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Abstract

The unit selection problem defined by Li and Pearl identifies individuals who
have desired counterfactual behavior patterns, for example, individuals who would
respond positively if encouraged and would not otherwise. Li and Pearl showed by
example that their unit selection model is beyond the A/B test heuristics. In this
paper, we reveal the essence of the A/B test heuristics, which are exceptional cases
of the benefit function defined by Li and Pearl. Furthermore, We provided more
simulated use cases of Li-Pearl’s unit selection model to help decision-makers apply
their model correctly, explaining that A/B test heuristics are generally problematic.

1 Introduction

The unit selection problem defined by Li and Pearl is encountered in several fields, such as business,
social science, health science, and economics. For example, decision-makers in customer relationship
management want to identify customers who would buy purchases if there is an enticement and
would not otherwise [1, 6, 7, 22]. For another example, large companies are interested in customers
who would visit their website if there the website is prompted by an online advertisement and would
not otherwise [2, 13, 17, 20, 23]. The challenge of identifying such customers stems from the fact
that the desired behaviors are defined counterfactually and would occur under hypothetical space.
For example, if a customer bought a car with a discount, we will never know whether this customer
would still buy that car if there were no discounts.

The vastly used solution to the unit selection problem is the A/B test heuristics, where a small set of
individuals is divided into two groups: a control group and a treatment group. The treatment group is
served with encouragement, whereas the control group is not. Individuals with certain characteristics
that maximize the difference in effective rate are then selected as desired individuals. However, the
counterfactual fact of the unit selection problem is not properly handled. In contrast, Li and Pearl
labeled individuals into four counterfactual response types: complier, always-taker, never-taker, and
defier, and proposed an objective function (i.e., benefit function) that is the average payoff of selecting
each of the response types [14]. Using experimental and observational data, Li and Pearl provided
the tight bounds of the benefit function and showed that their unit selection model is the right way to
select the desired individuals compared to that of the A/B test heuristics.

In this study, we focus on the relationship between Li-Pearl’s benefit function and the A/B test
heuristics, explaining why the A/B test heuristics are sometimes problematic. Afterward, more
simulated case studies are provided to emphasize the conclusion, as well as illustrate how to apply
Li-Pearl’s unit selection model correctly.
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2 Preliminaries

Here, we review Li and Pearl’s benefit function of the unit selection problem [14]. Readers who are
familiar with the model may skip this section.

Similarly, we used the language of the structural causal model (SCM) [4, 5], where the counterfactual
sentences are well-defined. The experimental and observational data herein are those in the form of
causal effects and a joint probability function denoted by P (yx) and P (x, y), respectively. The basic
counterfactual sentence “Variable Y would have the value y, had X been x” is denoted by Yx = y.
For simplicity, Yx = y is shorted as yx. Besides, if not specified, the treatment is denoted by X , and
the effect is denoted by Y .

Suppose the treatment is binary (denoted by x and x′), and the effect is binary (denoted by y and
y′). Li and Pearl classified individual behaviors into four response types: complier, always-taker,
never-taker, and defier. If the payoff of selecting an individual of each response type is β, γ, θ, δ
respectively (i.e., benefit vector), the objective function defined by Li and Pearl, which is the average
payoff per selecting an individual, is as follows:

argmaxc βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (y′x, yx′ |c). (1)

Note that c represents the population-specific characteristics, and the benefit function is a linear
combination of the probabilities of causation [11, 15, 19, 21]. Using a combination of experimental
and observational data, Li and Pearl established the tight bounds of the above benefit function as
follows (which we referred to as Li-Pearl’s Theorem hereafter). The only assumption is that c is not a
descendant of treatment X .
Theorem 1. Given a causal diagram G and distribution compatible with G, let C be a set of variables
that does not contain any descendant of X in G, then the benefit function f(c) = βP (yx, y

′
x′ |c) +

γP (yx, yx′ |c) + θP (y′x, y
′
x′ |c) + δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f(c) ≤ W + σL if σ < 0,

W + σL ≤ f(c) ≤ W + σU if σ > 0,

where σ,W,L, U are given by,

σ = β − γ − θ + δ,W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 , U = min


P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c)

 .

The above bounds have been narrowed by Li and Pearl [16] given additional covariate information
and the causal structure [3, 18]. The nonbinary cases were discussed in ref [12].

In addition, Li and Pearl provided conditions such that the benefit function can have a point estimation.
Definition 2. (Monotonicity) A Variable Y is said to be monotonic relative to variable X in a causal
model M iff

y′x ∧ yx′ = false

Definition 3. (Gain Equality) The benefit of selecting a complier (β), an always-taker (γ), a never-
taker(θ), and a defier (δ) is said to satisfy gain equality iff

β + δ = γ + θ

Theorem 4. Given that Y is monotonic relative to X or that (β, γ, θ, δ) satisfies gain equality, the
benefit function f(c) is given by

f(c) = (β − θ)P (yx|c) + (γ − β)P (yx′ |c) + θ
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3 Essence of A/B Test Heuristic

A common solution that is explored in the literature is an A/B test-based approach where a controlled
experiment is performed, and the result is used as a selection criterion. Specifically, individuals
are randomly split into two groups called control and treatment. Individuals in the control group
are served with no treatment, whereas those in the treatment group are served with the treatment.
Then, the commonly used A/B test heuristics are aP (yx|c)− bP (yx′ |c) (i.e., the weighted difference
between the effective rates under treatment and no treatment). We then have,

aP (yx|c)− bP (yx′ |c) = a(P (yx, y
′
x′ |c) + P (yx, yx′ |c))− b(P (yx′ , y′x|c) + P (yx′ , yx|c))

= aP (yx, y
′
x′ |c) + (a− b)P (yx, yx′ |c)− bP (yx′ , y′x|c).

The effective rate under treatment is the percentage of the complier plus always-taker in the population,
and the effective rate under no treatment is the percentage of always-taker plus defier in the population.
The essence of the A/B test heuristics is a weighted difference between P (complier∪always_taker)
and P (always_taker ∪ defier). Therefore, the A/B test heuristics are special cases of the benefit
function. The benefit function has more expression power than the A/B test heuristics. This explains
why the A/B test heuristics can be optimal for some cases (i.e., gain equality [14] satisfied.) and is
generally problematic.

4 Case Studies

Recall that the benefit vector in Li-Pearl’s model is not determined by the model but by the model’s
user. Here, we illustrate several common applications showing how to set the benefit vector. The
applications are categorized based on the quality of the A/B test-based approaches.

4.1 Cases in which A/B-test Heuristics are Correct

Here, we present simulated examples that satisfy the gain equality so that the benefit function is
reduced to an A/B test Heuristics.

4.1.1 Immediate Profit

Consider a car manufacturer that wants to identify customers (based on observed characteristics)
who would buy a hybrid car if there is an enticement and would not otherwise so as to increase their
immediate total profit.

The management of the car manufacturing plant acknowledged that the profit of sending the en-
ticement to a complier (i.e., who would buy a hybrid car if there is an enticement and would not
otherwise) is $45000 as the profit of selling a hybrid car is $50000, but the enticement costs $5000.
The profit of sending the enticement to an always-taker (i.e., who would buy a hybrid car no matter
whether or not there is an enticement) is −$5000 as the always-taker would buy the car anyway so
that the manufacturer loses the enticement cost. The profit of sending the enticement to a never-taker
(i.e., who would not buy a hybrid car no matter whether or not there is an enticement) is $0 as the
process of issuing the enticement is negligible. The profit of sending the enticement to a defier (i.e.,
who would buy a hybrid car if there is no enticement and would not otherwise) is −$50000 as the
manufacturer lost a customer due to the enticement.

The benefit vector above is (45000,−5000, 0,−50000), which satisfies the gain equality
(45000 − 50000 = −5000 + 0). The benefit function is then f(c) = 45000P (yx|c) −
50000P (yx′ |c). This is the same as the popular A/B test heuristics revenue difference in the
industry. From the view of the essence of A/B test heuristic, 45000P (yx|c) − 50000P (yx′ |c) is
45000P (complier∪always_taker)−50000P (always_taker∪defier) = 45000P (complier)−
5000P (always_taker)− 50000P (defier).

4.1.2 Number of Increased Customers

Suppose the goal of the car manufacturer is to maximize the total increased customers regardless
of the total profit. Therefore, for the benefit vector, 1 should be assigned to the complier because
the manufacturer gains one customer due to the enticement. Furthermore, 0 should be assigned
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Table 1: Percentages of four response types in each group.
Complier Always-taker Never-taker Defier

Group c1 35% 25% 35% 5%
Group c2 65% 5% 5% 25%

to both the always-taker and never-taker because the manufacturer gains no customer due to the
enticement. Also, −1 should be assigned to the defier because the manufacturer loses one customer
due to the enticement. The benefit vector is then (1, 0, 0,−1), which again satisfies the gain equality
(1 − 1 = 0 + 0). The benefit function is f(c) = P (yx|c) − P (yx′ |c), which is another common
A/B test heuristics. From the view of the essence of A/B test heuristic, P (yx|c) − P (yx′ |c) is
P (complier ∪ always_taker)− P (always_taker ∪ defier) = P (complier)− P (defier).

4.2 Cases in which A/B-test Heuristics are Incorrect

4.2.1 Nonimmediate Profit

Suppose the car manufacturer wishes to maximize the total profit but includes the long-term profit
(e.g., sending enticement to an always-taker may change the customer to a complier). Therefore, the
management should change the benefit of selecting an always-taker to −$7000 (i.e., an estimated
loss of 2000 in the long term) in the example of immediate profit and keep the rest the same.

The benefit vector is (45000,−7000, 0,−50000). Then, the benefit function is f(c) =
45000P (yx, y

′
x′ |c)− 7000P (yx, yx′ |c)− 50000P (y′x, yx′ |c), which no point estimation exists with

pure experimental data. From the view of the essence of A/B test heuristics, no matter how to assign
a, b in aP (yx|c) − bP (yx′ |c) = aP (complier ∪ always_taker) − bP (always_taker ∪ defier),
the results cannot equal to 45000P (complier)− 7000P (always_taker)− 50000P (defier).

4.2.2 Effectiveness of Vaccine

A vaccine manufacturer invented a vaccine for a new virus and wants to verify the effectiveness of the
vaccine. The effectiveness of a vaccine should be the difference between benefited and non-benefited
(i.e., ineffective and harmed) individuals.

Let X = x denote the event that an individual receives the vaccine, X = x′ denote the event that an
individual receives no vaccine, Y = y denote the event that an individual is not infected by the virus,
Y = y′ denote the event that an individual is infected by the virus, and C (a set of variables) denote
the population-specific characteristics of an individual.

The commonly used way to assess the effectiveness of the vaccine is the A/B test heuristic, P (yx|c)−
P (y′x|c). However, this does not capture the counterfactual behavior. The real benefited individual
should be the complier (i.e., the individual who would not be infected by the virus if vaccinated and
would be infected if unvaccinated), the harmed individual should be the defier (i.e., the individual who
would be infected by the virus if vaccinated and would not be infected if not vaccinated), and all other
types (i.e., always-taker and never-taker) are all ineffective individuals. The benefit vector should then
be (1,−1,−1,−1), and the benefit function is f(c) = P (yx, y

′
x′ |c)−P (yx, yx′ |c)−P (y′x, y

′
x′ |c)−

P (y′x, yx′ |c). From the view of the essence of A/B test heuristics, P (yx|c) − P (y′x|c) is equal to
P (complier∪always_taker)−P (always_taker∪defier) = P (complier)−P (defier), which
definitely cannot represent the desired objective function (i.e., P (complier)− P (always_taker)−
P (never_taker)− P (defier)).

Let us plug some concrete numbers into the above example. Suppose two groups of individuals,
c1 and c2, are waiting for the conclusion of whether the vaccine should be offered to the group.
From the informer’s view, two groups of individuals consist of different percentages of response
types, as shown in Table 1 (note that in the real world, we never know these numbers). The
random sampled experimental data of 1500 individuals of each group are given in Table 2 (one can
check that the simulated experimental data are compatible with the informer data, i.e., P (yx|c) =
P (complier)+P (always_taker) and P (yx′ |c) = P (always_taker)+P (defier)). We also have
the prior observational data that P (y|x, c1) = 0.4 and P (y|x, c2) = 0.05.
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Table 2: Results of experimental samples on two groups.
do(x) do(x′)

Group c1 y 450 225
y′ 300 525

Group c2 y 525 225
y′ 225 525

Table 3: Results of the two objective functions based on the data from the simulated study.
f1 f2 real

Group c1 0.3 −0.1 −0.3
Group c2 0.4 0.35 0.3

The above-mentioned A/B test heuristic and the benefit function were compared, where,

f1(c) = P (yx|c)− P (yx′ |c).

f2(c) = P (yx, y
′
x′ |c)− P (yx, yx′ |c)− P (y′x, y

′
x′ |c)− P (y′x, yx′ |c).

We plug the experimental and observational data into two objective functions, the results are summa-
rized in Table 3 (Midpoints of Theorem 1 applied for f2). The real values come from the informer data,
where real(c1) = P (yx, y

′
x′ |c1)− P (yx, yx′ |c1)− P (y′x, y

′
x′ |c1)− P (y′x, yx′ |c1) = 0.35− 0.25−

0.35−0.05 = −0.3 and real(c2) = P (yx, y
′
x′ |c2)−P (yx, yx′ |c2)−P (y′x, y

′
x′ |c2)−P (y′x, yx′ |c2) =

0.65− 0.05− 0.05− 0.25 = 0.3. The conclusion from Theorem 1 and f2 is to offer the vaccine to
group 2 only (i.e., the effectiveness is positive), which is the same as the real effectiveness from the
informer’s view. The conclusion from the A/B test heuristic is problematic in offering the vaccine to
both groups though the real effectiveness of the first group is negative.

4.2.3 Effectiveness of Vaccine with Focus on Effected Individual

In the last example, the benefited individual, the harmed individual, and the ineffective individual is
treated with the same importance. Suppose that we want to distinguish these individuals because we
want to focus on benefited and harmed individuals; therefore, we could simply change the benefit
vector to (2,−1,−1,−2) to indicate such a requirement.

The benefit function is then f(c) = 2P (yx, y
′
x′ |c) − P (yx, yx′ |c) − P (y′x, y

′
x′ |c) − 2P (y′x, yx′ |c),

which again has no point estimation with pure experimental data. From the view of the essence of
A/B test heuristics, again, no matter how to setup a, b in aP (yx|c)− bP (yx′ |c) = aP (complier ∪
always_taker)− bP (always_taker ∪ defier), it can never equal to the desired objective function
2P (complier)− P (always_taker)− P (never_taker)− 2P (defier).

5 Conclusion

Herein, we reviewed Li-Pearl’s unit selection model and its benefit function. We explained the relation-
ships between the benefit function and the A/B test heuristics by showing that the essence of the latter
one is a weighted difference between P (complier∪always_taker) and P (always_taker∪defier).
Li and Pearl provided useful resources to bridge the theoretical unit selection model and the real-world
applications, including the needed sample size and machine learning tools [8–10, 13]. We hope that
the example provided here will help decision-makers to apply Li-Pearl’s model correctly and push
forward the revolution of A/B test heuristics style decision-making.

Acknowledgements

This research was supported in parts by grants from the National Science Foundation [#IIS-2106908
and #IIS-2231798], Office of Naval Research [#N00014-21-1-2351], and Toyota Research Institute
of North America [#PO-000897].

5



References
[1] Alex Berson, Stephen Smith, and Kurt Thearling. Building data mining applications for CRM.

McGraw-Hill Professional, 1999.

[2] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max Chickering,
Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and
learning systems: The example of computational advertising. The Journal of Machine Learning
Research, 14(1):3207–3260, 2013.

[3] Philip Dawid, Monica Musio, and Rossella Murtas. The probability of causation. Law,
Probability and Risk, (16):163–179, 2017.

[4] David Galles and Judea Pearl. An axiomatic characterization of causal counterfactuals. Founda-
tions of Science, 3(1):151–182, 1998.

[5] Joseph Y Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelligence Research,
12:317–337, 2000.

[6] Shin-Yuan Hung, David C Yen, and Hsiu-Yu Wang. Applying data mining to telecom churn
management. Expert Systems with Applications, 31(3):515–524, 2006.

[7] Miguel APM Lejeune. Measuring the impact of data mining on churn management. Internet
Research, 11(5):375–387, 2001.

[8] A. Li, S. Jiang, Y. Sun, and J. Pearl. Learning probabilities of causation from finite population
data. Technical Report R-519, <http://ftp.cs.ucla.edu/pub/stat_ser/r519.pdf>, Department of
Computer Science, University of California, Los Angeles, CA, 2022.

[9] A. Li, S. Jiang, Y. Sun, and J. Pearl. Unit selection: Learning benefit function from finite popula-
tion data. Technical Report R-520, <http://ftp.cs.ucla.edu/pub/stat_ser/r520.pdf>, Department
of Computer Science, University of California, Los Angeles, CA, 2022.

[10] A. Li, R. Mao, and J. Pearl. Probabilities of causation: Adequate size of experimental and
observational samples. Technical Report R-518, <http://ftp.cs.ucla.edu/pub/stat_ser/r518.pdf>,
Department of Computer Science, University of California, Los Angeles, CA, 2022.

[11] A. Li and J. Pearl. Probabilities of causation with non-binary treatment and effect. Technical
Report R-516, Department of Computer Science, University of California, Los Angeles, CA,
2022.

[12] A. Li and J. Pearl. Unit selection with nonbinary treatment and effect. Technical Report R-517,
<http://ftp.cs.ucla.edu/pub/stat_ser/r517.pdf>, Department of Computer Science, University of
California, Los Angeles, CA, 2022.

[13] Ang Li, Suming J. Chen, Jingzheng Qin, and Zhen Qin. Training machine learning models with
causal logic. In Companion Proceedings of the Web Conference 2020, pages 557–561, 2020.

[14] Ang Li and Judea Pearl. Unit selection based on counterfactual logic. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages
1793–1799. International Joint Conferences on Artificial Intelligence Organization, 7 2019.

[15] Ang Li and Judea Pearl. Bounds on causal effects and application to high dimensional data. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 5773–5780,
2022.

[16] Ang Li and Judea Pearl. Unit selection with causal diagram. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 5765–5772, 2022.

[17] Lihong Li, Shunbao Chen, Jim Kleban, and Ankur Gupta. Counterfactual estimation and
optimization of click metrics for search engines. arXiv preprint arXiv:1403.1891, 2014.

[18] S. Mueller, A. Li, and J. Pearl. Causes of effects: Learning individual responses from population
data. Technical Report R-505, <http://ftp.cs.ucla.edu/pub/stat_ser/r505.pdf>, Department of
Computer Science, University of California, Los Angeles, CA, 2021. Forthcoming, Proceedings
of IJCAI-2022.

6



[19] Judea Pearl. Probabilities of causation: Three counterfactual interpretations and their identifica-
tion. Synthese, pages 93–149, 1999.

[20] Wei Sun, Pengyuan Wang, Dawei Yin, Jian Yang, and Yi Chang. Causal inference via sparse
additive models with application to online advertising. In AAAI, pages 297–303, 2015.

[21] Jin Tian and Judea Pearl. Probabilities of causation: Bounds and identification. Annals of
Mathematics and Artificial Intelligence, 28(1-4):287–313, 2000.

[22] Chih-Fong Tsai and Yu-Hsin Lu. Customer churn prediction by hybrid neural networks. Expert
Systems with Applications, 36(10):12547–12553, 2009.

[23] Jun Yan, Ning Liu, Gang Wang, Wen Zhang, Yun Jiang, and Zheng Chen. How much can
behavioral targeting help online advertising? In Proceedings of the 18th international conference
on World Wide Web, pages 261–270. ACM, 2009.

7


	Introduction
	Preliminaries
	Essence of A/B Test Heuristic
	Case Studies
	Cases in which A/B-test Heuristics are Correct
	Immediate Profit
	Number of Increased Customers

	Cases in which A/B-test Heuristics are Incorrect
	Nonimmediate Profit
	Effectiveness of Vaccine
	Effectiveness of Vaccine with Focus on Effected Individual


	Conclusion

