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Abstract

In this report, we discuss a metric that characterizes
the load of a sporadic task system. We give an exact,
exponential-time algorithm that determines a task system’s
load by essentially simulating the execution of task system.
In addition, we also give an algorithm that can determine
the load of a task system within an arbitrarily small thresh-
old ε > 0. While the worst-case time complexity of the
approximation is still possibly exponential, we have empiri-
cally observed that this algorithm generally provides a very
significant reduction in the time that we must simulate the
task system to obtain the load. Additionally, we provide
proofs of correctness for our algorithms.

1 Introduction

In the sporadic task model[4], a sporadic taskτi =
(ei, di, pi, ) is characterized by aworst-case execution re-
quirementei, a(relative) deadlinedi, and aminimum inter-
arrival separationpi. Theutilization of taskτi is denoted
by ui

def= ei/pi. A sporadic task systemτ is collection of
sporadic tasks{τ1, τ2, . . . , τn}.

An important scheduling theory concept is determining
the feasibility of a task system on a specified platform. A
sporadic task system is said to befeasibleupon a speci-
fied platform if it is possible to schedule the system on the
platform such that all jobs of all tasks will meet all dead-
lines, under all permissible (also calledlegal) combinations
of job-arrival sequences by the different tasks comprising
the system. Conceptually, one would like to be able to
define a measure of “computational demand” for task sys-
tems, and a measure of “computational capacity” for com-
putational platforms, such that a task system is feasible on
given platform if and only if the computational demand of
the task system does not exceed the computational capacity

of the platform. In particular, suppose a multiprocessor sys-
tem comprised ofm unit-capacity processors is defined to
have a computational capacity equal tom. A necessary and
sufficient condition forτ to be feasible on anm processor
system would be that the computational demand ofτ does
not exceedm.

This model of schedulability analysis is known to work
for implicit-deadlinesporadic task systems, where each task
has its relative deadline parameter equal to its minimum
inter-arrival separation parameter (i.e.di = pi). The con-
cept of computational demand there can be captured by
the total system utilization,usum(τ) def=

∑
τi∈τ ui. That

usum(τ) ≤ m is a necessary and sufficient condition forτ
to be feasible on a preemptivem processor system. That
this is a sufficient condition follows from the fact that ifτ
satisfies the utilization condition then we can “reserve” a
fractionui of each time unit to executeτi on the processing
platform.

For general deadlines (i.e.di 6= pi) usum(τ) is still a
lower bound on computational demand, but not an upper
bound. That is, while satisfaction of the utilization bound is
a necessary condition for feasibility, it is not sufficient. This
is illustrated in the following example:

Example 1 Consider the following sporadic task system
consisting of three tasks to be scheduled on a multiproces-
sor system comprised of two unit-capacity processors.

τ = {τ1 = (1, 1, 2), τ2 = (1, 1, 2), τ3 = (1, 1, 2)}

Observe thatusum(τ) = 1.5 ≤ 2; however, if each task of
τ releases a job at time-instant zero, each job must complete
one unit of execution by time-instant one. There is no pos-
sible way to scheduleτ over the interval[0, 1); therefore,τ
is infeasible on two processors.

An upper bound on computational demand for sporadic
task systems with arbitrary relative deadlines isλsum(τ) def=
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∑
τi∈τ λi, whereλi = ei

min(di,pi)
. This is sometimes called

thedensityof τi. It was shown in [3] thatλsum(τ) ≤ 1 is a
sufficient condition for feasibility of sporadic task systems
with preemptive EDF scheduling. By the usual processor
sharing argument, it follows that

∑
(τ) ≤ m is a sufficient

condition for feasibility under ideal processor sharing with
general deadlines. However, this condition is not necessary
for feasibility, as shown by the following example.

Example 2 Consider the following sporadic task system
consisting of three tasks to be scheduled on a multiproces-
sor system comprised of two unit-capacity processors.

τ = {τ1 = (1, 1, 1), τ2 = (1, 1, 2), τ3 = (1, 2, 3)}

Observe thatλsum(τ) = 2.5 > 2, but the task system is
clearly feasible, by scheduling taskτ1 on one processor and
placing the other two tasks on the other processor.

In summary:

1. usum(τ) is a lower bound on demand, giving a neces-
sary condition for feasibility

2. λsum(τ) is an upper bound on demand, giving a suffi-
cient condition for feasibility

3. whendi = pi the two coincide, giving us a necessary
and sufficient condition

4. whendi 6= pi the two bounds leave a gap, where there
is uncertainty whether a task set is feasible.

In this report, we consider an improved lower bound
on computational demand for general sporadic task sys-
tems, which we call theload bound functionand denote
by δsum(τ). We will show that thisδsum(τ) is an improve-
ment overusum(τ), and that it can be computed effectively
with enough accuracy to be useful in practice.

The conceptual relationship ofδsum to usum andλsum

is illustrated in Figure 1. It can be seen that there is a re-
gion of uncertainty between the lower and upper bounds,
and that precision in determining which task sets are feasi-
ble and which are not is improved by finding upper bounds
that are smaller and/or lower bounds that are larger. The im-
portance ofδsum is that it reduces the region of uncertainty
significantly, as compared tousum.

To the best of our knowledge, there is no prior published
algorithm for computingδsum(τ) for an arbitrary sporadic
task system. We give an exact algorithmδsum(τ) that in-
volves simulatingτ to its hyperperiod (the least-common-
multiple of the task systems periods,LCMn

i=1pi). This ex-
act algorithm is too computationally expensive to be use-
ful. Therefore, we give an algorithm which approximates
δsum(τ) within an arbitrary thresholdε > 0 of its exact
value. We have observed that our approximation algorithm
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Figure 1. Relationship of bounds on computational load

achieves a significant reduction in computation time even
for ε = 0.001.

The remainder of the report is organized as follows. We
formally define the load-bound functionδsum(τ) in Sec-
tion 2. We then derive a simple method for exactly deter-
mining δsum(τ) in Section 3. We describe the more practi-
cal approximation of load in Section 4. Finally, we empir-
ically evaluate our algorithms on of a collection of pseudo-
randomly generated task systems.

2 Load-Bound Function

Given a sporadic task systemτ = {τ1, . . . , τn}, the load-
bound function is defined byδsum(τ) def= maxt>0 f(τ, t)
where

f(τ, t) def=
∑n

i=1 DBF(τi, t)
t

and

DBF(τi, t)
def= max(0, (b t− di

pi
c+ 1)ei)

Figure 2 illustrates an example of DBF(τi, t) (see [2] for
a formal discussion of DBF(τi, t)). Since the values oft are
real and unbounded, the notationmaxt>0 here denotes the
least upper bound off(τ, t).

It has been shown previously thatδsum(τ) ≤ m is a nec-
essary condition for the feasibility of taskτ on a platform
with m unit-capacity processors [1]. We will next show
that δsum(τ) is potentially superior tousum(τ) as a lower
bound on computational load, as it falls betweenusum(τ)
andλsum(τ).

Example 3 To see thatδsum more effective in detecting in-
feasible task sets, consider the following sporadic task sys-
tem consisting of three tasks to be scheduled on a multipro-
cessor system comprised of two unit-capacity processors.

τ = {τ1 = (1, 1, 1), τ2 = (1, 1, 2), τ3 = (1, 1, 3)}

Observe thatusum(τ) = 1.83333 < 2 < δsum(τ) = 3.
The task system is not feasible, since if all tasks are re-
leased together at time zero three units of computation must
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Figure 2. Plot of DBF(τi, t) as a function oft.

be completed by time 1. That this task system is not fea-
sible cannot be detected usingusum, sinceusum(τ) =
1.83333 < 2. However, it can be detected by the fact that
δsum(τ) > 2.

The next lemma shows thatusum(τ) is lower bound on
the load-bound function:

Lemma 1 δsum(τ) ≥ usum(τ)

Proof: Observe that each term off(τ, t) approachesui in
the limit, for increasing values oft.

More precisely, for a giveni andt, let 0 ≤ r < pi be the
value such that

b t− di

pi
c =

t− di − r

pi

It follows that

(b t−di

pi
c+ 1)ei

t
=

( t−di−r
pi

+ 1)ei

t

=
(t + pi − di − r)ei

tpi

= ui + ui
pi − di − r

t

Since−di < pi − di − r < pi − di, the fraction on the
right above is decreasing with respect tot, and so the limit
of the entire expression isui. It follows that

lim
t→∞

f(τ, t) = usum(τ)

The lemma immediately follows from this limit.2
The following lemma shows thatλsum(τ) is an upper

bound on the load-bound function:

Lemma 2 δsum(τ) ≤ λsum(τ)

Proof:

f(τ, t) =
∑

i:di<t

b t+pi−di

pi
cei

t

≤
∑

i:di<t

ui(1 +
pi − di

t
)

If pi ≥ di the termpi−di

t is non-increasing with respect
to t, and sincedi < t, pi−di

t ≥ pi−di

di
= pi

di
− 1.

Otherwise, the termpi−di

t is increasing with respect tot,
and in the limitpi−di

t = 0.
Therefore,

f(τ, t) ≤
∑

i:di<t

ui(1 + max(0,
pi

di
− 1))

=
∑

i:di<t

λi

≤
n∑

i=1

λi = λsum(τ)

2

To see thatδsum is non-trivially tighter thanusum as a
lower bound on load, yet still belowλsum, reconsider the
task set in Example 2 (which is feasible). Observe that
usum(τ) = 1.8333333 < δsum(τ) = 2 < λsum(τ) = 2.5.

3 An Exact Algorithm

To calculateδsum(τ), we must limit the number of val-
ues oft for which we evaluatef(τ, t) to a finite number.
It may seem thatf(τ, t) needs to be checked at an infinite
number oft values. However, the following two observa-
tions are useful in showing that only a finite number of val-
ues need to be checked:

1. The maximum value off(τ, t) only occurs at “step”
points (Lemma 3). Therefore, the set of potential test
points is countable.

2. f(τ, t) is maximized prior to τ ’s hyperperiod
(Lemma 4). Therefore, the maximum test point has
a bounded value.

The following lemma formally restates and proves the
first observation:

Lemma 3

max
t>0

f(τ, t) = max{f(τ, jpi+di) | i = 1, . . . , n; j = 0, . . .}
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Proof: Sincef(τ, t) is generally locally decreasing with
respect tot, attention can be limited to the values oft for
which the derivative is discontinuous, i.e.,t = jpi + di for
positive integer valuesj. 2

We may now show that LCM provides an upper bound
on the maximum possiblet that we need to evaluatef(τ, t)
at.

Lemma 4 Let L = LCMn
i=1pi. If δsum(τ) > usum(τ)

thenδsum(τ) = f(τ, t) for somet ≤ L.

Proof: The proof is by contradiction. LetL + x be the
least value for whichf(τ, L + x) ≥ usum(τ) andf(τ, L +
x) > f(τ, t) for everyt < L+x. If the lemma is false there
must be such a value.

Let ai = uiL andbi = (bx−di

pi
c+ 1)ei.

f(τ, L + x) =
n∑

i:di<L+x

(bL+x−di

pi
c+ 1)ei

L + x

=
n∑

i:di<L+x

L
pi

ei + (bx−di

pi
c+ 1)ei

L + x

=
n∑

i:di<L+x

ai + bi

L + x

≥ usum(τ) ≥
n∑

i=1

ai

L

By algebra it can be shown that

n∑
i:di<L+x

ai + bi

L + x
≥

n∑
i=1

ai

L
⇐⇒

n∑
i:di<L+x

ai + bi

L + x
≤

n∑
i=1

bi

x

Therefore,

f(τ, L + x) ≤ f(τ, x)

which is a contradiction.
2

The following corollary to Lemma 4 and Lemma 1
shows that iff(τ, t) does not exceedusum(τ) prior to the
hyperperiod ofτ , we may infer thatδsum(τ) = usum(τ).

Corollary 1 If f(τ, t) ≤ usum(τ) for all t ≤ L, then
δsum(τ) = usum(τ).

Lemmas 3 and 4, and Corollary 1 imply the correctness
of the algorithm represented in Figure 3.

4 An Approximation Algorithm

We can further limit the number of valuest that need to
be considered if we introduce a bounded level of inaccuracy

EXACT–δsum(τ)

1 fmax← usum(τ);
2 for eacht = jpi + di, in increasing order,loop

exit when t ≥ LCMn
i=1pi;

3 if f(τ, t) > fmax then
4 fmax← f(τ, t);
5 end if;
6 end loop;
7 return fmax;

Figure 3. Pseudo-code for determining load-
bound function exactly.

in our calculation. That is, for arbitraryε > 0, we can
reduce the number of values oft we must consider if we
allow our calculated value ofδsum(τ) to within ε of the
actual value. The next lemma formalizes this concept:

Lemma 5 If f(τ, t) ≥ usum(τ) + ε for someε > 0 then

t ≥ usum(τ)maxτi∈τ (pi−di)

ε .

Proof:

usum(τ) + ε ≤ f(τ, t)

=

∑n
i=1 max(0, (b t−di

pi
c+ 1)ei)

t

≤
∑

i:di<t

ui +
∑

i:di<t

ui
pi − di

t

≤ usum(τ)(1 +
maxτi∈τ (pi − di)

t
)

⇒ ε ≤ usum(τ)
maxτi∈τ (pi − di)

t

⇒ t ≤ usum(τ)
maxτi∈τ (pi − di)

ε

2

Let ε be a tolerance within whichδsum is to be approx-
imated. Lemma 5 above allows us iteratively reduce the
number oft values to check as the value off(τ, t) increases
greater thanusum(τ). We may use this iterative reduction
in steps in an approximation forδsum(τ) shown in Figure 4.

5 Performance Tests

To give some idea of the advantage of the load-bound
function δsum over usum as a measure of computational
demand, the real-time cost of computing it, and the advan-
tages of the three heuristics used to limit the range of time
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APPROX–δsum(τ, ε)

1 limit ← min(LCMn
i=1pi, usum(τ)maxτi∈τ (pi−di)

ε )
2 fmax← usum(τ);
3 for eacht = jpi + di, in increasing order,loop

exit when t ≥ limit;
4 if f(τ, t) > fmax

then
5 fmax← f(τ, t);
6 limit ← min(limit , usum(τ)maxτi∈τ (pi−di)

fmax−usum(τ) )
7 exit when fmax> λsum(τ)− ε;
8 end if;
9 end loop;

10 return fmax;

Figure 4. Pseudo-code for determining load-
bound function within a value of ε.

values considered in the computation, the values ofusum,
δsum, andλsum were computed for several collections of
pseudo-randomly chosen sporadic task systems. The com-
putation ofδsum was done approximately, using the toler-
anceε = 0.001 ·m.

The results of a one representative experiment are sum-
marized in figures below. Each experiment involved
1,000,000 systems, with up to 63 tasks in each system, all
of which had values ofusum ≤ m (not demonstrably infea-
sible by the utilization bound test) andλsum(τ) > m (not
verifiably feasible by theλsum test). For all the experiments
the task periods were chosen uniformly from 1 to 1000.

For the experiment shown in Figures 5, 6, and 7, the
number of processors wasm = 2, the utilizations were
chosen uniformly from1/pi to 1, and the deadlines were
chosen according uniformly fromei to pi.

Figure 5 shows how oftenδsum is more accurate than
usum for proving infeasibility. The horizontal axis corre-
sponds to ranges of the valueδsum. The upper line indicates
the count of task systems that might be feasible according
to theusum andλsum tests. The lower line, whose data
points are plotted with X’s, indicates the count of task sys-
tems that might be feasible according to theδsum test (i.e.,
M ≥ δsum).

The area between those lines (which is large) indicates
the number of cases in which there was a gain in accuracy
of δsum overusum as a test for infeasibility.

Figure 6 shows how much the time to computeδsum

is reduced by each of the heuristics used. The horizontal
axis is logarithmic, and represents the highest value oft
that needed to be considered in computingδsum. The plot

labeled “LCM” corresponds to the hyperperiod (least com-
mon multiple of the task periods) bound of Lemma 4. The
plot labeled “BHR” represents the initial bound provided
by Lemma 5 usingusum as approximation forδsum. The
plot labeled “ITR” represents the final bound ont obtained
by iterative application of Lemma 5 during the computa-
tion. The plot labeled “ACT” represents the actual largest
value oft considered, which can be smaller than the bound
if it turns out that a load greater thanλsum(τ) − ε is found
early. In this test, the computation was also halted early if a
load value greater thanm (indicating the task system is not
feasible) was found.

The following patterns can be observed:

1. The LCM (X’s in the graph) can be very large. Signif-
icant numbers of systems had LCMS that overflowed
the 64-bit precision used for the computation. Those
cases were mapped to zero, which caused a spike at
data point zero in the histograms for some of the ex-
periments.

2. The initial BHR heuristic based onusum (boxes in the
graph) reduced the search considerably, as shown by
the large spike between212 and220.

3. The iterative application of BHR (circles in the graph)
cut down the search by about 10 more binary orders of
magnitude, as shown by the hump around210.

4. The actual largest time value that needed to be con-
sidered (triangles in the graph) was often still smaller,
due to early termination when when a deadline was
missed. The one peak corresponds to the ITR bound,
and the smaller earlier peak corresponds to the early
terminations.

For most cases, the iterative application of the BHR
heuristic, starting fromusum would have been enough
alone, without the LCM bound.

Figure 7 shows how much real time was required for the
computation ofδsum. The horizontal axis is logarithmic,
and represents the amount of real time required to compute
δsum, in nanoseconds. The computation was performed on
a Pentium 4 Xeon processor at 2GHz. The longest exe-
cution time for any of these 1,000,000 task sets was 200
milliseconds, and the mean was 188 microseconds.

6 Conclusion

The utilization of a task system does not effectively
characterize the computational demand of a sporadic task
system when relative deadlines can differ from periods.
For these task systems, the computational demand can be
bounded below by the utilization and above by the density.
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Figure 5. Advantage ofδsum overusum: two processors, uniform utilizations, uniform constrained deadlines

However, for the lower bound, the load of a task system is
a more accurate metric. We describe in this report how to
compute the load of a sporadic task system by providing
an exact and approximate algorithm. Both of these algo-
rithms are proven correct. Experiments verify that the ap-
proximate algorithm performs well, and significantly nar-
rows the range of uncertainty about whether a task system
is feasible.
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