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Abstract

The unit selection problem is to identify a group of individuals who are most likely
to exhibit a desired mode of behavior, for example, selecting individuals who
would respond one way if incentivized and a different way if not. The unit selection
problem consists of evaluation and search subproblems. Li and Pearl defined the
"benefit function" to evaluate the average payoff of selecting a certain individual
with given characteristics. The search subproblem is then to design an algorithm
to identify the characteristics that maximize the above benefit function. The
hardness of the search subproblem arises due to the large number of characteristics
available for each individual and the sparsity of the data available in each cell of
characteristics. In this paper, we present a machine learning framework that uses
the bounds of the benefit function that are estimable from the finite population data
to learn the bounds of the benefit function for each cell of characteristics. Therefore,
we could easily obtain the characteristics that maximize the benefit function.

1 Introduction

The unit selection problem frequently appears in the industries such as health science, political
science, and marketing. In customer relationship management [1, 6, 7, 19], for example, companies
are interested in discovering customers who are possible to leave but would not if there is an incentive.
The incentive should be sent very carefully because the behavior of the customers is influenced by any
incentives that the companies sent before. For another example, in online advertisement, companies
are interested in identifying users who would view an advertisement if and only if the advertisement
is prompted [2, 12, 16, 18, 20]. The challenge in identifying these individuals stems from the fact
that the desired response pattern is not observed directly but rather is defined counterfactually in
terms of what the individual would do under hypothetical unrealized conditions. For example, when
a customer has bought a car with a considerable discount, we have no idea whether they would buy
the same car if there is no such discount.

As defined by Li and Pearl [13], the unit selection problem entails two sub-problems, evaluation
and search. The evaluation problem is to develop an estimable objective function that, if maximized
over the set of observed characteristics C (available for each individual), would ensure an optimal
counterfactual behavior for the selected group. The search task is to develop a search algorithm to
determine individuals based both on their observed characteristics and the objective function devised
above. The hardness of the search task arises due to the large number of characteristics available for
each individual and the sparsity of the data available in each cell of characteristics.

For the evaluation sub-problem, the benefit function for the unit selection problem was defined by Li
and Pearl [13], and it properly captures the nature of the desired behavior. By making the assumption
that the treatment has no effect on the population-specific characteristics, Li and Pearl derived tight
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bounds of the benefit function using experimental and observational data. Li and Pearl [15] then
narrowed the bounds of the benefit function using covariates information and their causal structure
inspired by Mueller, Li, and Pearl [17] and Dawid et al. [3] that the bounds of probabilities of
causation could be narrowed using covariates information. In addition, the unit selection problem
with nonbinary treatment and effect was studied by Li and Pearl in [10, 11].

In this study, we focus on the search sub-problem with binary treatment and effect. Nonbinary
situations can be extended with [10, 11, 14, 21].

Consider the popular motivating scenario by Li and Pearl [13]: a mobile carrier is interested in
identifying customers who are about to churn in the future based on their 15 observed characteristics
such as gender, income, age, monthly payments, and so on. A considerable discount will then be
offered to identified customers to encourage them to continue the service so as to increase their service
renewal rate. The management has to be careful that only those customers who would continue their
service if and only if they receive the offer can receive the discount, and all other types of customers
cannot. The management then collected the observational and experimental data of their customers
(we call this population data because the data are randomized over all customers. It is hard to collect
data for each set of characteristics because 1) the total number of the set of characteristics is large,
215; 2) some set of characteristics is rare to appear).

The simplest solution is to apply Li-Pearl’s benefit function with benefit vector (1,−1,−1,−1) or
(1,−1,−1,−2) to every set of characteristics and selects all sets such that the benefit function is
positive. However, we have 215 sets of characteristics, and according to Li and Pearl [9], each set of
characteristics requires roughly 1500 experimental and 1500 observational samples to have relatively
precise estimations. Therefore, at least 49152000 experimental and 49152000 observational samples
are needed to evaluate the benefit function of every set of characteristics. In addition, the experimental
and observational data are collected from the entire population (i.e., all customers); therefore, some of
the characteristics are rare to appear. Therefore, it is impractical to evaluate every set of characteristics
given the finite population data. Li et al. [8] proposed that a machine learning model can learn the
bounds of probabilities of causation. Similar work can be applied to the benefit function. In this
paper, we believe that the behavior of the customers is determined by their characteristics; therefore,
we present a machine learning framework that uses the bounds of the estimable benefit function as
the label (of those sets of characteristics such that the benefit function has sufficient data to estimate),
to compute the bounds of benefit function for every set of characteristics.

2 Preliminaries

In this section, we review Li and Pearl’s benefit function of the unit selection problem [13].

The language of counterfactuals in structural model semantics, as given in [4, 5], is used in this paper.
The basic counterfactual sentence “Variable Y would have the value y, had X been x" is denoted by
Yx = y. We distinguish between experimental and observational data; the experimental data is in
the form of the causal effects denoted by P (yx), and the observational data is in the form of joint
probability denoted by P (x, y). Without further specification, we use X to denote treatment and
Y to denote effect. For simplicity purposes, Yx = y, Yx′ = y, Yx = y′, Yx′ = y′ are denoted by
yx, yx′ , y′x, y

′
x′ , respectively.

Same as Li and Pearl [13], individual behavior was classified into four response types: labeled
complier, always-taker, never-taker, and defier. Suppose the benefit of selecting one individual in
each category are β, γ, θ, δ respectively (i.e., the benefit vector is (β, γ, θ, δ)). Li and Pearl defined
the objective function of the unit selection problem as the average benefit gained per individual.
Suppose x and x′ are binary treatments, y and y′ are binary outcomes, and c are population-specific
characteristics, the objective function (i.e., benefit function) is following (If the goal is to evaluate the
average benefit gained per individual for a specific population c, argmaxc can be dropped.):

argmaxc βP (yx, y
′
x′ |c) + γP (yx, yx′ |c) + θP (y′x, y

′
x′ |c) + δP (y′x, yx′ |c).

Using a combination of experimental and observational data, Li and Pearl established the most
general tight bounds on this benefit function as follow (which we refer to as Li-Pearl’s Theorem in
the rest of the paper). The only constraint is that the population-specific characteristics are not a
descendant of the treatment.
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Figure 1: The Causal Model, where X is a binary treatment, Y is a binary effect, and Z is a set of 20
independent binary characteristics.

Theorem 1. Given a causal diagram G and distribution compatible with G, let C be a set of variables
that does not contain any descendant of X in G, then the benefit function f(c) = βP (yx, y

′
x′ |c) +

γP (yx, yx′ |c) + θP (y′x, y
′
x′ |c) + δP (yx′ , y′x|c) is bounded as follows:

W + σU ≤ f(c) ≤ W + σL if σ < 0,

W + σL ≤ f(c) ≤ W + σU if σ > 0,

where σ,W,L, U are given by,

σ = β − γ − θ + δ,

W = (γ − δ)P (yx|c) + δP (yx′ |c) + θP (y′x′ |c),

L = max


0,

P (yx|c)− P (yx′ |c),
P (y|c)− P (yx′ |c),
P (yx|c)− P (y|c)

 ,

U = min


P (yx|c),
P (y′x′ |c),

P (y, x|c) + P (y′, x′|c),
P (yx|c)− P (yx′ |c)+

+P (y, x′|c) + P (y′, x|c)

 .

3 Causal Model

Similar to the probabilities of causation in [8], the learned bounds of the benefit function need to
compare to the true bounds. The data generating model should be stated explicitly. We used the
second causal model in [9] (see the appendix for the detail). The model is depicted in Figure 1. X is
a binary treatment, Y is a binary effect, and Z is a set of 20 independent binary characteristics (say
Z1, ..., Z20). The structural equations are as follow (for simplicity reason, we let x = 1, x′ = 0, and
y = 1, y′ = 0):

Zi = UZi
for i ∈ {1, ..., 20},

X = fX(MX , UX) =

{
1 if MX + UX > 0.5,
0 otherwize,

}
Y = fY (X,MY , UY ) =

{
1 if 0 < CX +MY + UY < 1 or 1 < CX +MY + UY < 2
0 otherwize,

}
where, UZi , UX , UY are binary exogenous variables with Bernoulli distributions,
C is a constant, and MX ,MY are linear combinatations of Z1, ..., Z20.

The value of C,MX ,MY and the distributions of UX , UY , UZ1
, ..., UZ20

for the model are provided
in the appendix.

4 Benefit Function

The benefit vector that we will use in the simulated study is (1,−1,−1,−2), which is a common one
to encourage complier as well as avoid all other three response types. Therefore, the benefit function
is

f(c) = P (yx, y
′
x′ |c)− P (yx, yx′ |c)− P (y′x, y

′
x′ |c)− 2P (y′x, yx′ |c).
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5 Data Generating Process

Similar to Li and Pearl [8], 15 of the 20 binary characteristics were made observable (i.e., Z1, ..., Z15),
and 5 of them were made unobservable (i.e., Z16, ..., Z20). Therefore, we have 215 observed sets of
characteristics.

5.1 Informer Data

The informer data contains the true bounds of the benefit function of each set of characteristics. From
the SCM we have, the value of X is determined by UX and Mx (denoted by fX(MX , UX)) and
the value of Y is determined by X , MY , and UY (denoted by fY (X,MY , UY )). We first compute
the true value of the benefit function and the true experimental and observational distributions for
any set of 20 characteristics z = (z1, ..., z20). Since z is fixed; therefore, MX and MY are fixed
(denoted by MX(z) and MY (z)). We then have the benefit function f(z), experimental distribution
P (Y |do(X), z), and observational distribution P (Y |X, z) as follows:

f(z) = P (yx, y
′
x′ |z)− P (yx, yx′ |z)− P (y′x, y

′
x′ |z)− 2P (y′x, yx′ |z)

= P (UY = 0)(T0 − T2 − T4 − 2T6) + P (UY = 1)(T1 − T3 − T5 − 2T7),

where, T0 =

{
1 if Y (0,MY (z), 0) = 0 and Y (1,MY (z), 0) = 1,
0 otherwize,

}
,

T1 =

{
1 if Y (0,MY (z), 1) = 0 and Y (1,MY (z), 1) = 1,
0 otherwize

}
,

T2 =

{
1 if Y (0,MY (z), 0) = 1 and Y (1,MY (z), 0) = 1,
0 otherwize,

}
,

T3 =

{
1 if Y (0,MY (z), 1) = 1 and Y (1,MY (z), 1) = 1,
0 otherwize

}
,

T4 =

{
1 if Y (0,MY (z), 0) = 0 and Y (1,MY (z), 0) = 0,
0 otherwize,

}
,

T5 =

{
1 if Y (0,MY (z), 1) = 0 and Y (1,MY (z), 1) = 0,
0 otherwize

}
,

T6 =

{
1 if Y (0,MY (z), 0) = 1 and Y (1,MY (z), 0) = 0,
0 otherwize,

}
,

T7 =

{
1 if Y (0,MY (z), 1) = 1 and Y (1,MY (z), 1) = 0,
0 otherwize

}
.

P (Y = 1|do(X), z)

= P (UY = 0) ∗ Y (X,MY (z), 0) + P (UY = 1) ∗ Y (X,MY (z), 1).

P (Y = 1|X, z)

= P (UX = 0) ∗ P (UY = 0) ∗ Y (X(MX(z), 0),MY (z), 0) +

P (UX = 0) ∗ P (UY = 1) ∗ Y (X(MX(z), 0),MY (z), 1)) +

P (UX = 1) ∗ P (UY = 0) ∗ Y (X(MX(z), 1),MY (z), 0)) +

P (UX = 1) ∗ P (UY = 1) ∗ Y (X(MX(z), 1),MY (z), 1)).

Second, we need to compute the informer data for any 15 observed set of characteristics,
say c = (z1, ..., z15). c = (z1, ..., z15) consists 32 sets of 20 characteristics (say s0 =
(z1, ..., z15, 0, 0, 0, 0, 0), s1 = (z1, ..., z15, 0, 0, 0, 0, 1), s2 = (z1, ..., z15, 0, 0, 0, 1, 0), ..., s31 =
(z1, ..., z15, 1, 1, 1, 1, 1)), then we have the benefit function f(c), experimental distribution
P (Y |do(X), c), and observational distribution P (Y |X, c) of any observed sets of characteristics c
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are as follow:

f(c) = P (Y = 0X=0, Y = 1X=1|c)
= P (s0)/P (c)f(s0) + P (s1)/P (c)f(s1) + P (s2)/P (c)f(s2) + ...+ P (s31)/P (c)f(s31)

= P (Z16 = 0)P (Z17 = 0)P (Z18 = 0)P (Z19 = 0)P (Z20 = 0)f(s0) +

P (Z16 = 0)P (Z17 = 0)P (Z18 = 0)P (Z19 = 0)P (Z20 = 1)f(s1) + ...+

P (Z16 = 1)P (Z17 = 1)P (Z18 = 1)P (Z19 = 1)P (Z20 = 1)f(s31).

P (Y = 1|do(X), c)

= P (Z16 = 0)P (Z17 = 0)P (Z18 = 0)P (Z19 = 0)P (Z20 = 0)P (Y = 1|do(X), s0) +

P (Z16 = 0)P (Z17 = 0)P (Z18 = 0)P (Z19 = 0)P (Z20 = 1)P (Y = 1|do(X), s1) + ...+

P (Z16 = 1)P (Z17 = 1)P (Z18 = 1)P (Z19 = 1)P (Z20 = 1)P (Y = 1|do(X), s31).

P (Y = 1|X, c)

= P (Z16 = 0)P (Z17 = 0)P (Z18 = 0)P (Z19 = 0)P (Z20 = 0)P (Y = 1|X, s0) +

P (Z16 = 0)P (Z17 = 0)P (Z18 = 0)P (Z19 = 0)P (Z20 = 1)P (Y = 1|X, s1) + ...+

P (Z16 = 1)P (Z17 = 1)P (Z18 = 1)P (Z19 = 1)P (Z20 = 1)P (Y = 1|X, s31).

Therefore, the true bounds of the benefit function f(c) for each set of observed characteristics could
be obtained using Theorem 1 and above observational and experimental distributions.

5.2 Experimental Sample

The 5000000 finite experimental samples for training purposes can be obtained repeatedly as follows:

• Randomly generate (UX , UY , UZ1
, ..., UZ20

) using the given Bernoulli distributions;
• Randomly generate X using Bernoulli(0.5);
• Compute Y = fY (X,MY , UY );
• Collect a experimental sample (UZ1 , UZ2 , ..., UZ15 , X, Y ) (Note that Zi = UZi in our

model);

5.3 Observational Sample

The 5000000 finite observational samples for training purposes can be obtained repeatedly as follows:

• Randomly generate (UX , UY , UZ1
, ..., UZ20

) using the given Bernoulli distributions;
• Compute X = fX(MX , UX);
• Compute Y = fY (X,MY , UY );
• Collect a experimental sample (UZ1

, UZ2
, ..., UZ15

, X, Y ) (Note that Zi = UZi
in our

model);

6 Machine Learning Model

6.1 Features and Label

The training features are 15 observed characteristics. The training labels are lower and upper bounds
of the benefit function for the 15 observed characteristics (two separate models for lower and upper
bounds). In order to create the labels, we need Frequentist estimates of the experimental and
observational distributions for that 15 observed characteristics. According to Li, Mao, and Pearl
[9], 1300 of experimental and observational samples are needed for the labels of the 15 observed
characteristics. Therefore, in our 5000000 experimental and 5000000 observational samples, if the
same set of 15 observed characteristics appeared more than 1300 times, we obtain a lower bound and
an upper bound for that set of 15 observed characteristics by applying the Theorem 1. We have 302
sets of characteristics for lower bound and 321 sets of characteristics for upper bound for training
purposes. The 61 sets of lower bound and 65 sets of upper bound are then split for the testing set.
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(a) Lower bound of the benefit function for 200 sets
of characteristics. These 200 sets of characteristics are
randomly selected from 32768 of them.

(b) Upper bound of the benefit function for 200 sets
of characteristics. These 200 sets of characteristics are
randomly selected from 32768 of them.

Figure 2: The learned bounds of the benefit function for the sets of characteristics compared to the
true bounds of the benefit function.

6.2 Learning

In this paper, we use neural networks as our estimator to estimate the lower and upper bounds.
Because the simulated data is tabular in nature, we just use a multilayer perceptron (MLP) in the
following experiments. Our experimental environment is an AWS p3.2xlarge instance. The key
parameters of our model are: embeddings dimension as 128, training epochs as 600, and learning
rate as 0.01.

7 Experimental Results

To show the performance of estimation, we randomly sampled 200 sets of characteristics from all
32768 instances. We observe that the average error of the learned lower bound and upper bound
are 0.5652 and 0.5447, respectively. ∼ 0.5 is not of bad quality because the potential values of the
benefit function are from −4 to 1. We show how our predicted bounds fit the true ones in Figure 2,
which confirms that the predicted bounds generally capture the theoretical ones.

8 Discussion

We demonstrated that the benefit function for all sets of characteristics could be learned from finite
population data. We further discuss some properties of our proposed framework.

First, the bounds of the benefit function were successfully learned by the machine learning model.
Similar to Li and Pearl in [8], this is another example that the quantities of a counterfactual query
could be learned properly if the proper counterfactual labels were fed to the machine learning model.
This is the key to applying the machine learning model to causality concepts.

Second, we also applied the simplest machine learning model. The benefit vector and the data-
generating process are available for researchers to apply fancy machine learning models. The
accuracy of the predictions still has the potential to improve.

9 Conclusion

We illustrated how to learn the bounds of the benefit function in the unit selection problem for each
set of characteristics using finite population data. All sets of characteristics of the bounds of the
benefit function were being learned by a machine learning model, thus being able to select the sets
of characteristics that have high (or positive) benefit values. Experiments showed that the benefit
function is learnable with proper labels.
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A Appendix

A.1 The Causal Model

We used the second causal model in [9]. MX ,MY and C were uniformly generated from [−1, 1],
and the Bernoulli parameters of UX , UY , UZ1

, ..., UZ20
were generated uniformly from [0, 1]. The

detailed model is as follows:

Zi = UZi
for i ∈ {1, ..., 20},

X = fX(MX , UX) =

{
1 if MX + UX > 0.5,
0 otherwize,

}
Y = fY (X,MY , UY ) =

{
1 if 0 < CX +MY + UY < 1 or 1 < CX +MY + UY < 2,
0 otherwize,

}
where, UZi , UX , UY are binary exogenous variables with Bernoulli distributions.s.t.,
UZ1 ∼ Bernoulli(0.524110233482), UZ2 ∼ Bernoulli(0.689566064108),
UZ3 ∼ Bernoulli(0.180145428970), UZ4 ∼ Bernoulli(0.317153536644),
UZ5

∼ Bernoulli(0.046268153873), UZ6
∼ Bernoulli(0.340145244411),

UZ7
∼ Bernoulli(0.100912238566), UZ8

∼ Bernoulli(0.772038172066),
UZ9

∼ Bernoulli(0.913108434869), UZ10
∼ Bernoulli(0.364272299067),

UZ11
∼ Bernoulli(0.063667554704), UZ12

∼ Bernoulli(0.454839320009),
UZ13

∼ Bernoulli(0.586687215140), UZ14
∼ Bernoulli(0.018824647595),

UZ15
∼ Bernoulli(0.871017316787), UZ16

∼ Bernoulli(0.164966968157),
UZ17

∼ Bernoulli(0.578925020078), UZ18
∼ Bernoulli(0.983082980658),

UZ19 ∼ Bernoulli(0.018033993991), UZ20 ∼ Bernoulli(0.074629121266),
UX ∼ Bernoulli(0.29908139311), UY ∼ Bernoulli(0.9226108109253),
C = 0.975140894243,

MX = [Z1 Z2 ... Z20]×



0.843870221861
0.178759296447
−0.372349746729
−0.950904544846
−0.439457721339
−0.725970103834
−0.791203963585
−0.843183562918
−0.68422616618
−0.782051030131
−0.434420454146
−0.445019418094
0.751698021555
−0.185984172192
0.191948271392
0.401334543567
0.331387702568
0.522595634402
−0.928734581669
0.203436441511



,MY = [Z1 Z2 ... Z20]×



−0.453251661832
0.424563325534
0.0924810605305
0.312680246141
0.7676961338

0.124337421843
−0.435341306455
0.248957751703
−0.161303883519
−0.537653062121
−0.222087991408
0.190167775134
−0.788147770713
−0.593030174012
−0.308066297974
0.218776507777
−0.751253645088
−0.11151455376
0.785227235182
−0.568046522383
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