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Abstract—Detecting and handling routing loops is a critical
issue in the design of anonymous peer-to-peer content sharing
networks (apCSNs). A principal requirement of such a scheme is
that it should not leak any message forwarding information that
can undermine the user anonymity of the resulting apCSN. A
number of loop handling schemes have been developed in apCSNs
such as Freenet and GNUnet. However, they all leak certain level
of message forwarding information, which can be exploited to
undermine or compromise the user anonymity. In this paper we
develop a new loop handling scheme named Reroute-on-Loop
(ROL) that will not leak any message forwarding information.
Using the Thynix simulator developed by the Freenet project,
we show that overall ROL only has minor performance impacts
on message path lengths compared to the current loop handling
scheme of Freenet on various network topologies, ranging from
small-world topologies to random topologies. For example, the
average routing path lengths of ROL are only increased by less
than 1 hop compared to those with the current loop handling
scheme of Freenet on small-world network topologies. Our
performance studies confirm that ROL is a practical scheme,
and can be deployed on Freenet and similar apCSN systems.

I. I NTRODUCTION

In order to support censorship-resistant content publishing
and user privacy on the Internet, a number of anonymous
peer-to-peer content sharing networks (apCSNs) have been
developed and deployed, including Freenet and GNUnet [1],
[2], [3], [4]. One of the critical problems in the design of
such a system is how to detect and handle routing loops. At
the high level, two different approaches have been developed.
The first one targets proactive routing loop prevention. In such
an approach, a request message will carry the information of
the nodes that it has traversed. When a node needs to forward a
request message to a neighbor, the carried information will be
used to prevent the message from being forwarded to a node
that the message has traversed before. GNUnet adopts this
approach, where the information of the nodes that a request
message has traversed is carried in the message using a bloom
filter [4].

The second approach aims to detect routing loops and
react accordingly. Freenet adopts this approach. In Freenet,
a unique identifier (UID) is carried by each request message
and maintained by the nodes that have processed the message.
(The UIDs maintained by a node for the messages that it
has recently processed are referred to asold UIDs.) When
a request message with an old UID value arrives at a node,
the node will send a failure messageReject with Loopto the

upstream noden where the message comes from, so that node
n will choose a different neighbor to forward the message
to. A principal requirement of any loop handling scheme in
apCSNs is that it should not leak any message forwarding
information that can undermine the anonymity of the user
who originates the message. However, both approaches leak
certain level of message forwarding information, which can be
exploited by attackers to undermine or compromise the user
anonymity. For example, based on the bloom filter carried in a
request message in GNUnet, an attacker can determine the set
of nodes that have seen (either originated or forwarded) the
message, and in many cases, a partial forwarding path can be
reconstructed based on the routing protocol of GNUnet, which
further deteriorates the user anonymity.

Similarly, reactive loop detection schemes such as the one
adopted in Freenet can also be exploited to determine the set
of the nodes that have seen a request message. For example,
in order to determine if a node has seen a request message
with a particular UID value before, an attacker can send a
specially crafted probe message with the interested UID value
to the node. The attacker can confirm that the node has seen
the request message if aReject with Loopfailure message is
returned. Moreover, as shown in [5], for a large portion of
content request messages, the complete forwarding path can
be determined, and the originating machine can be identified.
More discussions on the impact of loop handling schemes on
the user anonymity of apCSNs will be provided in Section II.

In this paper we will develop a new routing loop handling
scheme named Reroute On Loop (ROL). In ROL, each request
message will carry a UID value, and each node in the network
will maintain the history of the UID values of the recent
request messages that have traversed the node. In addition,
for each UID value, the node will also record the setS of
the neighbors to which the corresponding request message has
been forwarded by the node and the neighbors from which the
message has come. When a noden receives a request message
m with an old UID value, noden will forward the messagem
to the next closest neighbor (based on the routing protocol of
the apCSN), excluding the neighbors in setS. In this way an
attacker cannot determine if a node has seen a request message
before by sending a specially crafted message with an old
UID value. An old message at noden will be rerouted to an
unused neighbor (or discarded due to other properties of the
request message), and critically, no failure message revealing



the fact that noden has seen the message will be returned to
the upstream node where the message comes from.

A critical concern of ROL is its performance impact on the
forwarding of request messages on the resulting apCSN. Given
that a request message may traverse a node multiple times,
messages in an apCSN with ROL may traverse a longer path
compared to the ones without ROL. Moreover, many apCSNs
have a bound on the number of nodes that a request message
can traverse, and therefore, ROL may limit the search scope
of a request message. Consequently, a content insert message
may not be able to identify the ideal location where the content
should be inserted, and a content request message may not be
able to reach the target location where the message should be
routed to. In order to understand the efficacy and effectiveness
of ROL, in this paper we will perform simulation studies using
the Thynix simulator developed by the Freenet project [6],
with a number of different network topologies, ranging from
small-world topologies to random network topologies [7], [6].

Our simulation studies show that, compared to the current
loop handling scheme in Freenet, ROL only has minor perfor-
mance impacts on the lengths of message forwarding paths on
various network topologies (and consequently the search scope
of a request message if a message is bounded by the number
of hops it can traverse). For example, the average routing
path lengths of messages with ROL are only increased by
less than 1 hop compared to the current loop handling scheme
of Freenet on small-world network topologies. Our simulation
results confirm that ROL is a practical scheme, and can be
deployed on Freenet and similar apCSN systems.

The remainder of the paper is structured as follows. In
Section II, we provide the necessary background on existing
apCSNs and their routing schemes to illustrate the impact
of loop handling on the user anonymity. In Section III we
develop the new ROL scheme. We perform simulation studies
to investigate the performance of ROL in Section IV, and
discuss related work in Section V. We conclude the paper
in Section VI.

II. BACKGROUND

In this section we provide the necessary background on
the operations of two representative apCSNs, Freenet and
GNUnet, including their formation of network topologies,
their routing algorithms, and how they handle routing loops.
Towards the end of this section, we will also briefly discuss
the operations of another apCSN named OneSwarm. We refer
interested readers to [1], [2], [3], [4], [8] for more details on
these apCSNs.

A. Freenet

Freenet is a popular apCSN, with the objective to provide
user anonymity for both content publishers and retrievers. In
Freenet, each node (a machine running Freenet) contributes
a portion of its hard disk space to form a global distributed
storage sharing system. Each node in Freenet is associated
with a location in thecircular range [0, 1], where location 0

and location 1 are considered identical. The location of a node
is randomly chosen by the node when it first joins Freenet.

Freenet nodes try to form a small-world network topol-
ogy [7], where, with a high probability, the majority of
neighbors of a noden have a location that is close to the
location of noden. At the same time, a node may also connect
to neighbors with a far-away location, which provide short-cut
for routing messages to a remote target location. In default,
each Freenet node can have up to40 neighbors.

Freenet data insertion and retrieval involve a number of
different types of messages. In this paper we will useContent
Hash Key(CHK) based content request message as an example
to illustrate the routing behavior of Freenet. Other request
messages are handled in a similar fashion. The routing key
of a CHK content request message is the SHA-256 hash of
the corresponding data to be retrieved. The CHK routing key
is used to uniquely identify the corresponding data on Freenet.
To a degree, CHK messages are the most fundamental in
Freenet. For routing purpose, the CHK routing key is converted
into a location value in the same range of [0, 1], and the
corresponding request message will be routed towards that
location when received by a node.

A (CHK) content request message is issued by a node when
the user requests a file on Freenet. (In this paper we use the
two termsfile and contentinterchangeably.) Each message is
associated with a CHK routing key, a hop-to-live (HTL) value,
and a unique identifier (UID). In essence, Freenet adopts a
greedy routingscheme to route a request message towards
the target location. When a node receives a content request
message, it will check if it has the corresponding data in its
local data store. If it does, it will return the data along the
reverse path of the request message, and nodes along the path
may cache the data to better serve future requests on the same
file. If the current node does not have the requested data, it
will forward the request message to the next closest neighbor
based on the routing key.

The HTL value in a content request message is used to
determine the number of hops the message can be forwarded
along a forwarding path. Each intermediate node will decrease
the value, and when it reaches 0, the corresponding request
message will be discarded instead of being forwarded. In
addition, aData not Foundfailure message will be sent back
to the upstream node, which will be further propagated back
to the content requester to indicate the failure of the content
request. For security reasons, the HTL value associated with
a request message may not be decreased when it equals the
maximum initial value (18 in default) or1.

When a request message cannot be forwarded due to reasons
other than HTL = 0 (for example, no additional neighbors
are available), the request will be backtracked to the upstream
node where it comes from, in the sense that the upstream node
will forward the request onto the next closest neighbor (if it is
available). This process continues until either HTL becomes
0, the requested data is found, or all possible routes have been
tried but the data cannot be found.

The UID in a content request message is used by nodes to



uniquely identify a message, and to detect routing loops. In
Freenet, UIDs are randomly generated and are of length of8
bytes, it is unlikely that two unrelated messages will have the
same UID value in Freenet. We note that, although nodes in
Freenet aim to form a small-world network topology, routing
loops may be formed on Freenet due to a number of factors.

First, the small-world network topology is not as structured
as the structured peer-to-peer (P2P) systems such as Chord [9].
In the structured P2P systems, deterministic routing can be
used, and it can be guaranteed that routing loops will not
be formed (at least in static cases). However, structured P2P
systems can themselves leak too much message forwarding
information [10], based on the network topologies and the
routing protocols. The greedy routing used in small-world
networks cannot guarantee that a request message is always
forwarded to the ideal target location. The greedy routing
protocol, to a degree, is only a best-effort approach based on
the local information available at a forwarding node. As such,
multiple tries may be carried out in forwarding a message,
which increases the chance to form a routing loop. In addition,
in order to deal with local minima and in an effort to locate the
ideal target location of a message, some special techniques are
also adopted (for example, forwarding a message to the next
best neighbor, even if the next one is farther away from the
target location of the message compared to the current node),
which further increases the chance of routing loop formation.

Second, due to the nature of P2P systems, the network
topology of Freenet is formed in a distributed fashion, and
may not be an ideal small-world network, which further
degrades the performance of the greedy routing and increases
the chance to form routing loops. In order to detect routing
loops, each node maintains the history of the messages that
it has recently seen in the form of UID values. When a node
receives a request message, it will first check if it has seen
the corresponding UID before. If it does, aReject with Loop
failure message will be returned to the upstream neighbor
where the message comes from. Otherwise, the message is
processed according to the routing protocol of Freenet.

However, as shown in [5], the loop handling mechanism in
Freenet can be exploited by an attacker to identify all the nodes
that have seen a request message. Moreover, when the path
traversed by a request message satisfies certain conditions,
the complete forwarding path can be re-constructed and the
originating machine of the message can be identified. One
of the key insights utilized by the traceback attack in [5]
is that, by observing the responding message from a node
to a specially crafted probe message with an interested UID
value, an attacker can infer whether or not the node has
seen a concerned content request message with that UID
value. In order to prevent the leakage of message forwarding
information while detecting and responding to routing loops,
we need a new loop handling scheme in Freenet.

B. GNUnet

In the following we briefly discuss the operations of
GNUnet, and illustrate how the handling of routing loops in

GNUnet may leak message forwarding information that can
be exploited. GNUnet nodes form a Kademlia-like network
topology [11], and message routing is carried out in two stages.
In the first stage, a request message is routed randomly in the
network. After traversing a sufficient number of hops (roughly
log(n), wheren is the number of nodes in a GNUnet net-
work), in the second stage, the request message is forwarded
according to the Kademlia protocol, with an exception that,
the routing is carried out in a recursive fashion instead of an
iterative fashion as in the original Kademlia system, due to
the anonymity requirement of GNUnet.

The rationale behind the random routing in the first stage
is to make the lookup of a file independent of the location of
the originating machine. Although it was not explicitly stated,
we believe that the random routing also helps to improve the
anonymity strength of GNUnet. We note that Kademlia is a
structured network topology, should the set of nodes that have
originated or forwarded a request message become known, the
complete forwarding path of a message in Kademlia can be re-
constructed. By including a random routing stage, an attacker
can only trace a request message back to the last node involved
in the random routing stage based on the routing protocol of
Kademlia, but not the originating machine of the machine.
Therefore, the random routing stage helps improve the overall
anonymity strength of GNUnet.

However, random routing also introduces a new problem
into GNUnet. Due to random routing, loops can be formed in
the forwarding of a request message. To prevent this problem,
each request message in GNUnet carries the information of the
nodes traversed by the message using a bloom filter. When a
node needs to decide the next hop to forward a message to,
the bloom filter carried in the message is used to exclude the
nodes that have seen the message before. This approach has
false positives, but will not have false negatives, which can
guarantee the prevention of routing loops.

However, given the bloom filter is carried in the message,
an attacker receiving the message can determine all the nodes
that have seen the message before (it may mistake some nodes
that have not seen the message before, but that probability
should be very small, due to the objective of bloom filters
used in GNUnet), which degrades the anonymity of GNUnet.
Furthermore, after the set of all nodes that have seen a message
is identified, in certain cases, a partial message forwarding
path may be re-constructed for the nodes involved in the
second routing stage, which further degrades the anonymity
of GNUnet. Overall, loop prevention techniques based on
information carried in a request message have some unde-
sired implications on the anonymity strength of the resulting
apCSNs, given that the information is readily available to an
attacker who can observe the request message.

C. OneSwarm

The loop handling schemes adopted in Freenet and
GNUnet are the representative ones used in existing apC-
SNs. OneSwarm adopts a slightly different loop handling
scheme [8]. In OneSwarm, nodes form an unstructured, ran-



dom network topology. And as such, a search message is
flooded by a node to its neighbors (with certain restrictions),
instead of being routed as in Freenet or GNUnet. In order to
prevent a search message from being flooded more than one
time at a node, each node maintains a set of rotating bloom
filters to keep track of the search messages that have been
recently flooded by the node. When an old search message
arrives at a node, the message will not be further forwarded
and no response message will be returned to the upstream
node where the message comes from. This is different from
the loop handling scheme used in GNUnet, where a bloom
filter is carried in a request message.

We note that this scheme works in OneSwarm because of
the message flooding mechanism used in OneSwarm. It will
not work if messages are routed instead of being flooded.
Furthermore, in terms of routing loop detection, there is no
fundamental difference between using a bloom filter or directly
recording UID values at a node. OneSwarm uses bloom filters
more likely because of space efficiency concerns; each node
in OneSwarm will receive a large number of search messages
because of message flooding. Due to scalability concerns of
flooding, in this paper we will only focus on loop handling
schemes that can work with message routing mechanisms
instead of only message flooding mechanisms.

III. R EROUTEON LOOP

The two loop handling schemes adopted by Freenet and
GNUnet both leak certain level of message forwarding infor-
mation that can be exploited by an attacker to compromise
or undermine the user anonymity of these networks. It is
critical to develop a secure loop handling scheme in order to
improve the anonymity strength of these apCSNs. We note
that loop prevention schemes such as the one adopted in
GNUnet would require node traversal information to be carried
in a message itself, which naturally leaks certain message
forwarding information. In this paper we only consider loop
detection and handling schemes, which do not have this
requirement.

The loop handling scheme in Freenet leaks message for-
warding information because a node will respond with a
Reject with Loopfailure message if it receives an old request
message, which can be exploited by an attacker. A potential
approach to addressing this problem is to design and use a
general failure message, instead of using a failure-specific
response message, as briefly discussed in [5]. In particular,
when a forwarding loop is detected at a node, instead of
sending aReject with Loopfailure message to indicate there
is a forwarding loop, the node should send to the upstream
neighbor a general failure message, so that the neighbor cannot
infer the specific reason of the failure.

However, this approach has some important implications
on the optimization and performance of Freenet, and more
importantly, after careful examination, we note that it can still
be exploited by an attacker. For example, by retrying a number
of request messages with different UID values and contents,
an attacker can determine whether a failure is caused by a

specific UID value (routing loop) or failure of content lookup.
As a consequence, an attacker can determine if a node has seen
a request message before. Another approach is to not respond
to an upstream neighbor any failure message at all when a
forwarding loop is detected by a node (as in OneSwarm).
However, without the failure message, the upstream neighbor
cannot detect the routing problem and cannot forward the
request message to a different node. Therefore, the critical
issue is how to ensure that a request message encountering a
forwarding loop can be routed continuously towards its target
location.

In this section we will develop a new loop handling scheme,
named Reroute on Loop (ROL) that will not leak any message
forwarding information. In essence, ROL is very similar to
the loop detection and handling scheme in Freenet, with a
minor but critical difference. ROL can be adopted in many
different apCSNs. However, in order to make our discussion
more concrete, we present ROL in the framework of Freenet
(note that ROL is only concerned with loop handling, other
aspects of message routing are apCSN specific). In ROL, each
request message is associated with an UID value, and each
node maintains a history of the UID values of the recent
request messages that the node has seen so as to detect routing
loops. In addition, for each UID value, a noden will also
record the setS of the neighbors to which the corresponding
message has been forwardedby noden and the neighbors
where the message came from.

When a request message arrives at a noden, the node will
first check if it has seen the message before, based on the UID
of the message. (In order to focus on message routing and
loop handling, we assume noden does not have the content
that the message is looking for. Otherwise, the content will
be returned on the reverse path of the request message, and
the message will not be further forwarded.) If it has not seen
the message before, the message is forwarded according to
the routing protocol of the apCSN, for example, forwarding
the message to the neighbor whose location is closest to the
target location of the message, based on the (CHK) routing
key of the message. If noden has seen the message before,
it will continue forwarding the message to thenext closest
neighbor,excludingthe ones in setS. Importantly, no failure
message will be returned to the upstream neighbor to indicate
the detection of the routing loop. (A failure message may be
returned later due to other reasons rather than routing loops,
for example, data cannot be found or route cannot be found.)

ROL impacts on message path lengths and HTL.Note
that a noden determines the next closest neighborcn to
which a messagem should be forwarded only based on the
local forwarding information available at noden. Therefore,
noden may forward messagem to a neighborcn who has
seen the message before, as long as noden has not used
neighborcn before (for messagem). Consequently, a message
may traverse a node multiple times in ROL. Figure 1 shows
an example where a node is traversed2 times by a content
request message. In the figure, the numbers along the edges
show the order of the message forwarding. In the figure, node



A originates a content request message; it is forwarded to
node B, and then to nodesC, D, E, and F , in that order.
NodeF then forwards the message back to nodeC, without
knowing that nodeC has seen the message before. When node
C receives this message from nodeF , it checks and notices
that this is an old request message, it will then select the next
best neighbor to forward the message to, excluding nodesB
andF (from which nodeC received the message) and nodeD
(to which nodeC has forwarded the message previously). In
the example, nodeC select nodeG as the next hop to forward
the message to.
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Fig. 1. Forwarding of a content request message.

Given that loops are admitted in ROL and a node along
the forwarding path of a message may be traversed multiple
times by the message, ROL may have a deteriorating impact
on the performance of Freenet in terms of message path
lengths, which is the key concern over the adoption of ROL
in real-world apCSNs such as Freenet. In the next section,
we will carry out extensive simulation studies with various
network topologies to investigate the performance of ROL.
However, we first note that previous studies have shown that
the probability to form a forwarding loop in small-world
network topologies is small [12]. Therefore, ROL is rarely
triggered in the normal forwarding of request messages (it
is mainly used to prevent attackers from exploiting the loop
handling scheme). In addition, we also make an observation
here to show that the performance of ROL may not be as
bad as first conceived. Many factors including the specifics
of network topology and the neighbor connectivity will have
an impact on the performance of ROL, when a message does
encounter a routing loop.

In Freenet, when nodeC receives the request message from
node F (see Figure 1), it will return aReject with Loop
failure message, so that nodeF will select another neighbor to
forward the message to. Without loss of generality, letM be
next hop to which the message will be forwarded by nodeF in
Freenet. In contrast, in ROL, it is nodeC who will decide how
the message should be further forwarded. Letd(n) denote the
distance from noden to the destination of a request message.
We note that, under normal conditions,d(C) < d(M), because
nodeF selected nodeC over nodeM when it first decided to
which node the message should be forwarded. Put in another
way, nodeC is closer to the target location of the request
message than nodeM . It is inconclusive to state which of the
two nodes (C and M ) is at a better position to forward the
message to its target location, although some of the neighbors

of nodeC have been used before, which decreases the search
capability of nodeC.

V

HTL = k HTL = k

C1 C2

Fig. 2. Implication of HTL operation.

Recall that each request message is associated with an HTL
value, which is used to prevent a message from looping forever
in Freenet. HTL puts a constraint on the search scope of a
request message. Given that a message may traverse a noden
multiple times in ROL, it will further limit the search scope of
a request message, if HTL is decreased each time the message
passes noden. One naive solution to the problem would be
that, a node will not decrease the HTL value of a message,
if it has seen the message before (therefore, the HTL value is
only decreased once when a node first receives the message).
However, this solution may be exploited by an attacker to
determine if a node has seen a message before. See Figure 2
for an example. In the figure, let us assume that an attacker
wishes to determine if nodeV has seen a request message
with a particular UID value. It can connect two attack nodes
C1 and C2 to nodeV [13], [5], and then send a specially
crafted request message to nodeV from node C1 with a
particular HTL value, sayk. If attack nodeC2 receives the
request message from nodeV with an unchanged HTL value
(HTL = k), the attacker can infer that nodeV has seen the
request message before.

One way to address this issue is to let each node decrease
the HTL value with a preconfigured probability (as done when
HTL equals the maximum initial value or1 in Freenet). In
this way, an attacker cannot determine if an unchanged HTL
is caused by the forwarding of an old message, or due to the
probabilistic behavior of HTL manipulation. However, it has
a side effect that the message search paths may become much
longer, which may not be desirable as longer search paths will
degrade the performance of Freenet.

As we will show in the next section, the performance impact
of ROL on the message path lengths is minor on various
network topologies. Given this observation, we will not change
the behavior of HTL manipulation due to ROL. That is, each
node will decide if it will decrease the value of HTL according
to the original protocol of the corresponding apCSN.

How should content be transfered back to the requester?
In ROL, temporary routing loops can be formed in the sense
that a node may see and forward a request message multiple
times. This presents a unique issue on how the requested
content should be propagated back to the requester of the
content. Let us again use the network topology in Figure 1
as an example. Recall that, a request message is originated
at nodeA, and forwarded along the pathA → B → C →
D → E → F → C → G → H, and assume that nodeH
has the content that is being requested. When the requested
content is delivered back to the content requester, there are two
different paths (in this example). One is theoriginal reverse



path H → G → C → F → E → D → C → B → A,
another one is ashort-cut pathH → G → C → B → A.
That is, when the content is propagated back to nodeC from
node G, nodeC can either forward back the data onto the
original reverse path (to nodeF ), or directly forward back the
data to the earliest neighbor from which nodeC received the
corresponding request message (in this case, nodeB).

Both approaches have their advantages and limitations.
Using the short-cut path will minimize the response time to
a content request message, and likely improve the user expe-
rience on the resulting apCSN. However, it also has its own
shortcomings. First, in order to remove the state maintained
at the nodes not on the short-cut path, some kind of special
messages should still be sent along the forwarding path for the
nodes not on the short-cut path, which complicates the apCSN
protocol. For example, a newrequest cancelmessage can be
sent from nodeC to the next hop along the original forwarding
path, that isD, if short-cut path is used to propagate the
content back to nodeA. When arequest cancelmessage is
received by a node, the corresponding state related to the
request message will be removed, and the cancel message is
further forwarded along the forwarding path. When therequest
cancelmessage is forwarded back to nodeC from nodeF ,
nodeC can simply discard the cancel message.

Second, using a short-cut path also has performance im-
plications on Freenet. In Freenet, aggressive content caching
is used to improve the probability that data is located and
returned in a timely manner. Specifically, when content is
returned along the reverse path in Freenet, nodes along the path
will cache the received content (with certain restrictions related
to security). Using short-cut paths will reduce the chance of
data caching in the network.

Propagating content along the original reverse path is the
simplest, without any change to Freenet. However, it is cer-
tainly undesirable, given that content can be returned to the
requester on the short-cut path to improve the user experience
on Freenet. Another subtle issue is that, given that the message
paths could be slightly longer in ROL compared to those
in Freenet, more copies of content could be cached in the
network. However, given each node only has limited cache
(storage) space, spreading more copies of the same content
could affect the availability of other content in the network.

In this paper, we propose a hybrid approach to propagate
content back to its requester, where content is forwarded onto
both the short-cut path and the original reverse path. In the
hybrid approach, a node along the reverse path of a message
will forward the data back to all the upstream neighbors (in
particular, the one on the short-cut path). Instead of caching
content with a probability of1 (with some restriction related
to security), content is only cached at a node with certain
probability. In this way, the impact of longer message path
on caching should be minimized. When a node receives the
content again (maybe multiple times, depending on the number
of upstream neighbors), it will simply discard the content.

As an example, when nodeC receives the content from node
G, it will forward it back to nodeB on the short-cut path, in

addition, it will also forward the content to nodeF on the
reverse path. When nodeC receives the content from node
D, it will simply discard the content. Note that, if there are
multiple loops at nodeC, it will need to forward the content
to the upstream neighbor in each loop.

What if a request message cannot be forwarded concern-
ing ROL? In an extreme situation, it may occur that all the
neighbors of a noden have been involved in the forwarding of
a request message. When this happens, noden cannot further
forward the message to any other nodes. Should a failure
message (such asRoute not Found) is returned immediately,
the upstream neighbor can infer that the more likely cause of
the failure is that the noden has seen the request message
before, instead of other routing problems. As a consequence,
an attacker can exploit this behavior to determine if noden
has seen a request message before. However, we note that,
given the large number of neighbors that a node can have (up
to 40 in Freenet), this situation should rarely occur. Second,
whenever this really happens, noden can delay the delivery of
the failure message for certain amount of time (for example,
average processing time for a message to traverse a few nodes)
to prevent the upstream neighbor from inferring the specific
reason of a failure.

IV. PERFORMANCEEVALUATION

In this section, we perform simulation studies to investigate
the performance of ROL. We will first describe the simulation
setup, and then we will provide and discuss the results of the
simulation studies.

A. Simulation Setup

The simulation studies are carried out using the Thynix
simulator coming with the Freenet project [6]. Thynix is
a simulator developed to investigate the Freenet behaviors
including probe routing and path folding. It supports the
routing of Freenet request messages in the sense that, given
a pair of source and destination nodes in Freenet, it can
determine the path that a request message will follow in the
Freenet using the Freenet (greedy) routing protocol. However,
in order to scale to large Freenet network topologies, it does
not support functions such as file insertion, storage/caching,
or retrieval. We extend the simulator to support ROL. To ease
exposition, we refer to the current loop handling scheme in
Freenet simply as Freenet. We note that ROL and Freenet only
differ in the loop handling behavior, they are identical in all
the other aspects of the Freenet operation. In particular, both
of them use the greedy routing in order to forward a request
message to its destination.

In order to thoroughly investigate and understand the per-
formance of ROL compared to Freenet, we consider a number
of key network properties in the simulation design, including
network size (number of nodes), node degree, and network
topology. We consider network sizes with 2000, 4000, 8000,
and 10000 nodes, and three node degrees of 8, 16, and 24.
A node degree specifies the maximum number of neighbors
that a node can have in a network. In combination, we have



12 different sets of networks, (2000, 8), (4000, 8), (8000, 8),
(10000, 8), (2000, 16), (4000, 16), (8000, 16), (10000, 16),
(2000, 24), (4000, 24), (8000,24), (10000, 24), in the format
of (network size, node degree). We refer to them as S1 to S12,
respectively. For simplicity, we also use S1 to S12 to refer to
the set of simulation studies performed on the corresponding
network. We note that the current Freenet has about 3000 to
4000 nodes simultaneously online on average.

In terms of network topology (how nodes are connected), we
consider a number of different network topologies, including
both small-world topologies and random topologies. In the
following we describe how nodes are connected in different
topologies. As in the real-world Freenet, each node in a
network will be assigned with a location randomly selected in
the circular space[0, 1], where locations 0 and 1 are considered
identical. In a small-world topology, two nodes are connected
(becoming neighbors of each other) with a probability that
is inversely proportional to the distance between the two
nodes [6], [7]. In a random network topology, nodes are
randomly connected, regardless their distance.

Nodes in the real-world Freenet attempt to form a small-
world topology, but there is no guarantee that they can achieve
this goal. The network topology of the real-world Freenet
is more likely to be some variation between a small-world
topology and a random topology. For this reason, we will also
consider hybrid network topologies, wherex of neighbors of a
node are selected randomly, and the remaining neighbors of the
node are selected according to the small-world criterion. We
considerx = 5%, 10%, 20%, and30%, respectively. Further-
more, since we focus on the investigation of the performance
of ROL, in all the simulation studies we set HTL to a large
value (2000) so that with a high probability we can always
find a path from any source node to any destination node.

For ROL and Freenet, we perform 12 sets of simulation
studies,S1 to S12, with each set consisting of two groups
of simulation studies. One group uses a small-world topology,
another random topology. In each simulation study (with a
fixed network topology), we randomly select two nodes in
the network, we determine the route from the source node
to the destination node (using ROL or Freenet), and then
we record the routing path length in the number of nodes
along the path. We perform1000 simulation studies in each
group of simulation studies (with randomly selected pairs of
source and destination nodes in each simulation study), which
simulates1000 random content requests on the network. We
use average routing path lengths in each group as an indicator
of the performance of a loop handling scheme. In general, a
shorter average routing path length is preferred.

Table I summarizes the properties of the12 sets of networks
used in the simulation studies. In the table we also show the
average network path length of the corresponding network
topology. The average network path length is a graph property
independent of the (greedy) routing used in an apCSN. It
allows us to combine both network size and node degree into
a single parameter of the network. In general, a large average
network path length indicates that nodes in a network are more

spread, and the topology likely has a larger network diameter.
As we can see from the table, the average network path length
of a network is strongly affected by the node degree. As
the node degree increases, the average network path length
becomes smaller for a fixed network size. On the other hand,
given a fixed node degree, the average network path length
becomes greater as we increase the network size. Both are
intuitively sound. It is also interesting to note that random
networks have a shorter average network path length compared
to the corresponding small-world networks. This could be
related to the fact that random networks have less restriction
on connecting two nodes than small-world networks.

TABLE I
PROPERTIES OF THE NETWORKS USED IN SIMULATIONS.

Average network path length
Set Size Degree Small-world Random
S1 2000 8 4.230 4.053
S2 4000 8 4.589 4.413
S3 8000 8 4.949 4.765
S4 10000 8 5.076 4.882
S5 2000 16 3.265 3.083
S6 4000 16 3.528 3.377
S7 8000 16 3.789 3.638
S8 10000 16 3.872 3.709
S9 2000 24 2.879 2.772
S10 4000 24 3.133 2.954
S11 8000 24 3.400 3.195
S12 10000 24 3.478 3.281

B. Simulation Results

In this subsection we present the results of the simulation
studies. First we present the results on small-world topologies
and on the random network topologies using the12 sets of
networks. Towards the end of the section we present the results
of the simulation studies using hybrid network topologies.

1) Small-world and Random Network Topologies:Table II
shows the average routing path lengths of ROL and Freenet in
the12 sets of networks. From the table we can see that, overall
ROL only has a minor performance impact on the average
routing path lengths compared to Freenet. In particular, the
increment of average routing path lengths of ROL is negligible
compared to that of Freenet in small-world networks. All the
increments are greatly less than1 in the small-world networks.
Moreover, in certain cases (forS3, S4), ROL actually has a
shorter average routing path compared to Freenet, and in some
other cases (S5 to S7, andS9 to S12), there is no change in
the average routing path length between ROL and Freenet. For
the last case, we have checked that there is no routing loops
caused by ROL, and ROL and Freenet have the same message
forwarding paths.

The performance of ROL is somewhat worse on random
networks compared to small-world networks. However, we
note that Freenet also works worse in random networks
compared to small-world networks. Therefore, although ROL
has a greater absolute increment in the average routing path
length in random networks, the relative increment compared
to Freenet is still relatively small. For example, ROL has no



TABLE II
AVERAGE ROUTING PATH LENGTHS OFFREENET AND ROL.

Small-world networks Random networks
Set Freenet ROL Freenet ROL
S1 7.411 7.553 43.448 45.678
S2 8.706 8.880 86.725 93.604
S3 9.910 9.839 156.186 188.381
S4 11.071 10.997 208.433 215.617
S5 4.790 4.790 11.736 12.424
S6 5.257 5.257 21.165 21.522
S7 5.733 5.733 42.062 46.118
S8 5.951 5.957 50.307 58.128
S9 4.184 4.184 6.513 6.651
S10 4.573 4.573 11.073 12.287
S11 4.942 4.942 18.472 19.696
S12 5.084 5.084 24.414 25.536

more than10% increase in average routing path length for the
majority of random networks compared to Freenet.

In order to better illustrate the performance of ROL and
Freenet with respect to the network properties, we show in
Figures 3 and 4 the average routing path length as a function of
the average network path length. From the figures we can see
that as the average network path length increases, in general
the average routing path length also increases (with a notable
dip in the random networks in Figure 4). This is expected
because a longer average network path means that the nodes
in the network are more spread, and the network diameter is
likely larger. In general a message will traverse more nodes
in order to reach a destination in a more spread network for
any routing algorithms.

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10

A
ve

ra
ge

 r
ou

tin
g 

pa
th

 le
ng

th

Network path length

Freenet
ROL

Fig. 3. Average routing path length (small-world networks).

Figures 5 and 6 show the empirical cumulative distribution
function (CDF) of the routing path lengths for both ROL
and Freenet, in small-world networks and random networks,
respectively. To make the figures more legible, we use two
networks (S2 and S3) as the representative examples. Data
with other networks show a similar trend. From Figure 5 we
can observe that, ROL and Freenet has a very similar CDF of
routing path lengths, which again confirm that the impact of
ROL on message path lengths should be very small compared
to Freenet on small-world networks. In addition, both ROL and
Freenet have relatively short routing path lengths, for example,
more than95% of messages have a routing path that is no
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greater than18 hops, which is the default maximum initial
value of HTL on Freenet.

In contrast, from Figure 6 we can see that both ROL and
Freenet have much longer routing path lengths on random
networks compared to small-world networks. (Note that the
routing path length of2000 of Freenet inS3 is caused by our
limit on the HTL value in the simulation studies. The actual
routing paths could be longer.) For an example, the majority
of routing paths have a length that is greater than50 hops,
and a large number of routing paths have a length that is
greater than500 hops. Given that nodes in random networks
are connected randomly, independent of their locations, we
do not expect any routing algorithms, and greedy routing in
particular, will work well in this type of networks. Despite the
relatively large routing path lengths, we emphasize that ROL
performs similarly as Freenet, put in another ways, ROL also
does not have major impact on routing path lengths compared
to Freenet in random networks.
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In order to better understand the impact of ROL on message
forwarding, in Table III we show the number (and percentage)
of messages that encounter a loop (traverse a node multiple
times) during the forwarding from the source to its destination,
for both small-world networks and random networks. Recall
that in each group of simulation studies we perform1000
content requests. From the table we can see that in small-
world networks only a very small number of messages will
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encounter a loop in each group of simulation studies, ranging
from 0 to 65, which is less than7% of messages in all groups
of simulation studies (with small-world networks). This shows
that messages in small-world networks will rarely encounter
loops with greedy routing, which has been observed in some
previous studies [12]. The ROL in this context is mainly used
to prevent attackers from exploiting the loop handling scheme.

In contrast, a large percentage of messages will encounter
loops in all the groups of simulation studies on random
networks. Again, given that nodes are randomly connected in
random networks, it is not surprising that a message will be
forwarded back to a node that has seen the message previously.
We also observe that the node degree plays a key role in the
formation of routing loops in both small-world networks and
random networks. As the node degree increases (with a fixed
network size), the probability for a message to encounter a
routing loop becomes smaller. This is understandable; in an
extreme case when a network becomes a clique (nodes have
the largest degree), there will be no forwarding loops.

TABLE III
NUMBER OF MESSAGES IN LOOPS.

# of messages in loops (%)
Set Small-world networks Random networks
S1 35 (3.5%) 556 (55.6%)
S2 55 (5.5%) 664 (66.4%)
S3 45 (4.5%) 781 (78.1%)
S4 65 (6.5%) 789 (78.9%)
S5 1 (0.1%) 231 (23.1%)
S6 0 (0%) 377 (37.7%)
S7 0 (0%) 519 (51.9%)
S8 3 (0.3%) 586 (58.6%)
S9 0 (0%) 90 (9.0%)
S10 0 (0%) 225 (22.5%)
S11 0 (0%) 340 (34.0%)
S12 0 (0%) 414 (41.4%)

In order to understand the impact of ROL on message
forwarding path lengths when a message encounters a rout-
ing loop (traverses a node multiple times), in Figure 7 we
show the distribution of the differencedif between message
forwarding path lengths in ROL and Freenet. For a given
message from a source node to a destination node,dif is
defined asPROL−PFreenet, wherePROL is the length of the

message forwarding path in ROL, andPFreenet is the length
of the corresponding message forwarding path in Freenet.
To make the figure more legible, We only show the results
for S2, S3, and S4 as representative examples (and they
contain more routing loops). In addition, we only show the
the results for small-world network topologies, given that they
are more relevant to real-world apCSNs (than random network
topologies).
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As we can see from the figure, a large portion (21% to
27%) of messages have a shorter forwarding path in ROL
than in Freenet. As we have discussed earlier, the specifics
of the network topology and neighbors of the nodes in the
network have an impact on the performance of ROL and
Freenet. As a consequence, ROL may outperform Freenet even
if loops are admitted in ROL. This also helps to explain the
observation that the average routing path length of ROL could
be shorter than that of Freenet (see Table II). In addition, for
about87% of messages, the difference of message forwarding
path lengths between ROL and Freenet is less than17 hops.
We can also see from the figure that, for a small number of
messages, the difference is above50 hops (or smaller than−50
hops), which shows that messages may occasionally traverse
forwarding paths of largely different lengths when a loop is
encountered by a message in ROL.

However, we emphasize that as we have shown in Table III,
messages rarely encounter routing loops in ROL, and overall
only a very small number of messages will traverse forwarding
paths of largely different lengths. In addition, we make a subtle
observation here that, the real message forwarding path of
Freenet is longer than what we report here. Note that, for a
message encounters a routing loop in ROL, the corresponding
message in Freenet must experience at least aReject with
Loop failure message, that is, an additional hop is visited by
the message but not counted in the message forwarding path
length.

In apCSNs, data is propagated along the reverse path of the
corresponding content request message, and in ROL, data can
be propagated back to the originator of the request message via
the short-cut path (see Section III). Given that a reverse path
(short-cut path in ROL) is used over a longer period of time
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(especially if the requested data is large), to a degree, it is more
important to examine the difference between the reverse paths
of messages in ROL and Freenet. Figure 8 shows the difference
of reverse paths between ROL and Freenet (for the messages
with routing loops in ROL). For ROL, the short-cut paths are
used as the reverse paths, given that data is propagated back to
the originator along the short-cut path. As we can see from the
figure, the majority (66% to 72%) of messages have a shorter
reverse path in ROL than in Freenet. In addition, even for the
messages with a longer reverse path in ROL than in Freenet,
the increment will not be more than12 hops. In summary,
for the majority of messages encountering a routing loop,
users may have a better experience in ROL than in Freenet
in terms of content downloading time. We further note that
this observation also applies to content insertion messages.

2) Hybrid Networks: Given that the network topology of
the real-world Freenet is more likely to be a variation between
a small-world network and a random network, in the following
we perform simulation studies using hybrid networks. Three
sets of hybrid networks are constructed. The first set of
hybrid networks are constructed using the parameters ofS2,
that is, the network size is4000, and the node degree is8
in these networks. The other two sets of hybrid networks
are constructed using the parameters ofS3(8000, 8) and
S11(8000, 24), respectively. Using other sets of networks will
provide similar observation.

TABLE IV
AVERAGE ROUTING PATH LENGTHS ON HYBRID NETWORKS WITH

PARAMETERS OFS2.

Network Topology Freenet ROL
Small-world 8.706 8.880
5% 8.832 10.371
10% 9.552 9.638
20% 11.056 11.406
30% 12.365 15.235
100% Random 86.725 93.604

Tables IV, V, and VI show the average routing path length
on various hybrid networks, withx = 5%, 10%, 20%, and
30%. For comparison, we also include the results for the small-
world topology (0% random), and random topology (100%

TABLE V
AVERAGE ROUTING PATH LENGTHS ON HYBRID NETWORKS WITH

PARAMETERS OFS3.

Network topology Freenet ROL
Small-world 9.910 9.839
5% random 10.373 11.036
10% random 10.947 12.091
20% random 15.201 15.152
30% random 18.015 23.611
(100%) random 156.186 188.381

TABLE VI
AVERAGE ROUTING PATH LENGTHS ON HYBRID NETWORKS WITH

PARAMETERS OFS11.

Network Topology Freenet ROL
Small-world 4.942 4.942
5% 4.943 4.862
10% 4.941 4.904
20% 4.967 4.943
30% 4.958 4.981
100% Random 18.472 19.696

random). As we can see from the tables, even with added
randomness in networks, ROL can still perform well compared
to Freenet, and in some case outperform Freenet, in terms of
average routing path lengths for various hybrid networks. In
addition, we can also see that, with increased node degrees,
the performance of ROL and Freenet gets closer, which has
been observed before (see Table III and the corresponding
discussions). Overall the simulation studies confirm that ROL
is a practical loop handling scheme, and can be deployed on
apCSN systems such as Freenet, which aim to form a small-
world network topology.

V. RELATED WORK

In response to the traceback attack on Freenet [5], Ian Clarke
has proposed the same idea of ROL [14]. We independently
developed the ROL scheme, and critically, we carried out
extensive simulation studies on the performance of ROL. As
discussed in Section II, Freenet and GNUnet have their own
loop handling schemes [2], [3]; however, they both leak certain
level of message forwarding information that can be exploited
to compromise or undermine the user anonymity of these
networks. OneSwarm has a slightly different loop handling
scheme [8]; however it only works in flooding based apCSNs
instead of routing based apCSNs. ROL can work in routing
based apCSNs.

A dynamic ID scheme DynID has also been recently
proposed in [12] in order to thwart the traceback attack
on Freenet. In DynID, the UID associated with a message
is dynamically changed along the forwarding path of the
message. In this way, an attacker can only trace a content
request message back to the node where the UID of the
message is last updated, but cannot deterministically identify
the originator of the message. DynID has two shortcomings.
First, the originator of a message can still be probabilistically
identified, and second, it is specially designed to thwart the
traceback attack onFreenet. ROL developed in this paper is



a more general routing loop handling scheme to prevent the
leakage of message forwarding information (caused by loop
handling). DynID does not prevent the leakage of message
forwarding informationper se; it thwarts the traceback attack
by changing the UID value. ROL can be adopted by different
apCSNs.

Another scheme was briefly discussed in [5] to prevent
the leakage of message forwarding information due to the
handling of routing loops. The basic idea is to use a generic
failure message instead of failure-specific responding message,
with the hope that an attacker cannot infer if a node has seen a
request message before. However, as we have discussed in III,
in addition to the potential performance impact on Freenet, it
actually also cannot prevent an attacker from inferring if a
node has seen a request message before.

Roos and Strufe proposed a family of routing algorithms
named NextBestK [15], where a noden can choose up toK
neighbors with the distance to the destinationt worse than that
from noden to t. ROL is close to an instance of NextBestK,
with K = ∞ (or maximum number of neighbors a node can
have). However NextBestK and ROL were developed for dif-
ferent purposes. While NextBestK was concerned with routing
with a relaxed Kleinberg small-world network model [16],
ROL was concerned with preventing the leakage of message
forwarding information due to the handling of routing loops.

VI. CONCLUSION

In this paper we have developed a new loop handling
scheme named Reroute-on-Loop (ROL) that would not leak
any message forwarding information so as to improve the
anonymity strength of the resulting apCSN. Using the Thynix
simulator coming with the Freenet project we have also shown
that overall ROL only has minor performance impacts on
routing path lengths compared to Freenet. Our simulation
studies confirmed that ROL is a practical loop handling scheme
that can be deployed on apCSN systems such as Freenet.
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