tian and Pearl [2000].

0,
max 1]33((3/;))__ If&f’))’ < PNS (1)
P(y.) — P(y)
P(ys),
P(y),
min¢ P(z,y) + P(z’,y'), p >PNS 2)
P(yz) — P(ya )
P(z,y') + P(2',y)
max{ P(y)— p(yT }SPN 3)
P(z,y)
min{ P(y > PN “)
,u)
max{ P(y) P(yr } )
min{ Plys)— P(m y) }ZPS (©6)
P(z’y’)

Therefore, the primary objective of this paper is then to
predict Equations 1 to 6 (i.e., the lower and upper bounds of
the PNS, PS, and PN) for any (sub)populations using those
with sufficient data (i.e., sufficient data to estimate the dis-
tributions P(X,Y") and P(Yx).) Due to space constraints,
the focus will be on the bounds of PNS (i.e., Equations 1
and 2). Unless otherwise specified, the discussion will be
limited to binary treatment and effect, meaning both X and
Y are binary.

3 STRUCTURAL CAUSAL MODEL

In general, the equations in SCMs are in implicitly form
(e.g., Z = fz(X,Y,Uyg)). However, in order to verify the
accuracy of the learned bounds of PNS, we need to explicitly
define the SCM and the data-generating process to deter-
mine the true PNS value and its bounds. Followed the setup
in Li et al. [2022a], we will use the following SCM.

Z; =Upg, forie{l,..,20},
X = fx(Mx,Ux)
1 ifMx+Ux >0.5
0 otherwise,
Y = fv(X,My,Uy)
1 if0<Cy
=<¢1 ifl<Cy

0 otherwise.

X+ My +Uy <1
X+ My +Uy <2

where XY, Z; are all binary, Uz,, Ux, Uy are binary ex-
ogenous variables with Bernoulli distributions, Cy is a
constant, and M x, My are linear combinations of Z;. The
randomly generated value of C'y, M x, My and the distri-
butions of Ux, Uy, Uz, for the model are provided in the
appendix.

4 DATA GENERATING PROCESS

Based on the defined model, 20 binary features are consid-
ered (i.e., Z1, ..., Z2g). We made 15 observable (71, ..., Z15)
and 5 unobservable, and the exogenous variables are also
unobservable, leading to 2'° observed subpopulations (i.e.,
the combination of Z1, ..., Z15 defined a subpopulation).

4.1 INFORMER DATA

To evaluate the learned bounds, the informer data must have
access to the actual PNS bounds for each subpopulation.
Given the explicit form of the SCM and the distributions
of all exogenous variables, the PNS bounds, as well as the
experimental and observational distributions, can be com-
puted for each combination of the features 71, ..., Zi5 (i.e.,
a subpopulation) using the SCM. For detailed mathematical
formulations, refer to the appendix.

4.2 SAMPLE COLLECTION

A total of 50, 000, 000 experimental and 50, 000, 000 obser-
vational samples were generated as follows for each sample:
In both settings, the exogenous variables Ux, Uy, and Ug,
were randomly generated according to their distributions
specified in Section 3. In the experimental setting, X was
then assigned according to a Bernoulli(0.5) distribution,
while Y and Z; were computed using the structural func-
tions described in Section 3. In the observational setting,
X, Y, and Z; were all determined by the structural func-
tions. The final datasets include only the observable features
Z1,...,215,along with X and Y, while Z1g, . . . , Zog were
masked.

4.3 DATA FOR MACHINE LEARNING MODELS

We selected subpopulations from the 2! possible groups
that contained at least 1, 300 experimental and observational
samples (1, 300 based on Li et al. [2022c]’s suggestions).
For these selected subpopulations, we computed the ex-
perimental and observational distributions and determined
the bounds of PNS using Equations 1 and 2. These results
served as the data for our machine learning models (i.e.,
each data entry consists of 15 features and the PNS bounds
as the label.) The obtained data includes 2, 054 entries for
the lower bound (LB) and 2, 065 entries for the upper bound
(UB) of the PNS.



5 MACHINE LEARNING PREDICTION

To evaluate the feasibility of machine learning in predicting
the bounds of the PNS, we employed five distinct machine
learning models to assess their effectiveness in this task:
Support Vector Machine (SVM) [Cortes, 1995], Random
Forest (RF) [Ho, 1995], Gradient Boosting Decision Trees
(GBDT) [Friedman, 2001], Transformer [Vaswani, 2017],
and Multilayer Perceptron (MLP) [Rumelhart et al., 1986].
These models were chosen to represent a diverse range of
machine learning paradigms, including kernel-based meth-
ods (SVM), ensemble learning techniques (RF and GBDT),
and deep learning approaches (MLP and Transformer). This
selection ensures a comprehensive evaluation of their ability
to approximate causal quantities across different settings. A
detailed pipeline is illustrated in Figure 1.

5.1 SUPPORT VECTOR MACHINE

Support Vector Machines (SVM) [Cortes, 1995] are widely
used and well-established supervised learning models.
Given their strengths, we selected Support Vector Regres-
sion (SVR), a variant of SVM, as the first model for our
experiments. To effectively capture complex patterns, we
employed the Radial Basis Function (RBF) kernel to map
the data into a high-dimensional feature space.

Key hyperparameters include the penalty parameter (C),
the insensitive loss threshold (¢), and the kernel coefficient
(7). The parameter C' controls the trade-off between model
complexity and error tolerance, where larger values may
lead to overfitting. The threshold e defines the margin of
tolerance for errors, while « determines the influence range
of individual data points.

A two-stage hyperparameter tuning strategy was adopted.
First, Randomized Search [Bergstra and Bengio, 2012] was
employed to efficiently explore the parameter space and
identify promising ranges. Then, Grid Search [Bergstra
and Bengio, 2012] was used to fine-tune parameters within
these ranges. Cross-validation ensured robust generalization
throughout the tuning process.

Finally, the mean squared error (MSE) and mean absolute
error (MAE) values of the SVR model can be found in Table
1. Confusion matrices are presented in Figures 3a and 3d,
while Figures 2a and 2e provide a clearer comparison with
the true PNS bounds. For the prediction of the lower bound,
SVR demonstrates reasonable effectiveness; however, for
the more complex upper bound, it exhibits a significant
decline in accuracy.

5.2 RANDOM FOREST

Random Forests (RF) [Ho, 1995] are a widely used ensem-
ble learning method for classification, regression, and other

predictive tasks. The core idea behind RF is to construct
multiple decision trees during training and aggregate their
outputs to enhance overall performance. As an ensemble
model, RF exhibits strong robustness, motivating us to as-
sess its effectiveness in predicting PNS bounds.

Key hyperparameters of RF include the number of trees
(Mestimators ) Maximum tree depth (max_depth), minimum
samples required to split a node (min_samples_split),
and the number of features considered for splitting
(max_features). Increasing Nestimators generally improves
performance but at the expense of higher computational
costs. The parameters max_depth, min_samples_split, and
max_features regulate tree complexity, balancing bias-
variance trade-offs.

For hyperparameter optimization, we employed a two-stage
tuning strategy similar to that used for SVM. Table 1 also
presents RF’s MAE and MSE results, while Figures 3b and
3e show its confusion matrices. A more direct comparison
with true PNS bounds is provided in Figures 2b and 2f.
RF performs comparably to SVM on the lower bound but
exhibits significantly higher accuracy on the upper bound.

5.3 GRADIENT BOOSTING DECISION TREES

Gradient Boosting Decision Trees (GBDT) [Friedman,
2001] is an ensemble learning method that builds models
sequentially, with each new tree correcting the errors of its
predecessors. Unlike traditional boosting, GBDT optimizes
pseudo-residuals, enabling flexible loss function optimiza-
tion. Simple decision trees serve as weak learners, allowing
GBDT to effectively capture complex data patterns.

Key hyperparameters include the number of trees
(Nestimators)s learning rate (learning_rate), maximum tree
depth (max_depth), and subsample ratio (subsample). The
learning rate determines each tree’s contribution, while
Nestimators ad max_depth regulate model complexity and
performance.

Following the approach used for SVM and RF, we applied a
two-stage tuning strategy. Again, table 1 presents the MSE
and MAE results, while Figures 3¢ and 3f show the con-
fusion matrices. A more direct comparison with true PNS
bounds is provided in Figures 2c and 2g. GBDT demon-
strates moderate performance on both the lower and upper
bounds.

5.4 TRANSFORMER

The Transformer [Vaswani, 2017], originally developed for
Natural Language Processing, has expanded into Computer
Vision and become a cornerstone of deep learning, partic-
ularly with the rise of large language models. Given its
significant impact, this study also evaluates the Transformer
for testing.
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Figure 2: Comparison of true and predicted values across different models for both lower and upper bounds.

The model architecture begins with an input layer process-
ing 15-dimensional feature vectors, followed by a linear
embedding layer that projects inputs into a 64-dimensional
space. Positional encoding is applied to retain feature order
information, and two Transformer encoder layers with four
attention heads each capture complex feature interactions.
The final output is generated through a fully connected layer
with a Sigmoid activation function, ensuring predictions
remain within the range [0, 1]. Key hyperparameters include
an embedding dimension of 64, four attention heads, two
encoder layers, and a dropout rate of 0.1.

Similarly, table 1 presents the MSE and MAE results, while
Figures 3g and 3h show the confusion matrices. A direct
comparison with true PNS bounds is provided in Figures 2d
and 2h. The Transformer demonstrates strong performance
on the lower bound and moderate performance on the upper
bound.

5.5 MULTILAYER PERCEPTRON

MLP [Rumelhart et al., 1986] consists of an input layer, one
or more hidden layers, and an output layer. With appropriate
activation functions, it can effectively model both linear
and nonlinear relationships. As a fundamental structure in
deep learning, MLP holds significant representativeness,
motivating its inclusion in our experiments.

A key consideration for MLP is the choice of activation
function, particularly for predicting the lower bound. Since
the lower bound of PNS cannot be negative, we initially se-
lected the ReLU [Nair and Hinton, 2010] activation function
(7). However, ReLU can lead to the loss of negatively cor-
related features, prompting us to adopt LeakyReLU [Maas
et al., 2013] (8) as a complementary solution. Furthermore,
given the considerable number of zero values in the data,
the non-differentiability of ReLU and LeakyReLU at s = 0
imposes limitations on backpropagation. To address this,
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Figure 3: Confusion matrices of SVM, RF, GBDT, and Transformer models.

we proposed using Mish [Misra, 2019] (9) as an alternative
activation function. The corresponding equations are:

ReLU(s) = max(0, s)

)

ifs>0
ifs <0

S,

LeakyReLU(s) 8)

as,

Mish(s) = s - tanh(In(1 + e*)) )

Additionally, we implemented an MLP with the architecture
15 = 64 — 32 — 16 — 1, utilizing ReL U-like functions

and Sigmoid as activation functions. The model was opti-
mized using the Adam optimizer with a learning rate of 0.01
and trained for 1000 epochs.

Again, the final results are presented in Table 1. With the
Mish activation function, the MLP achieved an MSE of
0.0011 on the lower bound and 0.0010 on the upper bound.
For MAE, it attained 0.0225 on the lower bound and 0.0247
on the upper bound. The confusion matrix is shown in Fig-
ure 4, and a clearer comparison with the true PNS bounds
is provided in Figure 5 (Only the best performance compar-
isons with Mish are shown).

Overall, MLP significantly outperformed other machine



learning models, with Mish yielding the best results among
the activation functions. The comparison with the true PNS
bounds further confirms that MLP (Mish) provides an accu-
rate and practical model for predicting PNS.

5.6 EXPERIMENTAL COMPARISON

As shown in Table 1, MLP delivers the best overall per-
formance. Among the other four machine learning models,
SVM performs well on the lower bound but fails almost
entirely on the upper bound. RF shows significantly better
results, achieving acceptable performance on both bounds.
Despite also being a tree-based model, GBDT underper-
forms compared to RF, with only a slight improvement
over SVM on the upper bound. The Transformer, as an
MLP-based model, outperforms the other machine learning
models but still falls short of MLP’s performance.

For MLP models, the dataset’s characteristics around zero
(we will discuss these characteristics in the discussion sec-
tion) lead to notable differences in activation function perfor-
mance. Basic ReL.U shows suboptimal performance on the
lower bound, while LeakyReLLU, which accounts for nega-
tive values, performs slightly better. Mish, which not only
handles negative values but also ensures differentiability
around zero, achieves the best results.

Table 1: Comparison of Model Performance

Model Dataset MSE MAE
SVM Lower bound 0.0112 0.0868
Upper bound 0.0304 0.1527
RF Lowerbound 0.0116 0.0919
Upper bound 0.0205 0.1242
GBDT Lowerbound 0.0159 0.1049
Upper bound 0.0261 0.1399
Transformer Lower bound 0.0030 0.0348
Upper bound 0.0156 0.1060
MLP(ReLU) Lowerbound 0.0045 0.0434
Upper bound  0.0023  0.0357
MLP(LeakyReLU) Lower bound 0.0038 0.0379
Upper bound 0.0024  0.0380
MLPMish) Lower bound 0.0011 0.0225
Upper bound  0.0010 0.0247

6 DISCUSSION

Our study demonstrates that among common machine learn-
ing methods, the MLP (Mish) is the most effective and ac-
curate in estimating the bounds of PNS. Below, we discuss
key considerations and future directions.

First, in complex settings—especially those involving non-
binary probabilities of causation, as indicated in [Li and

Pearl, 2024a, Zhang et al., 2024]—the lower bounds of PNS
often approach zero, further emphasizing the potential of
MLP (Mish) in such scenarios.

Second, while our model successfully addresses the chal-
lenge of predicting from approximately 2,000 subpopula-
tions to 2'° subpopulations, a significant issue remains: the
2,000 reliable training samples may require up to 50 million
data points at the population level. This is due to data spar-
sity and the minimum data requirements needed to estimate
PNS bounds for specific subpopulations (this paper uses
1,300 observational and experimental data points). However,
collecting such a large volume of data is often impractical.
Fortunately, we propose three practical approaches to data
collection: instead of gathering population-level data, we
can directly collect data for the 2,000 predefined subpop-
ulations; the required 1,300 data points can be reduced to
approximately 400, as suggested by Li et al. [2022c], while
maintaining basic accuracy; and we can rely solely on exper-
imental data, as proposed by Li and Pearl [2023], or use only
observational data and estimate experimental data through
adjustment formulas [Pearl, 1993, 1995].

A fundamental goal in causal inference is identifying sub-
populations exhibiting desirable counterfactual behavior
patterns [Li and Pearl, 2019] to effectively guide policy-
making and decision implementation. Specifically, this in-
volves finding subpopulations with sufficiently small PNS
upper bounds or sufficiently large PNS lower bounds. There-
fore, accurately predicting all subpopulations is unnecessary
for this task. A promising research direction is determining
a minimal training set that can reliably predict these key
subpopulations.

Next, the current data-generating process consists of a rel-
atively simple causal structure with only 20 confounders,
making MLP the optimal choice. However, if the underlying
causal structure were more complex or included additional
confounding variables, would more sophisticated models
be necessary? Since this paper focuses solely on illustrating
the feasibility and potential of machine learning models
for predicting causal quantities, a deeper exploration of the
relationship between model complexity and causal structure
remains an important direction for future research.

Finally, traditional methods for estimating probabilities of
causation, such as PNS, PS, and PN, rely on direct com-
putation using observational and experimental data within
SCMs. However, they assume sufficient data for each sub-
group, which is often unrealistic. Our work addresses this
challenge by developing a machine learning-based frame-
work to predict PNS for subpopulations with insufficient
data, a gap not covered by traditional causal inference tech-
niques.

Although there are no classical methods explicitly designed
for this task, we establish a robust benchmark for evalua-
tion by leveraging the known data-generating process in
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Figure 4: Confusion matrices of MLP with different activation functions: ReLU, Leaky ReLU, and Mish for both lower and
upper bounds.

_ MLPLB — PredictedMLP uB five different models to predict the bounds of PNS. Experi-
e — e S — e ments showed that an MLP with the Mish activation function
§ ‘ § _ achieved a mean absolute error of approximately 0.02 for an
s T S| et SCM with 15 observed and 5 unobserved confounders. Our
“Sample Index (Sorted) Sample Index (Sorted) results suggest that machine learning is a powerful tool for
(a) Lower bound. (b) Upper bound. causal inference, particularly in real-world scenarios where

direct estimation using SCM formulas is infeasible due to

Figure 5: Comparison of MLP (Mish) for lower and upper ~ data limitations. Future research will explore larger datasets
bounds. with more complex SCMs.

Although our study demonstrates the feasibility of machine
learning for estimating probabilities of causation, we ac-
knowledge that our experiments are based on synthetic data
generated from a structured SCM. Most existing research on
probabilities of causation remains theoretical, often without
practical validation, despite claims of real-world applica-
bility. Due to page limitations, we could not extend our
study to real-world applications, but this remains a critical
direction for future research. We believe that bridging this
gap will require developing datasets from real-world causal
7  CONCLUSION systems Where experimental and observational data can be
systematically collected. Our work serves as a first step
in this direction, providing a foundation for future studies
to explore the practical deployment of machine learning
models for causality estimation.

our synthetic experiments. For subgroups with insufficient
data, we compare our model predictions to the true PNS
bounds derived from SCM equations, ensuring that our re-
sults are grounded in a well-defined standard. This explicit
benchmarking demonstrates the validity of our approach and
allows us to assess model accuracy relative to the traditional
PNS estimation under ideal conditions.

In this paper, we demonstrated that the bounds of probabil-
ities of causation can be effectively learned and predicted
using machine learning models. Specifically, we proposed
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