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Abstract

Identifying the effects of causes and causes of effects is vital
in virtually every scientific field. Often, however, the needed
probabilities may not be fully identifiable from the available
data sources. This paper shows how approximate identifia-
bility is still possible for several probabilities of causation.
We term this ϵ-identifiability and demonstrate its usefulness
in cases where the behavior of certain subpopulations can
be restricted within sufficiently narrow bounds. In particular,
we show how unidentifiable causal effects and counterfac-
tual probabilities can be ϵ-identified when such allowances
are made. Often, these allowances are easily measured and
reasonably assumed. Finally, ϵ-identifiability is applied to the
unit selection problem.

Introduction
Both Effects of Causes (EoC) and Causes of Effects (CoE)
play an important role in many fields, such as health sci-
ence, social science, and business. This is due, in part, to
several features of EoC and CoE analysis. First, causal ef-
fects identified by the adjustment formula (Pearl 1993) help
decision-makers avoid randomized controlled trials and use
purely observational data. Second, probabilities of causation
have been proven critical in policy-making and personalized
decision-making (Mueller and Pearl 2022). Third, a linear
combination of probabilities of causation has been used to
solve the unit selection problem defined by Li and Pearl (Li
and Pearl 2019, 2022b, 2024b). Additionally, causal quan-
tities can increase the accuracy of machine learning models
by combining causal quantities with the model’s label (Li
et al. 2020).

The identification of causal quantities has been studied for
decades. Pearl first defined causal quantities such as causal
effects (Pearl 1993), probability of necessity and sufficiency
(PNS), probability of sufficiency (PS), and probability of
necessity (PN) (Pearl 1999) and their identifiability (Pearl
2009) using the structural causal model (SCM) (Galles and
Pearl 1998; Halpern 2000). Pearl also developed identifi-
cation conditions of causal effects, such as back-door and
front-door criteria (Pearl 1993), along with the do-calculus
mathematically complete axiomatic identification system
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(Pearl 1994). Pearl and Bareinboim have studied more con-
ditions for identifying causal effects (Shpitser and Pearl
2009a; Bareinboim and Pearl 2012). If causal effects are not
identifiable, informative bounds can be obtained. Balke and
Pearl bounded causal effects from a randomized controlled
trial (RCT) with imperfect compliance (Balke and Pearl
1997a). Li and Pearl bounded causal effects when adjust-
ment variables are partially observed (Li and Pearl 2022a).
Tian and Pearl proposed monotonicity as an identification
condition of the binary probabilities of causation (Tian and
Pearl 2000). Tian and Pearl (Tian and Pearl 2000) addition-
ally derived tight bounds, using linear programming, when
probabilities of causation are not identifiable (Balke and
Pearl 1997b). Mueller, Li, and Pearl (Mueller, Li, and Pearl
2022), as well as Dawid (Dawid, Musio, and Murtas 2017),
narrowed those bounds using additional covariate informa-
tion and the corresponding causal structure. Recently, Li and
Pearl proposed theoretical work for non-binary probabilities
of causation (Li and Pearl 2024a). Zhang, Tian, and Barein-
boim proposed numerical bounds for non-binary probabili-
ties of causation (Zhang, Tian, and Bareinboim 2022) and
named it “Partial identification” (the difference between
partial identification and the proposed ϵ-Identifiability will
be discussed in the discussion section). Furthermore, Sh-
pitser and Pearl introduced another essential causal measure,
known as the effect of treatment on the treated (ETT), within
the SCM framework and extensively investigated its identi-
fication (Shpitser and Pearl 2009b).

In real-world applications, decision-makers are more
likely to have identifiable cases (i.e., the causal quantities
have point estimations) because the bounds under unidentifi-
able cases may be less informative (e.g., 0.1 ≤ PNS ≤ 0.9).
Besides, estimating the bounds often requires a combination
of experimental and observational data. However, the identi-
fiability is often hard to achieve, so we wonder if something
is sitting between the identifiable and the bounds. Inspired
by the idea of the confidence interval, in this paper, we pro-
posed the definition of ϵ-identifiability, in which more con-
ditions of ϵ-identifiability can be found while the estimations
of the causal quantities are still near point estimations.

Preliminaries
Here, we review the definition of ETT, PNS, PS, and PN
defined by Pearl (Pearl 1999; Shpitser and Pearl 2009a), as



well as the definition of identifiable and the conditions for
identifying ETT, PNS, PS, and PN (Tian and Pearl 2000; Sh-
pitser and Pearl 2009b). Besides, we review the tight bounds
of PNS, PS, and PN when they are unidentifiable (Tian and
Pearl 2000). Readers who are familiar with the above knowl-
edge may skip this section.

Similarly to any works mentioned above, we used the
causal language of the SCM (Galles and Pearl 1998; Halpern
2000). The introductory counterfactual sentence “Variable
Y would have the value y, had X been x” in this language
is denoted by Yx = y, and shorted as yx. We have two types
of data: experimental data, which is in the form of causal ef-
fects (denoted as P (yx)), and observational data, which is in
the form of a joint probability function (denoted as P (x, y)).
Besides, in the absence of further specification, let X and Y
be two binary variables in a causal model M , let x and y
stand for the propositions X = true and Y = true, re-
spectively, and x′ and y′ for their complements. For nota-
tional simplicity, we limit the discussion to binary variables;
extensions to multi-valued variables are discussed by Pearl
(see (Pearl 2009) p. 286, footnote 5).

First, the definition of identifiable for any causal quanti-
ties defined using SCM is as follows:

Definition 1 (Identifiability). Let Q(M) be any computable
quantity of a class of SCM M that is compatible with graph
G. We say that Q is identifiable in M if, for any pairs of
models M1 and M2 from M, Q(M1) = Q(M2) whenever
PM1

(v) = PM2
(v), where P (v) is the statistical distribu-

tion over the set V of observed variables. If our observations
are limited and permit only a partial set FM of features (of
PM (v)) to be estimated, we define Q to be identifiable from
FM if Q(M1) = Q(M2) whenever FM1

= FM2
. (Pearl

2009)

Second, the definitions of four binary probabilities of cau-
sation defined using SCM are as follow (Pearl 1999; Shpitser
and Pearl 2009a):

Definition 2 (Effect of treatment on the treated (ETT)). Let
X and Y be two binary variables in a causal model M , let x
and y stand for the propositions X = true and Y = true,
respectively, and x′ and y′ for their complements. The effect
of treatment on the treated is defined as the expression

ETT =∆ P (YX=true = true|X = false)

=∆ P (yx|x′)

Definition 3 (Probability of necessity (PN)). Let X and Y
be two binary variables in a causal model M , let x and y
stand for the propositions X = true and Y = true, respec-
tively, and x′ and y′ for their complements. The probability
of necessity is defined as the expression

PN =∆ P (YX=false = false|X = true, Y = true)

=∆ P (y′x′ |x, y)

Definition 4 (Probability of sufficiency (PS)). Let X and Y
be two binary variables in a causal model M , let x and y
stand for the propositions X = true and Y = true, respec-
tively, and x′ and y′ for their complements. The probability

of sufficiency is defined as the expression

PS =∆ P (YX=true = true|X = false, Y = false)

=∆ P (yx|x′, y′)

Definition 5 (Probability of necessity and sufficiency
(PNS)). Let X and Y be two binary variables in a causal
model M , let x and y stand for the propositions X = true
and Y = true, respectively, and x′ and y′ for their com-
plements. The probability of necessity and sufficiency is de-
fined as the expression

PNS =∆ P (YX=true = true, YX=false = false)

=∆ P (yx, y
′
x′)

Third, we review the identification conditions for causal
effects (Pearl 1993, 1995).
Definition 6 (Back-door criterion). Given an ordered pair of
variables (X,Y ) in a directed acyclic graph G, a set of vari-
ables Z satisfies the back-door criterion relative to (X,Y ),
if no node in Z is a descendant of X , and Z blocks every
path between X and Y that contains an arrow into X .

If a set of variables Z satisfies the back-door criterion for
X and Y , the causal effects of X on Y are identifiable and
given by the adjustment formula:

P (yx) =
∑
z

P (y|x, z)P (z). (1)

Definition 7 (Front-door criterion). A set of variables Z is
said to satisfy the front-door criterion relative to an ordered
pair of variables (X,Y ) if:
• Z intercepts all directed paths from X to Y ;
• there is no back-door path from X to Z; and
• all back-door paths from Z to Y are blocked by X .

If a set of variables Z satisfies the front-door criterion for
X and Y , and P (x, Z) > 0, then the causal effects of X on
Y are identifiable and given by the adjustment formula:

P (yx) =
∑
z

P (z|x)
∑
x′

P (y|x′, z)P (x′).

If causal effects are not identifiable, Tian and Pearl (Tian
and Pearl 2000) provided the following bounds for the
causal effects.

P (x, y) ≤ P (yx) ≤ 1− P (x, y′). (2)

Fourth, we review the identification conditions for ETT
(Shpitser and Pearl 2009b).
Theorem 8. If a set of variables Z satisfies the back-door
criterion for X and Y , the ETT of X on Y are identifiable
and given by the following formula:

P (yx|x′) =
∑
z

P (y|x, z)P (z|x′). (3)

Theorem 9. The ETT of X on Y are identifiable if P (YX)
are identifiable and given by the following formula:

P (yx|x′) =
P (yx)− P (x, y)

P (x′)
. (4)



Finally, we review the identification conditions for PNS,
PS, and PN (Tian and Pearl 2000).

Definition 10. (Monotonicity) A Variable Y is said to be
monotonic relative to variable X in a causal model M iff

y′x ∧ yx′ = false.

Theorem 11. If Y is monotonic relative to X , then PNS,
PN, and PS are all identifiable, and

PNS = P (yx)− P (yx′),

PN =
P (y)− P (yx′)

P (x, y)
,

PS =
P (yx)− P (y)

P (x′, y′)
.

If PNS, PN, and PS are not identifiable, informative
bounds are given by Tian and Pearl (Tian and Pearl 2000).

max


0,

P (yx)− P (yx′),
P (y)− P (yx′),
P (yx)− P (y)

 ≤ PNS (5)

min


P (yx),
P (y′x′),

P (x, y) + P (x′, y′),
P (yx)− P (yx′)+
P (x, y′) + P (x′, y)

 ≥ PNS (6)

max

{
0,

P (y)−P (yx′ )
P (x,y)

}
≤ PN (7)

min

{
1,

P (y′
x′ )−P (x′,y′)

P (x,y)

}
≥ PN (8)

max

{
0,

P (y′)−P (y′
x)

P (x′,y′)

}
≤ PS (9)

min

{
1,

P (yx)−P (x,y)
P (x′,y′)

}
≥ PS (10)

The identification conditions mentioned above (i.e., back-
door and front-door criteria and monotonicity) are robust.
However, it may still be hard to achieve in real-world appli-
cations. In this work, we extend the definition of identifia-
bility, in which a sufficiently small interval is allowed. By
the new definition, the estimates of causal quantities are still
near point estimations, and more conditions for identifiabil-
ity could be discovered. Again, if nothing is specified, the
discussion in this paper will be restricted to binary treatment
and effect (i.e., X and Y are binary).

Main Results
First, we extend the definition of identifiability, which we
call ϵ-identifiability.

Definition 12 (ϵ-Identifiability). Let Q(M) be any com-
putable quantity of a class of SCM M that is compatible
with graph G. We say that Q is ϵ-identifiable in M (and ϵ-
identified to q) if for every P (v), there exists q s.t. for any
model M from M, Q(M) ∈ [q − ϵ, q + ϵ] whenever the
statistical data PM (v) = P (v), where P (v) is the statisti-
cal distribution over the set V of observed variables. If our
observations are limited and permit only a partial set FM of
features (of PM (v)) to be estimated, we define Q to be ϵ-
identifiable from FM if Q(m) ∈ [q−ϵ, q+ϵ] with statistical
data FM .

With the above definition, the causal quantity is at a max-
imum distance of ϵ from its true value. We will use the in-
fix operator symbol ≈ϵ to represent its left-hand side being
within ϵ of its right-hand side:

r ≈ϵ q ⇐⇒ r ∈ [q − ϵ, q + ϵ]. (11)

The following sections explicate conditions for ϵ-
identifiability of causal effects, ETT, PNS, PS, and PN.

ϵ-Identifiability of Causal Effects
The causal effect P (YX) can be ϵ-identified with informa-
tion about the observational joint distribution P (X,Y ). This
can be seen by rewriting Equation (2) as:

P (x, y) ⩽ P (yx) ⩽ P (x, y) + P (x′). (12)

Here, P (yx) is ϵ-identified to P (x, y)+ ϵ when P (x′) ⩽ 2ϵ.
This ϵ-identification indicates a lower bound of P (x, y) and
an upper bound of P (x, y) + 2ϵ. Since P (x′) ⩽ 2ϵ, these
bounds are equivalent to (12). Notably, only P (x, y) and
an upper bound on P (x′) are necessary to ϵ-identify P (yx).
This is generalized in Theorem 13, without any assumptions
of the causal structure.

Theorem 13. The causal effect P (YX) is ϵ-identified as fol-
lows:

P (yx) ≈ϵ P (x, y) + ϵ if P (x′) ⩽ 2ϵ, (13)

P (y′x) ≈ϵ P (x, y′) + ϵ if P (x′) ⩽ 2ϵ, (14)

P (yx′) ≈ϵ P (x′, y) + ϵ if P (x) ⩽ 2ϵ, (15)

P (y′x′) ≈ϵ P (x′, y′) + ϵ if P (x) ⩽ 2ϵ. (16)

Proof. See Appendix.

When the complete distribution P (X,Y ) is known, The-
orem 13 provides no extra precision over Equation (12).
Its power comes from when only part of the distribution is
known and only an upper bound on P (X) is available or
able to be assumed.

Knowledge of a causal structure can aid ϵ-identification.
In Figure 1, there is a binary confounder U . If the full
joint distribution P (X,Y, U) was available, the causal ef-
fect P (YX) could be computed simply through the backdoor
adjustment formula. In the absence of the full joint distribu-
tion, Theorem 14 allows ϵ-identification of P (yx) with only
knowledge of P (x) and the conditional probability P (y|x)
as well as an upper bound on P (u).
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Figure 1: The causal graph, where X is a binary treatment,
Y is a binary effect, and U is a binary confounder.

Theorem 14. Given the causal graph in Figure 1 and
P (u) ⩽ P (x)−c for some constant c, where 0 < c ⩽ P (x),

P (yx)

≈ϵP (y|x) + P (x)− c

2cP (x) + P (x) + c
· ϵ,

if P (u) ⩽
2cP (x)

2cP (x) + P (x) + c
· ϵ. (17)

Specifically, if P (x) ⩾ 0.5 and P (u) ⩽ min{0.1, 4
13ϵ}, then

the causal effect P (yx) is ϵ-identified to P (y|x) + ϵ
13 .

Proof. See Appendix.

Note that x ∈ {x, x′}, y ∈ {y, y′}, and u ∈ {u, u′} in
Theorem 14 (e.g., you can substitute x with x′ and x′ with
x). The constant c should be maximized satisfying both c ⩽
P (x)− P (u) and the condition in Equation (17) for a given
ϵ. The larger c is, the closer P (yx) is ϵ-identified to P (y|x).
This needs to be balanced with minimizing ϵ.

As an example, if P (x) ⩾ 0.5 and P (u) ⩽ 0.1, then the
causal effect P (yx) is ϵ-identified to P (y|x)+ ϵ

13 if P (u) ⩽
4
13ϵ.

Essentially, P (yx) is ϵ-identified to P (y|x) plus some
fraction of ϵ when P (u) is sufficiently small. Therefore, the
causal effect P (yx) is near P (y|x) if P (U) is specific (i.e.,
P (u) or P (u′) is minimal). In this case, Theorem 14 can be
advantageous over the backdoor adjustment formula to com-
pute P (yx), even when data on X , Y , and U are available,
because P (Y |X,U), required for the adjustment formula, is
impractical to estimate with P (U) close to 0.

ϵ-Identifiability of ETT

The effect of treatment on the treated (ETT) is a crucial
quantity in the field of causal inference, as defined in Defi-
nition 2. ETT has been shown to be valuable for detecting
latent heterogeneity (Pearl 2015). Shpitser and Pearl pro-
posed the identification of ETT through backdoor criteria,
as outlined in Theorem 8. Furthermore, Shpitser and Pearl
demonstrated the relationship between the ETT and both ex-
perimental and observational data as shown in Theorem 9.
Therefore, Theorem 14 can be extended to incorporate ETT
accordingly.

Theorem 15. Given the causal graph in Figure 1 and
P (u) ⩽ P (x) − c for some constant c, where 0 < c ⩽

P (x) < 1,

P (yx|x′)

≈ϵ
P (y|x)− P (x, y)

P (x′)
+

P (x)− c

2cP (x) + P (x) + c
· ϵ

if P (u) ⩽
2cP (x)P (x′)

2cP (x) + P (x) + c
· ϵ. (18)

Specifically, if P (x) = 0.5 and P (u) ⩽ min{0.1, 2
13ϵ}, then

the P (yx|x′) is ϵ-identified to P (y|x) + ϵ
13 .

Proof. See Appendix.

Note that P (x) cannot equal 1 because doing so would
result in the conditional space x′ in P (yx|x′) being unde-
fined. Additionally, it should be noted that x ∈ {x, x′},
y ∈ {y, y′}, and u ∈ {u, u′} in Theorem 15.

ϵ-Identifiability of PNS

Even though Tian and Pearl derived tight bounds on PNS
(Tian and Pearl 2000), the PNS can potentially be suffi-
ciently narrow when taking into account particular upper-
bound assumptions on causal effects or observational prob-
abilities. This can be seen by analyzing the bounds of PNS
in Equations (5) and (6). Picking any of the arguments to
the max function of the lower bound and any of the argu-
ments to the min function of the upper bound, we can make
a condition that the range of those two values is less than
2ϵ. For example, let us pick the second argument of the max
function, P (yx)−P (yx′), and the first argument of the min
function, P (yx):

P (yx)− [P (yx)− P (yx′)] ⩽ 2ϵ,

P (yx′) ⩽ 2ϵ. (19)

Equation (19) is the assumption and the PNS is the
ϵ-identified to ϵ above the lower bound or ϵ below the up-
per bound:

PNS ≈ϵ P (yx)− P (yx′) + ϵ, or (20)
PNS ≈ϵ P (yx)− ϵ. (21)

Since it is assumed that P (yx′) ⩽ 2ϵ, Equation (20) is equiv-
alent to Equation (21). The complete set of ϵ-identifications
and associated conditions are stated in Theorem 16.



Theorem 16. The PNS is ϵ-identified as follows:

PNS ≈ϵ ϵ if P (yx) ⩽ 2ϵ, (22)

PNS ≈ϵ ϵ if P (y′x′) ⩽ 2ϵ, (23)

PNS ≈ϵ ϵ if P (x, y) + P (x′, y′) ⩽ 2ϵ, (24)
PNS ≈ϵ ϵ if P (yx)− P (yx′)+

P (x, y′) + P (x′, y) ⩽ 2ϵ, (25)
PNS ≈ϵ P (yx)− ϵ if P (yx′) ⩽ 2ϵ, (26)

PNS ≈ϵ P (y′x′)− ϵ if P (y′x) ⩽ 2ϵ, (27)
PNS ≈ϵ P (yx)−

P (yx′) + ϵ if P (x, y′) + P (x′, y) ⩽ 2ϵ, (28)
PNS ≈ϵ P (yx)− if P (yx′)− P (yx)+

P (yx′) + ϵ P (x, y) + P (x′, y′) ⩽ 2ϵ, (29)
PNS ≈ϵ P (x, y)− if P (yx′)− P (yx)+

P (x′, y′)− ϵ P (x, y) + P (x′, y′) ⩽ 2ϵ, (30)

PNS ≈ϵ P (y′x′)− ϵ if P (y′) ⩽ 2ϵ, (31)
PNS ≈ϵ P (yx)− ϵ if P (yx) + P (yx′)−

P (y) ⩽ 2ϵ, (32)
PNS ≈ϵ P (y)− if P (yx) + P (yx′)−

P (yx′) + ϵ P (y) ⩽ 2ϵ, (33)

PNS ≈ϵ P (x, y)+ if P (x′, y′) + P (yx′)−
P (x′, y′)− ϵ P (x′, y) ⩽ 2ϵ, (34)

PNS ≈ϵ P (y)− if P (x′, y′) + P (yx′)−
P (yx′) + ϵ P (x′, y) ⩽ 2ϵ, (35)

PNS ≈ϵ P (y)− if P (x′, y) + P (y′x′)−
P (yx′) + ϵ P (x′, y′) ⩽ 2ϵ, (36)

PNS ≈ϵ P (yx)− ϵ if P (y) ⩽ 2ϵ, (37)

PNS ≈ϵ P (y′x′)− ϵ if P (y′x′)− P (yx)+

P (y) ⩽ 2ϵ, (38)

PNS ≈ϵ P (y)− if P (y′x′)− P (yx)+

P (yx′) + ϵ P (y) ⩽ 2ϵ, (39)

PNS ≈ϵ P (x, y)+ if P (x, y) + P (y′x)−
P (x′, y′)− ϵ P (x, y′) ⩽ 2ϵ, (40)

PNS ≈ϵ P (yx)− if P (x, y) + P (y′x)−
P (y) + ϵ P (x, y′) ⩽ 2ϵ, (41)

PNS ≈ϵ P (yx)− if P (x′, y) + P (y′x′)−
P (y) + ϵ P (x′, y′) ⩽ 2ϵ. (42)

Proof. See Appendix.

Note that in the above theorem, eight conditions consist
solely of experimental probabilities or solely of observa-
tional probabilities. This potentially eliminates the need for
some types of studies, at least partially, even when estimat-
ing a counterfactual quantity such as PNS. For example, if
a decision-maker knows that P (y) is large (P (y) ⩾ 0.95),
they can immediately conclude PNS ≈0.025 P (y′x′)−0.025

(Equation (31)), without knowing the specific value of P (y).
Thus, only a control group study would be sufficient to esti-
mate PNS.

ϵ-Identifiability of PN and PS
Tian and Pearl derived tight bounds on PN and PS, in addi-
tion to PNS. Similarly to the derivation of Theorem 16, we
can potentially achieve sufficiently narrow bounds by con-
sidering upper bound assumptions on causal effects or ob-
servational probabilities. The set of ϵ-identifications and the
associated conditions are stated in Theorems 17 and 18.

Theorem 17. The PN is ϵ-identified as follows:

PN ≈ϵ ϵ if P (y′x′)− P (x′, y′)

⩽ 2ϵP (x, y), (43)

PN ≈ϵ 1− ϵ if P (yx′)− P (x′, y)

⩽ 2ϵP (x, y), (44)

PN ≈ϵ
P (y)− P (yx′)

P (x, y)
+ ϵ if P (yx′)− P (x′, y)

⩽ 2ϵP (x, y), (45)

PN ≈ϵ
P (y′x′)− P (x′, y′)

P (x, y)
− ϵ if P (x, y′)

⩽ 2ϵP (x, y), (46)

PN ≈ϵ
P (y)− P (yx′)

P (x, y)
+ ϵ if P (x, y′)

⩽ 2ϵP (x, y). (47)

Proof. See Appendix.

Theorem 18. The PS is ϵ-identified as follows:

PS ≈ϵ ϵ if P (yx)− P (x, y)

⩽ 2ϵP (x′, y′), (48)

PS ≈ϵ 1− ϵ if P (y′x)− P (x, y′)

⩽ 2ϵP (x′, y′), (49)

PS ≈ϵ
P (y′)− P (y′x)

P (x′, y′)
+ ϵ if P (y′x)− P (x, y′)

⩽ 2ϵP (x′, y′), (50)

PS ≈ϵ
P (yx)− P (x, y)

P (x′, y′)
− ϵ if P (x′, y)

⩽ 2ϵP (x′, y′), (51)

PS ≈ϵ
P (y′)− P (y′x)

P (x′, y′)
+ ϵ if P (x′, y)

⩽ 2ϵP (x′, y′). (52)

Proof. See Appendix.

Examples
Here, we illustrate how to apply ϵ-Identifiability in real ap-
plications by two simulated examples.



Table 1: Results of an observational study with 1500 indi-
viduals who have access to the medicine, where 1260 indi-
viduals chose to receive the medicine and 240 individuals
chose not to.

Medicine No medicine
Recovered 780 210

Not recovered 480 30

Causal Effects of Medicine
Consider a medicine manufacturer who wants to know the
causal effect of a new medicine on a disease. They con-
ducted an observational study where 1500 patients were
given access to the medicine; the results of the study are
summarized in Table 1. In addition, the expert from the
medicine manufacturer acknowledged that family history is
the only confounder of taking medicine and recovery, and
the family history of the disease is extremely rare; only 1%
of the people have the family history.

Let X = x denote that a patient chose to take the
medicine, and X = x′ denote that a patient chose not to take
the medicine. Let Y = y denote that a patient recovered, and
Y = y′ denote that a patient did not recover. Let U = u de-
note that a patient has the family history, and U = u′ denote
that a patient has no family history.

The simulated data in Table 1 provides the estimates

P (x) =
1260

1500
= 0.84,

P (x′) =
240

1500
= 0.16,

P (y|x) = 780

1260
≈ 0.62,

P (y|x′) =
210

240
= 0.875.

To obtain the causal effect of the medicine (i.e., using adjust-
ment formula (1)), we have to know the observational data
associated with family history, which is difficult to obtain.

Fortunately, we have the prior that P (u) = 0.01. Since
0.01 = P (u) ≤ P (x) − 0.8 (let c = 0.8) and 0.01 =

P (u) < 2c∗0.025P (x)
2cP (x)+P (x)+c ≈ 0.0113, we can apply Theo-

rem 14 to obtain that P (yx) is 0.025-identified to P (y|x) +
P (x)−c

2cP (x)+P (x)+c0.025 ≈ 0.62. This means the causal effect of
the medicine is very close to 0.62 (i.e., 0.025 close), which
can not be 0.025 far from 0.62.

Or even simpler, note that P (x) = 0.84 > 0.5 and
P (u) = 0.01 < 0.1, P (u) = 0.01 < 4

13 ∗ 0.035 ≈ 0.0108.
We obtain that P (yx) is 0.035-identified to P (y|x)+ 0.035

13 ≈
0.62.

Similarly, since 0.01 = P (u) ≤ P (x′) − 0.15 (let c =

0.15) and 0.01 = P (u) < 2c∗0.1P (x′)
2cP (x′)+P (x′)+c ≈ 0.0134, we

can apply Theorem 14 again to obtain that P (yx′) is 0.1-
identified to P (y|x′) + P (x′)−c

2cP (x′)+P (x′)+c0.1 ≈ 0.878.
In contrast, without the concept of “ϵ-Identifiability,” we

would have to apply the general bounds in equation (2),

because the joint distribution P (X,Y, U) is not available;
therefore, the adjustment formula (1) cannot be applied.
We have, by equation (2), 0.52 ≤ P (yx) ≤ 0.68 and
0.14 ≤ P (yx′) ≤ 0.98, making it impossible to reach a deci-
sion. However, by Theorem 14, we find P (yx) ≈0.025 0.62
and P (yx′) ≈0.1 0.878, leading to the conclusion that the
medicine is ineffective, without knowing the observational
data associated with the family history.

PNS of Flu Shot
Consider a newly invented flu shot. After a vaccination com-
pany introduced a new flu shot, the number of people in-
fected by flu reached the lowest point in 20 years (i.e., less
than 5% of people infected by flu). The government con-
cluded that the new flu shot is the key to success. However,
some anti-vaccination associations believe it is because peo-
ple’s physical quality increases yearly. Therefore, they all
want to know how many percentages of people are unin-
fected because of the flu shot. The PNS of the flu shot (i.e.,
the percentage of individuals who would not infect by the
flu if they had taken the flu shot and would infect otherwise)
is indeed what they want.

Let X = x denote that an individual has taken the flu shot
and X = x′ denote that an individual has not taken the flu
shot. Let Y = y denote an individual infected by the flu and
Y = y′ denote an individual not infected by the flu.

If they want to apply the bounds of PNS in Equations (5)
and (6), they must conduct both experimental and observa-
tional studies. However, note that P (y) < 0.05, one could
apply Equation (37) in Theorem 16, which PNS is 0.025-
identified to P (yx)−0.025 (i.e., PNS is very close to P (yx)).
Thus, according to the analysis of sample size in (Li, Mao,
and Pearl 2022), only an experimental study for the treated
group with a sample size of 385 is adequate for estimating
PNS.

ϵ-Identifiability in Unit Selection Problem
One utility of the causal quantities is the unit selection prob-
lem (Li and Pearl 2019, 2024b), in which Li and Pearl de-
fined an objective causal function to select a set of individu-
als that have the desired mode of behavior.

Let X denote the binary treatment and Y denote
the binary effect. According to Li and Pearl, individu-
als were divided into four response types: Complier (i.e.,
P (yx, y

′
x′)), always-taker (i.e., P (yx, yx′)), never-taker

(i.e., P (y′x, y
′
x′)), and defier (i.e., P (y′x, yx′)). Suppose

the payoff of selecting a complier, always-taker, never-taker,
and defier is β, γ, θ, δ, respectively (i.e., benefit vector). The
objective function (i.e., benefit function) that optimizes the
composition of the four types over the selected set of indi-
viduals c is as follows:

f(c) = βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) +

θP (y′x, y
′
x′ |c) + δP (y′x, yx′ |c).

Li and Pearl provided two types of identifiability conditions
for the benefit function. One is about the response type such
that there is no defier in the population (i.e., monotonicity).
Another is about the benefits vector’s relations, such that



Table 2: Results of an experimental study with 1500 ran-
domly selected customers were forced to apply the discount,
and 1500 randomly selected customers were forced not to.

Discount No discount
Bought the purchase 900 750

No purchase 600 750

β + δ = γ + θ (i.e., gain equality). These two conditions
are helpful but still too specific and challenging to satisfy in
real-world applications. If the benefit function is not iden-
tifiable, it can be bounded using experimental and observa-
tional data. Here in this paper, we extend the gain equality
to the ϵ-identifiability as stated in the following theorem.

Theorem 19. Given a causal diagram G and distribution
compatible with G, let C be a set of variables that does not
contain any descendant of X in G, then the benefit function
f(c) = βP (yx, y

′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) +

δP (yx′ , y′x|c) is |β−γ−θ+δ|
2 -identified to (γ − δ)P (yx|c) +

δP (yx′ |c) + θP (y′x′ |c) + β−γ−θ+δ
2 .

Proof. See Appendix.

One critical use case of the above theorem is that decision-
makers usually only care about the sign (gain or lose) of
the benefit function. Decision-makers can apply the above
theorem before conducting any observational study to see if
the sign of the benefit function can be determined, as we will
illustrate in the next section.

Example: Non-immediate Profit
Consider the most common example in (Li and Pearl
2019). A sale company proposed a discount on a pur-
chase in order to increase the total non-immediate profit.
The company assessed that the profit of offering the dis-
count to complier, always-taker, never-taker, and defier is
$100,−$60, $0,−$140, respectively. Let X = x denote that
a customer applied the discount, and X = x denote that a
customer did not apply the discount. Let Y = y denote that
a customer bought the purchase and Y = y′ denote that a
customer did not. The benefit function is then (here c denote
all customers)

f(c) = 100P (yx, y
′
x′ |c)− 60P (yx, yx′ |c) +

0P (y′x, y
′
x′ |c)− 140P (y′x, yx′ |c).

The company conducted an experimental study where 1500
randomly selected customers were forced to apply the dis-
count, and 1500 randomly selected customers were forced
not to. The results are summarized in Table 2. The experi-
mental data reads P (yx|c) = 0.6 and P (yx′ |c) = 0.5.

Before conducting any observational study, one can con-
clude that the benefit function is 10-identified to −12 using
Theorem 19. This result indicates that the benefit function
is at most 10 away from −12; thus, the benefit function is
negative regardless of the observational data. The decision-
maker then can easily conclude that the discount should not
offer to the customers.

Discussion
We have defined the ϵ-identifiability of causal quantities and
provided a list of ϵ-identifiable conditions for causal effects,
ETT, PNS, PN, and PS. We still have some further discus-
sions about the topic.

First, all conditions except Theorems 14 and 15 are con-
ditions from observational or experimental data. In other
words, if some of the observational or experimental dis-
tributions satisfied a particular condition, then the causal
quantities are ϵ-identifiable. These conditions are advanta-
geous in real-world applications as no specific causal graph
is needed. However, we still love to discover more graphi-
cal conditions (similar to back-door or front-door criterion)
of ϵ-identifiability. In addition, as illustrated by the exam-
ple in Section , Theorems 14 and 15 were derived and stated
to give an example and a starting point for future research
where specific causal graphs, combined with our other work
in this paper, can provide causal effect estimates that were
otherwise unobtainable.

Second, the bounds of PNS, PS, PN, and the benefit
function can be narrowed by covariates information with
their causal structure (Dawid, Musio, and Murtas 2017;
Li and Pearl 2022b; Mueller, Li, and Pearl 2022). The ϵ-
identifiability can also be extended if covariates information
and their causal structure are available, which should be an
exciting direction in the future.

Third, monotonicity is defined using a causal quantity,
and in the meantime, monotonicity is also an identifiable
condition for other causal quantities (e.g., PNS). Thus,
another charming direction is how the ϵ-identifiability of
monotonicity affects the ϵ-identifiability of other causal
quantities.

Fourthly, it can be argued that the concept of ϵ-
Identifiability shares similarities with the notion of partial
identification, as discussed in the works of Tian & Pearl
(Tian and Pearl 2000), Zhang et al. (Zhang, Tian, and
Bareinboim 2022), and Li & Pearl (Li and Pearl 2024a).
Partial identification provides bounds for causal quantities
when full identification is not achievable. In contrast, ϵ-
identifiability specifies conditions under which these causal
quantities fall within an ϵ range of their true values. Sim-
ply put, while partial identification defines the bounds, ϵ-
identifiability identifies the conditions that ensure these
bounds are within an acceptably small ϵ range. In other
words, ϵ-identifiability seeks to establish conditions where
the causal quantities are satisfied to a predefined ϵ-wide in-
terval, determined by the decision-maker as an acceptable
width, thus making them nearly identifiable.

Fifth, for each of the causal quantities, we have outlined
multiple conditions using observational and/or experimen-
tal data. Significantly, the concept of ϵ-identifiability allows
for the computation of informative probabilities in scenarios
where this would otherwise be impossible. Our theorems do
more than just assert that the permissible range is narrow;
they also define what this permissible range is.

Sixth, the primary contribution of this paper is the intro-
duction of the ϵ-identifiability concept, suggesting that fur-
ther conditions could be unearthed in subsequent research.



The main goal is to pave the way for exploring additional
conditions that adhere to ϵ-identifiability in future studies.

Lastly, this paper does not address tightness because its
focus is on identifying conditions that meet a predetermined
ϵ requirement. This involves specifying the criteria neces-
sary for ensuring that the causal quantities align within the
ϵ range of the true value. With a given ϵ, we aim to min-
imize the required conditions. However, defining tightness
for multiple overlapping conditions remains a task for future
work, where tightness can be properly defined and proven.

Conclusion
In this paper, we defined the ϵ-identifiability of causal quan-
tities, which is easier to satisfy in real-world applications.
We provided the ϵ-identifiability conditions for causal ef-
fects, ETT, PNS, PS, PN, and the unit selection problem.
We further illustrated the use cases of the proposed condi-
tions by simulated examples.

We believe this paper introduces a concept of practical
significance and, although the core concept is algebraically
straightforward, useful derivations (e.g., Theorems 14 and
15) can grow quite complex. The aim is to introduce the
concept of ϵ-identifiability and encourage the development
of similar theorems and derivations in the future.
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Appendix

Proof of Theorem 13

Proof. From Equation (2) we have,

P (x, y) ≤ P (yx) ≤ 1− P (x, y′).

Let 1− P (x, y′)− P (x, y) ≤ 2ϵ, we obtain P (x′) ≤ 2ϵ.
Therefore, P (yx) is ϵ-identified to P (x, y)+ϵ if P (x′) ≤ 2ϵ,
Equation (13) holds. Similarily, we can substitute x, y with
x′, y′, respectively. Equations (14) to (16) hold.

Proof of Theorem 14

Proof. First, by adjustment formula in Equation (1), we
have,

P (yx) = P (y|x, u)P (u) + P (y|x, u′)P (u′).

Thus,

P (yx)

≥ P (y|x, u′)P (u′)

= P (y|x, u′)(1− P (u))

=
P (x, y, u′)

P (x, u′)
(1− P (u))

≥ P (x, y)− P (u)

P (x)
(1− P (u))

= P (y|x)− P (y|x)P (u)− P (u)

P (x)
+

P 2(u)

P (x)

≥ P (y|x)− P (u)− P (u)

P (x)

= P (y|x)− (1 +
1

P (x)
)P (u).

Also if P (x) ≥ P (u)+ c for some constant c > 0, we have,

P (yx)

≤ P (u) + P (y|x, u′)(1− P (u))

≤ P (u) +
P (x, y, u′)

P (x, u′)
(1− P (u))

≤ P (u) +
P (x, y)

P (x)− P (u)
(1− P (u))

≤ P (u) +
P (x, y)

P (x)− P (u)

= P (u) +
P (x, y)

P (x)(1− P (u)
P (x) )

= P (u) +
P (x, y)(1− P (u)

P (x) ) + P (y|x)P (u)

P (x)(1− P (u)
P (x) )

= P (u) + P (y|x) + P (y|x)P (u)

P (x)− P (u)

≤ P (y|x) + P (u) +
P (u)

P (x)− P (u)

≤ P (y|x) + P (u) +
P (u)

c

= P (y|x) + P (u)(1 +
1

c
)

Therefore, we have,

P (y|x)− (1 +
1

P (x)
)P (u) ≤ P (yx),

P (y|x) + (1 +
1

c
)P (u) ≥ P (yx).

Let

(1 +
1

c
)P (u) + (1 +

1

P (x)
)P (u) ≤ 2ϵ.

We have,

P (u)

≤ 2

2 + 1
c + 1

P (x)

ϵ

=
2cP (x)

2cP (x) + P (x) + c
ϵ.

Then we know that if P (u) ≤ 2cP (x)
2cP (x)+P (x)+cϵ,

P (y|x)− (1 +
1

P (x)
)

2cP (x)

2cP (x) + P (x) + c
ϵ ≤ P (yx),

P (y|x) + (1 +
1

c
)

2cP (x)

2cP (x) + P (x) + c
ϵ ≥ P (yx),

P (y|x)− 2cP (x) + 2c

2cP (x) + P (x) + c
ϵ ≤ P (yx),

P (y|x) + 2cP (x) + 2P (x)

2cP (x) + P (x) + c
ϵ ≥ P (yx).



Therefore, P (yx) is ϵ-identified to P (y|x) −
2cP (x)+2c

2cP (x)+P (x)+cϵ+ ϵ = P (y|x) + P (x)−c
2cP (x)+P (x)+cϵ.

Besides, if P (x) ≥ 0.5 and P (u) ≤ 0.1, let c = 0.4, we
have

P (y|x)− (1 +
1

P (x)
)P (u) ≤ P (yx),

P (y|x) + (1 +
1

c
)P (u) ≥ P (yx).

P (y|x)− (1 +
1

0.5
)P (u) ≤ P (yx),

P (y|x) + (1 +
1

0.4
)P (u) ≥ P (yx).

P (y|x)− 3P (u) ≤ P (yx) ≤ P (y|x) + 3.5P (u).

Let 3.5P (u) + 3P (u) ≤ 2ϵ, we have P (u) ≤ 4
13ϵ, and

P (y|x)− 12

13
ϵ ≤ P (yx) ≤ P (y|x) + 14

13
ϵ.

Therefore, P (yx) is ϵ-identified to P (y|x) − 12
13ϵ + ϵ =

P (y|x) + ϵ
13 .

Proof of Theorem 15
Proof. Similarly to the proof of Theorem 14, we have,

P (y|x)− (1 +
1

P (x)
)P (u) ≤ P (yx),

P (y|x) + (1 +
1

c
)P (u) ≥ P (yx).

then we obtain,
P (y|x)
P (x′)

− (1 +
1

P (x)
)
P (u)

P (x′)
≤ P (yx)

P (x′)
,

P (y|x)
P (x′)

+ (1 +
1

c
)
P (u)

P (x′)
≥ P (yx)

P (x′)
.

Let

(1 +
1

c
)
P (u)

P (x′)
+ (1 +

1

P (x)
)
P (u)

P (x′)
≤ 2ϵ.

We have,

P (u)

≤ 2P (x′)

2 + 1
c + 1

P (x)

ϵ

=
2cP (x)P (x′)

2cP (x) + P (x) + c
ϵ.

Then we know that if P (u) ≤ 2cP (x)P (x′)
2cP (x)+P (x)+cϵ,

P (y|x)
P (x′)

− (1 +
1

P (x)
)

2cP (x)

2cP (x) + P (x) + c
ϵ ≤ P (yx)

P (x′) ,

P (y|x)
P (x′)

+ (1 +
1

c
)

2cP (x)

2cP (x) + P (x) + c
ϵ ≥ P (yx)

P (x′) ,

P (y|x)
P (x′)

− 2cP (x) + 2c

2cP (x) + P (x) + c
ϵ ≤ P (yx)

P (x′) ,

P (y|x)
P (x′)

+
2cP (x) + 2P (x)

2cP (x) + P (x) + c
ϵ ≥ P (yx)

P (x′) .

By Theorem 9, we have,

P (yx|x′) =
P (yx)

P (x′)
− P (x, y)

P (x′)
.

Therefore, P (yx|x′) is ϵ-identified to P (y|x)
P (x′) − P (x,y)

P (x′) −
2cP (x)+2c

2cP (x)+P (x)+cϵ+ ϵ = P (y|x)
P (x′) − P (x,y)

P (x′) + P (x)−c
2cP (x)+P (x)+cϵ.

Besides, if P (x) = 0.5 and P (u) ≤ 0.1, let c = 0.4, simi-
larly to the proof of Theorem 14, we have,

P (y|x)− (1 +
1

0.5
)P (u) ≤ P (yx),

P (y|x) + (1 +
1

0.4
)P (u) ≥ P (yx).

2P (y|x)− 2(1 +
1

0.5
)P (u) ≤ 2P (yx),

2P (y|x) + 2(1 +
1

0.4
)P (u) ≥ 2P (yx).

2P (y|x)− 6P (u) ≤ 2P (yx) ≤ 2P (y|x) + 7P (u).

By Theorem 9 and P (x) = P (x′) = 0.5, we have,

P (yx|x′) =
P (yx)

P (x′)
− P (x, y)

P (x′)

=
P (yx)

0.5
− P (x, y)

P (x)

= 2P (yx)− P (y|x).

Let 7P (u) + 6P (u) ≤ 2ϵ, we have P (u) ≤ 2
13ϵ, and

P (y|x)− 12

13
ϵ ≤ P (yx|x′) ≤ P (y|x) + 14

13
ϵ.

Therefore, P (yx|x′) is ϵ-identified to P (y|x) − 12
13ϵ + ϵ =

P (y|x) + ϵ
13 .

Proof of Theorem 16

Proof. From the bounds of PNS in Equations (5) and (6) is
as follows:

max


0,

P (yx)− P (yx′),
P (y)− P (yx′),
P (yx)− P (y)

 ≤ PNS

min


P (yx),
P (y′x′),

P (x, y) + P (x′, y′),
P (yx)− P (yx′)+

+P (x, y′) + P (x′, y)

 ≥ PNS.

Let P (yx) − 0 ≤ 2ϵ, we obtain that PNS is ϵ-identified to ϵ
if P (yx) ≤ 2ϵ, Equation (22) holds.



Similarly, the rest of 20 equations can be obtained by letting
P (y′x′)− 0 ≤ 2ϵ,

P (x, y) + P (x′, y′)− 0 ≤ 2ϵ,

P (yx)− P (yx′) + P (x, y′) + P (x′, y)− 0 ≤ 2ϵ,

P (yx)− (P (yx)− P (yx′)) ≤ 2ϵ,

P (y′x′)− (P (yx)− P (yx′)) ≤ 2ϵ,

P (x, y) + P (x′, y′)− (P (yx)− P (yx′)) ≤ 2ϵ,

P (yx)− P (yx′) + P (x, y′) + P (x′, y)−
(P (yx)− P (yx′)) ≤ 2ϵ,

P (yx)− (P (y)− P (yx′)) ≤ 2ϵ,

P (y′x′)− (P (y)− P (yx′)) ≤ 2ϵ,

P (x, y) + P (x′, y′)− (P (y)− P (yx′)) ≤ 2ϵ,

P (yx)− P (yx′) + P (x, y′) + P (x′, y)−
(P (y)− P (yx′)) ≤ 2ϵ,

P (yx)− (P (yx)− P (y)) ≤ 2ϵ,

P (y′x′)− (P (yx)− P (y)) ≤ 2ϵ,

P (x, y) + P (x′, y′)− (P (yx)− P (y)) ≤ 2ϵ,

P (yx)− P (yx′) + P (x, y′) + P (x′, y)−
(P (yx)− P (y)) ≤ 2ϵ.

Proof of Theorem 17
Proof. From the bounds of PN in Equations (7) and (8) is as
follows:

max

{
0,

P (y)−P (yx′ )
P (x,y)

}
≤ PN ≤ min

{
1,

P (y′
x′ )−P (x′,y′)

P (x,y)

}
Let P (y′

x′ )−P (x′,y′)

P (x,y) − 0 ≤ 2ϵ, we obtain that PN is ϵ-
identified to ϵ if P (y′x′) − P (x′, y′) ≤ 2P (x, y)ϵ, Equation
(43) holds.
Similarly, the rest of 4 equations can be obtained by letting

1− P (y)− P (yx′)

P (x, y)
≤ 2ϵ,

P (y′x′)− P (x′, y′)

P (x, y)
− P (y)− P (yx′)

P (x, y)
≤ 2ϵ.

Proof of Theorem 18
Proof. From the bounds of PS in Equations (9) and (10) is
as follows:

max

{
0,

P (y′)−P (y′
x)

P (x′,y′)

}
≤ PS ≤ min

{
1,

P (yx)−P (x,y)
P (x′,y′)

}
Let P (yx)−P (x,y)

P (x′,y′) − 0 ≤ 2ϵ, we obtain that PS is ϵ-identified
to ϵ if P (yx)− P (x, y) ≤ 2P (x′, y′)ϵ, Equation (48).
Similarly, the rest of 4 conditions can be obtained by letting

1− P (y′)− P (y′x)

P (x′, y′)
≤ 2ϵ,

P (yx)− P (x, y)

P (x′, y′)
− P (y′)− P (y′x)

P (x′, y′)
≤ 2ϵ.

Proof of Theorem 19
Proof.

f(c)

= βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) +

θP (y′x, y
′
x′ |c) + δP (y′x, yx′ |c)

= βP (yx, y
′
x′ |c) + γ[P (yx|c)− P (yx, y

′
x′ |c)] +

θ[P (y′x′)− P (yx, y
′
x′ |c)] + δP (y′x, yx′ |c)

= γP (yx|c) + θP (y′x′ |c) + (β − γ − θ)P (yx, y
′
x′ |c) +

δP (y′x, yx′ |c). (53)
Note that, we have,
P (y′x, yx′ |c) = P (yx, y

′
x′ |c)− P (yx|c) + P (yx′ |c). (54)

Substituting Equation (54) into Equation (53), we have,
f(c)

= γP (yx|c) + θP (y′x′ |c) + (β − γ − θ)P (yx, y
′
x′ |c) +

δP (y′x, yx′ |c)
= γP (yx|c) + θP (y′x′ |c) + (β − γ − θ)P (yx, y

′
x′ |c) +

δ[P (yx, y
′
x′ |c)− P (yx|c) + P (yx′ |c)]

= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
(β − γ − θ + δ)P (yx, y

′
x′ |c).

Case 1: If β − γ − θ + δ ≥ 0,
f(c)

≤ (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
β − γ − θ + δ

2
+

|β − γ − θ + δ|
2

= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
β − γ − θ + δ.

and,
f(c)

≥ (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
β − γ − θ + δ

2
− |β − γ − θ + δ|

2
= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c).

Therefore, f(c) is |β−γ−θ+δ|
2 -identified to (γ−δ)P (yx|c)+

δP (yx′ |c) + θP (y′x′ |c) + β−γ−θ+δ
2 .

Case 2: If β − γ − θ + δ < 0,
f(c)

≤ (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
β − γ − θ + δ

2
+

|β − γ − θ + δ|
2

= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c).
and,

f(c)

≥ (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +
β − γ − θ + δ

2
− |β − γ − θ + δ|

2
= (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c) +

β − γ − θ + δ.



Therefore, f(c) is |β−γ−θ+δ|
2 -identified to (γ−δ)P (yx|c)+

δP (yx′ |c) + θP (y′x′ |c) + β−γ−θ+δ
2 .


