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Abstract 

We have designed, prototyped, and evaluated the Legend 

file system, which exploits the ability to regenerate lost 

files to improve reliability. Unlike RAID-5 and RAID-6, 

Legend degrades gracefully as the number of failed 

storage devices increases.  Legend also mitigates the 

high storage capacity overhead imposed by n-way 

replications.  Combined with existing methods, Legend 

can form another line of defense against data loss. 

1. Introduction 

The quest for ever higher storage density and capacity 

has placed a growing strain on current reliability 

mechanisms.  Greater storage demand leads to more 

devices in a system, increasing the chance of the system 

encountering device failures [PAT98].  

 Common solutions rely on some form of data 

redundancy to mask failures.  RAID-5 and RAID-6 

exploit partial data redundancy and can survive failures 

if the number of failed storage devices is below a certain 

threshold (e.g., two for RAID-6), assuming independent 

device failures.  However, real-world device failures 

are not independent [SCH07; MIL09].  Higher storage 

capacity also increases the chance of a device hosting 

corrupted bits [HAR07; GRU12], undetected until the 

recovery time.  Thus, enterprise deployments combine 

the use of RAIDs with 2- or 3-way full data replications 

[SHV10; PAR13].  However, full replication imposes 

high storage overhead and can be cost-prohibitive for 

small- to mid-scale deployments.   

We introduce the Legend file system, which 

exploits file regeneration to guard against data loss.  

The key observation is that a file set used to generate a 

file can serve as an implicit replica of the regenerated 

file.  Through our design, implementation, and 

evaluation, Legend shows that it can degrade gracefully 

as the number of failed storage devices increases, 

without imposing high storage overheads. 

2. Observations 

The following observations led to the design of Legend. 

2.1 Missed Opportunities in File Relationships 

Common reliability schemes do not exploit the 

relationships among files, overlooking potentially 

embedded data redundancy.  For example, suppose a 

file X.jpg is derived from X.bmp.  Replication of 

both files under traditional schemes would provide two 

copies of X.bmp and effectively four copies of X.jpg 

(since X.bmp contains redundant information of 

X.jpg).  Alternatively, the system can replicate only 

X.bmp twice to provide three copies of X.bmp and 

effectively four copies of X.jpg, reducing the efforts 

while increasing the overall replication factor. 

2.2  File Regeneration as a Form of Data Redundancy 

With the running example, suppose X.jpg is generated 

via running bmp2jpg X.bmp.  All files associated 

with bmp2jpg (e.g., library files) and X.bmp can form 

a file set Y, which is effectively an implicit replica of 

X.jpg, since the loss of X.jpg can be regenerated via 

Y.  These types of opportunities can be found in 

workflow-related workloads (e.g., compilation, 

simulation, and general multi-staged data processing).   

2.3  Practical to Recall Past System States  

Recent systems, such as Arnold [DEV14], have shown 

the feasibility of recalling all system states, including all 

file versions, by logging all input dependency 

information (e.g., input files, external input such as X 

Windows events, network input, IPCs, etc.).  Arnold 

could achieve this by logging at a rate of 2.8GB/day, 

with a performance penalty under 8%.  Thus, the 

implicit-replica approach can potentially be applied 

system-wide. 

2.4  Many-core Trends   

While trading computation with storage capacity for 

better reliability may seem expensive, the continuation 

of the Moore’s Law in the number of CPU cores 

[BUR14], along with the availability of massive 

parallelism, may make this tradeoff favorable [TIM10]. 

3. The Legend File System 

The Legend File System exploits the notion of implicit 

replicas to improve reliability.  Unlike Arnold’s focus 

on complete lineage history tracking and queries, Legend 

focuses on reliability.  To reduce tracing overhead, 

Legend currently targets files that can be regenerated 

without dependencies on external input and IPCs.  To 

reduce consistency-related overhead, Legend is designed 

as a speculative reliability layer.  That is, if 

regeneration is not successful or possible, Legend falls 

back to the next layer of reliability measure (e.g., 

backup).  This semantics is still useful, since once 

RAID-6 encounters two disk failures, it has to fall back 



to the reliability layer.  On the other hand, Legend is 

designed to fail gracefully and continue service 

proportional to the number of surviving devices, and it 

can be used as another line of defense.  

 The following subsections discuss our major design 

components.  We will use software compilation as a 

running example, due to readers’ familiarity with this 

type of computation and its richness in corner cases. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1:  A simplified file-creation dependency 

graph for a compilation example.  Rectangles are 

executables, and the document boxes are input and 

output files.  The boxes containing vertical bars are one 

implicit replica of a.out.  The boxes containing 

horizontal bars are the second implicit replica of a.out.  

ld is a member of both implicit replicas and contains 

both vertical and horizontal bars. 

3.1. Identifying Implicit Replicas 

File-creation dependency graph:  We identify implicit 

replicas by gathering traces on process- and file-related 

system calls.  Files referenced under the same process 

group ID form a file-creation dependency graph, where 

nodes are files or processes associated with executables.  

The reading of an input file I by an executable’s process 

E forms an inbound edge IE.  The writing of an 

output file O by an executable’s process E forms an 

outbound edge EO.  If a mmap call has its writable 

flag set, it is treated as a write; otherwise, it is treated as 

a read.  An input file can also be the output file.  For 

example, an editor reads in a file, modifies it, and 

overwrites it with the new version.  Similarly, a script 

file can be an input, output, and executable file.  

However, our system considers files with only inbound 

edges as regenerable.  Thus, a dynamically generated 

script file is considered regenerable.  When the script is 

executed, a separate process node associated with the 

script is created.  The creation time of the dependency 

graph is linear to the number of trace entries.   

Graph trimming:  A file-creation dependency 

graph is typically large.  We trim this graph by 

grouping files from the same library package into a 

single node.  Files under /tmp are also omitted, as 

discussed later.  

Implicit replicas:  Figure 3.1.1 shows a simplified 

file-creation dependency graph for a compilation 

example.  From the bottom up, a.out can be 

generated with the presence of the ld executable 

(represented in a rectangle box), taking in the input files 

of a.o and b.o (represented in document boxes).  

Thus, ld, a.o, and b.o (boxes containing horizontal 

lines) are an implicit replica of a.out, resulting in the 

following regeneration rule:   

ld, a.o, b.o  a.out          (3.1.1) 

Similarly, a.o and b.o can be regenerated with the 

following rules: 

gcc, stdio.h, a.c  a.o      (3.1.2) 

gcc, stdio.h, b.c  b.o      (3.1.3) 

By expanding a.o and b.o in (3.1.1) with the left-hand 

side of (3.1.2) and (3.1.3), and with duplication removed, 

we can derive the following rule:   

gcc, ld, stdio.h, a.c, b.c  a.out (3.1.4) 

Now, gcc, ld, stdio.h, a.c, and b.c (represented 

with boxes containing vertical bars) can serve as a 

second implicit replica of a.out.    

Duplicate file memberships for implicit replicas:  

Since memberships are determined by rules, a file can be 

replicated to be the member of multiple implicit replicas 

(unless the maximum replication factor is capped).  In 

this case, the ld box contains both vertical and 

horizontal bars, denoting that it belongs to the first and 

second implicit replicas of a.out.   

Graph consistency:  Since our reliability layer is 

speculative, a file generated based on out-of-date 

dependencies or upper stream input file updates may 

have a mismatching checksum.  Once a mismatch 

occurs, we fall back to the next layer of reliability 

mechanism.  One implication is that we do not need to 

maintain the consistency of our graphs as aggressively, 

which can incur high overhead.  While traces need to 

be gathered continuously, daily updates of the 

dependency graph would be sufficient.    

Additionally, we used file names instead of their 

content hashes to build the dependency graph.  Thus, as 

long as updates lead to the same checksum, our recovery 

is considered successful.         

Nondeterminism:  Files under /tmp often have 

randomly generated file names from different processes 

to avoid name collisions.  Suppose a.o and b.o are 

located under /tmp, our system omits them.  The net 

effect is the same as replacing the file regeneration rule 

(3.1.1) with (3.1.4). 

The same technique can be applied to other 

intermediary regenerated files that contain 

nondeterministic content (e.g., embedded timestamps).  

a.c 

gcc 

a.o 

ld 

a.out 

stdio.h b.c 

b.o 

gcc 



Currently, we handle regenerated files with 

nondeterministic content located at leaf nodes of the 

dependency graph.  A mismatched checksum simply 

means falling back to the next reliability mechanism.  

3.2. Implications of Forming Implicit Replicas 

The use of implicit replicas has several implications.  

First, to avoid correlated failures, implicit replicas 

should be placed on separate storage devices.   

Second, spreading files within an implicit replica 

across multiple storage units increases the chance of 

losing a file within the implicit replica due to a device 

failure.  On the other hand, it may increase the CPU 

parallelism to regenerate multiple implicit replicas that 

are stored across devices. 

Third, regenerable files deeper in the dependency 

graph have more opportunities to form implicit replicas.  

Spreading these files rather than the files near the top of 

the graph across devices will improve parallelism. 

Fourth, while implicit replicas can be formed with 

files from different depths of the dependency graph, as 

described in (3.1.5) and (3.1.6), spreading out files with 

fewer implicit replicas increases the chance of losing one 

of them, which would require us to fall back on an 

underlying reliability layer to recover. 

gcc, ld, stdio.h, a.c, b.o  a.out (3.1.5) 

gcc, ld, stdio.h, a.o, b.c  a.out (3.1.6) 

Device Content 
0 gcc, ld, stdio.h, a.c, b.c 
1 ld, a.o, b.o 
2 a.out 

Figure 3.3.1:  An example of implicit replica 

assignment. 

3.3. Device Assignment 

Assigning implicit replicas to storage devices resembles 

the n-coloring problem, where each implicit replica 

within the same regeneration tree has a unique color (or 

storage device).  Otherwise, two implicit replicas 

residing on the same device can fail together.   

Since n-coloring is NP-complete, we used a greedy 

scheme.  Each implicit replica is assigned a depth based 

on the file-creation dependency graph.  Each replica 

then is assigned to storage devices in a round-robin 

fashion.  If a file belongs to multiple implicit replicas 

(e.g., a user-created script), we duplicate it to avoid 

correlated implicit replica failures.  

If there are more storage devices than implicit 

replicas, we can spread out the files of some implicit 

replicas across multiple devices to improve parallelism 

and recovery speed, considering several constraints.  

First, we should not spread out the files of an implicit 

replica that cannot be regenerated (e.g., .c files), since 

doing so increases its chance of failure.  Second, for 

regenerable replicas, we used a peak-to-mean-ratio 

threshold of the maximum implicit replica size to the 

average replica size to determine whether we should 

balance the storage capacity.  Third, we used a peak-to-

mean ratio threshold of the maximum implicit replica 

access frequency to the average replica access frequency 

to determine whether to balance the loads.  

3.4. Name Space Management 

Having assigned a file to a device, the path leading to the 

file is created or replicated.  Thus, having implicit 

replicas grouped by depths encourages spatial grouping 

of files and limits the extents of replications 

Figure 4.1:  Legend components (shaded) and the 

data path from applications to the underlying ext4. 

4. Implementation 

The two major components of Legend are the trace 

analyzer and the file system itself.  We prototyped 

Legend in the user space via FUSE (v2.9.3) [Szeredi 

2005] (Figure 4.1) running atop Linux 3.13.11.   

 The trace analyzer gathers system-call traces 

related to process executions and file system accesses 

from strace.  We captured all parameters (e.g., 

environmental variables) for file regeneration.  The 

analyzer then generates file-creation dependency graphs, 

identifies implicit replicas, and maps files to storage 

devices, per-file checksums, and corresponding 

regeneration methods, to be used by Legend. 

 To enable file allocation to individual storage 

devices without re-engineering the data layout, we 

modified the Unionfs (v2.6) [2016], which can combine 

multiple file systems into a single name space.  To 

illustrate, if /dir/file1 resides on device 0 and 

/dir/file2 resides on device 1, /dir is replicated 

on both devices.  In our case, we ran ext4 (v1.42.9) on 

each storage device.   

We modified Unionfs to use our file-to-device 

mapping to determine and speed up lookups.  In 

addition, in the case of failures, Legend would back trace 

the file-creation dependency graph and trigger 

regeneration.  In our running example, should the 

device containing a.out fail, Legend would try to 

applications 

VFS FUSE 

ext4 

user 
kernel 

Legend applications 

trace analyzer 



regenerate based on the first implicit replica, or ld, a.o, 

and b.o.  If the first implicit replica fails to regenerate, 

Legend would try regenerate based on the second 

implicit replica, or gcc, ld, stdio.h, a.c, and b.c.   

Since the file-creation dependency graph does not 

capture timing dependencies, we had to make 

conservative timing estimate when reissuing individual 

execution system calls.  Thus, our system tries to 

reissue top-level user commands when applicable during 

recovery to better exploit concurrency.  

The trace analyzer is written in Perl (863 

semicolons); the Legend file system is written in C 

(2,447 semicolons). 

5. Evaluation 

We evaluated the Legend file system’s reliability using 

trace replays on a simulation, and measured recovery 

cost and performance overhead based on the actual 

prototype.  Each experiment was repeated 5 times, and 

results are presented at 90% confidence intervals.  

5.1. Reliability 

A 15-disk simulator was used to explore interactions 

between n-disk failures with reliability strategies, 

including no recovery (RAID-0) and Legend, as well as 

2- and 3-way replication.   

The simulator was populated with contents based 

on three traces.  The first 355MB trace was gathered 

from a software development environment (10/6/2015-

10/13/2015).  The trace contains 400K references to 29 

million unique files from 1,440 execution calls.  The 

second 2.2GB trace was gathered from a meteorology 

workstation running radar plotting, image generation, 

and statistical analysis (8/14/2015-8/24/2015).  The 

trace contains 900K references to 63 million unique files 

from 47K execution calls.   The third 43GB trace was 

gathered from a meteorology student server running 

statistical analysis workloads (8/14/2015-8/24/2015).  

The trace contains 2.6K references to 192K unique files 

from 4.4K execution calls. 

Given that Legend regenerates files based on past 

reference patterns, a longer deployment will yield a 

greater coverage of files.  For the simulation, we 

assume oracle knowledge to explore the full potential of 

our approach for long-term deployment.  That is, all 

references are processed first, prior to the replay of the 

traces.  We varied the number of randomly chosen 

failed storage devices at the beginning of the replay and 

compared the percentage of processes that can complete 

successfully [SIV04a].   

Figure 5.1 compares the reliability of different 

schemes as the number of failed storage devices 

increases.  The reliability provided by various schemes 

varies depending on the workloads.  The software 

development trace contains the most generative 

dependencies among file groups (13K edges), followed 

by the meteorology workstation trace (9.5K edges).  

The student server trace only contains 569 edges.  

Legend performs better with more generative 

dependencies (Figure 5.1a).  With 3 disk failures, 

Legend alone can outperform the no recovery option by 

50%, and Legend even outperforms 3-way replication.   

(a) Software development workload. 

(b) Meteorology workstation workload  

(c) Meteorology student server workload. 

Figure 5.1:  Percentage of unaffected processes vs. 

number of failed disks.   

On the other hand, other schemes thrive with fewer 

generative dependencies.  This inverse correlation 

suggests that Legend can potentially be combined with 

other approaches to achieve a greater overall reliability.  

For instance, Legend can be combined with 2-way 
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replication.  As Legend identifies files with implicit 

replicas, the space and effort used for their explicit 

replicas can be redirected for other files to increase the 

effective replication factor.   

5.2. Recovery  

We compared the performance of Legend stacked atop 

of 4-disk, per-disk ext4 via FUSE with that of the 

baseline ext4-based RAIDs (no FUSE).  Table 5.2.1 

shows our experimental platform. 

 Given that RAID recoveries are typically 

performed in the background and throttled while serving 

foreground requests, we measured the bandwidth ranges 

that can be achieved through regeneration.  For the low 

bandwidth bound, we measured the regeneration of 

missing .o files of Dungeon Crawl (v0.13.0) [2016], 

and for the high bandwidth bound, we measured the 

regeneration of one of our trace files from a .gz file 

(Table 5.2.2).  We compared our numbers with the 

bandwidth ranges of a RAID-5 and a RAID-6 with the 

typical 10MB/s low-end cap and achievable high 

bandwidth bound based on measurement. 

 The high bandwidth bound of Legend shows that 

regeneration can recover at a rate faster than the common 

throttled threshold.  While Legend’s low bandwidth 

bound is lower than the threshold, prioritized 

regeneration of files in need can still be more responsive 

than waiting for the recovery of the entire device content 

for RAIDs.  In addition, Legend can continue service 

beyond 2-disk failures.  Finally, Legend can leverage a 

growing number of CPUs to parallelize recovery. 

Table 5.2.1: Experimental platform.  
Processor 4x2GHz Intel® Xeon® E5335, 128KB L1 cache, 8M 

L2 cache 

Memory 8GB 667Mhz, DDR2 

Disk 4x73GB, 15K RPM, Seagate Cheetah®, with 16MB 

cache 

Table 5.2.2:  Recovery bandwidth.  
System configurations Bandwidth (+1%) 

FUSE + Legend 0.3 – 42 MB/s 

RAID-5 1-disk recovery 10 - 96 MB/s 

RAID-6 2-disk recovery 10 - 50 MB/s 

Table 5.3.1:  Filebench with file-server personality, 

configured with default flags and 100K files.  
System configurations Bandwidth (+1%) 

ext4 + RAID-0 84.1 MB/s 

ext4 + RAID-5 35.0 MB/s 

FUSE + Unionfs + ext4 22.8 MB/s 

FUSE + Legend 20.7 MB/s 

FUSE + Legend + tracing 16.6 MB/s 

5.3. Overheads 

We first ran Filebench (v.1.4.9.1) [2014] with a file 

server personality, configured with default flags and 

100K files.  Table 5.3.1 shows that moving from 

RAID-0 to RAID-5 incurs ~60% of the overhead.  

Since Legend is built on Unionfs, which is built on the 

user-level FUSE, we found that the majority of the 

overhead arises from FUSE+Unionfs, whereas current 

non-optimized Legend incurs a 9% overhead when 

compared to FUSE+Unionfs.  The overhead of 

strace is highly load dependent.  In this case, it 

reduces the bandwidth by another 20%.   

The next experiment involves compiling Dungeon 

Crawl.  The elapsed time of Legend (595 seconds) is 

within 1% compared to FUSE+Unionfs (594 seconds).  

strace introduces 10% more overhead (656 seconds). 

 The current non-optimized single-threaded trace 

analyzer processes uncompressed traces at 90MB/min.  

Optimizing the Legend framework and exploring other 

lightweight trace techniques will be future work.  

6. Related Work 

The closest work to Legend is D-GRAID [SIV04a], 

which groups a file and its related blocks into isolated 

fault units (mostly in terms of directories) and aligns 

them to storage devices.  By doing so, a file, its 

metadata, and parent directories (replicated at times) are 

less affected by the failure of other disks.  Legend 

replicates file paths as well, as needed, but it uses 

dynamic generative dependency information to identify 

implicit replicas, and it leverages regeneration for 

recovery. 

 Generative dependencies have been used to recover 

files from malicious attacks [GOE05; HSU06; KIM10].  

However, these solutions are not designed for graceful 

degradation in the face of device failures. 

 Legend can be viewed as an example of applying 

specific types of provenance [MUN06] to improve 

reliability.  However, provenance gathering has been 

resource intensive, until the Arnold File System 

[DEV14] demonstrates how system-wide information 

can be gathered efficiently. Legend sees this advance as 

a potential springboard to improve reliability via file 

regenerations.   

7. Conclusions 

We have presented the design, implementation, and 

evaluation of the Legend file system, which exploits the 

use of implicit replicas to improve reliability.  Our 

results show that, under certain workloads, the use of 

implicit replicas can achieve a better process completion 

rate than 2-way replication in the face of multiple disk 

failures.  While the recovery speed depends on the 

effort to regenerate files, it can be mitigated with 

prioritization and parallelization via the growing 

availability of cheap CPU cycles.  Legend can 

complement existing approaches for overcoming 

multiple storage device failures and achieving graceful 

degradation.   
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