
Tags: A Unifying Primitive for the Storage Data Path

Weisu Wang, Florida State University Christopher Meyers, Ansible, Inc.

An-I Andy Wang, Florida State University Sarah Diesburg, University of Northern Iowa

Abstract

The legacy storage data path is largely structured in

black-box layers and has four major limitations: (1)

functional redundancies across layers, (2) poor cross-

layer coordination and data tracking, (3) presupposition

of high-latency storage devices, and (4) poor support for

new storage data models.

We introduce Tags, a unifying primitive that can be

used throughout the storage data path. This white-box

approach enables all storage layers to coordinate and

track data using shared data structures that are

constructed through the Tags API. Our case studies

show that by eliminating redundant services, our Tags-

based key-value store can outperform LevelDB by 20-

170% when inserting and deleting 100-byte key-value

pairs. We also build a Tags-based file system (TagFS)

to demonstrate the usability and robustness of Tags. In

addition, we build per-file secure deletion via TagFS to

show data-path-wide coordination and data tracking.

1. Introduction

The legacy storage data path is structured in layers and

is largely disk-centric. Layering offers good

abstraction with which hide underlying details, enabling

each layer to evolve swiftly. The storage-wide disk-

centric assumptions reflect storage devices’ continuing

standing as a system-wide bottleneck for decades.

However, disks are replaced by low-latency SSDs,

which have very different traits. Applications also

demand more coordination and control across storage

layers (e.g., data tracking). These driving forces make

us rethink how to preserve the advantages of layering,

while granting more cross-layer control and how to

design a data model to provide more support for different

emerging storage media.

We propose Tags, a unifying primitive that enables

various data path components to build cross-layer data

structures, even across kernel and application

boundaries. Tags enables cross-layer coordination and

data tracking, supports both disks and SSDs, and eases

the extension of new data path features.

1.1. Legacy Storage Data Path

The legacy storage data path is composed of layers

(Figure 1.1.1). Under UNIX, the bottom layer consists

of device-specific drivers. A higher-level device-

driver layer provides services, including mapping (e.g.,

NAND flash translation layer) and to coordinate multiple

devices. The logical, device-independent file-system

layer provides file names for data, organization for files,

and data layouts on storage media to minimize access

overhead. The VFS layer enables multiple file systems

to coexist and contains common file-system functions,

including caching. Finally, applications issue storage

requests via file-system system calls. (Since the

Windows storage data path uses similar organization to

that of UNIX, we use UNIX terminology in the

remainder of this paper.)

The legacy storage data path has four major

limitations. First, storage layers are large black boxes

and introduce unnecessary functional redundancies and

missed opportunities for optimizations. For example,

both logical and physical layers try to manage data

layouts. Thus, B-trees in databases can be remapped to

extent-based trees at the file-system layer [13], and then

remapped to linked lists at the flash-translation layer,

rendering the original optimization ineffective.

Second, layered abstraction hiding makes coordination

and data tracking difficult. For example, a device

driver cannot discern the file membership of a block

[21]. The third limitation is that the legacy data path

is not designed for the low-latency storage. Thus, for

small IO requests, the storage-stack latency can no

longer be masked by low-latency SSDs [23]. Finally,

the legacy data path has limited support for new storage

data models (e.g., key-value store), and they suffer fates

similar to those in the B-tree example and are remapped

to underlying storage layers.

Figure 1.1.1: Conventional storage data path.

1.2. Some Alternatives

One approach to these limitations is to bypass the legacy

storage data path by accessing the storage device directly

(e.g., direct IOs, DAX [26]). The downside to this is

that application programmers may need to duplicate

existing services in the legacy storage stack. Some

solutions insert layers to separate the management of

Virtual file system (VFS)

File system

Multi-device drivers

Ext4

Device

driver

Device

driver

MTD MTD

JFFS2

NFTL

Apps Database Search engine

Data

layout

Data

layout

Medium-

specific

optimization

s

Naming

metadata and data (e.g., [8]) or deduce information

across layers (e.g., [20]). However, these solutions do

not address the issues of redundant services and medium-

specific mechanisms. Imperfectly deduced

information may lead to optimizations based on

conservative decisions [2]. To streamline storage

requests and avoid redundant services, integrated design

across multiple layers is possible (e.g., [22]). However,

either such solutions are tailored for specific workloads

[17], or the black-box treatment of layers remains and

hinders information flow.

1.3. In Search of a New Storage Data Path Design

Legacy limitations prompt the question of how to design

and build a new storage data path that is modular, and

supports data-path-wide coordination, tracking, and

emerging storage media. A more fundamental question

is what makes a storage system a storage system? In

essence, a storage system provides storage and retrieval

of data. At the minimum, a storage data path needs the

ability to store and retrieve data from a storage medium,

and to tag data to provide persistence and control.

From these basic requirements, we can rethink and

design a unifying framework that addresses various

limitations of the legacy data path.

Figure 2.1: Tagging-based storage data path.

2. Tags

We introduce the Tags framework, which uses tags, a

unifying primitive (Figure 2.1), to construct shared data

structures throughout the storage data path.

Conceptually, each piece of data is associated with one

or more tags, indicating how data pieces are related and

should be handled within the data path. The collection

of data pieces and tags forms a single-level data tagging

layer. To ease coordination, these tags provide global

and logical communication throughout the data path.

Tags also provide a common denominator for high-level

storage layers and applications, providing enough

flexibility to accommodate the direct construction of

name spaces by file systems and of indices by databases

and to bypass redundant services (e.g., data structure

remapping). Below the tagging layer, a consolidated

layer comprising the physical tags and data management

makes informed decisions on how tags and data pieces

are accessed and stored. As data traverse through the

data path, they can be tracked using tagging.

Unlike in the traditional data path, Tags separates

logical access from physical storage management, which

enables medium-specific optimizations, easing the

accommodation of emerging storage technologies.

3. Tags Design Space

Conceptually, each piece of data is associated with a

globally unique ID (i.e., <data ID, “data”>). Each data

ID can be associated with one or more types of globally

registered and extensible tags, each in the form of <tag

type ID, data ID>. Figure 3.1.1 shows that the ID for

“data” is 0. The access permission tag for “data” refers

to the data ID of 1, which is “READ_ONLY”. The size

tag for “data” refers to the data ID of 2, which is “5”.

Although the data model is simple, storage modules

can use tags as a common denominator when building

data structures for cross-layer coordination and tracking.

For example, through data ID indirections, we can build

hierarchical graphs commonly used in file systems.

Figure 3.1: Tags primitive example.

 …

Figure 3.1.1: Graph-based representation of Tags.

3.1 Graph-based API

Because a tag expresses the relationship between two

pieces of data, we can logically transform Tags in terms

of nodes and edges, with the nodes holding data, and the

tags types representing directional edges (Figure 3.1.1).

Figure 3.1.2 shows the core API for Tags. A node

can be created to hold a dynamically allocated copy of

data. A node can be destroyed given a node ID. An

edge-type ID can be created with a given name. To

create or delete an edge, we must specify the IDs of both

the source and the destination nodes and of the edge type.

Data tagging and tracking

Physical management of tags and data

Device

driver

Device

driver

MTD

driver

MTD

driver

FS1 DB Search engine FS2

Data layout +

medium-

specific

optimizations

Naming

tag type ID = E_PERMISSION
data ID = 1

data ID = 0

“data”

tag type ID = E_SIZE
data ID = 2

data ID = 1

“READ_ONLY”

data ID = 2

“5” …

edge type ID = E_PERMISSION edge type ID = E_SIZE

“READ_ONLY”
node ID = 1

“5”
node ID = 2

“data”
node ID = 0

Because dangling edges (without end nodes) may lead to

corrupted graphs, this API requires that the end nodes be

created first, before the edge between the two. Before

an edge can be deleted, the nodes must exist on both

ends, and the user must delete the edge before deleting

the end nodes. When an edge needs to point to NULL,

an empty node can be used to assure that each edges is

formed between two nodes. Certain edge types involve

enumeration (e.g., block ID edge type); thus, when

operating on edges, an additional optional info parameter

is used to pass in the enumerated number.

A node can be accessed through its ID or through

the incoming edge of another node. To disambiguate,

although a node can potentially be reached from different

nodes through the same in-bound edge type, a node can

be associated only with unique out-bound edge types.

node_ID = tags_create_node(data, len, …);

tags_delete_node(node_ID);

edge_type_ID = tags_create_edge_type(name);

tags_delete_edge_type(edge_type_ID);

tags_create_edge(src_node_ID, dest_node_ID,

 edge_type_ID, <edge_info>);

tags_delete_edge(src_node_ID, dest_node_ID,

 edge_type_ID, <edge_info>);

tags_get_dest_node(src_node_ID, edge_type_ID,

 <edge_info>);

tags_ID_to_node(node_ID);

Figure 3.1.2: Core API for Tags.

group_op_ID = tags_begin_group_ops();

tags_abort_ops(group_op_ID);

tags_commit_ops(group_op_ID);

Figure 3.2.1: Group operations for Tags.

3.2 Group Operations

One problem with using the graph-based API on fine-

grained tags is achieving atomicity across many tags

operations. Any failure along a sequence of graph

operations would require lengthy cleanup code. To

mitigate this problem, we added group operations

(Figure 3.2.1). If an error occurs between the begin and

commit calls, the abort call automatically performs the

graph cleanup and the rollback to the graph states.

For instance, Tags periodically takes snapshots of

edges (using semantics akin to the ordered journaling

mode for ext3) and maintains a list of committed and

pending group operations. A new snapshot can be

created by applying committed group operations to the

latest snapshot. As the periodic snapshot only concerns

edges and is built incrementally, the overhead is light.

In the case of aborting group operations, Tags tries to

undo operations when it is possible. When it is not,

Tags rolls back to the most recent snapshot.

This rollback exploits two Tags properties. First,

a node must be created prior to establishing its edges.

When aborting a group operation that involves creating

a new node, all edge operations on the newly created

node can be discarded, and the new node can be deleted.

Second, all edges related to a node must be deleted

before deleting the node. Thus, when a node deletion

is aborted, the node should no longer be reachable by the

remaining graph. Therefore, delayed node deletion via

garbage collection suffices.

3.3 Physical Representation

In a nutshell, Tags is a single-level store with operations

revolving around nodes and edges.

Nodes: Tags nodes are variable-sized, memory-

mapped storage chunks governed by a memory allocator

(e.g., slab [3] or buddy allocators [11]). A node’s

memory address (offset by the starting memory-mapped

address) is used as a unique ID for that node, freeing us

from implementing node-allocation management.

Edges: Tags edges are implicitly stored in an

extensible hash table [5]. Basically, hash(source node

ID, edge type ID, edge info) returns the destination node

ID. The destination node can be tagged with a magic

number to perform a dynamic type check prior to

accessing the node’s content.

Persistence: To survive reboots, the states of the

memory allocator must be persistent, using techniques

similar to [25]. The governed memory is divided into

separate flushable regions for persistent states,

ephemeral states (to optimize the Tags internal data

structures), shared memory (for IPCs), snapshots and

journals (for rollbacks), and reserved locations (for the

states of the memory allocator itself).

Data layout: With the storage organization for

Tags, data layouts are largely governed by the

representation of the hash table and by the memory

allocator. Thus, by exploiting the notion of temporal

and spatial locality for hashing and for memory

allocation, we can tune the system’s performance by

aligning the characteristics of the workload and with the

characteristics of the underlying storage devices.

Currently, we use a customized slab allocator [3] for sub-

page requests and buddy allocators [11] for requests

larger than one page. Alternatively, we can use

hierarchical hashing or a log-structured memory

allocator [15] to exploit spatial or temporal locality.

3.4 Access control

Since Tags aims to create primitives smaller than the

granularity of common data structures, we anticipate

many small tags, rendering high overhead for per-node

permission checks. Allowing edges to be created

between any two nodes is also an unwieldly way to

enforce the permission to access restricted nodes.

However, since many tags share the same permission, it

would make sense to check and enforce permissions at

fewer locations. Also, a certain degree of restrictions

on how edges can be formed can help manage the access

control properties of the resulting graph topology.

Super nodes: The idea of super nodes (or s-nodes)

is to reduce the number of places where permissions are

set and checked: only s-nodes have edges to

permission nodes. All nodes belonging to the same s-

node implicitly share the same permissions. In terms of

the restrictions, edges can be created from an s-node to

its nodes (Table 3.4.1). Also, edges can be created

from any node to an s-node, since that destination s-node

can enforce the access permissions. However, forming

edges between nodes that are under different s-nodes is

prohibited. Also, one source s-node cannot create an

out-bound edge node to a node that is under another s-

node.

One challenge to realizing s-nodes is finding a

node’s s-node without additional edges or lookup tables.

Since our unique node IDs are based on 64-bit memory-

mapped addresses, we borrowed unused S high-order

bits. An s-node ID is a unique S-bit number, zero-

extended to form a 64-bit ID. To access its nodes, we

also must connect the s-node to at least one of its nodes.

To locate the permission from a node under an s-node,

we hash(zero extended upper S bit of the node ID,

permission edge type ID).

In terms of the API, a programmer can use a special

call to create s-node IDs and use them to create node IDs

(Figure 3.4.1). The s-node tracks the number of nodes

created beneath it. To delete an s-node, all its nodes

must first be deleted. Otherwise, the permission of the

undeleted node will be either undefined, or defined by a

newly allocated s-node with a reused s-node ID.

Sessions: Since node IDs are capabilities, we need

the ability to revoke privileges. Thus, other than for the

root node ID, the user should interact with Tags through

translated IDs. This mechanism is enabled using

session open and close calls and a primitive translation

table (Figure 3.4.1). An open session call is needed

before accessing the translated root node of a Tags graph.

All subsequent node IDs obtained from the root node’s

edges are translated via a translation table. At the end

of a program, a close session call is needed to delete the

translation table. Optionally, a timeout can be

specified to close a session when the system registers no

activity occurring within a timeout period.

Table 3.4.1: Rules for creating edges.

from \ to
s-node

A/B

s-node A’s nodes s-node B’s nodes

s-node A Yes Yes No

s-node B Yes No Yes

s-node A’s nodes Yes Yes No

s-node B’s nodes Yes No Yes

s_node_ID = tags_create_s_node(mode);

node_ID = tags_create_node(data, len,

 s_node_ID);

Figure 3.4.1: Super node operations.

translated_root_node_ID

 = tags_open_session(root_node_ID,

 <time_out_minutes>);

tags_close_session(translated_root_node);

Figure 3.4.2: Super node operations for sessions.

4. Implementation

Tags is prototyped in C as a user-level library. Tags

applications link and load the library to use the Tags API

to perform storage tasks. Figure 4.1 shows how a Tags-

based key-value store (§5.1) uses the Tags library to

interact with the kernel and communicates with the

kernel via memory mapping and shared memory.

Figure 2.1 shows the two major components of

Tags. The data-tagging and data-tracking component

implements the graph API, the nodes and edges, the

group operations, and the access control. The physical

management component implements the persistent

memory allocator, which also controls the physical data

layout. Currently, the Tags library does not support

sessions or multi-threaded and nested group operations.

Figure 4.1: Storage data paths for Tags-based key-

value store (shaded boxes) and LevelDB [6].

5. Tags Evaluation via Case Studies

While evaluating Tags, we wanted to show (1) its ability

to avoid redundant layered features when supporting

new data models, (2) its usability and robustness when

building complex software, (3) its ability to coordinate

and track data across layers, and (4) its ability to perform

well with both disk and SSD storage media.

To show that Tags can perform well with HDDs

and SSDs, in each experimental setting, we conducted

benchmarks on both media. Each experiment was

repeated 5 times and presented at the 95% confidence

interval. Table 5.1 shows the system configuration.

5.1 Tags-based Key-value Store

To show the benefit of the direct support for new data

models, we prototyped a key-value store using the Tags

VFS

Tags-based Key-

value Store

Tags library

MMU

Disk/MTD driver

Storage device

Kernel

User space

Applications

LevelDB

ext4

library. The data path had no file system and associated

redundant efforts to manage data layout (Figure 4.1).

Given that Tags is built on a hash table that stores

edges to nodes, Tags operations can be directly mapped

to support key-value store operations. We began by

creating a root node. For the key-value Put(key,

data) operation, we created a node to store the data and

used the key as an edge type ID. For Get(key), we

called tags_get_dest_node(root node ID,

key) to retrieve the data node. For Delete(key),

we called tags_delete_edge(root node ID,

node ID), followed by

tags_delete_node(node ID).

We compared the Tags-based key-value store with

LevelDB 1.9.0 [6]. Figure 4.1 shows the differences

between the two data paths. For the workload, we

inserted 10 million, 100-byte key-value pairs, each with

16-byte keys. Figures 5.1.1 and 5.1.2 show the results.

For both storage media, Tags and LevelDB have

similar read performance, since both systems use

memory-mapped IOs to avoid copying. Both systems

also use bulk updates (group operation for Tags) to speed

up small updates. For disks, Tags can outperform

LevelDB in terms of inserts by a factor of 1.8 and for

deletes, by a factor of 2.7. For SSDs, Tags can

outperform LevelDB in terms of inserts by a factor of

1.2, and for deletes, by a factor of 1.6.

5.2 Tags-based File System

To demonstrate usability, we prototyped TagFS to show

that the interface and primitives provided by Tags are

expressive enough to build meaningful and complex

applications. TagFS was implemented at the user space

via the FUSE framework [24]. Figure 5.2.1 illustrates

the flow of data requests.

TagFS translates POSIX file system calls into

Tags-based nodes and edges, and this task involves many

node and edge operations, simplified by group

operations. Basically, all i-nodes (permission holding

nodes) are replaced with s-nodes, and all attributes are

accessed through edges (Figure 5.2.2). Directory

entries can be accessed via ID hashes. For traversals, a

directory entry can locate the next and previous entries

through hash(current ID, next edge type) or hash(current

ID, previous edge type). Data blocks are accessed

through enumerated edges to support indexing on top of

the hashing data structure.

Although we could instead use a single node to

contain all attributes of an i-node, we explored this

pedantic scenario to show that even if Tags are naively

applied, we can still configure the system to achieve

reasonable performance. We compared our TagFS

with ext4 stacked on FUSE. The times elapsed for

TagFS and ext4 + FUSE to compile the openSSL

(v1.1.0f) [2017] were statistically the same (87 + 0.01

seconds).

When running LFS large-file and small-file

benchmarks [14], TagFS performed reasonably well

when its block size reaches 32KB, to amortize the cost

of fine-grained access to attribute nodes and dynamic

type checks (Tables 5.2.1 and 5.2.2). Future work will

include optimizing the dynamic behavior of Tags.

Table 5.1: System configurations.

CPU 2.2Ghz Intel® Xeon® E5-2430, 15MB cache

Memory 32 GB RDIMM 1333 MT/s

HDD Seagate® SAS 146GB 15K RPM

SSD Intel® S3500 200 GB SATA Value MLC

Operating system Linux Mint 3.19

Figure 5.1.1: Key-value store performance for

HDD.

Figure 5.1.2: Key-value store performance for SSD.

Figure 5.2.1: TagFS and the Tags library (shaded).

0

50

100

150

200

250

insert read delete

KOP/S

Tags-key-value store LevelDB

0

50

100

150

200

250

300

350

400

insert read delete

KOP/S

Tags key-value store LevelDB

FUSE VFS

TagsFS Tags library

MMU

Disk/MTD driver

Storage device

Kernel

User space
Applications

Figure 5.2.2: The Tags representation of file system.

Table 5.2.1: LFS large-file benchmark numbers

(MB/s), with one 512MB file for HDD and one 2GB

file for SSD.

 Seq w Rand w Seq r Rand r

Tags

+

FUSE

HDD
190

(+2.4)

25

(+1.0)

190

(+1.7)

26

(+0.4)

SSD
240

(+4.8)

120

(+1.1)

340

(+7.9)

140

(+1.9)

Ext4

+

FUSE

HDD
91

(+0.2)

43

(+0.3)

190

(+1.1)

2.7

(+0.0)

SSD
150

(+3.2)

100

(+3.2)

350

(+4.6)

39

(+0.4)

Table 5.2.2: LFS small-file benchmark numbers

(ops/sec), with 20K 16KB file for HDD and 100K

16KB files for SSD.

 Create Read Delete

Tags
+

FUSE

HDD 1.4K (+21) 5.5K (+170) 5.5K (+260)

SSD 3.8K (+66) 12K (+120) 17K (+290)

Ext4
+

FUSE

HDD
1.6K
(+27) 2.6K (+100) 7.3K (+290)

SSD
4.1K
(+80) 5.1K (+120) 19K (+1.5K)

5.3 Per-file secure deletion

To demonstrate cross-layer coordination and tracking,

we augmented TagFS with a per-file secure-deletion

feature akin to that of TrueErase [4]. First, a user can

use chattr +s to set the secure-deletion bit of a file

at the file-system layer. However, by the time a storage

request arrives at the device driver layer, the layer can no

longer tell the file membership of a block.

In TagFS, since each group of nodes is governed by

an s-node to manage the permission, any node (e.g., a

data block node) under an s-node can reach the s-node

(see §3.4). Then, TagFS can access the permission.

The secure-deletion bit indicates that the corresponding

overwrite or truncate should be handled securely.

We handled the disk case by zeroing out data blocks

that needed to be securely overwritten and truncated at

the block layer. Without the open FTL and raw flash

setup, we did not implement this feature. Note that the

TRIM command is insufficient, since it only specifies

what pages are obsolete, so that the garbage collection

would not migrate them as live pages during the garbage

collection process [19].

6. Related Work

Since the advent of SSDs, research systems have

attempted to address some of the limitations posed by the

legacy storage data path.

 Cross-layer redundancy removal: Conquest [25]

and TableFS [12] have dedicated data paths for large

files and remaining small files and metadata. File-

system journals can be turned off for databases [17].

 Cross-layer coordination: The gray-box

approach leverages inferred information across layers

for coordination [1]. TrueErase [4] provides an

auxiliary data path, so that a file system can propagate

the information to the device layer to indicate whether a

file needs to be securely deleted or overwritten.

Willow [16] augments the data path with customizable

API to coordinate across layers.

Support for low latency storage: JFFS [27]

consolidates logging for the file-system and the device-

driver layers. DAX [26] uses direct IOs and bypasses

the memory caching designed for high-latency storage.

Arrakis [10] removes the kernel from the data IO path.

IO requests are routed to and from the applications’

address spaces. To perform IOs, applications rely on a

user-level IO stack that is provided as a library.

 Support for new storage data models: [18]

shows how mixed workloads from file systems and

databases can be efficiently handled using separate

KVFS and KVDB layers. Cassandra [7] uses a

customized graph API to store and retrieve data objects.

7. Lessons Learned and Future Work

Tags takes a minimalist approach to design and building

a storage data path. The idea seemed simple; however,

Tags began as an analogue of sticky notes and was

transformed into graph nodes and edges, implemented

with the semantics of single-level stores and

representations akin to those of key-value stores. Little

did we know that this journey would lead us to revisit

numerous legacy concepts and design decision, and help

us develop a better appreciation of storage advances.

Low-level single-level store model is tricky to

program: When building the core Tags, low-level

single-level-store style programming was confusing at

times. Since the memory allocator and all its allocated

memory regions are persistent, all changes to memory

data structures may result in unintended IOs. To

overcome this hurdle, we separated persistent and

transient data structures. Fortunately, users need only

to handle node and edge IDs.

directory super node

file super node

root super node

file name node
various

edge types

mode and other

edge types
Permission node permission node

string edge type

Permission node size node
s_node edge type

mode and other

edge types
Permission node permission node

mode and other

edge rtypes
Permission node permission node

s_node edge type
…

enumerated

edge types
Permission node data nodes

Locality is still important for hashing: We

avoided hashing repeated path prefixes using the parent

path ID as a seed to short-circuit the hash functions;

however, effectively, this scheme made hashing

hierarchical. Our future work will find additional ways

to improve the locality of hashing.

Access control dictates the unit of access:

Although Tags allows fine-grained data representation

and organization beyond the granularity of legacy data

structures, the access control dictates which groups of

tags are accessed together and how they can form graphs.

Convoluted path forward: In some ways, the

Tags design reintroduced certain aspects of the

components of legacy storage data path (e.g., group

operations). However, once we pierce through the

legacy data structures, with fine-grained system calls, we

can directly support data and metadata layouts not

previously possible [28].

8. Conclusions

We have presented Tags, a white-box approach to

addressing legacy storage data path constraints. Using

a unifying primitive and an API of nodes and edges, we

have shown how Tags can be used to build applications

as complex as a file system and robust enough to compile

the Linux kernel. The Tags-based key-value store

shows how direct system support and bypassing

redundant services can significantly improve

performance for both disks and SSDs. Tags also eases

data-path-wide tracking and coordination to support

features such as per-file secure deletion.

Acknowledgement

This work is sponsored by FSU and NSF CNS-0845672.

Opinions, findings, conclusions, or recommendations

expressed in this document do not necessarily reflect the

views of FSU, NSF, or the U.S. Government.

References

[1] Arpaci-Dusseau AC, Arpaci-Dusseau RH.

Information and Control in Gray-box Systems.

Proceedings of the 18th Symposium on Operating

Systems Principles, 2001.

[2] Arpaci-Dusseau AC, Arpaci-Dusseau RH,

Bairavasundaram LN, Denehy TE, Popovici FI,

Prabhakaran V, Sivathanu M. Semantically-smart

Disk Systems: Past, Present, and Future.

Proceedings of the 2006 ACM International

Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS), 2006.

[3] Bonwick J. The Slab Allocator: An Object-Caching

Kernel Memory Allocator. Proceedings of the

USENIX Summer 1994 Technical Conference

(ATC), 1994.

[4] Diesburg S, Meyers C, Stanovich M, Mitchell M,

Marshall J, Gould J, Wang AIA, Kuenning G.

TrueErase: Per-file Secure Deletion for the Storage

Data Path. Proceedings of the 2012 ACM Annual

Computer Security Applications Conference

(ACSAC), 2012.

[5] Fagin R, Nievergelt J, Pippenger N, Strong HR.

Extensible Hashing—A Fast Access Method for

Dynamic Files. ACM Transactions on Database

Systems, 4(3):315-344, 1979.

[6] Ghemawat S, Dean J, LevelDB,

https://github.com/google/leveldb, 2017.

[7] Lakshman A, Malik P 2010. Cassandra: a

decentralized structured storage system. ACM

SIGOPS Operating Systems Review, 44(2): 35-40,

2010.

[8] Lu L, Pillai TS, Arpaci-Dusseau AC, Arpaci-

Dusseau RH, WiscKey: Separating Keys from

Values in SSD-Conscious Storage. Proceedings of

the 14th USENIX Conference on File and Storage

Technologies (FAST), 2016.

[9] OpenSSL Crytpgraphy and SSL/TLS Toolkit.

https://www.openssl.org/news/openssl-1.1.0-

notes.html, 2017.

[10] Peter S, Li J, Zhang I, Ports DRK, Woos D,

Krishnamurthy A, Anderson T, Roscoe T.

Arrakis: The Operating System is the Control Plane.

Proceedings of the 11th USENIX Symposium on

Operating Systems Design and Implementation

(OSDI), 2014.

[11] Peterson JL, Norman TA. Buddy Systems.

Communications of the ACM 20(6):421-431, 1997.

[12] Ren K, Gibson G. TABLEFS: Enhancing Metadata

Efficiency in the Local File System. Proceedings of

the 2013 USENIX Annual Technical Conference

(ATC), 2013.

[13] Rodeh O, Bacik J, Mason C. BTRFS: The Linux

B-tree filesystem. ACM Transactions on Storage

(TOS), 9(3), Article No. 9, 2013.

[14] Rosenblum M, Ousterhout JK. The Design and

Implementation of a Log-structured File System.

ACM Transactions on Computer Systems (TOCS),

10(1):26-52, 1992.

[15] Rumble SM, Kejriwal A, Ousterhout J. Log-

structured Memory for DRAM-based Storage.

Proceedings of the 12th USENIX Conference on File

and Storage Technologies (FAST), 2014.

[16] Seshadri S, Gahagan M, Bhaskaran S, Bunker T, De

A, Jin Y, Liu Y, Swanson S, 2014. Willow: A User-

programmable SSD. Proceedings of the 11th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2014.

[17] Shen K, Park S, Zhu M. Journling of Jounal is

(Almost) Free. Proceedings of the 12th USENIX

Conference on File and Storage Technologies

(FAST), 2014.

[18] Shetty PJ, Spillane RP, Malpani RR, Andrews B,

Seyster J, Zadok E, Building workload-independent

storage with VT-trees. Proceedings of the 11th

USENIX Conference on File and Storage

Technologies (FAST), 2013.

[19] Shu F, Obr N. Data set management commands

proposal for ATA8-ACS2.

http://www.t13.org/documents/UploadedDocument

s/docs2007/e07154r2-

Data_Set_Management_Proposal_for_ATA-

ACS2.pdf, 2007.

[20] Sivathanu M, Prabhakaran V, Popovici FI,

Denehy TE, Arpaci-Dusseau AC, Arpaci-Dusseau

RH. Semantically-Smart Disk Systems.

Proceedings of the Second USENIX Symposium on

File and Storage Technologies (FAST), March

2003.

[21] Sivathanu M, Bairavasundaram LN, Arpaci-

Dusseau AC, Arpaci-Dusseau RH. Life or Death

at Block Level. Proceedings of the 6th Symposium

on Operating Systems Design and Implementation

(OSDI), December 2004.

[22] Sun Microsystems. In a Class by Itself—the

Solaris 10 Operating System, A Technical White

Paper, November 2004.

[23] Swanson S, Caulfield A. Refactor, Reduce,

Recycle: Restructuring the I/O Stack for the Future

of Storage. Computer, 46(8):52-59, August 2013.

[24] Szeredi M. Filesystem in Userspace.

http://fuse.sourceforge.net, 2005.

[25] Wang AI, Reiher PL, Popek GJ, Kuenning GH,

Conquest: Better Performance Through a

Disk/Persistent-RAM Hybrid File System.

Proceedings of the 2002 USENIX Annual Technical

Conference (ATC), 2002.

[26] Wilcox M. DAX: Page Cache Bypass for

Filesystems on Memory Storage.

https://lwn.net/Articles/618064, 2014.

[27] Woodhouse D. JFFS: The Journaling Flash File

System. Proceedings of the Ottawa Linux

Symposium, 2001.

[28] Zhang S, Catanese H, Wang AIA. The Composite-

file File System: Decoupling the One-to-one

Mapping of Files and Metadata for Better

Performance. Proceedings of the 14th USENIX

Conference on File and Storage Technologies

(FAST), 2016.

