
Efficient Learning in Linearly Solvable MDP Models

Ang Li
Department of Computer Science,

University of Minnesota USA
lixx1522@umn.edu

Paul R Schrater
Department of Computer Science & Psychology,

University of Minnesota USA
schrater@umn.edu

Abstract

Linearly solvable Markov Decision Process (MDP)
models are a powerful subclass of problems with
a simple structure that allow the policy to be writ-
ten directly in terms of the uncontrolled (passive)
dynamics of the environment and the goals of the
agent. However, there have been no learning al-
gorithms for this class of models. In this research,
we develop a robust learning approach to linearly
solvable MDPs. To exploit the simple solution
for general problems, we show how to construct
passive dynamics from any transition matrix, use
Bayesian updating to estimate the model parame-
ters and apply approximate and efficient Bayesian
exploration to speed learning. In addition, we re-
duce the computational cost of learning using inter-
mittent Bayesian updating and policy solving. We
also gave a polynomial theoretical time complex-
ity bound for the convergence of our learning algo-
rithm, and demonstrate a linear bound for the sub-
class of the reinforcement learning problems with
the property that the transition error depends only
on the agent itself. Test results for our algorithm
in a grid world are presented, comparing our algo-
rithm with the BEB algorithm. The results showed
that our algorithm learned more than the BEB algo-
rithm without losing convergence speed, so that the
advantage of our algorithm increased as the envi-
ronment got more complex. We also showed that
our algorithm’s performance is more stable after
convergence. Finally, we show how to apply our
approach to the Cellular Telephones problem by
defining the passive dynamics.

1 Introduction
Markov Decision Processes (MDP) provide the foundation
for key problems in artificial intelligence, including robotics,
automated decision making and scheduling. The problem
of learning MDPs (Reinforcement learning) is challenging
and has given rise to a broad assortment of approaches that
vary in terms of how much must be known about the un-
derlying MDP, ranging from model-free methods that require

almost no information, (e.g. adaptive heuristic critic algo-
rithms and Q-learning) [Kaelbling et al., 1996] to model-
based algorithms that need the MDP to be partially specified
(e.g. the Dyna algorithm, the Queue-Dyna algorithm and the
RTDP algorithm) [Kaelbling et al., 1996]. Given limited data
and some background knowledge about the underlying MDP,
Model-based algorithms allow for more rapid learning by ex-
ploiting structure of the learning process and solving the ex-
ploration problem. A critical problem in using model-based
algorithms is the computational cost–to do learning the Bell-
man equation [Bellman, 2003] defined by the MDP must be
repeatedly solved for many different versions of the model.

The computational cost can be reduced when the Bellman
equation has analytic solutions. Recently, Todorov [Todorov,
2009] described a class of MDPs with linear solutions, and
showed that most discrete control problems can be approxi-
mated by this class. Critically, policies are analytically com-
puted using only the passive dynamics and the reward func-
tion. In this paper, we focus on combining model-based learn-
ing with Todorov’s result, incorporating an exploration strat-
egy to trade-off exploration and exploitation.

Computational cost can be further reduced by delaying
Bayesian updating of MDP model parameters to reduce the
need for recomputing the policy. However, the convergence
speed of the policy critically depends on updating the model
with new observations. Thus, how to delay updating and how
long it can be delayed become crucial. In our research we
describe a function to control the updating process and give a
time bound for convergence using this approach.

1.1 Problem Description
MDP models
The MDP model is a stochastic rewarding process with con-
trol defined by a 4-tuple (S,A,R, T), where S is a set of
states, A is a set of actions, R is the expected reward gathered
after taking action a at state s and T : S × A × S → [0, 1]
is a transition probability function defining the conditional
probability p(st|st−1, at−1) of going to state st by taking ac-
tion at−1 at state st−1. A policy π : S → A is a func-
tion that maps states into actions, guiding which action to
take at each state. The aim of the algorithm is to find a pol-
icy π∗ that maximizes the total expected discounted reward
r1 + γr2 + γ2r3 + · · · , where ri is the reward gathered at
time t and γ is a discount factor. This problem can be solved

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

248

Figure 1: A 4× 4 grid world

by solving a set of Bellman equations [Bellman, 2003]

V ∗T (st) = max
at∈A
{R(st, at) + γ

∑
st+1

p(st+1|st, at)V ∗(st+1)}

(1)
and selecting the action inside the max operator as the optimal
policy [Puterman, 1994]. In RL, neither the transition func-
tion nor the reward function is assumed precisely known. For
this research the reward function was assumed known with
the focus on learning T .

Example Learning Problem
Suppose that an agent lives in an m×m grid world (4× 4 is
shown in Figure 1). Beginning in the starting state (lower left
corner entry), it must choose an action at each time step. The
interaction with the environment terminates when the agent
reaches one of the goal states (upper right corner entry and
the entry under it, marked +2 or −2). The agent gets the re-
ward +2 or −2 at the goal state and −0.04 at all other states.
In each location, the available actions are Up, Down, Left
and Right. It is assumed that the environment is fully observ-
able so that the agent always knows where it is. The states,
except the start state and the terminal states, can have obsta-
cles associated with them with a probability of 0.1 (p = 0.1),
that prevent the agent from entering. The environment has a
transition error: after an action, the intended outcome occurs
with p = 0.8, and the agent moves perpendicularly to the in-
tended direction with p = 0.2. However, this transition error
is unknown by the agent. The task of the agent is to learn
this environment, getting the optimal policy at each state that
maximizes the overall reward while learning the transition er-
ror.

2 Related Work
2.1 Bayesian Reinforcement Learning
Strens [Strens, 2000] proposed a Bayesian solution for
model-based RL, which explicitly maintains a belief over
models. Belief is denoted by B, where B = P (T). Af-
ter making an observation, B is updated using Bayes’ rule,
Bt+1|st, at, st+1 ∝ p(st, at, st+1|T)×Bt. In this algorithm
B is maintained by a set of Dirichlet distributions over T [Teh
et al., 2006; Pitman and Yor, 1997]. Incorporating B and
augmenting the state to the tuple (b, s), the Bellman equation
becomes

V ∗(bt, st) = max
at∈A
{R(st, at) + (2)

+ γ
∑
st+1

p(st+1|bt, st, at)V ∗(bt+1, st+1)}

The RL process can be described as the iteration of 1) inter-
acting with the environment, getting an observation, 2) updat-
ing B and 3) solving the Bellman equation given B.

2.2 Near-Bayesian Exploration in Polynomial
Time

In general, solving the set of equations derived from equa-
tion 2 is extremely hard since the optimal action is based not
only on how the action will affect the next state but also how
the action will affect the next B (i.e., equation 2 depends on
b and b′ rather than just b) and approximations must be done.
Kolter and Ng [Kolter and Ng, 2009] proposed an approxima-
tion algorithm called the Bayesian Exploration Bonus Algo-
rithm (BEB) which chooses actions according to the current
mean estimate of the state transition plus an additional reward
bonus for state-action pairs. According to their algorithm, the
Bellman equation was redefined as

V ∗(bt, st) = max
at∈A
{R(st, at) +

β

1 + α0(st, at)
+ (3)

+ γ
∑
st+1

p(st+1|bt, st, at)V ∗(bt, st+1)}

where β is a constant and α0(st, at) is the count of observa-
tions of state-action pair (st, at). Note that B is not updated
in this equation (i.e., it only depends on b rather than b and b′),
thus the equation can be solved using standard value iteration
or policy iteration algorithms.

2.3 Efficient Computation of Optimal Actions
While simpler, the model-based computation of optimal ac-
tions in equation 3 is usually intractable and typically requires
extensive approximation. However, efficient and exact com-
putation of optimal actions is possible for a subclass of MDP
models [Todorov, 2009]. Consider now the cost instead of
the reward in equation 1; l(s, a) is the cost at state s when
taking action a, and l(s, a) = −R(s, a). The problem then
becomes minimizing the total cost instead of maximizing the
total reward, and the Bellman equation is rewritten as

V (s) = min
a
{l(s, a) + Es′∼p(·|s,a)[V (s′)]} (4)

where E[V (s′)] is the expected cost-to-go at the next state.
Todorov relaxed the optimization problem by allowing the
agent to specify the transition probabilities u(s′|s) directly in-
stead of specify sequences of symbolic actions. Thus actions
become u(s′|s) = p(s′|s, a) and the agent has the power to
reshape the dynamics in any way it wishes, given action costs.
Let uc(s′|s) denote the passive dynamics characterizing the
behavior of the system in the absence of controls. The action
costs can now be quantified by measuring the difference be-
tween uc(s′|s) and u(s′|s). Differences between probability
distributions are usually measured by the Kullback-Leibler
(KL) divergence, so the cost l(s, a) must have the form

l(s, a) = q(s) +KL(u(·|s) ‖ uc(·|s)) (5)

where q(s) is the state cost, which can be an arbitrary func-
tion encoding how desirable different states are. Let z(s) =
exp (−V (s)) be the desirability at each state. Substituting

249

equation 4 in equation 5, the Bellman equation can be written
in terms of z as

− log z(s) = q(s)+min
a
{Es′∼u(·|s)[log

u(s′|s)
uc(s′|s)z(s′)

} (6)

Since the KL divergence achieves its global minimum of zero
when the 2 distributions are equal, the optimal action

π(s′|s) = uc(s′|s)z(s′)
g[z](s)

where g[z](s) =
∑
s′ uc(s

′|s)z(s′) = Es′∼uc(·|s)[z(s
′)], is

the normalization factor. So the Bellman equation can now
be simplified by substituting the optimal action, taking into
account the normalization term, and exponentiating. Thus,

z(s) = exp (−q(x))g[z](s) (7)

If we define the index sets T and N , terminal and nontermi-
nal states, and partition z, q, and uc accordingly, equation 7
becomes

(diag(exp(qN))− ucNN)zN = ucNT exp(−qT) and

zN = (diag(exp(qN))− ucNN)−1 · ucNT exp(−qT) (8)

where zN is the vector of desirability at the nonterminal state
and the desirability at the terminal state is V (s) = q(s), so
z(s) = exp(−q(s)). Now, the solution of the Bellman equa-
tion becomes a linear equation, and thus can be solved by ma-
trix factorization. Most importantly, equation 8 only involves
the passive dynamic and the reward function. Therefore, if
the passive dynamic and the reward function are unchanged
with the environment a linear Bellman equation need only
be pre-solved once. However, Todorov’s solution has some
limitations. First, the control cost must be a KL divergence,
which reduces to the familiar quadratic energy cost in con-
tinuous settings. This is a sensible way to measure control
energy and is not particularly restrictive. Second, the con-
trols and the noise must be able to cause the same state tran-
sitions. Todorov notes this is a more significant limitation,
but for a discrete state MDP model this limitation is naturally
satisfied. Third, the noise amplitude and the control costs are
coupled. This can be compensated to some extent by increas-
ing the state costs ensuring that exp(−q(x)) does not become
numerically zero.

3 Efficiently solving Bayesian RL using
linearly solvable MDPs

In order to adequately explore the environment, ideally we
would execute a full Bayesian look-ahead since the Bayesian
solution (see section 2.1) automatically trades-off exploration
and exploitation. Exploitation maximizes rewards using cur-
rent estimates and exploration maximizes long-term rewards
by improving estimates and they are both an indispensable
part of the RL process. However, the Bayesian solution
is intractable in general [Poupart, 2007]. In our approach,
we use the approximation in equation 3 to balance explo-
ration/exploitation. To efficiently solve this equation, our
strategy is to exploit the linear solution given by equation 8.
The next task is to combine Todorov’s result with equation 3.

3.1 Passive Dynamics
First, to apply equation 8, we need to be able to define the
uncontrolled dynamics. However, a simple method for con-
structing passive dynamics for almost every control problem
exists. For example, an unbiased coin is the passive dynamic
of a coin toss since this is tossing without control. The pas-
sive dynamic for the shortest-path problem on a graph cor-
responds to a random walk on the graph. For the problem
at hand the passive dynamic is randomly choosing an action.
Since there is a transition error it needs to be added to the
passive dynamics, producing the equation

uc(s′|s) =
∑na

a=1 p(s
′|s, a)

na
(9)

where na is the number of actions.

3.2 Choosing the Suboptimal Action from
Desirability

Second, equation 8 solves a relaxed problem that computes
the desired probabilities of transitioning to each state (the de-
sirability). However, the agent still needs to select actions,
not action probabilities. We solve this problem of choosing
an action from desirability given the current belief state by
projecting the desired probabilities onto an estimate of the
transition probabilities to find the action that can best execute
the desired probabilities. This produces the equation

a = max
a∈A
{
∑
s′

z(s′)p(s′|s, a)} (10)

where a is the action and s is the current state.

3.3 The Learning Process
Similar to traditional Bayesian RL, we will maintain belief
in the models. The variable belief is denoted as B, where
B = P (T). After making an observation, B is updated using
Bayes’ rule, Bt+1|st, at, st+1 ∝ p(st, at, st+1|T) × Bt. In
this algorithm, B about the transition distributions is main-
tained by a set of Dirichlet distributions over each T . Now
we revise Todorov’s solution by adding belief, defining the
state by the tuple (b, s). Equation 9 now becomes

uc(s′|s) =
∑na

a=1 p(s
′|s, b, a)

na
(11)

3.4 Exploration vs. Exploitation
To balance exploration and exploitation, similar to Kolter’s
method in Section 2.2, an exploration bonus was added when
choosing the suboptimal action from equation 10, so equa-
tion 10 becomes

a = max
a∈A
{ β

1 + α0(s, a)
+
∑
s′

z(s′)p(s′|s, a)} (12)

where β is a constant and α0(s, a) is the count of observa-
tions of the state-action pair (s, a). This procedure mirrors
the approach to RL where adaptive dynamic programming
is combined with an exploration function [Thrun, 1992].
However, after a number of iterations, b will never change
(i.e., the environment is fully observed by the agent), so

250

the exploration process needs to stop by removing the ex-
ploration bonus from equation 12. Between two RL rounds
(p(s′|s, bi−1, a)−p(s′|s, bi, a))2 is accumulated (set to beM
in the algorithm in sections 4.3). An exploration switcher is
initially set to ON and whenever the accumulated difference
is smaller than some predetermined constant it is turned off.

Now the RL process can be described as the iteration of
1) interacting with the environment, producing an observa-
tion, 2) updating B, 3) solving equation 11 given B to get the
passive dynamic, 4) solving equation 8 given the passive dy-
namic to get desirability, 5) Choosing the suboptimal action
from equation 10 or 12 depending on the exploration switcher
and 6) if it is the end of an RL round, checking the accumu-
lated difference of this RL round to see whether the explo-
ration switcher should be turned off.

4 Manual Delay of the Algorithm

4.1 Time Complexity and Delay of Updating
If there are n states total and h exploration steps are needed
for convergence, then at each step equation 8 needs to be
solved, which involves a matrix inverse operation of an n-by-
nmatrix that can be solved inO(n3) time (O(n2.8) time with
Strassen’s algorithm). Therefore, the time cost is O(h× n3).
However, h might still be large. What is wanted is to sepa-
rate h and n in time complexity as in the form O(h + n3).
Note that some of the observations will change the subopti-
mal policy so little that solving the corresponding equations
provide no benefit. Thus, doing Bayesian updates and solving
equation 8 every time is inefficient. We want a control func-
tion that minimizes the total number of updates. Seijen and
Whiteson [Seijen and Whiteson, 2009] showed that an agent
can delay its update until the given state is revisited, however
their method is too limited for our use.

4.2 The Delay function
A measure of the impact of observations needs to be devel-
oped to determine how many observations are necessary to
change the suboptimal policy. The natural way of doing this
is to find a function that maps (st, at, st+1) to a value, and
then accumulate this value (set to be N in the algorithm in
Sections 4.3) until it is large enough. Intuitively, at the start
of the learning process the world to the agent is extremely
unclear so every observation will have a large impact on the
suboptimal policy. At the very end of the learning process
the world to the agent is almost complete, so many obser-
vations are needed to change the suboptimal policy. What
is needed is a function that is decreasing during the learning
process to capture the value of observations. Dearden [Dear-
den et al., 1998] has a way of computing value of informa-
tion exploration over Q-Learning based on the theory of value
of information. Since the observation counts for state-action
pairs α0(st, at) are non-decreasing during the learning pro-
cess then δ

(α0(st,at))2
, where δ is a constant, is a natural way

of choosing that function. (Note that in this equation we used
a square rather than the linear function. In Section 5 we show
how this change will produce a theoretical time bound)

4.3 The Passive Dynamic Algorithm
The Passive Dynamic (PD) algorithm can be described as fol-
lows:

• Initialize B, explore = 1, s = start, M = N = 0

• loop
• Compute desirability by solving eq.’s 8 & 11
• Compute policy: if explore, use eq. 12, else eq. 10
• Select action, observe state
• if delay = 0, update B
• N ← N + δ

α0(st,at)2
,

• if N > enough→ delay = 0 & N = 0

• M ←M + (p(s′|s, bi−1, a)− p(s′|s, bi, a))2

• restart if s = terminal unless M > enough1

5 Complexity Analysis
Now, let us consider the efficiency of the PD algorithm. Sup-
pose there are a total of h steps in the whole learning process
and n states of environment. It takes O(n) time for iterat-
ing all of the states. Computing desirability takes O(n3) for
solving the matrix equation. We show the total cost of the PD
algorithm is O(hn+ n4).
Theorem 1. With delay, the total number of runs for updating
the belief in the PD algorithm is O(n).

Proof. After h steps, the total accumulated N in the PD al-
gorithm is at most δ(n1 +

n
22 +

n
32 + · · ·+

n
k2), where h = nk.

So the total number of updates is δ(n1 + n
22 + n

32 + · · · +
n
k2)/Const <

nδ
Const

∑∞
i=1

1
i2 <

2nδ
Const = O(n)

Since h is much bigger than n thenO(hn+n4)� O(hn3),
where O(hn3) is the minimal complexity of Kolter’s BEB
Algorithm. Actually, when applying to the agent used in the
experimental design, iterating states takes a constant amount
of time so the complexity of the PD algorithm becomes
O(h+n4), which means h and nwere successfully separated.
In other words, in the learning process time is a polynomial,
since the cost h is just the time that the agent is interacting
with the environment.

5.1 Pre-PD algorithm
The solution can be improved if there is additional informa-
tion. If the transition probability (transition error) is the same
in each state, that is, the transition error is due to the agent
itself but independent of the environment then the transition
probability can be excluded, and equation 9 becomes

uc(s′|s) =
∑
a∈SS′ 1

na
(13)

where SS′ is the set of actions that takes the agent from state
s to s′ ignoring the transition error. Now the passive dynamic
is only related to the type of action and desirability is only re-
lated to the type of action and the reward function. Desirabil-
ity in each state can be pre-computed. In the learning process
only the transition matrix needs to be learned and projection

251

Figure 2: Optimal policy in a 4× 4 grid world

can be used to get an optimal action instead of having to solve
any equations. By an argument similar to the above, we can
show that the complexity of this approach is O(n3 + h+ n),
and the n3 part can be done before the learning process.

6 Experimental Procedures
6.1 Grid World
Experimental Setting
Using the environment established in Section 1 set m = 4,
8, and 10. For the m = 10 case manually set 10 obstacles in
the environment to be challenging. Beliefs were represented
by Dirichlet count statistics. Each time the agent reached the
terminal state was considered the end of a round and the agent
was reset to the starting state.

We compared 4 algorithms in the experiment: 1) the BEB
algorithm by Kolter, 2) the Delayed-BEB algorithm, which is
the BEB algorithm plus a manual delay strategy, 3) the PD
algorithm and 4) the Pre-PD algorithm.

Experimental Results
All four algorithms were tested to make sure that they con-
verge to the optimal policy in the 4 × 4 case. For perfect
belief, the optimal policy is illustrated in Figure 2. The four
algorithms were then run using 100 rounds of exploration and
the same optimal policy as shown above was returned and
we tracked the increase in average reward per round during
the learning process. Results in Figures 3 show that the PD
and Pre-PD algorithms performed better than the others with
smaller and nearly constant time cost for both 4×4 and 8×8
grids.

For the 10 × 10 grid world with 10 hard obstacles, per-
formance improves for 20 rounds for three algorithms (De-
layed BEB, PD and Pre-PD algorithms). However, the BEB
algorithm could not arrive at an optimal solution within 100
rounds. The time costs of the Delayed BEB, PD and Pre-
PD algorithms stayed nearly constant after 10 rounds rather
than increasing linearly and the PD and Pre-PD algorithms
performed the best. After 20 rounds the PD and Pre-PD al-
gorithms performances were much more stable than the other
two, because the algorithm had stopped the exploration pro-
cess by the exploration switcher. In addition, as the complex-
ity of the environment increased, the time cost for the PD and
Pre-PD algorithms increased at a slower pace than the other
algorithms, especially the Pre-PD algorithm, which increased
linearly.

6.2 Cellular Telephone Systems
Cellular telephone is a more interesting problem that requires
dynamically allocating communication resources (channels)

Figure 3: Average rewards & Time cost in 3 grid worlds for
the four algorithms

Figure 4: Blocking Probability of PD algorithm

252

so as to maximize service in a stochastic caller environment.
Singh and Bertsekas [Singh and Bertsekas, 1997] presented a
solution using Sutton’s [Sutton, 1988] TD(0) with a feature-
based linear network. Call arrivals are modeled as poisson
processes with a separate mean for each cell, and call dura-
tions are modeled with an exponential distribution. We set
the cellular array to 3 by 3 with 7 channels (roughly 79 con-
figurations) and a channel reuse constraint of 3. We set the
mean call arrival rates to 10 calls/hr respectively in each cell
and the mean call duration is 3 minutes.

In order to use our PD algorithm, we need to establish the
states, action, reward function, passive dynamics, exploration
function and belief for the problem.

Since this problem has no terminal state (we set the state
as Singh’s way, and we will reduce the state to the small set
later), we need to use the infinite horizon discounted cost
case which makes Equation 8 becomes z = QPzγ , where
Q = diag(exp(−q)), P = UC and UC is the matrix of
passive dynamics. It can be solved by using power itera-
tion method [Todorov, 2009]. And here in this problem, we
do not have transition error, and Action is just to choose the
next available state given coming calls, so the equation 10
becomes s′ = maxs′∈S{z(s′)}, where S is the set for next
available states. The reward function of each state as the
number of ongoing calls. The belief in this problem is just
the parameters of all distributions (rate of coming calls & call
duration). The passive dynamic is the natural change in calls
without channel assignments, so that states with same ongo-
ing calls on each cell are the same to our system. It means we
can reduce the number of states from 79 to 16445.

The results of the PD algorithm are shown in Figure 4.
We achieve a Blocking Probability of 8%, compared to the
Singh and Bertsekas’s RL method’s 23% and Fixed Assign-
ment method’s 51% [Singh, 1997]. Note that about the first
1 × 105 seconds are the learning process, and it rapidly con-
verges.

7 Conclusion
We provided a new efficient method for solving RL problems
by exploiting linearly solvable MDPs and using limited pol-
icy updating and gave a polynomial time bound for the learn-
ing process. We also built a Pre-PD algorithm for a special
class of RL problems in which the transition error is due to
the agent itself rather than the environment, giving a linear
learning time bound for the algorithm. We show our algo-
rithm has excellent performance on both toy and test prob-
lems and that our algorithms’ performances were more stable
after convergence.

References
[Bellman, 2003] R. Bellman. Dynamic programming. Dover

Publications, 2003.

[Dearden et al., 1998] R. Dearden, N. Friedman, and S. Rus-
sell. Bayesian q-learning. In National Conference on Ar-
tificial Intelligence, pages 761–768. John Wiley & Sons
Ltd, 1998.

[Kaelbling et al., 1996] L.P. Kaelbling, M.L. Littman, and
A.W. Moore. Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4, 1996.

[Kolter and Ng, 2009] J.Z. Kolter and A.Y. Ng. Near-
bayesian exploration in polynomial time. In International
Conference on Machine Learning, pages 513–520. ACM,
2009.

[Pitman and Yor, 1997] J. Pitman and M. Yor. The two-
parameter poisson-dirichlet distribution derived from a
stable subordinator. The Annals of Probability, 25(2):855–
900, 1997.

[Poupart, 2007] P. Poupart. Tutorial on bayesian methods for
reinforcement learning. In ICML, 2007.

[Puterman, 1994] M.L. Puterman. Markov decision pro-
cesses: Discrete stochastic dynamic programming. John
Wiley & Sons, Inc., 1994.

[Seijen and Whiteson, 2009] H.V. Seijen and S. Whiteson.
Postponed updates for temporal-difference reinforcement
learning. In International Conference on Intelligent Sys-
tems Design and Applications, pages 665–672. IEEE,
2009.

[Singh and Bertsekas, 1997] S. Singh and D. Bertsekas. Re-
inforcement learning for dynamic channel allocation in
cellular telephone systems. Advances in neural informa-
tion processing systems, pages 974–980, 1997.

[Singh, 1997] S. Singh. Dynamic channel allocation in cel-
lular telephones: a demo. http://web.eecs.umich.edu/
∼baveja/Demo.html, 1997.

[Strens, 2000] M.J.A. Strens. A bayesian framework for re-
inforcement learning. In International Conference on Ma-
chine Learning, pages 943–950, 2000.

[Sutton, 1988] R.S. Sutton. Learning to predict by the meth-
ods of temporal differences. Machine learning, 3(1):9–44,
1988.

[Teh et al., 2006] Y.W. Teh, M.I. Jordan, M.J. Beal, and
D.M. Blei. Hierarchical dirichlet processes. Journal
of the American Statistical Association, 101(476):1566–
1581, 2006.

[Thrun, 1992] S.B. Thrun. The role of exploration in learn-
ing control with neural networks. In In Handbook of Intel-
ligent Control: Neural, Fuzzy and Adaptive Approaches,
1992.

[Todorov, 2009] E. Todorov. Efficient computation of opti-
mal actions. Proceedings of the national academy of sci-
ences, 106(28):11478–11483, 2009.

253

