Algorithms for Determining the Load of a Sporadic Task System

TR-051201
Theodore P. Baker Nathan Fisher Sanjoy Baruah
Florida State University The University of North Carolina at Chapel Hill
Department of Computer Science Department of Computer Science, CB-3175
Tallahassee, FL 32306-4530 Chapel Hill, NC 27599-3175 USA
baker@cs.fsu.edu {fishern, baruap@cs.unc.edu
Abstract of the platform. In particular, suppose a multiprocessor sys-

tem comprised ofn unit-capacity processors is defined to

In this report, we discuss a metric that characterizes have a computational capacity equahio A necessary and
the load of a sporadic task system. We give an exact,sufficient condition forr to be feasible on am processor
exponential-time algorithm that determines a task system’ssystem would be that the computational demand dbes
load by essentially simulating the execution of task system.not exceedan.

In addition, we also give an algorithm that can determine This model of schedulability analysis is known to work
the load of a task system within an arbitrarily small thresh- for implicit-deadlinesporadic task systems, where each task
old e > 0. While the worst-case time complexity of the has its relative deadline parameter equal to its minimum
approximation is still possibly exponential, we have empiri- inter-arrival separation parameter (i€. = p;). The con-
cally observed that this algorithm generally provides a very cept of computational demand there can be captured by
significant reduction in the time that we must simulate the the total system utilizationyg,, (1) = > e, Ui- That
task system to obtain the load. Additionally, we provide v, (7) < m is a necessary and sufficient condition for
proofs of correctness for our algorithms. to be feasible on a preemptive processor system. That

this is a sufficient condition follows from the fact thatrif

satisfies the utilization condition then we can “reserve” a
1 Introduction fractionu,; of each time unit to execute on the processing
platform.

For general deadlines (i.el; # p;) usum(7) is still a
lower bound on computational demand, but not an upper
bound. That is, while satisfaction of the utilization bound is
a necessary condition for feasibility, it is not sufficient. This
is illustrated in the following example:

In the sporadic task mode}4], a sporadic task; =
(e;,d;, piy) is characterized by worst-case execution re-
quiremente;, a(relative) deadlinel;, and aminimum inter-
arrival separationp;. Theutilization of taskr; is denoted
by u; £ e;/p;. A sporadic task system is collection of

sporaQ|ctask$n,r2, e ’_T"}' _ ~ Example 1 Consider the following sporadic task system

An important scheduling theory concept is determining ¢onsisting of three tasks to be scheduled on a multiproces-
the feasibility of a task system on a specified platform. A ¢, system comprised of two unit-capacity processors.
sporadic task system is said to feasibleupon a speci-

fied platform if it is possible to schedule the system on the r={n=(1,1,2),m = (1,1,2),73 = (1,1,2)}

platform such that all jobs of all tasks will meet all dead-

lines, under all permissible (also callksgjal) combinations Observe thati,,.,(7) = 1.5 < 2; however, if each task of

of job-arrival sequences by the different tasks comprising 7 releases a job at time-instant zero, each job must complete
the system. Conceptually, one would like to be able to one unit of execution by time-instant one. There is no pos-
define a measure of “computational demand” for task sys-sible way to schedule over the interval0, 1); thereforer
tems, and a measure of “computational capacity” for com- is infeasible on two processors.]
putational platforms, such that a task system is feasible on

given platform if and only if the computational demand of ~ An upper bound on computational demand for sporadic

the task system does not exceed the computational capacitjask systems with arbitrary relative deadlines js,, () «

e o :
> rer Ni» Where); = CRE This is sometimes called

thedensityof 7;. It was shown in [3] thab,,(7) < lisa
sufficient condition for feasibility of sporadic task systems

feasible

with preemptive EDF scheduling. By the usual processor ?

sharing argument, it follows that () < m is a sufficient P]
condition for feasibility under ideal processor sharing with " W infeasible
general deadlines. However, this condition is not necessary "

for feasibility, as shown by the following example.

Example 2 Consider the following sporadic task system
consisting of three tasks to be scheduled on a multiproces-
sor system comprised of two unit-capacity processors.

Figure 1. Relationship of bounds on computational load

r={n=(1,1,1),7=(1,1,2), 13 = (1,2,3)} achieves a significant reduction in computation time even
for e = 0.001.
Observe thal,,,(T) = 2.5 > 2, but the task system is The remainder of the report is organized as follows. We

clearly feasible, by scheduling taskon one processorand formally define the load-bound functiofy,,, (7) in Sec-

placing the other two tasks on the other processor. M tion 2. We then derive a simple method for exactly deter-

mining s, (7) In Section 3. We describe the more practi-

cal approximation of load in Section 4. Finally, we empir-

1. Usum(7) is a lower bound on demand, giving a neces- ically evaluate our algorithms on of a collection of pseudo-
sary condition for feasibility randomly generated task systems.

In summary:

2. Asum/(7) is an upper bound on demand, giving a suffi- 2 Load-Bound Function
cient condition for feasibility

3. whend,; = p; the two coincide, giving us a necessary Given a sporadic task system= {r,...,7,}, the load-
and sulfficient condition bound function is defined by, (7) £ max;o f(7,t)
where
4. whend; # p; the two bounds leave a gap, where there N
is uncertainty whether a task set is feasible. F(r) 2_i—1 DBF(7i, 1)
’ t
In this report, we consider an improved lower bound
on computational demand for general sporadic task sys- det t—d;
tems, which we call théoad bound functiorand denote DBF(7;, t) = max(0, (| Py J+Dei)

BY dsum (7). We will show that thisg,,,, (7) is an improve-
ment overus,,,, (7), and that it can be computed effectively
with enough accuracy to be useful in practice.

The conceptual relationship 6§, t0 ugym and Agum least upper bound of(r, £).
is illustrated in Figure 1. It can be seen that there is a re- ’

. . It has been shown previously that,,,,(7) < mis anec-
gion of uncertainty between the lower and upper boundsf’essary condition for the feasibility of taskon a platform

ot oo 1 U capacty rocesors (] We il nxt s
" that ds,m (7) is potentially superior tai,,(7) as a lower
that are smaller and/or lower bounds that are larger. The im-p und on computational load it falls betw
X . . . putational load, as it falls between,, (1)
portance ob,,.,, is that it reduces the region of uncertainty andum (7)
significantly, as compared to, . sumAt e
To the best of our knowledge, there is no prior published Example 3 To see thab...,, more effective in detecting in-
algorithm for computing...,(7) for an arbitrary sporadic feasible task sets, consider the following sporadic task sys-
task system. We give an exact algoritlam,,, (7) that in- tem consisting of three tasks to be scheduled on a multipro-
volves simulatingr to its hyperperiod (the least-common- cessor system comprised of two unit-capacity processors.
multiple of the task systems periods(’ M, p;). This ex- _ _ _ _
act aﬁ)gorithm is t0o Zomputgtionally expelns?ve to be use- 7=t =(LL1),m=(1,1,2),7=(11,3)}
ful. Therefore, we give an algorithm which approximates Observe thatis,.,(7) = 1.83333 < 2 < dsum(T) = 3.
dsum (7) Within an arbitrary threshold > 0 of its exact The task system is not feasible, since if all tasks are re-
value. We have observed that our approximation algorithm leased together at time zero three units of computation must

Figure 2 illustrates an example of DBF;,) (see [2] for
a formal discussion of DB, t)). Since the values dfare
real and unbounded, the notatiorax;~ o here denotes the

561'

461‘

.

361'
DBF(7;,t)
261‘

€i

d d; +pi di +2p; di +3pi di +4p; ¢

i

Figure 2. Plot of DBF7;,t) as a function of.

be completed by time 1. That this task system is not fea-
sible cannot be detected using,,, SiNCe tgym (7)
1.83333 < 2. However, it can be detected by the fact that
Ssum (T) > 2. [|

The next lemma shows that,,,,,(7) is lower bound on
the load-bound function:

Lemma 1 Seum (T) > Usum (T)

Proof: Observe that each term ¢fr, ¢) approaches; in
the limit, for increasing values af

More precisely, for a givehandt, let0 < r < p; be the
value such that

t— d, t— d, - T
|[—] = :
Di Di
It follows that
t—d; t—d;—r .
(550 + Ve (=4 1)
t t
_ (4pi—di—r)e
B tpi
i —di —
= wu;+ uiu

t

Since—d; < p; — d; —r < p; — d;, the fraction on the
right above is decreasing with respecti@nd so the limit
of the entire expression ig. It follows that

tliglo f(Tv t) = Usum (T)

The lemma immediately follows from this limitd
The following lemma shows thaX;,.,(7) is an upper
bound on the load-bound function:

Lemma 2 Sgum (7) < Asum (T)

Proof:

Lt+pg,v_diJ€i
foy = Y e
i:d; <t
< Z ui(1+pi;di)
- t
i:d; <t

If p; > d; the termm%d" is non-increasing with respect
tot, and sincel; < t, g% > iz — B 1,

Otherwise, the terrﬁ’i;ﬂ is increasing with respect to
and in the limit2:5% = 0.

Therefore,
Di
< . =
f(r,t) < ‘Z u; (1 + max(0,) 1))
i:d; <t
= Z \;
i:d; <t
S Z)\z -)\sum<7-)
i=1
O

To see thab,,,,, is non-trivially tighter thanu,,,,, as a
lower bound on load, yet still below;,,,, reconsider the
task set in Example 2 (which is feasible). Observe that
Usym (T) = 1.8333333 < sum (7) = 2 < Agum (7) = 2.5.

3 An Exact Algorithm

To calculat®)sy,, (7), we must limit the number of val-
ues oft for which we evaluatef (7, ¢) to a finite number.
It may seem thaf(r,t) needs to be checked at an infinite
number oft values. However, the following two observa-
tions are useful in showing that only a finite number of val-
ues need to be checked:

1. The maximum value of f (7, t) only occurs at “step”
points (Lemma 3). Therefore, the set of potential test
points is countable.

2. f(r,t) is maximized prior to 7's hyperperiod
(Lemma 4). Therefore, the maximum test point has
a bounded value.

The following lemma formally restates and proves the
first observation:

Lemma 3

=0,..

3

I{l;ﬂgif(T,t) =max{f(r,jpi+d;) |i=1,...,n; j

Proof: Sincef(r,t) is generally locally decreasing with
respect ta, attention can be limited to the values iofor
which the derivative is discontinuous, i.e.= jp; + d; for
positive integer valueg. O

We may now show that LCM provides an upper bound

on the maximum possiblethat we need to evaluajr, t)
at.

Lemma4 Let L = LCM? 1pi. If dsum(T) > Usum(T)
thendgym (1) = f(7,t) for somet < L.

Proof: The proof is by contradiction. Let + = be the
least value for whictf (7, L +) > wsym (1) and f(r, L +
x) > f(r,t) foreveryt < L+x. If the lemma s false there
must be such a value.

Leta; = u; L andb; = (L%J -+ 1)61

n L+x—d; ei
L) ([#5-=] +1)

|
(]

> Ugum(7) > i 2

By algebra it can be shown that

- a; + b; “ a; - a; +b; - b;
> — = < -
Z L—i—x_ZL Z L+x_Zx
i:d; <L+x 1=1 1:d; <L+x =1
Therefore,

fr, L+) < f(r)

which is a contradiction.
O

The following corollary to Lemma 4 and Lemma 1
shows that iff (7, ¢) does not exceeds,, (7) prior to the
hyperperiod ofr, we may infer thab s, (1) = wsum (7).

Corollary 1 If f(7,t) < wusum(7) for all ¢ < L, then
6sum(7—) = usum(T)-

Lemmas 3 and 4, and Corollary 1 imply the correctness

of the algorithm represented in Figure 3.

EXACT—0sum (T)

1 fmax«— usum(7);
for eacht = jp; + d;, in increasing ordetpop
exitwhent > LCM],p;;

if f(r,t) > fmaxthen

fmax«— f(r,t);

end if;
end loop;
return fmax;

N

~No ok~ w

Figure 3. Pseudo-code for determining load-
bound function exactly.

in our calculation. That is, for arbitrary > 0, we can
reduce the number of values bfwve must consider if we
allow our calculated value of,,(7) to within ¢ of the
actual value. The next lemma formalizes this concept:

Lemmab5 If f(7,t) > usum(7) + € for somee > 0 then
£ > gy () EREL),

Proof:
Usum (T) +€ < f(7,1)
X max(0, (|5 + 1)ey)
N t
D — d;
< . .
DD S
i:d; <t i:d; <t
maxr cr(pP; — di
S usum(T)(1+ i€ t(p))
=€ S usum(T) InaXTieTt(pi -~ dZ)
=t S Usum,(T) maXnET(pi - dz)
€

O

Let e be a tolerance within whicbi.,.,, is to be approx-
imated. Lemma 5 above allows us iteratively reduce the
number oft values to check as the value ffr, t) increases
greater thanu,,, (7). We may use this iterative reduction
in steps in an approximation féx.,.,, (7) shown in Figure 4.

5 Performance Tests

4 An Approximation Algorithm To give some idea of the advantage of the load-bound

function .., over us,,, as a measure of computational
We can further limit the number of valug¢shat need to demand, the real-time cost of computing it, and the advan-
be considered if we introduce a bounded level of inaccuracytages of the three heuristics used to limit the range of time

labeled “LCM” corresponds to the hyperperiod (least com-

APPROX0 5y (T, €) mon multiple of the task periods) bound of Lemma 4. The
plot labeled “BHR” represents the initial bound provided
1 limit — min(LCM™ | p;, Usum (7) maxner(mfdi)) by Lemma 5 usingus..,, as approximation fob,,,,. The
=11y Ysum €

plot labeled “ITR” represents the final bound baobtained

3 for eacht = jp; + d;, in increasing ordetpop by iterative application of Lemma 5 during the computa-
exit whent > limit: tion. The plot labeled “ACT” represents the actual largest

4 if £(r,t) > fmax value oft considered, which can be smaller than the bound

if it turns out that a load greater than,,,,(7) — ¢ is found

N

fmax«— wgym (7);

5 then fmax«— f(r,¢); early. In this test, the conjpu.tati(.)n was also halted e_arly if a
6 limit < min(limit, yum (7) max,ier(pi—d,/)) load value greater tham (indicating the task system is not
. sum A max—usum(7) 7 feasible) was found.
; end if exit whenfmax> Asum (1) — € The following patterns can be observed:
9 end loop; 1. The LCM (X’s in the graph) can be very large. Signif-
10 return fmax; icant numbers of systems had LCMS that overflowed

the 64-bit precision used for the computation. Those
cases were mapped to zero, which caused a spike at
data point zero in the histograms for some of the ex-
periments.

Figure 4. Pseudo-code for determining load-
bound function within a value of e.

2. The initial BHR heuristic based am,,,,, (boxes in the

, i , graph) reduced the search considerably, as shown by
values considered in the computation, the valuesgf,, the large spike betweeri? and22°.

dsum, and g, Were computed for several collections of

pseudo-randomly chosen sporadic task systems. The com- 3. The iterative application of BHR (circles in the graph)
putation ofé,,,, was done approximately, using the toler- cut down the search by about 10 more binary orders of
ancee = 0.001 - m. magnitude, as shown by the hump aro@htl

The results of a one representative experiment are sum-)
marized in figures below. Each experiment involved 4 The actual largest time value that needed to be con-

1,000,000 systems, with up to 63 tasks in each system, all ~ Sidered (triangles in the graph) was often still smaller,

of which had values 0fi,,, < m (not demonstrably infea- due to early termination when when a deadline was
sible by the utilization bound test) and,.. (1) > m (not missed. The one peak corresponds to the ITR bound,
verifiably feasible by the\,,, test). For all the experiments and f{he .smaIIer earlier peak corresponds to the early
the task periods were chosen uniformly from 1 to 1000. terminations.

For the experiment shown in Figures 5, 6, and 7, the
number of processors was = 2, the utilizations were
chosen uniformly froml/p; to 1, and the deadlines were
chosen according uniformly fromy to p;.

Figure 5 shows how ofted,,, iS more accurate than

For most cases, the iterative application of the BHR
heuristic, starting fromu,.,.,, would have been enough
alone, without the LCM bound.

Figure 7 shows how much real time was required for the
computation ofé,,,,. The horizontal axis is logarithmic,

uS“mdfO: proving mff(tahasmnlgy. Tqiahhonzontl:.il agltsj_cotrre- and represents the amount of real time required to compute
Sponds toranges orthe valug,,. T he upperiin€ indicates dsum, IN NANOseconds. The computation was performed on

the count of task systems that might be feasible accordinga Pentium 4 Xeon processor at 2GHz. The longest exe-

to .thte Hsum la rt]td gsuf’t‘ht;‘f’tsi (}hetlovxf[erzlr line, \;Vh]?f’e Islata cution time for any of these 1,000,000 task sets was 200
points are plotted With A S, Indicates the count o tasK'sys- .y iseconds, and the mean was 188 microseconds.
tems that might be feasible according to the,, test (i.e.,

The area between those lines (which is large) indicates® ~ Conclusion
the number of cases in which there was a gain in accuracy
Of 0gum OVErug,, as a test for infeasibility. The utilization of a task system does not effectively
Figure 6 shows how much the time to computg,, characterize the computational demand of a sporadic task
is reduced by each of the heuristics used. The horizontalsystem when relative deadlines can differ from periods.
axis is logarithmic, and represents the highest valu¢ of For these task systems, the computational demand can be
that needed to be considered in computipg,,. The plot bounded below by the utilization and above by the density.

50000 T T T T T T

45000 | b

40000 - OgpSm o g -
total cases !

35000

30000

25000

20000

15000

10000

5000

Sqym/m (%)

Figure 5. Advantage ofsum 0verus.»: two processors, uniform utilizations, uniform constrained deadlines

However, for the lower bound, the load of a task system is
a more accurate metric. We describe in this report how to
compute the load of a sporadic task system by providing
an exact and approximate algorithm. Both of these algo-
rithms are proven correct. Experiments verify that the ap-
proximate algorithm performs well, and significantly nar-
rows the range of uncertainty about whether a task system
is feasible.

References

[1] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of sporadic task systems. Rroceedings of the
IEEE Real-Time Systems Sympositvtiami, Florida, De-
cember 2005. IEEE Computer Society Press.

[2] S. Baruah, R. Howell, and L. Rosier. Feasibility problems
for recurring tasks on one processdrheoretical Computer
Science118(1):3-20, 1993.

[3] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a dead-
line scheduling environmenReal-Time System8, 1995.

[4] A. K. Mok. Fundamental Design Problems of Distributed
Systems for The Hard-Real-Time EnvironmerhD the-
sis, Laboratory for Computer Science, Massachusetts Insti-
tute of Technology, 1983. Available as Technical Report
No. MIT/LCS/TR-297.

450000

400000

350000

300000

250000

200000

150000

100000

50000

0 *a

250000

200000

150000

100000

50000

. LCM -

i BHR &
§ ITR —o—
1 ACT e

log, (limit)

Figure 6. Comparison of search-limiting heuristics

10 12 14 16 18 20 22 24
log, (compute time)

Figure 7. Time to compute load bound (nanoseconds)

