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Abstract
Artificially sweetened beverages like Diet Coke are often
considered healthier alternatives, but the debate over their im-
pact on obesity persists. Previous research has predominantly
relied on observational data or randomized controlled trials
(RCTs), which may not accurately capture the causal relation-
ship between Diet Coke consumption and obesity. This study
uses causal inference methods, employing data from the Na-
tional Health and Nutrition Examination Survey (NHANES)
to examine this relationship across diverse demographics. In-
stead of relying on RCT data, we constructed a causal graph
and applied the back-door criterion with its adjustment for-
mula to estimate the RCT distributions. We then calculated
the counterfactual quantity, the Probability of Necessity and
Sufficiency (PNS), using both NHANES data and estimated
RCT data. We propose that PNS is the essential metric for as-
sessing the impact of Diet Coke on obesity. Our results indi-
cate that between 20% to 50% of individuals, especially those
with poor dietary habits, are more likely to gain weight from
Diet Coke. Conversely, in groups like young females with
healthier diets, only a small proportion experience weight
gain due to Diet Coke. These findings highlight the influence
of individual lifestyle and potential hormonal factors on the
varied effects of Diet Coke, providing a new framework for
understanding its nutritional impacts on health.

Introduction
As global health consciousness rises, low-calorie artificial
sweetener beverages like Diet Coke have become popu-
lar choices in the beverage market. Since its launch in
1982 (Spren 2023), Diet Coke has quickly captivated a large
consumer base with its zero-sugar or low-calorie profile.
Statistics (Mashed 2023) show that Diet Coke holds a signif-
icant market share in the soft drink markets of many coun-
tries, particularly among those pursuing healthier lifestyles,
where it has become the preferred daily beverage. Con-
sumers primarily choose Diet Coke for its low-calorie prop-
erties and its potential benefits in weight management. Many
people consume it as a substitute for high-sugar drinks, aim-
ing to reduce sugar intake and control weight.

In past research concerning the relationship between Diet
Coke consumption and fatness, conclusions have been var-
ied and contentious. (Ma et al. 2009) found that although
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sucralose does not directly stimulate the release of insulin,
GLP-1, or GIP, its actions within the gastrointestinal tract
may indirectly affect energy intake and metabolism by in-
fluencing gastric emptying. According to (Gardener et al.
2012), the consumption of Diet Coke is linked to higher
blood sugar levels and cardiovascular diseases, suggesting
that Diet Coke may promote obesity and related health is-
sues by affecting metabolic pathways. (Peters et al. 2015)
compared the effects of water and non-nutritive sweetened
beverages on obesity and insulin sensitivity, discovering that
substitute sugar sweeteners in beverages might not deliver
the anticipated health benefits. Lastly, (Wu et al. 2023) in-
dicated that excessive consumption of Diet Coke is signif-
icantly associated with metabolic dysfunction-related fatty
liver disease (MASLD), with BMI possibly playing a medi-
ating role in this relationship.

In previous studies examining the relationship between
Diet Coke consumption and obesity, researchers primarily
relied on either observational data or randomized controlled
trials (RCTs). While these studies have highlighted a cor-
relation between Diet Coke consumption and weight gain,
they exhibit significant limitations. Many studies did not
adequately account for confounding variables, potentially
leading to misunderstandings about the actual effects of Diet
Coke.

To overcome the limitations of previous studies and to
more accurately decipher the causal relationship between
Diet Coke consumption and obesity, this paper employs ad-
vanced causal inference techniques. Initially, utilizing the
framework of Structural Causal Models (SCM ), this pa-
per constructs a causal diagram (Pearl 1995; Spirtes et al.
2000; Pearl 2009; Koller and Friedman 2009) through the
IC∗ algorithm (Pearl 2009). This diagram clearly illustrates
both the direct and indirect relationships between Diet Coke
consumption and obesity, along with the effects of potential
confounders such as hyperlipidemia, hypertension, and age.
Subsequently, we precisely identify and control for back-
door paths in the causal diagram that could introduce bias
into our estimates. This approach enables us to estimate the
RCT distributions of Diet Coke effects by applying the back-
door criterion and its adjustment formulas (Pearl 1995).

Building on the foundational work of (Tian and Pearl
2000), who proposed bounds on probabilities of causation,
and further refined by (Mueller, Li, and Pearl 2022)’s use



of covariates to narrow these bounds, this paper calculates
the Probability of Necessity and Sufficiency (PNS) across
different demographics. Specifically, this involves estimat-
ing the proportion of the population for whom Diet Coke
consumption leads to obesity, thereby quantifying the causal
impact of Diet Coke on obesity rates within varied groups.

Preliminaries & Related Works
In this section, we review some fundamental methods of
causal inference. First, we introduce the concept of the struc-
tural causal model, or SCM , as outlined in (Pearl 1995;
Spirtes et al. 2000; Pearl 2009; Koller and Friedman 2009).
Figure 1 exemplifies an appropriate causal diagram, which
is essentially a directed acyclic graph (DAG).

Formally, a SCM consists of two sets of variables U and
V, and a set of functions f that assigns each variable in V
a value based on the values of the other variables in the
model. In SCM , exogenous variables (U) are external and
have no ancestors, depicted as root nodes in graphs. Endoge-
nous variables (V) depend on exogenous ones and can be
predicted using functions in f if all exogenous values are
known.

In SCMs, the associated graphical model consists of
nodes for each variable in U and V and directed edges that
represent functional dependencies. If a variable X depends
on Y, there is a directed edge from Y to X. These graph-
ical models are typically directed acyclic graphs (DAGs).
Causally, if Y is a parent of X in the graph, Y is a direct
cause of X; if Y is an ancestor, it is a potential cause of X.

For instance, consider the following simple SCM :

U = {X,Y }, V = {Z}, F = {fZ}
fZ : Z = 2X + 3Y

This model represents the salary (Z) that an employer
pays an individual with X years of schooling and Y years
in the profession. X and Y both appear in fZ , so X and Y
are both direct causes of Z. If X and Y had any ancestors,
those ancestors would be potential causes of Z.

The graphical model associated with it is illustrated in
Figure 1.

Z
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Figure 1: The graphical model of SCM , with X indicating
years of schooling, Y indicating years of employment, and
Z indicating salary.

One key concept of a causal diagram is called d-
separation (Pearl, Glymour, and Jewell 2016).

Definition 1 (d-separation) In a causal diagram G, a path
p is blocked by a set of nodes Z if and only if
1. p contains a chain of nodes A → B → C or a fork

A ← B → C such that the middle node B is in Z (i.e.,
B is conditioned on), or

2. p contains a collider A→ B ← C such that the collision
node B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y , then
X and Y are d-separated conditional on Z, and thus are
independent conditional on Z, denoted as X ⊥⊥ Y | Z.

With the concept of d-separation in a causal diagram,
Pearl proposed the back-door criteria and its associated ad-
justment formula (Pearl 1995)as follows:

Definition 2 (Back-Door Criterion) Given an ordered
pair of variables (X,Y ) in a directed acyclic graph G, a set
of variables Z satisfies the back-door criterion relative to
(X,Y ), if no node in Z is a descendant of X , and Z blocks
every path between X and Y that contains an arrow into
X .

If a set of variables Z satisfies the back-door criterion for
X and Y , the causal effects of X on Y are given by the
adjustment formula:

P (y|do(x)) =
∑
z

P (y|x, z)P (z). (1)

Next, we review the definitions for the three aspects of
causation as defined in (Pearl 1999). We use the causal di-
agrams (Pearl 1995; Spirtes et al. 2000; Pearl 2009; Koller
and Friedman 2009) and the language of counterfactuals in
its structural model semantics, as given in (Balke and Pearl
2013; Pearl 1999; Halpern 2000).

We use Yx = y to denote the counterfactual sentence
“Variable Y would have the value y, had X been x”. For
simplicity purposes, in the rest of the paper, we use yx to
denote the event Yx = y, yx′ to denote the event Yx′ = y,
y′x to denote the event Yx = y′, and y′x′ to denote the event
Yx′ = y′. For notational simplicity, we limit the discussion
to binary X and Y , extension to multi-valued variables are
straightforward (Pearl 2009).

Definition 3 (Probability of necessity and sufficiency (PNS))
(Pearl 1999)

PNS = P (yx, y
′
x′) (2)

PNS stands for the probability that y would respond to x
both ways, and therefore measures both the sufficiency and
necessity of x to produce y.

Tian and Pearl (Tian and Pearl 2000) provide a tight
bound for PNS without a causal diagram. Li and Pearl (Li
and Pearl 2019) provide a theoretical proof of the tight
bound for PNS, and other probabilities of causation without
a causal diagram.

PNS has the following tight bounds:

max


0

P (yx)− P (yx′)
P (y)− P (yx′)
P (yx)− P (y)

 ≤ PNS (3)
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Figure 2: Z is not a descendant of X

PNS ≤ min


P (yx)
P (y′x′)

P (x, y) + P (x′, y′)
P (yx)− P (yx′)+

+P (x, y′) + P (x′, y)

 (4)

Theorems 1 and 2 below provide bounds for PNS when a
set Z of variables can be measured which satisfy only one
simple condition: Z contains no descendant of X .
Theorem 1 Given a causal diagram G and distribution
compatible with G, let Z be a set of variables that does not
contain any descendant of X in G, then PNS is bounded as
follows:

∑
z

max


0,

P (yx|z)− P (yx′ |z),
P (y|z)− P (yx′ |z),
P (yx|z)− P (y|z)

× P (z) ≤ PNS (5)

∑
z

min


P (yx|z),
P (y′x′ |z),

P (y, x|z) + P (y′, x′|z),
P (yx|z)− P (yx′ |z)+

+P (y, x′|z) + P (y′, x|z)

× P (z) ≥ PNS

(6)

In figures 2a and 2b, Z is not a descendant of X and fur-
ther satisfies the back-door criterion. For such cases the PNS
bounds can be simplified to read:

Theorem 2 Given a causal diagram G and distribution
compatible with G, let Z be a set of variables satisfying
the back-door criterion (Pearl 2011) in G, then the PNS is
bounded as follows:∑

z

max{0, P (y|x, z)− P (y|x′, z)} × P (z) ≤ PNS (7)

∑
z

min{P (y|x, z), P (y′|x′, z)} × P (z) ≥ PNS (8)

The significance of Theorem 2 lies in the ability to compute
bounds using purely observational data, which is the situa-
tion we will face in this paper.

Methodology
Data Collection
All data in this paper comes from the NHANES pro-
gram (CDC 2023).The National Health and Nutrition Ex-
amination Survey (NHANES) is a key program of the Na-
tional Center for Health Statistics (NCHS), part of the CDC,
which assesses the health and nutritional status of the U.S.
population. NHANES annually examines about 5,000 na-
tionally representative individuals through both interviews
and physical examinations. The survey collects data on de-
mographic, socioeconomic, dietary, and health-related fac-
tors, along with medical measurements and laboratory tests
conducted by trained medical staff.

We conducted a thorough review of all data documented
in the NHANES project, closely examining the health in-
formation contained within various statistical reports. In
the diet data segment, the study surveys the frequency of
American consumption of a broad range of food items
through questionnaires, encompassing everyday food cate-
gories such as soft drinks, alcoholic beverages, beef ham-
burgers, and grain salads, among others. The examination
section includes data that can be measured physically, such
as blood pressure, body weight, and oral health status.
The laboratory tests segment encompasses assays of vari-
ous biomarkers within the body, including levels of different
hormones.

For the topic under discussion, our initial step involves
sourcing data relevant to Diet Coke consumption and its as-
sociation with fatness. Numerous studies (Adab, Pallan, and
Whincup 2018; Freedman and Sherry 2009; Goulding et al.
1996), have validated the Body Mass Index (BMI) as an op-
timal measure for assessing obesity, hence we will utilize
BMI data as our indicator of obesity in this paper. However,
regarding the intake of Diet Coke, due to changes in dietary
survey questionnaires, relevant data was collected only dur-
ing two survey cycles between 2003 and 2006. Nonetheless,
the formulation of Diet Coke has not altered over the past
twenty years (The Coca-Cola Company 2023), making the
use of this data both reasonable and valid for our analysis.

We hypothesize that the relationship between Diet Coke
consumption and fatness is not a simple causal one but is
influenced by multiple factors. Thus, it is imperative to es-
tablish a criterion for identifying indicators that may impact
obesity. (Visser et al. 1997) posits that due to varying body
densities, factors such as age, race, and gender might influ-
ence obesity. (Brown and Biosca 2016)’s research suggests
that education can alter savings behaviors and consequently
affect body fatness. According to (Akbartabartoori, Lean,
and Hankey 2005), there is a relationship between smok-
ing and obesity, mediated by waist and hip circumferences
(WC, HC), and the waist-to-hip ratio (WHR). (Elagizi et al.
2020) argues that physical activity can influence an individ-
ual’s weight through its effects on the cardiovascular system.
(Zhou et al. 2018)’s dose-response meta-analysis indicates
that within the normal range of body mass indexes, leaner in-
dividuals may have a lower risk of developing hypertension.
(Carr and Brunzell 2004) highlights that the accumulation
of abdominal fat, an indicator of obesity, is closely linked to



Figure 3: Diet or sugar-free Consumption

Figure 4: BMI measurements

the risks of hyperlipidemia and Type 2 diabetes associated
with metabolic syndrome.

Based on the aforementioned studies, the factors identi-
fied as influencing fatness include age, gender, race/ethnic-
ity, educational level, smoking status, average daily physical
activity level, hyperlipidemia, and diabetes mellitus.

Data Processing
We have extracted the data required for constructing the
causal diagram, and before proceeding, it is essential to clar-
ify the data type of each variable. As shown in Figure 3, the
survey data on Diet Coke consumption frequency catego-
rizes responses into five frequency levels, assigned specific
codes from 1 to 5, representing a range from ”Almost never
or never” to ”Almost always or always,” with correspond-
ing counts of respondents. Additionally, the table accounts
for special cases such as non-responses (”Blank”) and data
entry errors (”Error”).

Unlike the discrete data associated with Diet Coke con-
sumption, the fatness component, represented by BMI data,
consists of a series of continuous values that provide precise
BMI measurements for each individual, as shown in Fig-
ure 4. The data formats for other influencing factors also fall
into these two categories: discrete and continuous. With this
data prepared, we can now proceed to construct the causal
diagram.

To clearly articulate the relationships among variables in
our study and ensure the accuracy of our methodology, we
formally define the independent variable (X), the dependent
variable (Y ), and outline relevant covariates:

Category Variable Description

X Diet Coke Consumption Frequency

Y Fatness (BMI)

Age

Gender

Race / Ethnicity

Education Level

Smoking Status

Average Daily Physical Activity Level

Hyperlipidemia

Covariates

Diabetes Mellitus

Table 1: Summary of Variables

The independent variable (X) is ”Diet Coke consumption
frequency.” This variable quantifies the frequency at which
participants consume Diet Coke over a specified period.

The dependent variable (Y ) is ”fatness,” measured by the
Body Mass Index (BMI). BMI is calculated based on partic-
ipants’ weight and height to assess their level of fatness.

Additionally, the study will include other covariates that
may affect Y , such as age, gender, race/ethnicity,educational
level, and health status factors like smoking and physical ac-
tivity. These factors may confound or modify the relation-
ship between Diet Coke consumption and fatness. By in-
corporating these covariates, we can more accurately iden-
tify and interpret the impact of Diet Coke consumption fre-
quency (X) on fatness (Y ).

For the measurement of various health indicators, author-
itative standards are essential. According to (Centers for
Disease Control and Prevention 2022), a Body Mass Index
(BMI) of 30.0 or higher categorizes an individual within
the obesity range. Hyperlipidemia, or high cholesterol, is
characterized by certain thresholds in cholesterol measure-
ments (Clinic 2024). It is considered high when total choles-
terol exceeds 240 mg/dL, LDL (low-density lipoprotein)
cholesterol is 160 mg/dL or higher, and triglycerides are
above 200 mg/dL. HDL (high-density lipoprotein) choles-
terol is ideally above 60 mg/dL, as lower levels may also
indicate risk. The A1C test measures the percentage of gly-
cated hemoglobin, providing an average blood glucose level
over three months. Levels of 5.7% to 6.4% indicate predia-
betes, while 6.5% or higher confirms diabetes.

Causal Diagram
In the field of causal inference, the IC∗ algorithm is a piv-
otal tool for identifying causal relationships among variables
from observational data (Pearl 2009). This study employs
the IC∗ algorithm to construct a causal graph, delineating
the causal structures between variables X ,Y , and several co-
variates. The initial step of the IC∗ algorithm involves con-



Figure 5: Causal Diagram(IC∗ algorithm)

ducting conditional independence tests to analyze relation-
ships among all pairs of variables within the dataset. This
process relies on statistical tests to evaluate whether differ-
ent combinations of variables are independent; if two vari-
ables are found to be dependent given other variables, an
undirected edge is established between them.

Subsequently, the algorithm enters the structure
identification phase, using conditional independence
tests—specifically theRobustRegressionTest—to detect
”V − structures” within the data. These structures are
unique triplets where one variable is a common cause
of the other two variables, which do not directly interact
with each other. Identifying these V-structures is crucial
for determining the direction of the edges in the graph, as
they reveal the causal pathways, either direct or through
intermediary variables.

Furthermore, the IC∗ algorithm is capable of identify-
ing latent variables within the causal graph and refining the
graph structure through iterative optimization processes. In
each iteration, the algorithm evaluates whether adding or ad-
justing the direction of edges better conforms to the evidence
of conditional independence from the data. This method al-
lows the algorithm to gradually construct a detailed and ac-
curate map of the causal relationships between the variables.
By applying the IC∗ algorithm, we successfully portray the
complex causal network among variables X , Y , and the co-
variates, providing a solid foundation for further analysis
and model construction.The resulting causal graph is de-
picted in Figure 5. Red arrows denote clear causal chains,
while solid black lines indicate potential but uncertain con-
nections.

To ensure the accuracy of this causal diagram, we em-
ployed the DAG with NO TEARS algorithm (Zheng et al.
2018) for verification. This state-of-the-art structural learn-
ing method constructs directed acyclic graphs (DAGs) of
causal relationships between variables by understanding
their conditional dependencies. As shown in Figure 6, a

Figure 6: Causal Diagram(NO TEARS algorithm)

comparison reveals that the core components of the two
causal diagrams are nearly identical, thereby validating the
reliability of the causal graph generated by the IC∗ algo-
rithm.

RCT Calculation
In this section, we focus on calculating counterfactual val-
ues (Pearl, Glymour, and Jewell 2016), which represent po-
tential outcomes under the theoretical full control of a spe-
cific variable, such as the frequency of Diet Coke consump-
tion. Counterfactual analysis is a central concept in causal
inference, enabling us to explore the potential relationships
between variables under various interventional scenarios.
This means assessing the outcomes when one factor is al-
tered while all others are held constant.

For variable X , representing the frequency of Diet Coke
consumption, the original data categorize consumption into
five levels ranging from 1 to 5. For computational conve-
nience, we binarized these data, designating a frequency of
1 — indicating those who never drink Diet Coke — as 0, and
marking all other levels as 1. For Y (fatness), individuals are
classified as 0 for non-obese and 1 for obese, following the
criteria previously described.

Diabetes

Diet Coke Fatness

Figure 7: The segment of the causal diagram that satisfies
the backdoor criterion.

Upon analyzing the causal diagram derived earlier, we
identified a single backdoor pathway as shown in Fig-
ure 7, which is characterized by the pathway DietCoke →



Diabetes ← fatness. Consequently, controlling for dia-
betes, the only confounder in this pathway, allows us to use
the adjustment formula (Pearl 1995) to compute the experi-
mental data. This calculation estimates the causal impact of
Diet Coke consumption on fatness, controlled for diabetes
status. These are denoted as P (Y = 1 | do(X = 1)) and
P (Y = 1 | do(X = 0)), also represented in our notation as
yx and yx′ .

PNS Calculation
First of all, We define the following variables and their
states:

X: Represents the consumption status of Diet Coke. This
is a binary variable where:
• x = 1 indicates that Diet Coke is consumed.
• x′ = 0 or x′ indicates that Diet Coke is not consumed.
Y : Represents the obesity status of an individual. This is

also a binary variable where:
• y = 1 indicates that the individual is obese.
• y′ = 0 or y′ indicates that the individual is not obese.

With the basic variables and states defined, we use coun-
terfactual notation to explore hypothetical changes in these
states and their impact on outcomes:

Yx = y: This expression is used to describe a scenario
where if X were set to x (consuming Diet Coke), then Y
would take the value y (obese).

Yx′ = y: This expression describes another scenario
where, even without consuming Diet Coke (X = x′), the
individual still reaches an obese state (Y = y).

Building on the foundation laid by the clear definitions
and the use of counterfactual notation, the computation of
the Probability of Necessity and Sufficiency (PNS) in our
study is pivotal for understanding the causal impact of Diet
Coke consumption on obesity.

PNS evaluates the likelihood that consuming Diet Coke is
both necessary and sufficient for the occurrence of obesity
within various demographics. Specifically, it measures the
probability that obesity would occur with Diet Coke con-
sumption and would not otherwise. By calculating PNS,
we aim to determine the extent to which Diet Coke con-
sumption can be considered a direct causal factor in obesity.

With the experimental data estimated, we are now po-
sitioned to apply the model developed by (Tian and Pearl
2000) to compute the bounds of the Probability of Necessity
and Sufficiency (PNS) across the general population. Fur-
thermore, employing the method outlined by (Mueller, Li,
and Pearl 2022), we will refine these estimates by narrow-
ing the bounds, as elaborated in Formulas (3)(4)(7)(8) of the
Preliminaries section of this paper.

Building on this foundational analysis, we will segment
the population into various subgroups based on covariates
related to dietary habits and hormone levels to compute the
PNS within these subgroups. When forming subgroups,
we ensured that each subgroup contained at least 385 in-
dividuals. This was done to ensure that we could obtain a
margin of error of at most 0.05 for the 95% confidence in-
terval (Li, Mao, and Pearl 2022).This stratification is cru-
cial as different dietary practices can introduce biases in

Subpopulation Bounds of PNS

ActivityHigh 0.10122, 0.39544

Man 0.12298, 0.40726

Age60+ 0.14792, 0.43166

Old Man 0.16865, 0.41567

Old ActivityLow 0.14637, 0.47675

Old HyperlipidemiaYes 0.15442, 0.40864

Old Man EducationLow 0.16102, 0.41829

Old Man ActivityLow 0.22938, 0.53263

Woman 0.08430, 0.39075

Age60- 0.09140, 0.37639

Young Woman 0.07391, 0.37845

Young Woman ActivityHigh 0.05077, 0.34600

Table 2: PNS bounds by Subpopulation for Diet Coke and
Fatness

the outcomes. For example, individuals with unhealthy di-
etary habits—such as frequent consumption of beer, burg-
ers, and doughnuts—may inherently have a higher propen-
sity for obesity, which should not be solely attributed to the
consumption of Diet Coke. Although Diet Coke does not
contain sugar, its consumption could potentially induce obe-
sity by stimulating certain hormonal secretions or deceiving
cerebral mechanisms.

By carefully considering these factors, our aim is to iden-
tify specific demographics where Diet Coke consumption
significantly leads to obesity (indicating a high lower bound
of PNS) or demographics where Diet Coke has virtually no
impact on obesity levels (reflecting a low upper bound of
PNS). This nuanced approach allows us to deliver a more
precise understanding of the causal dynamics between Diet
Coke consumption and obesity across different subpopula-
tions.

Results
A/B testing, such as Randomized Controlled Trials (RCTs),
is regarded as the gold standard for establishing causal-
ity in clinical and behavioral research. RCTs offer a con-
trolled experimental setup that allows for a direct compari-
son, unequivocally demonstrating the direct impact of inter-
ventions, such as Diet Coke consumption. Therefore, we ini-
tially estimated the counterfactual data for the general pop-
ulation, providing a clear and statistically robust basis for
assessing the effects of Diet Coke on obesity prevalence.

P (Y = 1 | do(X = 1)) = 0.4157292166

P (Y = 1 | do(X = 0)) = 0.3198820277

Based on the analysis of simulated RCT data, we ob-
served a significant correlation between the consumption
of Diet Coke and obesity. Specifically, the probability of



Subpopulation Bounds of PNS

Old Man Hamburger 0.29909, 0.57860

Old Man Hotdog 0.24406, 0.48335

Old Man Fries 0.20028, 0.47119

Old Man Icecream 0.18539, 0.47663

Old Man Candy 0.16524, 0.37878

Old Man Beer 0.14397, 0.42206

Young Woman No Hamburger 0.00905, 0.22395

Young Woman No Popcorn 0.02081, 0.29678

Young woman Salad 0.07663, 0.29593

Young Woman No Syrup 0.01923, 0.23076

Young Woman No Fries 0.00198, 0.21941

Young Woman No Hotdog 0.00000, 0.19487

Table 3: PNS bounds by Subpopulation Based on Dietary
Habits

obesity among participants who consumed Diet Coke was
41.57%, compared to 31.99% among those who did not
consume Diet Coke. This indicates that the consumption of
Diet Coke can increase the likelihood of obesity by approx-
imately 9.58%. While this data suggests that Diet Coke may
be a potential risk factor for obesity, the modest increase of
less than 10% across the general population may not be en-
tirely convincing in complex real-world scenarios. In this
context, the method of calculating the Probability of Ne-
cessity and Sufficiency (PNS) boundaries used in this study
offers a more detailed and comprehensive analysis, reveal-
ing further nuances and complexities associated with Diet
Coke’s impact on obesity.

Following the methods described previously, we com-
puted and refined the boundaries of the Probability of Ne-
cessity and Sufficiency (PNS) for the general population:

0.096 ≤ PNS ≤ 0.405

The calculated Probability of Necessity and Sufficiency
(PNS) for obesity attributable to Diet Coke consumption
ranges from 0.096 to 0.405. The lower bound of approx-
imately 10% suggests that there indeed exists a subset of
individuals for whom consuming Diet Coke contributes to
obesity. However, the broad range of this boundary indicates
variability in the causal impact across the population.

To refine our understanding and identify potentially more
characteristic subgroups, we will next calculate the PNS
boundaries for various subpopulations. This approach aims
to discover specific demographics or behavioral patterns that
might exhibit a stronger or more distinct causal relationship
between Diet Coke consumption and obesity.

We have selected some subpopulations where the effects
are particularly pronounced, as shown in Table 2. After con-
trolling for certain covariates, the boundaries of the Prob-

ability of Necessity and Sufficiency (PNS) underwent sig-
nificant changes. For instance, in the subgroup labeled as
Old Man ActivityLow, which refers to men over the age
of 60 with low physical activity levels, the lower boundary
of the PNS increased by more than double compared to the
general population. This indicates that the impact of Diet
Coke on weight is more significant in this subgroup.

As shown in Table 3, we further subdivided the population
based on dietary habits, yielding significant results. Among
individuals with poor dietary habits, such as the subgroup
”Old Man Hamburger”—elderly males who frequently
consume hamburgers—the lower boundary of the Probabil-
ity of Necessity and Sufficiency (PNS) rose to nearly 30%.
This suggests that a higher proportion of individuals in this
group experience obesity potentially linked to consuming
Diet Coke, illustrating the significant probability that obe-
sity would occur with Diet Coke consumption and would not
otherwise. However, it is likely not the consumption of Diet
Coke itself that leads to obesity, but rather the association of
Diet Coke with a range of unhealthy dietary behaviors.

Conversely, in subgroups with healthier eating habits,
such as ”Y oung Woman No Hotdog”, the upper bound-
ary being 20% indicates that only a small fraction of this
population might become obese due to Diet Coke consump-
tion. In these cases, the practice of consuming Diet Coke
while maintaining weight stability appears to be more cred-
ible. This differential impact underscores the complex in-
teractions between dietary habits and the effects of specific
dietary choices such as Diet Coke on health outcomes.

Discussion
In this paper, we employed SCM and the IC∗ algo-
rithm to construct causal diagrams and calculated the prob-
ability of interventional effects using adjustment formu-
las.Subsequently, we proceeded to assess the probability that
obesity would occur with Diet Coke consumption and would
not occur otherwise. However, our work still has some limi-
tations.

Our ability to perform subgroup analyses was constrained
by the total sample size. Each subgroup needed to contain at
least 385 individuals to ensure the reliability of the statistical
results (Li, Mao, and Pearl 2022). This limitation prevented
us from conducting more refined groupings, making it diffi-
cult to precisely identify which populations are more or less
suitable for consuming Diet Coke. Moreover, although stud-
ies (Sylvetsky et al. 2020) suggest that Diet Coke may influ-
ence obesity through the induction of hormone secretion, we
were unable to obtain specific data on hormone levels, which
restricted our comprehensive understanding of its potential
health impact mechanisms.

Future research should expand the sample size, including
a broader range of regions and populations, to enhance the
universality and accuracy of the study findings. Addition-
ally, further exploration of the specific effects of Diet Coke
on hormone levels, particularly its potential impact on key
hormones such as insulin and leptin, would help deepen our
understanding of its relationship with obesity and metabolic
health. Future studies could also consider the connections



between Diet Coke consumption and other chronic diseases
such as cardiovascular diseases and diabetes.

Through this paper, we aim to provide readers with a com-
prehensive perspective on the complex relationship between
Diet Coke consumption and obesity, as well as the potential
implications of these findings for health policies and indi-
vidual choices.

Conclusion
Through the application of causal inference methods, our
study has determined that Diet Coke consumption indeed
poses a risk of increased obesity; however, the impact
varies significantly across different demographics. Different
subgroups experience varying rates of weight gain after
consuming Diet Coke, suggesting that the influence of Diet
Coke on weight is not a straightforward causal relationship
but is likely mediated through multiple factors. These find-
ings emphasize the importance of considering individual
differences and dietary habits when assessing the health
impacts of foods or beverages. This complexity highlights
that the effect of Diet Coke on weight gain is the result of
multifaceted interactions, underscoring the necessity to take
into account personal health profiles and lifestyles in dietary
recommendations.
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