
 
Abstract—Mobile computing is the new norm.  As people feel 

increasingly comfortable computing in public places such as 
coffee shops and transportation hubs, the threat of exposing 
sensitive information increases.  While solutions exist to guard 
the communication channels used by mobile devices, the visual 
channel remains, to a significant degree, open.  Shoulder surfing 
is becoming a viable threat in a world where users are frequently 
surrounded by high-power cameras and sensitive information 
from recorded images can be extracted with modest computing 
power.  

In response, we present Cashtags: a system to defend against 
attacks on mobile devices based on visual observations.  The 
system allows users to access sensitive information in public 
without the fear of visual leaks.  This is accomplished by 
intercepting sensitive data elements before they are displayed on 
screen, then replacing them with non-sensitive information. In 
addition, the system provides a means of computing with 
sensitive data in a non-observable way.  All of this is 
accomplished while maintaining full functionality and legacy 
compatibility across applications.  
 

Index Terms—Mobile privacy, shoulder surfing.   

I. INTRODUCTION 

houlder surfing is becoming a concern in the context of 
mobile computing. As mobile devices become 

increasingly capable, people are able to access a much richer 
set of applications in public places such as coffee shops and 
public transportation hubs.  Inadvertently, users risk exposing 
sensitive information to bystanders via the screen display. 
Personal information exposure can increase the risk of 
personal, fiscal, and criminal identity theft.   Exposing trade or 
governmental secrets can lead to business losses, government 
espionage, and other forms of cyber terrorism [12, 13, 14]. 

This problem is exacerbated by the ubiquity of surveillance 
and high-power cameras on mobile devices such as 
smartphones and emerging wearable computing devices such 
as Google Glass [57].  Additionally, the trend towards 
multicore machines, GPUs, and cloud computing makes 
computing cycles much more accessible and affordable for 
criminals or even seasoned hobbyists, seeking to extract 
sensitive information via off-the-shelf visual analysis tools 
[58]. 

This paper presents the design, implementation, and 

evaluation of Cashtags, a system that defends against shoulder 
surfing threats.  With Cashtags, sensitive information will be 
masked with user-defined aliases, and a user can use these 
aliases to compute in public.  Our system is compatible with 
legacy features such as auto correct, and our deployment 
model requires no changes to applications and the underlying 
firmware, with a performance overhead of less than 3%. 

A. The shoulder surfing threat  

The threat of exposing sensitive information on screen to 
bystanders is real. In a recent visual data survey of IT 
professionals, 85% of those surveyed admitted there have been 
cases when they were able to see unauthorized sensitive on-
screen data, 82% admitted that there have been cases where 
their own sensitive on-screen data could be viewed by 
unauthorized personnel, and 82% had little or no confidence 
that users in their organization would protect their screen from 
sensitive data exposure to unauthorized personnel [1]. These 
results are consistent with other surveys indicating that 76% of 
respondents were concerned about people observing their 
screens in public [2], while 80% admitted that they have 
attempted to shoulder surf the screen of a stranger in a public 
location [3]. 

The future projection of the shoulder-surfing threat is even 
worse, as mobile devices are replacing desktop computers.  
Mobile device sales now account for over 73% of annual 
technical device purchases [4]. Employees more frequently 
take their work with them on the go; by 2015, the world's 
mobile worker population will reach 1.3 billion [5].  This is 
highest in the US, where more than 80% of the workforce 
continues working when they have left the office [6], and 
figures suggest that 67% of employees regularly access 
sensitive data outside at places where they cannot do so safely 
[2].  While some organizations have implemented specific 
guidelines and practices to reduce this risk, 44% do not have 
any defined policy addressing these threats [1]. Advances in 
screen technology further increase the risk of exposure, with 
many new tablets claiming near 180-degree screen viewing 
angles [8]. 

B. The dangers are everywhere 

Visual exposure of sensitive information in the form of 
observation-based attacks can come in many forms.  Mobile 

Michael Mitchell, An-I Wang               Peter Reiher 
  Department of Computer Science         Department of Computer Science 

Florida State University          University of California, Los Angeles 
Tallahassee, FL, USA             Los Angeles, CA, USA   

{mitchell, awang}@cs.fsu.edu             reiher@cs.ucla.edu

Cashtags:  Prevent Leaking Sensitive 
Information through Screen Display  

S



 2

devices with cameras are nearly ubiquitous.  There now exist 
more than 3 billion digital camera phones in circulation [4].  
These devices are evolving rapidly, with newer models 
capable of capturing images at over 40 megapixels of 
resolution and over 10 times optical zoom for under $100 [7].  
Visual exposure can also be captured by one of the billions of 
security devices in existence.  These high-resolution and often 
insecure cameras are everywhere, especially in major 
metropolitan areas.  For example, figures suggest the average 
resident of London is captured on CCTV over 300 times every 
day [9]. Finally, but no less threateningly, sensitive data can 
be exposed by simple human sight. 

Observation-based attacks can also be much more complex.  
Increasingly sophisticated tools and systems have been 
developed to capture and exploit sensitive user data. Partial 
images can be merged, sharpened, and reconstructed, even 
from reflections. Optical Character Recognition (OCR) is 
becoming much more capable, with over 40 years of 
innovation. Offline and cloud-based OCR solutions are highly 
accurate with only a small percentage of error in recognition.  
Embedded OCR solutions are inexpensive and capable even 
on low-end hardware devices [10]. 

Personal information exposure can also make other attacks 
possible. The capture of just a small number of personal 
information elements can greatly increase the risk of other 
threats including social engineering attacks, phishing, and 
other personal identity theft threats. 

C. The consequences can be severe 

Observation-based information leaks can lead to significant 
personal and business losses.  Recently, an S&P 500 
company’s profit forecasts were leaked as a result of visual 
data exposure. The vice president was working on the figures 
on a flight while sitting next to a journalist [4].  In a different 
case, British government documents were leaked when a 
senior officer fell asleep on a train, thereby permitting another 
passenger to photograph sensitive data on his screen [11]. In 
another case, security cameras captured the private details of 
Bank of America clients through the bank’s windows [12]. In 
yet another case, sensitive personal information relating to the 
United Kingdom’s Prince William was captured and published 
as a result of on-screen exposure to a bystander [13].   

The risk of loss from shoulder surfing is also hurting 
business productivity.  Figures show that 57% of people have 
stopped working in a public place due to privacy concerns and 
70% believe their productivity would increase if they felt that 
no one would be able to see their screen [2]. 

D. Current solutions 

Several techniques have been developed to limit the visual 
exposure of sensitive private information. However, the 
primary focus of these systems has been limited to preventing 
the visual leakage of password entries [22, 23, 24, 25, 33, 34, 
35]. Once the user has been successfully authenticated, all 
accessed sensitive information is displayed in full view.  
Clearly, such measures are insufficient for general computing 
in public when the need to access sensitive information arises.  
Unfortunately, many techniques used to prevent visual 

password leaks cannot be readily generalized beyond 
password protection, a situation that motivates our work.  

II. CASHTAGS 

We present Cashtags1: a system that defends against 
observation-based attacks.  The system allows a user to access 
sensitive information in public without the fear of visual 
privacy leaks.   

A. Threat model 

We define the threat model as passive, observation-based 
attacks (e.g., captured video or physical observation by a 
human).  We assume the attacker can observe both the screen 
of the user as well as any touch sequences the user may make 
on the screen, physical buttons, or keyboards. We also assume 
the absence of an active attack; the observer cannot directly 
influence the user in any way. 

Although sensitive information can be presented in many 
forms, we focus on textual information to demonstrate the 
feasibility of our framework.  Protecting sensitive information 
in other forms (e.g., images and bitmaps) will be the subject of 
future work. 

B. User model 

Conceptually, Cashtags is configured with a user-defined 
list of sensitive data items, each with a respective Cashtags 
alias or a cashtag (e.g., $visa to represent a 16-digit credit-card 
number; see other examples in Table II). Then, whenever the 
sensitive term would be displayed on screen, the system 
displays the pre-defined alias instead (Fig 2.1).  At the point at 
which the sensitive data would be used internally by the 
device or an app, cashtags will be replaced by the sensitive 
data items represented by the alias, allowing whatever login, 
communication, transmission, or upload to proceed normally. 

Also, a user can directly type in a cashtag in place of the 
sensitive term, permitting more complex data-sensitive tasks 
such as filling out an application for a credit card or loan 
without risk of observation from a bystander.  In addition, 
cashtags are easier to remember than the actual information 
itself.  For example, $visa can be used as a shortcut for 
entering a 16-digit credit card number.  

C. Design overview 

Although conceptually simple, the design of Cashtags 
addresses a number of major design points.   

Intercepting sensitive data: Cashtags intercepts sensitive 
data items as they are sent to the display; for apps, at their 
common textual rendering library routines; for users, at 
routines to handle software keyboards as well as physical 
devices (e.g., USB and wireless input devices).   

User interface:  Users can type in cashtags instead of 
sensitive data items to compute in public.  This interface 
allows cashtags to be compatible with existing tools such as 
auto completion, spellcheckers, cut and paste, etc.  Thus, users 

 
1 Cashtag, an amalgam of the words cash and hashtag, serving as an easy-

to-remember alias for a valuable sensitive personal identifier. A cashtag alias 
consists of a dollar sign followed by an arbitrary string of printable characters. 
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can enter the first few characters and auto complete the full 
cashtag. 

Accessing sensitive data:  User-entered cashtags are 
converted internally to the sensitive data items before the apps 
access the data; this way, Cashtags will not break applications 
due to unanticipated input formats.   

Variants of data formats: Cashtags can leverage existing 
libraries to match sensitive data items represented in different 
formats (e.g., John Smith vs. John Q. Smith for a name). 

Development and deployment models:  Cashtags uses a 
code-injection framework.  This approach avoids modifying 
individual apps and the firmware, while altering the behavior 
of the overall system to incorporate Cashtags at runtime.   

Cashtag repository: the mapping of cashtags to sensitive 
data items is stored in a centralized, password-protected 
repository. 

 

 

III. CASHTAG DESIGN 

This section will present the design options for each 
Cashtags design point and explain how we arrived at the 
current design.   

A. Intercepting sensitive data 

To decide where to intercept sensitive data, we first need to 
understand how sensitive data traverses from apps to the 
screen through various display data paths.  Fig. 3.1 shows 
various display data paths under the Android application 
development platform.  Although iOS and Windows use 
different platforms, the display data paths generally can be 
mapped from one platform to another.   
 A typical app displays information on screen by invoking 
some user-level display or graphics library routines.  Various 
routines eventually invoke routines in the underlying window 
management system (e.g., Surface Flinger for Android) before 
information is processed by the OS and displayed on screen.    

Arguably, the window management system might seem to 
be a single point at which all sensitive data can be captured.  
Unfortunately, by the time sensitive information arrives there, 
some sensitive information may have been translated into 
bitmaps.  While OCR technologies are computationally cheap 
enough to be used for launching shoulder surfing attacks, they 
are still too heavyweight for deployment in the display data 
path, which is critical for user interactions.  Also, replacing 
sensitive bitmaps with non-sensitive ones would pose other 
obstacles we would like to avoid.  

Another extreme is to intercept at the app level, where the 
sensitive information is introduced.  Potentially, we can 
modify a few top apps and capture a majority of cases where 
sensitive information is used.  For instance, custom e-mail 
applications or browsers could offer protection for task-
specific usages. However, such solutions may restrict users to 
using a specific tool for a specific task. In addition, statistics 
show that specific app usage accounts for 86% of user time, 
trending away from general-purpose browsers [56].  Thus, the 
burden of incorporating our features could spread to a much 
wider range of app developers, which is undesirable.  Further, 
new apps and updates to old apps would not automatically 
include the desired protection. 

Thus, an intermediary ground is to intercept sensitive data 
within a few key display and graphics library routines. 

 
 
 
 
Fig.  3.1. Display data paths for the Android platform. 

 
Fig.  2.1.  On-screen sensitive data (left) and data protected by masking with
cashtag aliases (right). 

TABLE II 
SAMPLE MAPPING OF SENSITIVE DATA TO CASHTAG ALIASES  
Type Actual Alias 
Name John Smith $name 
Email jsmith@gmail.com $email 
Username Jsmith1 $user 
Password p@ssw0rd $pass 
Street Address 123 Main St. $address 
Phone number 555-111-2222 $phone 
Birthday 1/1/85 $bday 
SSN 111-22-3333 $ssn 
Credit Card 4321 5678 9012 1234 $visa 
Account number 123456789 $acct 
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B. User interface 

Early design:  In our early user-interface design, a user 
defines English-like aliases in a repository to indicate sensitive 
data items that they wish not to be shown (e.g., use John to 
represent Joe).  To discern these aliases when processing, we 
used an alternative input channel to mark them.  This initial 
design turned out to be problematic in a number of ways.   

One way to achieve this effect is to add a separate software 
keyboard that a user would use whenever they want to input 
sensitive information.  Essentially, this keyboard would be an 
app with elevated privilege to offer input across applications, 
and it would be easier to port across platforms, deploy, install, 
and update.  However, changing keyboards amidst a stream of 
input is cumbersome in practice.  This method would result in 
the loss of functionality offered in default keyboards, 
including swipe-based inputs, emoticon support, auto 
correction, and custom dictionaries. 

One step further is to replace the default keyboard with 
ours, which provides ways (e.g., a screen tapping sequence) to 
switch modes between normal entries with sensitive entries.  
By doing so, we can retain legacy functionalities such as auto 
correction.  The user learning curve would be less steep, since 
no keyboard switching would be involved.  On the other hand, 
the development effort of this approach would be significantly 
higher, and it would be harder for novice users to install our 
software, namely, by carrying out the replacement of the 
default keyboard.   

Direct input of cashtags:  While there are other input 
interface options than these, the need to perform cumbersome 
switches of input modes so that the aliases can appear as 
normal text seems superfluous in many contexts (e.g., using 
“visa” to represent the 16-digit credit card number).     

 Thus, we explored the use of cashtags, where aliases are 
prepended with a $ sign, to represent sensitive information.  
By doing so, a user can directly enter cashtags, and the mode 
change is explicitly encoded in the cashtag alias (e.g., use 
$fname to represent John and $gmail to represent 
jsmith@gmail.com).  This method can leverage the existing 
custom dictionary for auto completion, which makes it easier 
for the user to remember and input cashtags.  This method can 
also utilize standard application level development techniques, 
opening up the range of supported device platforms and 
decreasing development and installation efforts. 

Direct input of sensitive information:  Another alternative 
(albeit with some potential for information leak) is for a user 
to attempt to enter the initial characters of a sensitive data 
item.  As soon as the auto completion detects that Jo, for 
example, is likely to mean Joe, it will be automatically masked 
with the cashtag $John.  The user then can choose $John and 
proceed. 

Additional Cashtags semantics:  Recursion is supported, so 
we can use $signature to represent $first_name $last_name 
$gmail, which in turn maps to John Smith, jsmith@gmail.com.  
We detect and disallow circular cashtags mappings (e.g., use 
$John to represent $Joe, and $Joe to represent $John).  

C. Accessing sensitive information 

One design issue involves when to convert cashtags back to 
the sensitive data for accesses by apps.  Normally, when an 
app wants to access the sensitive information and sends it back 
to the hosting server, we need to make sure that the conversion 
is performed prior to access, so that the app would not be able 
to cache, store, or transmit the cashtags.  The main concern is 
that cashtags may not adhere to the type or formatting 
constraints and break an app inadvertently.   

Another thing we need to make sure of is that the cashtags 
are actually entered by the user, not just pre-populated by the 
app.  Otherwise, a malicious app can extract sensitive 
information just by displaying cashtags.   

There are also certain exceptions where it is desirable to 
directly operate on cashtags instead of the sensitive 
information.  For example, the auto completion task will auto 
complete cashtags ($fn to $fname), not the sensitive 
information it represents.  By doing so, the handling of text 
span issues is simplified because cashtags usually differ in text 
lengths when compared to the sensitive information they 
represent.   

D. Variants of data formats 

Sensitive data may be represented in multiple formats.  For 
example, names can be represented as combinations of first, 
last and middle initials (e.g., John Smith; John Q. Smith; 
Smith, John Q).  Accounts and social security numbers can be 
represented using different spacing and/or hyphenation 
schemes (e.g., 123456789; 123-45-6789; 123 45 6789).  
Fortunately, we can leverage existing regular expression 
libraries (java.util.regex.*) to perform such matching. 

Another issue involves the type restriction of the input field.  
For example, a number field (e.g., SSN) may prevent the use 
of cashtags ($ssn).  To circumvent these restrictions, we allow 
users to define special aliases (e.g., 000-00-0000) in place of 
cashtags to represent certain types of sensitive information 
(e.g., social security numbers).   

E. Deployment and development models 

To avoid modifying individual applications, we considered 
two options to provide system-level changes:  (1) custom 
system firmware images (ROMs) or (2) code-injection 
frameworks (e.g., Android Xposed) 

By utilizing a custom system firmware image, complete 
control of the operating system is provided.  (This approach 
assumes that the full source is available for modification.)  In 
addition, ROM-based solutions can offer a more unified 
testing environment.  However, the changes would be 
restricted to device-specific builds; only hardware for which 
the source is explicitly built would have access to the modified 
system.  This also limits user preference by restricting use 
only for a specific system image.  It would additionally require 
regular maintenance, and would break vendor over-the-air 
update functionality.   

Instead, we used a code-injection framework, which 
dynamically introduces overriding routines as a library, 
incorporated into execution prior to the starting of apps.  Code 
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injection offers more streamlined development, as standard 
user application development tools can be used.  In addition, 
these modules can be more easily deployed since they can be 
distributed as applications.  Because code injection only relies 
on the underlying system using the same set library, the 
deployment is much more portable and less coupled with the 
exact versions and configurations of system firmware. 

F. Cashtags App and Repository 

Cashtags aliases and sensitive data items are maintained in 
an internal repository.  The Cashtags app coordinates the 
interactions between various apps and the repository.  The app 
also provides password-protected access to add, edit, remove, 
import, and export sensitive terms and corresponding cashtags. 

  Cashtags provides per-application blacklisting, excluding 
specific applications from being code-injected (or activated) 
with cashtag-replacement code. For example, the cashtag 
repository itself must be excluded due to circular 
dependencies.   To illustrate, suppose a cashtag entry maps 
$first_name to Joe.  If Cashtags is enabled, the screen will 
show that $first_name is mapped to $first_name.  When the 
entry is saved, Joe will be mapped to Joe.  Thus, Cashtags is 
always excluded from servicing itself.  Individual application 
packages can be excluded for lack of relevance to sensitive 
information exposure or for performance issues (e.g. games, 
application launchers, home screens). 

IV. IMPLEMENTATION 

We prototyped Cashtags on the open-source Android 
platform.  Our code injection framework allows Cashtags to 
operate on any Android device with the same display and 
graphics libraries and root access.  This section will first detail 
the display data path in the Android context, then explain the 
code-injection framework, and finally discuss the details of 
how various display data paths are intercepted and how 
cashtags are stored. 

A. Android display elements 

Fig 3.1 has already shown a top-level view of various ways 
Android apps and browsers display information on the screen.  
This section provides further background on Android 
terminologies before we begin detailing our implementation.  
The corresponding terminologies for iOS and Windows are 
listed in Table IV. 

Android on-screen display is composed of views, layouts, 
and widgets.  View is the base class for all on screen user 
interface components. All visual elements are descendants of 
this base class.  

 
Widgets:  The term widget is used to describe any graphic 

on-screen element.  Different widgets can be used to display 
static text labels (e.g., TextView), user input boxes (e.g., 
EditText), controls (e.g., Buttons), and other media (e.g., 
ImageView).  

Views are organized into ViewGroups, the base class for all 
screen layouts. Layouts are arrangements of views within 
vertical or horizontal aligned containers (e.g., LinearLayout), 
or arranged relative to other views. Nesting of ViewGroups 
and Layouts allows more complex custom composites to be 
defined. 

Collectively, this tree of layouts and widgets is called the 
view hierarchy. When the screen canvas is drawn, the view 
hierarchy is converted from logical interface components into 
a raw screen bitmap.  Fig. 4.1 shows a simple user input form 
and its composition of various widgets and layouts.  

Text rendering:  Text can be rendered on screen through 
several mechanisms (Fig 3.1), the most common being 
through the TextView widget.  Fonts, styles, colors, and so 
forth can be applied to specify how these are displayed.  An 
EditText is an extension of the TextView that provides an 
interface for text input. This input can come from the user via 
the on-screen software keyboard, (integrated, plugged, or 
wirelessly connected) hardware keypads, voice input, gestures, 
and so forth.  Like TextView, these widgets can be pre-filled 
with text by the app internally. They can also be set through 
suggestion or auto-correction interfaces. 

Text can also be rendered on screen via OpenGL Canvas or 
other graphic rendering libraries. Unlike the EditText, this 
class does not inherit from the base TextView, although 
similar interfaces do exist. 

Text can further be rendered on-screen from HTML and 
Javascript via browser rendering engines such as WebKit or 
Chromium. This includes mobile web browsing applications 
as well as many other cross-platform web app APIs such as 
Phonegap, Apache Cordova, and JQuery Mobile.  

TABLE IV 
WIDGET TERMINOLOGY ON OS PLATFORMS 

 Android Apple Windows 
Text Labels TextView UITextView TextBlock 
OpenGL Text GLES20Canvas GLKView Direct3D 
Editable Text TextView UITextView TextBlock 
Webapp Text WebView UIWebView WebView 
Browser/Web 
Views 

WebView UIWebView WebView 
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B. Android code-injection framework 

Cashtags uses the Android Xposed code-injection 
framework to intercept and modify the behavior of text 
widgets at runtime, without being tied to specific system 
firmware images.  The development cycle is also accelerated 
by short-circuiting the need to perform complete device 
firmware rebuilds from scratch. 

 Underneath the hood, whenever an app is started, Android 
forks off a new virtual machine.  The Android Xposed 
framework allows additional overriding library routines to be 
inserted into the Java classpath, prior to the execution of the 
new virtual machines.  Thus, the overall system behavior is 
altered without modifying either the apps or the underlying 
firmware.   

Individual class methods can be hooked, allowing injected 
code to be executed prior to a base method calls, following the 
completion of the base method call, or in place of the base 
method.  Private or protected member fields and functions can 
also be accessed and modified, and additional fields or 
functions can be added to the base class or object granularity.  
Fig. 4.2 shows the API provided by Xposed for injecting 
method, constructor, and fields. 

 

C. Sensitive data intercepting points 

With the background of Android display data paths (Fig. 
3.1) and the code-injection framework, we can determine 
where and how to intercept sensitive information.  Since all 
text-displaying screen widgets are descendants of the 
TextView class (Fig. 4.3), we hooked TextView 
(android.widget.TextView) to intercept static sensitive text.  
For input, we hooked EditText (android.widget.EditText) to 
capture sensitive data or cashtags entered via on-screen 
software keyboard, (integrated, plugged, or wirelessly 
connected) hardware keypads, voice input, and gestures.  For 
display through the OpenGL libraries, we intercepted GLtext 
(android.view.GLES20Canvas).  For browsers, we intercepted 
Webview (android.WebKit/WebView). 

 

 

D. TextView 

Fig. 4.4 shows a simplified version of the implementation 
of the TextView widget in the Android API, present since 
version 1 of the Android SDK.  The getText() and setText() 
methods of the TextView are hooked and modified (the 
setText() method in TextView is inherited by EditText, to be 
detailed later).  We also added mAlias to map the sensitive 
text to the corresponding cashtag.   

Fig. 4.5 and Fig. 4.6 show how Cashtags interacts with 
TextView and EditText objects.  When these getText() and 
setText() methods are called by the app or through system 
processes like auto correct or to be rendered on screen, 
Cashtags will determine whether to return the alias or the 
sensitive data, depending on the caller. 

 

 
 
Fig.  4.3.  Simplified Android screen widget view hierarchy. 
 

View
android.view.View

TextView
android.widget.TextView

EditText
android.widget.EditText

AutoCompleteTextView
android.widget.AutoCompleteTextView

MultiAutoCompleteTextView
android.widget.MultiAutoCompleteTextView

CheckedTextView
android.widget.CheckedTextView

Button
android.widget.Button

CheckBox
android.widget.CheckBox

Switch
android.widget.Switch

RadioButton
android.widget.RadioButton

 
hookAllMethods() / hookAllConstructors() 
findMethod() / findConstructor() / findField() 
callMethod() / callStaticMethod() / newInstane() 
getXXXField() / setXXXField() 
getStaticXXXField() /setStaticXXXField() 
getAdditionalXXXField() / setAdditionalXXXField() 
 

Fig.  4.2. Code injection API provided by XposedBridge.  XXX denotes the
specified data type, boolean, int, float, etc. 
 

 
 
Fig.  4.1 Decomposition of on screen views, layouts, and widgets of a simple
app input forms.  
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E. EditText 

EditText objects are more complex since additional actions 
can be performed by the user, app, or system to modify on-
screen text. For cases where the system or app has pre-
populated a text box with input, the TextView injection 
handles the cashtag replacement. Since the EditText class 
extends from the TextView base class, this functionality is 
provided through inheritance.  This is also the case for nearly 
every other on-screen text widget as they are also 
hierarchically descendant from the base TextView. 

User input can be entered through software keyboards or 
through physical devices.  In both cases, Cashtags operates 
similar to, and through the same interface, as the auto-correct 
service. This TextWatcher (android.text.TextWatcher) 
interface handles events when on-screen text has been 
modified. EditTexts internally maintain an array of these 
TextWatcher event handlers.  Cashtags, as one of these 
handlers, is activated after any character is modified within the 

text field. 
This functionality is also achieved through the view 

OnFocusChangeListener (android.view.View 
.OnFocusChangeListener).  This event handler works at the 
granularity of the full text field rather than individual character 
of the TextWatcher. This is more efficient, since the text 
replacement only occurs once per text field. It does, however, 
risk additional on-screen exposure of sensitive information, 
since direct input of actual sensitive terms would remain on-
screen as long the cursor remains in that text field.  Input of 
cashtag alias does not have this risk and further reduces any 
partial exposure during term input.  

In both cases, the constructor of the EditText class is 
hooked and the respective OnFocusChangeListener or 
TextWatcher is attached.  User settings allow activation of 
either or both options within the app settings. 

 

F. OpenGL Canvas 

The implementation solution for OpenGL ES Canvas is 
quite similar in simplified form to the base TextView only 
with different parameter types. The only distinction is that no 
accompanying getText() equivalent is present in this object, so 
no additional manipulation is necessary beyond drawText(). 

G. WebView 

Distinct from the previous screen widgets, rendering occurs 
independently of the native UI data path via underlying 
WebKit or Chromium browser engines.  The relevant 
interception points for screen rendering for these are all below 
the accessible Android/Java layer and are not able to be code-
injected though the same mechanisms used for previous screen 
widget cases. Using custom compilations of the browser 
engines with similar widget display interception was explored, 
but abandoned for portability concerns. 

Instead, WebView interception is handled similarly to a 
web browser plug-in. This decision maintains the portability 
goal of the system design.  

Cashtags intercepts web rendering immediately before it is 
first displayed on-screen. The HTML is pre-processed with 
JavaScript to extract the DOM. Cashtags iterates over the text 
nodes and makes the appropriate text replacements of 
sensitive data to corresponding cashtags. 

 
Fig.  4.6.  Interactions among Cashtags, EditText, and other software
components.  setText() returns cashtag or actual text depending upon the
service making the request. 

 
Fig.  4.5.  Interactions among Cashtags, TextView, and other software
components.  getText() returns cashtag or actual text depending upon the
service making the request. 

public class TextView extends View implements  
ViewTreeObserver.OnPreDrawListener { 

 ... 
 private CharSequence mText; 

private CharSequence mAlias:  
 ... 
 public CharSequence getText() { 
  return mText; 
 } 
 ... 
 private void setText(CharSequence text,  
       BufferType type, boolean notifyBefore, int oldlen) {
  ...      
  mBufferType = type; 
  mText = text; 
 } 
 ... 
} 

 
Fig.  4.4. Simplified TextView implementation. Bolded functions getText()
and setText() are hooked and modified. An additional private field mAlias is
added for mapping to a displayed cashtag, if applicable. 
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Other options were explored using specific browser and 
proxy requests through the web server. However, all apps that 
use cross-platform frameworks (Phonegap, Apache Cordova, 
JQuery Mobile, etc.) run locally and could not easily be piped 
though this service.  For this reason, we favored the plug-in 
approach over other alternatives. 

H. Cashtags Repository 

Sensitive terms are stored as encrypted SharedPreference 
data, which uses AES encryption from the Java Cryptography 
Architecture (javax.crypto.*).  This structure is accessed by 
enabled apps through the XposedSharedPreference interface.   

V. EVALUATION METHODS 

Cashtags was evaluated for how well the intercepted points 
prevent specified information from being displayed on screen, 
verified by screen captures and OCR processing.  This 
coverage was measured by enumerating common ways 
sensitive text can traverse to the screen.  We also evaluated 
user input through popular apps, making sure that cashtags 
correctly reverted to the sensitive data items when accessed by 
apps.  Finally, we evaluated the performance overhead of 
Cashtags. 

A. API coverage evaluation 

The first test is for Android API coverage. We focus on the 
TextView and EditText display data paths, which account for 
more than 86% of usage hours for mobile devices [56].  The 
selected sensitive information (Table II) is based on the 
Personally Identifiable Information (PII) chosen categorically 
based on US government and NIST standards [59].  We 
enumerate all combinations of input phrase type (e.g., 
numbers, strings, etc.), case sensitivity, common widget, 
layout, theme, and other configuration options for these data 
paths.  Each combination is used to demonstrate that the PII 
terms are not displayed on screen from the app internally, as 
user input of the sensitive data directly, or as user input of 
cashtag alias. In all three cases, we also demonstrate that the 
PII term is correctly returned from Cashtags when used 
internally by the app. 

This totals 1,728 tests for static text widgets and inputs, 
with 526 additional test cases for widgets that permit user 
input via both software keyboards as well as physical devices 
(on-board hardware, USB or wireless input devices). The full 
list of configurations is shown in Table V.I. 

For each combination of the above, the Android Debug 
Bridge [60] and UIautomator tool [36] is used to capture 
device layout view hierarchies and screenshots of each case.  
The contents of the actual and cashtag fields within the view 
hierarchy XML are compared for conversion correctness. The 
device screenshot is processed using Tessseract OCR [21] and 
confirms if the actual PII term has been properly masked on 
screen. 

For each combination, we also demonstrate that both text 
input as an actual sensitive term and cashtag are correctly 
converted to the actual sensitive term when accessed internally 
by the app.  Since the access of sensitive data within the app 

normally involves remote actions, we also emulated this 
scenario and performed remote verification. Once screen 
processing is completed, the app accesses the text fields and 
uploads to Google Sheets/Form. The uploaded actual sensitive 
items and cashtag submissions are compared for accuracy 
based on expected values. 

Our results show that Cashtags behaves correctly for all test 
cases. For each test case, Cashtags identified input containing 
sensitive data in both actual and cashtag form, prevented the 
display on screen of the sensitive term, and determined 
correctly when to convert back to the sensitive data. 

 

 

B. App coverage evaluation 

The Google Play market has millions of published 
applications accessible by thousands of different hardware 
devices, making the enumeration of all possible users, devices, 
and application scenarios infeasible.  Thus, we chose a 
representative subset of popular apps to demonstrate app 
coverage of Cashtags.  Categorically, these application types 
are email, messaging, social media, cloud and local storage, 
office, and finance.  Table V.II shows the selected apps, 

TABLE V.I 
ANDROID API TEST COMBINATIONS 

 
Input phrase type (4):  
Alphabetic phrase, numeric phrase, alphanumeric phrase,
Alphanumeric with symbols. 
 
Phrase case (2):  
Case Sensitive Text, Case In-sensitive Text 
 
Widget type (9):  
TextView (android.widget.TextView),  
CheckedTextView(android.widget.CheckedTextView), 
Button (android.widget.Button),  
CheckBox (android.widget.CheckBox),  
RadioButton (android.widget.RadioButton),  
Switch (android.widget.Switch),  
EditText (android.widget.EditText),  
AutoCompleteTextView 
(android.widget.AutoCompleteTextView), 
MultiAutoCompleteTextView 
(android.widget.MultiAutoCompleteTextView) 
 
Layout type (2):  
LinearLayout (android.widget.LinearLayout),  
RelativeLayout (android.widget. RelativeLayout) 
 
Theme type (3):  
Default theme, System theme, User-defined theme. 
 
Generation method (2):  
Static XML, Dynamic Java 
 
Lifecycle type (2):  
Activity-based lifecycle, Fragment-based lifecycle 
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arranged according to these categories. These apps were 
selected using download metrics from the Google Play 
marketplace, excluding games and utility apps for lack of 
relevance in terms of displaying sensitive data on screen. The 
presence of a form of external verification was also used in the 
application selection. Apps typically bundled with mobile 
devices were also tested for correct operation. 

The operation performed on each is based on a commonly 
performed use case or task for each category. Table V.II 
shows the operation performed for each category and 
respective app.  

 
 

 
 

TABLE V.II 
PER-CATEGORY APP TEST TASKS 

 

Email: AOSP Email, Gmail, K9 Mail: 
A user reads an email containing a sensitive term and its 

corresponding cashtag.  A Cashtags-enabled system should 
display the email with two instances of the cashtag. 

A user composes an email with a sensitive term and its 
cashtag.  A remote system not running Cashtags should 
display the email with two instances of the sensitive term. 
 

Messaging: Messaging, Google Hangouts, Snapchat: 
A user reads a message containing a sensitive term and its

cashtag.  A Cashtags-enabled system should display a 
message containing two instances of the cashtag. 

A user composes a message with a sensitive term and its 
cashtag.  A remote system not running Cashtags should 
receive the message containing two instances of the 
sensitive term. 
 

Social: Facebook, Twitter, Google+: 
A user reads text containing a sensitive term and its cashtag 

from tweet/post/update.  A Cashtags-enabled system should 
display the tweet/post/update containing two instances of 
the cashtag. 

A user composes a new tweet/post/update with a sensitive 
term and its cashtag.  A remote system not running Cashtags 
should receive the tweet/post/update with two instances of 
the sensitive term. 

 
Storage: Dropbox, MS OneDrive, File Manager: 
A user opens an existing file containing a sensitive term and

its cashtag.  A Cashtags-enabled system should display the 
file containing two instances of the cashtag. 

A user creates a file with a sensitive term and its cashtag.  A 
remote system not running Cashtags should see the file 
containing two instances of the sensitive term. 

 
Office: GoogleDocs, MS Office Mobile, QuickOffice: 
A user reads a document containing a sensitive term and its 

cashtag.  A Cashtags-enabled system should display the 
document with two instances of the cashtag. 

A user creates a document containing a sensitive term and its 
cashtag.  A remote system not running Cashtags should see 
two instances of the sensitive term. 

 
Finance: Google Wallet, Paypal, Square: 
A user reads a document containing a sensitive term and its 

cashtag.  A Cashtag-enabled system should display the 
document with two instances of the cashtag. 

A user creates a document containing a sensitive term and its 
cashtag.  A remote system not running Cashtag should see 
two instances of the sensitive term. 
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Table V.III shows that Cashtags using test cases from 

market apps shows correct behavior for 97% of task and app 
combinations, except the MS Office Mobile tests.  The reason 
these tests does not work is due to the custom View used for 
the primary user interaction. This View (id: 
docRECanvasHost) is not a descendant of an EditText so is 
not intercepted by Cashtags. All other apps tested have user 
input through an EditText, or a custom class inheriting from 
an EditText.  Custom views beyond this scope could be made 
to work with Cashtags using case-specific handling for the 
internal functions and parameters that map to the equivalent 
EditText function. 

C. Overhead  

In terms of overhead, Cashtags was evaluated based on the 
incremental lag on the system. To perform this test, a modified 
version of the Android API coverage test (Section A) was run 
with and without Cashtags enabled. Screenshots, layout 
hierarchy dumping, and all other non-essential automation 
elements were removed prior to test execution. Test execution 
durations are compared, and additional incremental lag 
introduced by the system is calculated.  This test is run with 
and without the remote data verification to determine the 
effects of network lags on our system overhead.  

Fig. 5.1 show the Cashtags system incurs an average 1.9% 
increase in test execution duration.  For tests including remote 
verification, Cashtags incurred an average of a 1.1% increase 
over baseline tests.  For tests excluding the time consuming 
remote verification, Fig. 5.2 shows that Cashtags incurred an 
average of 2.6% over baseline.  Therefore, under such 
conditions, the additional overhead of Cashtags would not be 
perceivable to the user.  

Testing was also repeated using more cashtag entries, with 
50 and 100 items, which is significantly higher than the list of 
terms specified by PII.  Fig. 5.3 and Fig. 5.4 show the results 
of these test runs for both system and user input data, using 
tests with and without the task inclusion of a web request.  
Due to the current data structure, the performance degrades 
linearly as the number of cashtags entries increases.  However, 
we can easily replace the data structure to make the increase 
sublinear. 

Cashtags is additionally evaluated for boot time overhead. 
Changes to the Cashtags repository currently require reboot to 
take full effect. While this operation is not in the common 
critical path, the additional overhead for this operation is 
relevant.  The results of the boot lag are shown in Fig. 5.5. 
 

 
 

 
 
 

 
Fig.  5.1. Comparison of mean app task execution time with and without 
Cashtags enabled, using system, software and hardware text input with web 
request for tests. Hardware input refers to input from physically or 
wirelessly connected hardware keyboard and Software Input to input from 
on screen software keyboard. 

0 5 10 15 20

System Input

User Soft Input

Hardware Input

Execution time (s)

Cashtags Enabled Cashtags Disabled

TABLE V.III 
APP COVERAGE EVALUATION 

 

  

User 
Input 
Actual 

User 
Input 
cashtag 

Remote 
Success 
Actual 

Remote 
Success 
cashtag 

Email     
AOSP Email √  √  √  √  
Gmail  √  √  √  √  
K9 Mail  √  √  √  √  
Messaging     
Messaging √  √  √  √  
Google Hangouts √  √  √  √  
Snapchat  √  √  √  √  
Social     
Facebook  √  √  √  √  
Twitter  √  √  √  √  
Google+  √  √  √  √  
Storage     
Dropbox  √  √  √  √  
MS OneDrive √  √  √  √  
File Manager √  √  √  √  
Office     
Google Docs √  √  √  √  
MS Office Mobile √  √    
QuickOffice √  √  √  √  
Finance     
Google Wallet √  √  √  √  
Paypal  √  √  √  √  
Square  √  √  √  √  
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VI. RELATED WORK 

Previous related works include both systems that secure 
against observation-based attacks and those that provide 
similar privacy protection over network channels.   

A. Visual authentication protection 

Prior work on protection against visual exposure is focused 
primarily on securing the act of authentication. By far the 
earliest is the technique of Xing out or simply not printing 
entered passwords on login screens [15]. Most others can be 
generalized as augmentation or replacement of password entry 
mechanisms. 

 
1) Password managers 

Perhaps the most common method of securing against an 
observation-based attack is the use of password managers.  
These managers are software tools that allow the user to select 
a predefined username and password pair from a list for entry 
into the login fields [14]. This also allows a user to use 
different passwords for different applications without the need 
to remember each of them individually.   

 
2) Hardware-based authentication 

Other related work involves external physical devices to 
supplement or replace the need to enter passwords.  These 
techniques utilize specialized USB dongles [17], audio jacks 
[18], short-range wireless communication using NFC [19], or 
Bluetooth connections [20] to connect to the authenticating 
machine.  

 
3) Graphical passwords  

Another technique to help guard against information leaks 
from visual attacks is the use of graphical passwords or 
Graphical User Authentication (GUA) [22]. Such techniques 
remove the alpha-numeric password from the equation and 
replace it with the use of series of images, shapes, and colors.  
Common techniques present the user with a series of human 
faces that must be clicked on in sequence [23], object 
sequences as part of a story [24], or specific regions within a 
given image that must be clicked in sequence [25]. 

 

 
Fig.  5.5. Comparison of device startup times with a varying number of
cashtag entries and with system disabled. 

0 10 20 30 40 50 60

Disabled

10 terms

50 terms

100 terms

Duration (s)

 

 
Fig.  5.4. Comparison of mean app task execution time with an increasing
number of cashtag entries, using system and user inputs without web request
for tests. 
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Fig.  5.3. Comparison of mean app task execution time with an increasing
number of cashtag entries, using system and user inputs with web request for
tests. 
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Fig.  5.2. Comparison of mean app task execution time with and without
Cashtags enabled, using system, software and hardware text input without
web request for tests. Hardware input refers to input from physically or
wirelessly connected hardware keyboard and Software Input to input from
on screen software keyboard. 
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4) Biometrics 
Biometric authentication mechanisms can be generalized as 

changing or augmenting password entry (something one 
knows), with a feature unique to one’s personal biology 
(something one is). There are many inherent physiological 
characteristics that are sufficiently unique to identify and 
differentiate one individual from another. The most commonly 
used of these biometric identifiers includes contours of the 
fingerprints [26], iris and retinal configuration of the eye [27], 
and geometries of the face [28] and hand [29]. Behavioral 
characteristics, in contrast to biometric identifiers, including 
keystroke latency [30], gait [31], and voice [32] can also be 
used for authentication purposes. 

 
5) Gesture-based authentication 

Closely related to both GUA techniques and biometric 
solutions are gesture-based authentication techniques.  These 
methods allow the user to perform specific tap [33], multi-
finger presses [34], or swipe sequences on-screen [35] to 
represent a password.  

 
6) Cognitive challenges, Obfuscation and confusion 

Other techniques have attempted to make games of the 
authentication procedure [37]. Instead of a single password or 
phrase, these techniques utilize challenge-response questions 
and use of cognitive tasks to increase the difficulty of the login 
session [38].  Other techniques have attempted to remedy the 
shortcomings of password-based authentication through 
obfuscation and confusion to a visual observer. They utilize 
the hiding of cursors [39], confusion matrices [40], and 
recognition [41] rather than recall-based methods, to trick and 
confuse onlookers.  

 
7) Alternate sensory inputs 

Additional work has been done utilizing other biological 
sensory inputs to replace or augment password-based 
authentication. These systems can address two separate parts 
of the authentication process; the cue to the input, or the actual 
input itself.  

In the first case, the additional sensory input serves as a 
non-observable instruction or hint to the required passphrase 
entry.  These systems utilize audio direction [42] or tactile and 
haptic feedback from the vibration motors on devices [43] to 
provide the user with the appropriate cue for the necessary 
response.  The user then responds with the phrase 
corresponding to the cue using traditional input methods. 

In the second case, the auxiliary sense serves as the input 
mechanism itself. These systems extend GUAs by requiring 
sequential graphical inputs but use mechanics like eye 
tracking, blinking and gaze-based interaction for the user to 
input the graphical sequence [44].  Systems have even 
demonstrated the capability of using brain waves for this task; 
a user may only need to think a specific thought to 
authenticate with a system [45].  These methods are also 
useful alternatives for authentication of people with visual or 
audio sensory disabilities [46].  

B. Digital Communication Channel Protection 

Many protocols and systems have also been developed to 
handle other aspects of privacy-oriented attacks through the 
encryption of the digital communication channel.  Transport 
Layer Security and Secure Sockets Layer can enhance security 
by providing session-based encryption [47]. Virtual Private 
Networks can be used to enhance security by offering point-
to-point encryption to provide secure resources access across 
insecure network topologies [48].  Proxy servers [49] and 
onion routing protocols such as Tor [50] can add extra privacy 
by providing obfuscation of location, and anonymization of IP 
addresses. 

Many other solutions have been developed to enhance 
security and privacy at the browser level. Do-not-track 
requests can be included in HTTP headers to request that the 
web server or application disable its user and cross-site 
tracking mechanisms [51].  Many browser extensions and 
plug-ins exist to block advertising [52] as well as analytics, 
beacons, and other tracking mechanisms [53]. Other systems 
alert the user when specific privacy elements are leaked [54, 
prevent the transmission of sensitive data without explicit user 
permission [55], and cryptography secure access to sensitive 
data outside of trusted situations [16]. 

C. Compared to Cashtags 

Despite the various mechanisms mentioned, the visual 
channel remains largely open.  A limited number of tools are 
available to obfuscate sensitive data other than during the act 
of authentication.  All existing tools developed for encryption 
of data are not originally designed for such purposes.   

Password-based solutions and biometrics are effective in 
handling visual leaks during the act of authentication, but 
cannot be generalized to handle other cases. No existing 
mechanism is in place to allow arbitrary data to be marked as 
sensitive. Cashtags is the only existing system that can protect 
general data from shoulder surfing.  

VII. DISCUSSION & LIMITATIONS 

A. Coverage Limitation 

Cashtags widget-level text manipulation works for apps that 
use standard text rendering methods.  However, should 
developers deviate from such standards and create display data 
paths that do not inherit from the base text widgets, Cashtags 
would not capture such cases.  Still, the additions required to 
incorporate these custom methods to work within Cashtags 
would be minimal if knowledge of the custom text display 
functions and parameters were provided. 

B. Common Name Issue 

Commonly occurring names can result in certain side 
effects. Consider a user John Smith, with Cashtag aliases of 
his name: John -> $fname, and Smith -> $lname. Therefore, 
all on-screen instances of John are masked as $fname. Now, 
John opens his mobile browser and googles for John Addams, 
John Travolta, or John Williams. All returned search results 
would be displayed with on-screen representations as $fname 
Addams, $fname Travolta, or $fname Williams, respectively. 
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While this may or may not be acceptable to the user, it could 
also have the unintended consequence of inadvertently 
visually leaking private data. If an on-looker was able to 
observe the above search queries in the situation above, and 
was aware of the operation of Cashtags, they might be able to 
derive the sensitive data from context; in this case, 
determining that the user making the searches is named John. 
This limitation is isolated to common phrases; most instances 
of numerical phrases would not be relevant to this issue. 

C. Data Formatting 

Data formatting and types is another issue. Many cases are 
handled through simple transformations of text fields, 
including the removal of spaces and symbols, and 
capitalization mismatches. However, on-screen data that 
expands between individual TextViews is not recognized, e.g., 
input fields for a credit card split into parts rather than 
combined into a single field. This could be handled by 
Cashtags if each part of the credit card number were 
individually added to the repository. 

VIII. FUTURE WORK 

In its current form, Cashtags is designed to protect against 
privacy leaks for the device owner. However, modification 
could be made to provide more generalized protection from 
on-screen data leaks, especially for business use cases. Many 
professions regularly access lists of data containing sensitive 
data elements. This use case is becoming more commonplace, 
as progressively more computing is being performed on 
mobile devices. Additional processing of text elements for 
specific patterns of text and other data could be applied to 
contextually determine which data fields may contain sensitive 
data. These fields could then be masked accordingly. 

Other future work could improve the scalability of the 
sensitive data repository. The current implementation is 
optimized for coverage rather than performance.  Disabling of 
specific classes of widgets unlikely to contain sensitive data is 
one solution. In addition, more efficient text processing 
methods and data structures can be considered.  

Other future work could include the remote synchronization 
of Cashtags. Updates to sensitive actual and alias lists could be 
propagated to other devices automatically. Cashtags could also 
be modified to provide shared access for multiple users. 
Permissions could allow a user to share a cashtag for use by 
another without disclosing the sensitive data. In addition, this 
method would provide improved redaction of access to shared 
sensitive resource. 

IX. CONCLUSION 

Cashtags is a first step toward protection against visual 
leaks of on-screen data.  The system demonstrates that it is 
possible to perform most mobile computing tasks in public 
locations without exposing sensitive personal information. The 
evaluation of the system shows that this is accomplished 
efficiently, with minimal perceived overhead.  The app 
coverage test confirms that the system is general purpose and 
maintains full functionality with nearly all tested common use 
cases. These results suggest that Cashtags will likely also 
work on most other mobile apps, providing unified, device-

wide protection against shoulder surfing.  
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