
 

 

Power-Saving Approaches and Tradeoffs for Storage Systems 

BEN BUZBEE, Florida State University 

WEISU WANG, Florida State University 

AN-I ANDY WANG, Florida State University 
 

Power is becoming a major concern when designing storage systems for platforms ranging from mobile 

devices to data centers.  While many solutions exist, different solutions make very different tradeoffs 

between energy savings and storage performance, capacity, reliability, cost of ownership, etc.  This survey 

walks through layers of the legacy storage stack, exploring tradeoffs made by a representative set of 

energy-efficient storage approaches.  The survey also points out architectural implications of implementing 

energy-efficient solutions at various storage layers.   
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 INTRODUCTION 1.

The U.S. Energy Information Administration [2013] reports that the average price of 

electricity has risen by 36% (from 7.29 to 9.9 cents per KWh) from 2001 to 2011, with 

no signs of breaking this trend.  The rising cost of electricity, along with limited 

power availability (due to a fixed power infrastructure, limited battery density, etc.), 

has created a need for more energy-efficient system designs.  While significant 

advances have been made to improve the energy efficiency for various system 

components (most notably CPUs), storage devices are lagging behind.  In laptops, 4-7% 

of power consumption on an idle system can be attributed to storage.  This number 

can increase beyond 10% during storage-intensive operations [Mahesri and Vardhan 

2004; Kothuru et al. 2010; Somavat et al. 2010].  In data centers, storage systems can 

account for up to 40% of the energy consumption [Pinheiro et al. 2006; Schulz 2007]. 

Power consumption can also have an amplifying effect on cost.  As more energy is 

consumed, more heat is generated due to inefficiency.  This additional heat raises 

cooling requirements, which already account for 30-40% of a data center’s total 

energy consumption [Fredslund et al. 2009].  Increased heat also means density of 

hardware must be lowered, translating into higher space requirements and the 

associated costs. 

Even if the power-related costs were not an issue, the power itself may be in 

limited supply.  Mobile users, for example, are constantly demanding both better 

performance and longer battery life (two goals that often conflict with each other).  

However, with the energy density of batteries already approaching that of a hand-

grenade [Perry 2008], increasing the power supply to these devices is becoming a less 

viable option.  Even for stationary machines plugged into a direct power source, 

power availability can still be a limiting factor.  Often, for metropolitan areas, the 

energy-providing infrastructure is fixed (e.g., for a given building) and cannot be 

revamped without incurring major costs.  

To address these concerns surrounding high energy consumption, the computing 

industry has begun a collective push toward greener hardware and software 

techniques.  In spite of this shift, improvements to storage systems are lagging 

behind that of other components.  For example, modern processors have been 

particularly aggressive when it comes to implementing power-saving techniques. In 

2005, processors like the Intel® Pentium® D 840 consumed around 130 W for a 



  

 
 

single core [Intel 2006].  Fast-forward to 2011, and processors such as the Xeon® E7-

4870 are consuming 10 W per core and near zero when idle [Intel 2011].  Compare 

this to hard drives like the 900GB Seagate Savvio® 10K.6, which consumes 7.9 W on 

average during random reads and writes and 3.9 W while idle [Seagate 2012].  

Compared to processors, the energy consumption of this drive has improved 

relatively little over the 13 W active (and 9.3 W idle) consumption of a 750 GB 

Seagate Barracuda 7200.10 disk earlier [Seagate 2007]. 

The on-going exponential trend of increased storage demand also paints a bleak 

future unless more energy-efficient solutions are introduced.  In 2011, 1.8 zettabytes 

(1021 bytes) of data were created or replicated, and some projections show that this 

number is likely to continue to double every two years [Gantz and Reinsel 2011].  The 

growing popularity of cloud storage and social media further increases the storage 

demands on data centers. 

Some may expect the emergence of flash storage devices could help to alleviate 

the ever-rising concern of energy consumption in storage media.  Devices such as the 

Samsung SM825 use only about 1.8 W while active and 1.3 W while idle [Samsung 

2011].  Unfortunately, the cost-per-gigabyte ratio of flash exists at an order of 

magnitude higher than that of hard disks.  The aforementioned SM825 sells for $499 

for the 100GB edition [Samsung 2012] (about $5 per gigabyte), whereas the 900GB 

Savvio can be found for $390 ($0.43 per gigabyte). This price disparity causes the 

adoption of flash devices to be cost-prohibitive in many situations.  To illustrate, the 

social networking site Facebook recently reported that it was storing 100 petabytes 

(1015 bytes) of data [Chen 2012].  Using flash instead of hard disks would cost 

Facebook an additional $360 million.  Also, since it takes more flash units to host the 

same storage capacity, the total power required for flash is actually more than using 

hard disks.  However, due to their shock-resistant and energy saving properties, 

flash devices have become the preferred storage medium for mobile devices such as 

smart phones, tablets, and ultra-books.  While the storage capacity of these solutions 

is somewhat limiting, it is often enough for the average mobile device consumer.  

Thus, flash devices are a reminder that whether an energy-efficient storage solution 

is acceptable for mainstream use depends on many factors such as the total cost of 

ownership, reliability, performance, capacity, and more. 

Complementary to existing surveys [Llopis et al. 2013; Bostoen et al. 2013] that 

focus on data-center solutions, this survey will walk through a representative set of 

energy-efficient storage approaches (not limited to data centers) organized by where 

they are applied at various layers in the legacy storage stack.  This organization 

highlights that even similar techniques (e.g., replication) applied at different layers 

(e.g., within a disk, across disks, or across machines) have very different 

architectural challenges.  This survey also shows the potential compatibility and 

conflicts of tradeoffs for various approaches.   

The rest of this survey is arranged as follows.  Section 2 contains a brief overview 

of the legacy storage stack and the basic functionality of each layer.  Sections 3-8 

introduce each layer of the storage stack in more detail and survey a set of energy-

saving techniques whose applications mostly affect that layer.  Section 9 introduces 

large-scale power-saving techniques that span a multitude of devices.  Section 10 

summarizes the overall trends, tradeoffs, and compatibility of various techniques.  

 THE LEGACY STORAGE STACK 2.

The legacy storage stack (Figure 2.1) refers to the layering of abstract storage 

components that enables the swift evolution of existing layers and makes it easy to 

insert additional ones.  However, the choice of layer to provide energy-efficiency 



  
                                                                                                                                         

 

 

features can have wide-ranging implications on aspects such as portability and 

applicability.  This Section only briefly reviews the roles of each layer, and the 

implications of devising solutions at each layer will be discussed in the corresponding 

sections.  

At the lowest level of the storage stack is the hardware layer, which is the 

physical media (disks or flash devices) used to store data.  On top of the hardware 

layer is the device-driver software that handles hardware-specific communications 

and optimizations for the underlying storage media.   

Above the device drivers there may be a software device mapper which maps 

logical addresses to a different set of physical addresses.  This can include multi-

device drivers (e.g. software RAID), which are designed to coordinate multiple 

physical devices to behave as one logical device to the above layers.  For flash devices, 

a Flash Translation Layer (FTL) system may also exist at this layer.  The FTL allows 

flash storage devices to be accessed like block devices (such as hard drives) for legacy 

compatibility.   

One step higher on the storage stack is the file system layer, which is responsible 

for providing namespaces to organize the data blocks on the logical devices exposed 

by the multi-device layer.  The file system provides a namespace for files and handles 

data structures stored on the storage hardware. 

Finally, on the top of the storage stack, a virtual file system (VFS) provides a 

uniform interface for accessing a variety of file systems.  This allows multiple file 

systems, each optimized for different workloads (multimedia, smaller files, etc.), to be 

added below the VFS layer without changing the way user-space applications access 

data.  Common file system functionalities, such as caching and permission handling, 

are also provided by this layer. 
 

Fig. 2.1: The legacy storage stack. 

 STORAGE-HARDWARE-LEVEL POWER-SAVING TECHNIQUES 3.

The hardware level contains the physical media (e.g., hard disks or flash devices) 

used for persistent storage.  Improvements targeted to this level are transparent to 

the layers above and thus highly portable.  On the other hand, due to interface 

limitations, higher layers may not be able to have direct and full control of energy-

savings features at this layer (e.g., disabling energy-savings features at times to 

preserve performance characteristics).   
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 Hard Disk Storage Background 3.1

The hard disk is the most common storage medium in use today for laptops, desktops, 

and data centers.  To illustrate its energy tradeoffs, we briefly review its mechanics.  

A hard disk consists of one or more rotating magnetic platters.  Each platter is 

divided into concentric tracks and sliced into arc-shaped sectors, containing fixed-size 

chunks of bytes (e.g., 512 bytes, 2KB, 4KB, etc.).  A sector is accessed when the head 

(mounted on an actuator arm) is positioned over it.  The time it takes to access data 

on a hard disk is referred to as the disk access time and consists of the seek time (the 

time it takes for the arm to move to the correct track), the rotational delay (the time 

it takes for the platter to rotate so that the target sector is under the disk head) and 

the transfer time (the time it takes to transfer the sectors).  

Each disk has multiple power modes (“on” and “off,” at a minimum), each of 

which represents a level of tradeoff between power and access time.  Table 3.1.1 

describes the different power modes of the Hitachi Deskstar 7K1000 [Hitachi 2007].  

A hard disk also has a limited number of power cycles (the number of times a disk 

can park its heads, sometimes referred to as load/unload cycles).  For example, the 

Hitachi Deskstar 7K1000 is rated at 50,000 power cycles and therefore may only 

reliably park its head 50,000 times (27 times a day for 5 years).  To postpone 

reaching this limit, changes between these power modes must be done conservatively. 

 
Table 3.1.1: Common hard disk power modes of Hitachi Deskstar 7K1000 [Hitachi 2007]. 

Mode Description Avg. Wattage 

Active Platters spinning, head working 11.5 W 

Idle Platters spinning, head idle 7.6 W 

Spun Down Disk spun down, head idle 3.5 W 

 
Laptop hard drives are designed to undergo additional power cycles.  Their 

smaller platters and lower rotational speed (measured in rotations per minutes, or 

RPMs) translate into a lower energy cost but also slower latency and smaller capacity.  

Table 3.1.2 compares a Hitachi 7K1000 1 TB desktop drive [Hitachi 2007] with a 

laptop hard drive, the HGST (formerly Hitachi Global Storage Technologies) Z5K500 

500GB [HGST 2012].   

 
Table 3.1.2: Comparison of laptop and desktop hard drives [Hitachi 2007; HGST 2012; ServerSupply 2013]. 

Model Capacity Price Seek 

Time 

RPM Transfer 

Rate 

Power 

Cycles 

Power (Watts) 

Start Active Idle Low 

Hitachi 

7K1000 

1,000 

GB 

$80 9 ms 7,200 37.5 MB/s 50K 24 12.3 8.4 3.7 

Low 

RPM 

Hitachi 

Z5K500 

500 

GB 

$65 13 ms 5,400 125.5 

MB/s 

600K 4.5 1.6 1.5 0.1 

Sleep 

 
While the energy-efficiency characteristics are crucial to extend the battery life of 

laptops, replacing desktop drives with laptop drives for the same purpose may be a 

losing proposition.  In the case of these two drives, to achieve the storage capacity of 

one 7K1000 would require two laptop disks costing $50 more in total [ServerSupply 

2013].  The exchange would save about 9.1 W per hour, or about $47 of electricity (at 

$0.10 per KWh) over 5 years.  Considering other factors, such as the increased 

rotational delay of slower RPM drives, other energy-saving approaches may be more 

suitable for desktop or server applications than replacement by laptop disks. 



  
                                                                                                                                         

 

 

 Flash Storage Background 3.2

Flash storage is becoming popular as an alternative to hard disk drives, especially in 

mobile devices.  Some analysts predict that 50% of laptops will use flash-based solid- 

state drives by as soon as late 2013 [Kerekes 2012], and most mobile phones and 

tablets already utilize this technology for primary storage. 

Flash stores data bits in memory cells, each cell made from floating-gate 

transistors.  The number of electrons trapped in the floating gate can control the 

resulting charge level of a memory cell which is then used to represent discrete bits 

of data.  Unlike disks, flash memory is solid state, thus making it very shock 

resistant and more power efficient.  Both of these traits make it an attractive choice 

for the mobile market. 

There are two primary types of flash storage, NOR flash and NAND flash.  NOR 

flash, similar to RAM, is byte-addressable and so supports direct execution of 

programs without a need to first load the program into a byte-addressable medium 

(e.g., RAM).  Compared to NAND flash, however, the popularity of NOR flash has 

lessened in recent years, likely due to its higher cost-per-gigabyte ratio.  By contrast, 

NAND flash is page-addressable and must be accessed in this larger “page” 

granularity (rather than per-byte).  As a result, programs cannot be run directly from 

NAND flash, but must first be loaded onto a byte-addressable medium such as RAM.  

Additionally, NAND flash is erased in erase blocks, which consist of many contiguous 

flash pages.  Therefore, a single erase of any size on NAND flash will erase many 

pages. 

Although NAND flash can achieve faster read and write access times (0.29µs for 

reads and 100µs for writes [Samsung 2012]) compared to disks, one major 

consideration of flash is that it can only write to empty pages.  This means that in 

order to over-write a flash page (or even a single byte), the entire erase block which 

contains the page must first be erased.  Erasing in flash can thus be orders of 

magnitude slower than simply reading [Inoue and Wong 2003], and if the erase block 

contains still-valid pages, those pages must be migrated elsewhere before erasure.  

To avoid the overhead of an erasure, writes to a non-empty page will often be 

remapped to an empty one.  The original write destination is then marked invalid.  

The hope is that by the time a flash block must be erased for space, most of the pages 

it contains are either (1) empty or (2) invalid and do not need to be migrated. 

Additionally, each memory cell (for both NAND and NOR flash) may only be 

erased a finite number of times [Inoue and Wong 2003].  The Samsung SM825, for 

example, can erase each memory cell approximately 17,500 times in its lifetime 

[Samsung 2012].  In order to increase the lifetime of a flash device, a technique 

known as wear leveling is often employed, which attempts to spread erase requests 

evenly over the erase blocks on a flash device by remapping a write request to a 

fresher block. 

Techniques such as the delaying of an erase request and wear leveling need to be 

considered when designing energy-saving solutions.  In particular, solutions that 

involve migrating data to create opportunities to shut down devices may lead to a 

significantly reduced lifespan of flash by incurring additional erases.  If flash 

memory is employed for caching, writes should be conserved as much as possible.  

The applications for which flash is well suited are still being discovered, with 

factors such as limited erase cycles and an order of magnitude higher cost-per-

gigabyte ratio (over hard disks) slowing the adoption rate.  In order to alleviate the 

storage cost, many techniques attempt to increase the capacity of flash devices.  



  

 
 

These techniques include (1) increasing the density of memory cells and (2) 

employing multi-level cell technology.   

In Single-Level Cell (SLC) flash, a bit is encoded by designating two voltage 

levels (e.g., one level representing the bit 0, and another representing the bit 1).  In 

Multi-Level Cell (MLC) flash, two bits are stored in four voltage levels. These levels 

must be chosen to be sufficiently far apart to allow for imprecise programming and 

natural fluctuations in voltage.  A linear increase in bit density requires an 

exponential increase in the number of voltage levels (i.e., n bits require 2n voltages), 

which limits the potential of this approach.  Another constraint is that the distance 

between the maximum and minimum voltage of the cells must be kept large enough 

to provide sufficient padding between each voltage level.  Raising the maximum 

voltage would allow for a higher bit density with sufficient padding, however it would 

also result in higher power consumption. 

 Consolidate Drives 3.3

One simple way to decrease power consumption of the storage devices at the 

hardware level is to consolidate data from many small drives onto fewer, bigger hard 

disks. Table 3.3.1 illustrates the power consumption of a 3TB system constructed 

using two models of the Deskstar 7K1000 [Hitachi 2007] with varying capacities. 

 
Table 3.3.1: Capacity comparison for the Deskstar 7K1000 [Hitachi 2007]. 

Capacity Active 

Power 

Peak 

Bandwidth 

Active Power for a  3TB 

System 

Aggregate Peak Bandwidth a 

3TB system 

750GB 11.5 W 37.5 MB/s 46 W 150 MB/s 

1TB 12.3 W 37.5 MB/s 36.9 W 112.5 MB/s 

 
Consolidating data from four 750GB disks to three 1TB disks saves about 20% of the 

power while all the disks are active.  However, having fewer disks means fewer 

opportunities for parallelism, which is reflected in the 25% reduction of peak 

aggregate bandwidth. 

 Smaller Platters and Slower RPM 3.4

Having smaller platters results in a lower capacity for the disk, and a lower RPM will 

cause an increase in rotational delay, but each of these modifications can lead to 

reduced power requirements for spinning the disk at active RPM.  Smaller disks still 

require the same hardware complexity, but it is amortized over fewer bytes, leading 

to a higher price-per-byte.  An example is the 4GB Hitachi Microdrive [HGST 2003] 

(Table 3.4.1), which measures only 42.8 mm by 36.4 mm and has a maximum RPM of 

3,600, which is 4.7 times as power efficient as the 7K1000 while active.  However, the 

Microdrive has an access latency of 20ms (2.2 times as slow as the Hitachi 7K1000).    

 
Table 3.4.1: Power consumption of a 4GB Hitachi Microdrive [HGST 2003; eSaiTech 2013; ServerSupply 2013]. 

Model Capacity Price Seek 

Time 

RPM Transfer 

Rate 

Power 

Cycles 

Power (Watts) 

Active Idle Low 

Hitachi 7K1000 1,000GB $80 9 ms 7,200 37.5 

MB/s 

50K 12.3 8.4 3.7 

Low 

RPM 

Hitachi Microdrive 

3K4 

4GB $50 12 ms 3,600 7.2 MB/s 300K 2.6 0.14 - 

 



  
                                                                                                                                         

 

 

Flash tends to be the more attractive option for small and power-efficient storage 

applications due to factors such as a lower price, greater shock resistance and 

improved access latency [SanDisk 2003]. 

 Variable RPM 3.5

The traditional power mode model has several shortcomings, particularly in systems 

with unpredictable workloads.  Once a disk has been spun down, it can take some 

time to bring it back up to a speed capable of servicing new requests.  Spinning the 

platters faster than necessary also wastes power, since a slower RPM may be 

sufficient to meet some workload demands.   

The variable RPM model attempts to make up for some of these shortcomings by 

offering more levels of rotational speed, often controlled by the value of a register on 

the disk.  This allows the disk to be spun up or down to a speed appropriate for the 

current workload instead of simply being “idle” or “active” [Gurumurthi et al. 2003a].  

The Western Digital Caviar Green disk drive [Western Digital 2012] implements a 

variable RPM system and uses only 30% of the power that the 1TB Hitachi 7K1000 

uses on average during random reads and writes.  Note that the Caviar Green 

numbers may also reflect additional proprietary energy-saving techniques. 

 
Table 3.5.1: Western Digital Caviar Green energy specifications [Western Digital 2012]. 

Capacity Average Active Power Average Idle Power Load/Unload Cycles 

3TB 6.0 W 5.5 W 300,000 

2TB 5.3 W 3.3 W 300,000 

1TB 3.7 W 2.1 W 300,000 

 
Variable RPM disks typically price higher than other disks of the same capacity 

and may result in increased latency in systems with unpredictable workloads, since 

the disk may choose a lower RPM setting and then immediately have to spin back up 

to serve a new request.  Due to physical and cost constraints, these drives have not 

been able to penetrate the market [Guerra et al. 2010]. 

 Hybrid Drives 3.6

Hybrid disks are traditional hard disks that contain a small amount of flash memory 

for caching and storing read-mostly data items.  These drives attempt to take 

advantage of the speed and energy-efficiency of flash while still utilizing the cheap 

storage capacity of traditional hard disks.  The true effectiveness of hybrid drives 

depends largely on the locality of data and the caching policies implemented by the 

disk controller.  The Seagate Momentus® XT 750GB hard drive contains 8GB of SLC 

NAND flash for caching and uses a constant 7200 RPM spindle speed.  Table 3.6.1 

shows the average power requirements [Seagate 2011]. 

 
Table 3.6.1: Seagate Momentus® XT 750 GB energy specifications [Seagate 2011]. 

Startup Read Write Idle (active) 

6 W 3.3 W 3.2 W 1.2 W 

 

Hybrid drives can be priced higher than other drives of the same capacity; 

however, the difference is often small.  Poor locality or a poor caching policy could 

also result in a (negligible) decrease in performance and energy efficiency over other 

drives.  Additionally, the introduction of flash means worrying about its erase cycle 

limits. 



  

 
 

 DEVICE DRIVER-LEVEL POWER-SAVING TECHNIQUES 4.

A device driver is a piece of software tailored for a specific hardware device while 

providing a common interface to the upper layers of the legacy storage stack.  Drivers 

often contain optimizations, such as built-in request reordering, to achieve higher 

device utilization.  Device drivers can also control the disk drives directly and 

command them to switch power modes (or RPM in the case of variable RPM drives).  

Improvements at this level are highly-portable and can exert a strong level of control 

over the workings of the disk. 

 Predicting Idle Periods for Disks 4.1

One approach for power savings at the driver level is to predict periods of disk 

idleness to promote energy savings.  The basic strategy is to spin the disk down when 

the predicted idle period is long enough to save more energy than that required to 

spin the disk back up (Figure 4.1.1).  Practically, however, available power cycles and 

performance constraints limit how often this can be done.  Disks can often take a 

long time to spin back up to serviceable speeds (8 seconds for the Seagate 

Constellation ES2 [Seagate 2010]).  

Fig. 4.1.1:  Mode-switching energy tradeoff. 

 

The most generally applicable technique is to predict an idle period and to spin 

down the disk, or reduce its RPM, when there have been no requests for X sequential 

seconds.  This is the traditional threshold-based model, and can improve energy 

savings significantly.  Some early works have achieved energy savings of nearly 50% 

with a one-second threshold [Douglis et al. 1994].  This approach makes no attempt 

to analyze load patterns and can perform very differently under different workloads.   

One prediction technique [Kirshnan et al. 1995] maps the power-mode switching 

problem to the ski rental problem:  one must decide whether to continue paying a 

cost for something (renting), or to pay a larger one-time cost (buying) with a goal of 

paying less in the end for some finite usage.  For this purpose, discrete time chunks 

are used.  At the beginning of each time slot, an algorithm must decide whether to 

keep the disk spinning (renting) or to spin it down (buying).  The costs of these 

operations are defined in terms of power consumption and additional latency that 
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will be introduced.  Through simulation and traces from a workstation, this approach 

can outperform the standard 5-second threshold-based prediction from 6% to 42%.  

Gniady et al. [2004] propose a system named Program Counter-based Access 

Predictor (PCAP), which aims to better predict upcoming idle periods by examining 

the relationship between idle periods and associated program counters.  PCAP is 

inspired from success of program-counter-based branch predictors used in CPU 

architecture.  The tested implementation uses path-based prediction, which keeps 

track of the series of program-counter values that proceed idle periods long enough to 

justify a change to a lower power mode.  Evaluated with a trace-based simulation of 

normal user workloads (media players and web browsers were among the 

applications traced), PCAP could save 76% of energy on average, which is 2% from 

matching that saved by a perfect oracle predictor (which always powers the disk 

down when idle time will exceed the time needed for spin-up power to equal power 

saved).  

Prediction techniques can incur extra overhead, such as utilizing memory to store 

histories or CPU time to calculate predictions, but this overhead is typically 

insignificant in comparison to the time it takes to perform disk I/O operations.  

Powering the disk down, as always, consumes power cycles. 

 Using Flash for Caching 4.2

FlashCache [Marsh et al. 1994] uses flash storage as a second-level cache (below 

DRAM) and, in doing so, attempts to prevent I/O operations from reaching the disk.  

This lengthens the disk idle periods and thus provides more power-saving 

opportunities. 

In testing, a small cache buffer was allocated in DRAM that, once full, would be 

flushed to a small flash memory card using an LRU caching policy.  Today, a solid-

state disk might be a more attractive cache choice due to its relatively large capacity.  

Since flash storage is persistent, the cached data does not need to be flushed for 

consistency.  In fact, the flash device is not flushed until it becomes full, or a read 

miss occurs at both the DRAM and flash levels of cache.   

Trace-based evaluations of FlashCache showed a decrease in energy usage of 20-

70% on a typical workstation workload, while reducing overall response times by 20-

70%.  The simulated disks were spun down after 1 second of idle time.  In some cases, 

read response time was lengthened by 20-50% due to read misses that incurred a 

spinup. 

Caching solutions may not be suitable for systems that have many reads with 

poor locality.  If a flash device is used as a cache, its erase cycle limit must also be 

carefully managed.  For loads that do not have many writes or random reads, flash-

based caching presents an attractive solution for increasing the number and the 

duration of disk idle periods and reducing read times. 

 Deduplication 4.3

Techniques to improve performance by avoiding storage access may also yield energy 

savings as a side effect.  Besides caching, deduplication is another example.  

Basically, data blocks of the same content need not to be stored redundantly, leading 

to fewer storage accesses.  However, the tradeoff is the computational cost of hashing 

and bookkeeping to identify identical blocks.  Also, consolidating blocks with identical 

content may no longer preserve the spatial locality of original blocks belonging to the 

same files, and increase the probability of disks performing more random seeks.   



  

 
 

Costa et al. [2011] performed an empirical study of writing system checkpoint 

images with different levels of similarities via a MosaStore deduplication storage 

layer.  They measured the power of the entire system and reported that energy 

savings can be achieved once the level of content similarity is above 18%.  To break 

even with the deduplication computational overhead, the similarity level needs to 

achieve 40%. 

 MULTI-DEVICE -LEVEL POWER-SAVING TECHNIQUES 5.

The multi-device layer of the legacy storage stack coordinates multiple physical 

storage devices and presents a unified logical structure to the above layer.  Multi-

device solutions are widely used by data centers, so energy-saving techniques 

targeting this layer can have wide-ranging applications for server-class disks.  

However, this layer often has reliability mechanisms to protect against single-device 

failures, and the solutions devised need to be backward compatible in terms of the 

reliability semantics.  Another issue of building solutions at this layer is the lack of 

access to information governed by upper layers (e.g., which blocks are allocated/free).  

Thus, certain solutions need to circumvent this constraint.  

 RAID Background 5.1

The most well-known implementation at this layer is software RAID (Redundant 

Array of Independent Disks), which coordinates multiple devices to provide 

parallelism.  However, increasing the number of devices in a system also increases 

the chance a single device will fail.  Thus, RAID provides different levels of 

redundancy to safeguard against failed devices.  RAID levels 0, 1, and 5 are the most 

widely used. 

RAID level 0 provides no redundancy and exploits parallelism by splitting a piece 

of data into blocks of equal length and storing them to the disks simultaneously (i.e., 

block 1 is written to disk 1; block 2, to disk 2; block 3, to disk 3; and so on).  The 

corresponding blocks from different disks form a stripe.  When accessed in parallel, 

RAID-0 will achieve a higher aggregate bandwidth.  However, if one disk fails, data 

blocks located on the failed disk are also lost. 

RAID level 1 implements redundancy by mirroring data.  Any data written to one 

of the disks in the RAID volume is also written to a second disk.  As long as one of 

the mirrored disks survives failure, no data will be lost.  This level speeds up reads, 

since a read request can be fulfilled by the disk whose head is closest to the data, but 

may slow down writes, since a write request is not completed until both of the 

mirrored disks have completed the write. 

RAID level 5 achieves parallelism in both reads and writes while also surviving a 

single disk failure.  In RAID 5, data blocks are striped across disks (like RAID 0) 

along with an additional parity block per stripe.  The parity blocks from different 

stripes are distributed across the disks to balance the parity update loads (writes to 

update a stripe’s parity block).  If any single disk fails, the content of lost block for 

each stripe can be recomputed using the remaining blocks within the same stripe. 

Many other RAID levels exist, such as RAID 10 (1+0), which involves striping 

across mirrored pairs, and RAID 01 (0+1) in which 2 RAID 0 arrays are mirrored.  

The design of energy-efficient solutions needs to be backward compatible to existing 

RAID levels to be practical for deployment.   

 Spinning Down Individual Drives Based on Simple Thresholds 5.2

Similar to single-disk spin-down techniques, individual disks within a RAID volume 

can use a simple idle period threshold to switch power-saving modes.  This approach 



  
                                                                                                                                         

 

 

requires no special hardware.  However, under server environments, both the spin-up 

latency and the lack of idle time may render this approach less effective.  

[Gurumurthi et al.  2003b].  

 Caching 5.3

Given that the key to saving power for disks is to create opportunities for them to 

spin down, it is possible to sacrifice the energy efficiency of a few disks in order to 

decrease overall energy usage.  By diverting most of the I/O operations to a few disks, 

for example, we allow the remaining disks to stay idle.  One way to accomplish this is 

to use cache disks to store frequently accessed items.  These cache disks could also be 

exchanged for flash devices for even further improved energy efficiency.  The primary 

tradeoffs include (1) the potential bottle-neck introduced by directing all of the most 

frequent requests to a small subset of the available devices, (2) migration of cached 

data sets to and from the cache devices, and (3) eventual propagation of updates from 

the cached devices to the storage devices.  Having to acquire disks solely for caching 

may also increase cost. 

Massive Arrays of Idle Disks (MAIDs) [Colarelli and Grunwald 2002] are well 

suited to meet large archival storage demands where random reads and writes are 

relatively uncommon.  In a MAID, most of the disks remain powered down until 

needed except for a few always-on disks that cache recently accessed data or MAID 

metadata.  MAID was evaluated via simulation with respect to an always-on striped 

RAID configuration.  Block-level trace replays show that Colarelli and Grunwald’s 

MAID has the potential to use 15% of the power of an always-on RAID system with 

negligible performance degradation.  This configuration would fare poorly in systems 

where data is accessed frequently, and is best suited for large and rarely-accessed 

archives of data.  Additionally, a MAID is not designed to maximize parallelism 

among the disks in the volume. 

 Content Regeneration 5.4

Content regeneration techniques take advantage of the ability of some multi-device 

techniques (e.g., RAID 5) to regenerate missing data.  RIMAC [Yao and Wang 2006] 

defines the concept of a Transformable Read in Cache (TRC) for read requests to a 

RAID 5 volume.  A TRC occurs when there are at least N-1 blocks in a stripe 

available in cache.  If this occurs, the remaining block in the stripe is regenerated.  

This condition would allow one disk in the RAID 5 to remain offline even if a block 

from the disk is requested and not cached.  If a TRC hit cannot be made, a 

Transformable Read on Disk (TRD) policy is applied in which the minimum number 

of disk reads occur so as to recover at enough blocks to perform regeneration.  TRD 

allows a single disk to remain in standby by utilizing the other (at most N-1) disks in 

the RAID, as well as the cache, in order to recover  thought blocks necessary to 

regenerate the Nth block. 

For writes, RIMAC adopts a write-back policy with a preference to write to active 

disks.  To decide how to write updates, RIMAC proposes four schemes to update the 

parity for a stripe group.  The goal is to choose the scheme which incurs the smallest 

number of disk accesses to update the parity, with priority always given to active 

disks. 

RIMAC was evaluated using a trace-driven simulation and compared to a base 

RAID 5 system.  It showed 29% improved performance under an IO-intensive load 

(Cello99 trace) and 2-6% for transaction processing (TPC-D) loads.  RIMAC saved 14-

15% energy with the Cello99 trace, and 33-34% energy for the transaction processing 



  

 
 

trace.  RIMAC best outperformed the standard RAID 5 when the number of disks 

was fewer than seven.  RIMAC implementations require modifications to the RAID 

controller, as well as the use of non-volatile RAM. 

RIMAC can save power for at most one disk since a RAID-5 requires N – 1 disks 

available to reconstruct missing data.  However, through the use of erasure encoding, 

it is possible to generalize the concept of content regeneration to reconstruct the 

content of N disks by using any M < N disks.  This paradigm can be denoted as (N, M) 

erasure-encoded RAID.  For example, RAID-5 would implement a (N, N-1) erasure 

encoding.  Some erasure-encoding based methods have even achieved as high as (N = 

48, M = 5) [Haeberlen et al. 2005].   

Diverted Access [Pinheiro et al. 2006] exploits this (N, M) encoding to conserve 

power, where the N - M disks are read when there is a large demand for disk 

bandwidth, or when one of the M disks fails.   Additionally, if a disk fails, not all 

disks need to be utilized to recover its data.  Diverted access defines “original” (N) 

and “redundant” (M) disks in a volume, where redundant disks are only needed in a 

failure, and attempts to direct most I/O operations to the N original disks.  Much like 

other approaches, writes to inactive disks are buffered (in non-volatile RAM) and 

only flushed when space must be reclaimed. 

Diverted Access was designed for wide-area storage systems and primarily 

evaluated using simulated models for this workload.  However, modified proxy traces 

were replayed for a real-workload comparison and achieved a 20-61% energy savings.  

These numbers are less (though comparable) to savings predicted by their models.  

The savings of Diverted Access largely depend on the size of the write buffer, without 

which “little if any” energy savings occur.  Diverted Access requires modifications at 

the RAID controller level (for buffering) as well as non-volatile RAM, but can be 

applied to many levels of redundancy. 

Content-regeneration-based solutions seek to exploit the inherent regeneration 

ability of RAID 5 and its erasure encoding to provide good energy savings.  However, 

the performance overhead may be severe for some general erasure encoding schemes.  

Also, the need for non-volatile RAM to buffer writes can introduce new failure modes 

not anticipated by the RAID levels and erasure encoding.  

 Variable RPM 5.5

Although we have already discussed the technique of varying the rotational speed of 

disk drives at the per-device level, the multi-device level opens up new design space 

to this technique.  By using an array of disks, a high-level software system can vary 

the RPM of disks in a volume with consideration to the ability of other member disks 

to compensate for any loss in performance. 

Hibernator [Zhu et al. 2005] divides time into discrete chunks called epochs.  At 

the beginning of each epoch, each member of a volume is assigned a speed 

configuration using a target average response time as well as its predicted workload 

for the next epoch based on the previous one.  

In order to conserve energy, Hibernator proposes a customized multi-disk layout 

(Figure 5.4.1) where disks (D0 to D4 in the figure) in a volume are divided into tiers in 

which all disks run at the same speed.  Tier 1 contains disks (D0 to D2) running at 

their maximum RPM, and each consecutive tier runs at a lower speed.  During 

power-saving periods, since each stripe (e.g., blocks 0, 1, 100, and 200 and their 

corresponding parity block P) is stored across disks in different tiers, the layout 

needs to ensure that the parity blocks are stored on disks in tier 1 in order to avoid 

bottlenecks introduced by lots of parity updates.  Under peak loads, all disks, 

regardless of their tiers, will be spinning at the maximum RPM.  Hibernator needs to 



  
                                                                                                                                         

 

 

shuffle blocks prior to serving peak loads so that the parities become more evenly 

distributed. 

 

 

Fig. 5.4.1:  Hibernator data layout.  The left shows Hibernator in the power-saving mode, where only the 

disks (D0 to D2) in the first tier are powered.  The parity blocks (P) are located within the first tier.  The 

right shows Hibernator in the full power mode, where the parity blocks are distributed across all disks. 

 

Hibernator was evaluated with simulation and trace replays from an OLTP 

(online transaction processing) workload.  The length of the first epoch was varied 

between 60 and 240 minutes.  Changes in the epoch length showed little 

improvement when compared to RAID 5.  Using their tier-based data layout, they 

saved up to 63% power over a standard RAID 5 with no energy-saving techniques.  

The overhead of the tier-based disk layout is the need to reshuffle the data layout at 

the start of each epoch.  The reshuffling process can last for 27 minutes, and slightly 

slow down the average response time of foreground requests from 6.3ms to 8.8ms.   

 Data Replication 5.6

In modern hard disks, storage tends to be inexpensive and abundant (~4-5 cents per 

gigabyte) [Pricewatch 2013].  Data replication techniques attempt to take advantage 

of free space in RAIDs in order to provide more spin-down opportunities. 

PARAID (Power-Aware RAID) [Weddle et al. 2007] implements data replication 

to promote energy savings and is designed to adjust its aggressiveness to meet 

fluctuations in storage demand.  PARAID sits below the RAID controller and is 

transparent to legacy RAID levels.  It defines the concept of gears (Figure 5.6.1).  

When PARAID is running in the highest gear it utilizes all of the disks in the array 

with no changes to the original RAID layout (a PARAID-5 in the highest gear is 

essentially equivalent to a standard RAID-5).  Each lower gear uses fewer disks than 

the preceding one.  Before shifting to a lower gear (down-shifting) PARAID replicates 

data blocks from to-be-powered-down disks to the free space of other disks.  PARAID 

switches gears based on load thresholds and leverages cyclic patterns of daily loads to 

reduce the number of power cycles. 



  

 
 

 

Fig. 5.6.1: PARAID gear organization. 

In order to retain the same level of redundancy as the original RAID (for example, 

RAID-5’s ability to survive a single disk failure), the replicated blocks are written as 

if they were a member with the same RAID level.  For example, if a down-shift occurs 

in a RAID-5 that causes one disk to power down, the data blocks from that disk are 

striped across the remaining (N-1) disks as if those disks formed their own RAID-5 

volume.   

PARAID was implemented and tested with the Cello99 trace and a web trace.  

For the web trace, they saved 10-34% energy when compared with a standard RAID-

0.  For the Cello99 trace, they saved 3.5-13% when compared with a standard RAID-5.  

Performance was tested with PostMark, and showed little to no performance 

overhead in most cases, except when up shifting due to short bursts of requests 

which can affect performance as much as 13%.  However, the number of power 

transitions occurs infrequently and is throttled to preserve the number of disk power 

cycles.  More organic algorithms for determining when to up shift might alleviate this 

cost.  PARAID may not be suited for write-intensive environments due to update 

overhead, or for systems with little free space. 

SRCMap [Verma et al. 2010] reduces the overhead by replicating only the active 

data sets (e.g., emails for the past 20 days), or working sets (typically small) to one or 

more disks.  However, to achieve replication at the multi-device layer, SRCMap 

needs to know whether a physical location is allocated or free, and this information 

resides at the file system layer.  The solution is to implement SRCMap at a storage 

virtualization layer, which maps multiple physical devices into logical devices, where 

file systems can decide which logical locations are allocated, but the virtualization 

layer has full access and control of which physical locations are allocated. 

During light loads, the system selects a minimum subset of disks to serve 

requests using replicated working sets.  As for synchronization of updates, the replica 

to become active is synchronized immediately, while other replicas are synchronized 

in the background.  A read miss can trigger updates to the replicated working set and 

can cause a spun down disk hosting the entire data set to spin up.  However, the 

updated working set replica can help the disk hosting the entire data set power down 

again.  The workload projection, replication, working set determination, and mapping 

between replicas and disks are reconfigured periodically (e.g., 2 hours).   

Replica placement policy needs to consider a working set’s size, popularity, and 

stability (estimated by number of read misses) as well as the corresponding disk’s 

power consumption level and performance characteristics (potentially heterogeneous).  

Power hungry disks hosting lightly loaded replicas are good candidates for being 

powered down to save energy. 

SRCMap is evaluated empirically and through simulation on 8 disks using 

webserver-server and home-directory-server workloads to eight data volumes.  The 



  
                                                                                                                                         

 

 

results show that SRCMap can achieve up to 36%.  For a 10TB system, the memory 

overhead for mapping virtual to physical locations is about 3.2GB.     

 Transposed Mirroring 5.7

DiskGroup [Lu et al. 2007] is an alternative to RAID-01 which presents data 

mirroring in a novel and energy-focused way.  A DiskGroup volume consists of two 

groups of multiple disks, dubbed the “primary” and “secondary” groups.  The primary 

disks are mirrored across the secondary disks as in RAID-1, except the data from 

each disk in the primary group is striped across the secondary group as in RAID-0 

(Figure 5.7.1).  DiskGroup with one disk in each group would have precisely the same 

disk layout as RAID-1.  

 

Primary Group Secondary Group 

Disk 0 Disk 1 Disk 2 Disk 3 Disk 0 Disk 1 Disk 2 Disk 3 

A1 B1 C1 D1 A1 A2 A3 A4 

A2 B2 C2 D2 B1 B2 B3 B4 

A3 B3 C3 D3 C1 C2 C3 C4 

A4 B4 C4 D4 D1 D2 D3 D4 

Fig. 5.7.1: DiskGroup layout of 8 disks divided into 1 pair of disk groups [Lu et al. 2007]. 

 

When the load is light, the primary group services all requests and the secondary 

group remains offline.  In RAID-01, an overloaded stripe of data can result in all of 

the disks being online even when each disk is barely overloaded.  With DiskGroup 

however, it is possible to offload data from many overloaded disks in the primary 

group to just a few active secondary disks, since every disk in the secondary group 

has at least some data from each disk and stripe in the primary group.  DiskGroup 

stores writes in non-volatile RAM until the target secondary disk is powered up. 

DiskGroup was evaluated through simulation by generating random block 

requests uniformly distributed across blocks on the disk.  A DiskGroup of 16 disks 

with 16,000 data blocks each was used.  These evaluations found that DiskGroup 

only needed to spin up 12-50% of the secondary disks (instead of 100% like RAID-01) 

on average, and energy savings varied with workload.  Energy savings varied from 7% 

to 63% when compared with RAID-1; the best savings were seen when just a few 

primary disks were overloaded.   

One tradeoff of DiskGroup is that it no longer adheres to the reliability semantics 

of RAID-01.  For a conventional RAID-01, if one disk fails in the first RAID-0, a 

second corresponding mirrored disk needs to fail in the second RAID-0 to lose data.  

However, for the example disk layout in Figure 5.7.1, if one disk fails in the first 

RAID-0, any disk failure in the second RAID-0 will lead to data loss. 

 FILE SYSTEM-LEVEL POWER-SAVING TECHNIQUES 6.

A file system provides naming for files and directories in addition to defining how 

they should be laid out on the disk.  Examples of popular file systems include ext4 

(popular on Linux), NTFS (primary file system for Windows), and FAT32 (popular on 

USB flash drives).  One issue of building solutions at this layer is the lack of 

complete control of the physical locations of individual files, which are governed by 

storage layers below.  Thus, certain solutions need additional coordination 

mechanisms across layers. 



  

 
 

 Popular-based Data Consolidation 6.1

In addition to cache disks (Section 5.3), one way to shift the load of a system onto 

fewer disks is migrating commonly-referenced files to target hot disks.  This method 

would alleviate the load on the original disk and allow it to have more idle time. 

Pinherio and Bianchini [2004] refer to this technique as Popular Data 

Concentration (PDC) and evaluate its effectiveness by creating a user-level file server 

known as NomadFS.  The idea of PDC is simplified to the context of a large array of 

disks in which the most popular data will always reside on the first disk in the array, 

the next most popular data which does not fit on the first disk will reside on the 

second, and so on.  Metadata for the entire array is always stored on the most 

popular (first) disk. 

To account for the changing popularity of data, periodical migration occurs to 

account for new popularity measurements.  NomadFS handles this migration and 

will explicitly spin down disks that have been idle for too long.  For two-speed disks, 

the disks manage their own speed settings, and data is migrated off a disk only when 

disks are running at full speed.  Unlike MAID, PDC implements a frequency-based 

migration whereas MAID caches based on how recently data was accessed.   

Evaluations were performed via simulator using proxy server traces and 

synthetic traces generated to follow Zipf’s law.  The test bed consisted of a 9-10 disk 

array and the period between migrations was varied.  During light workloads of 0-

200 requests per second, PDC demonstrated up to 40% savings over an energy-

oblivious disk.  Because the most popular files are concentrated on one disk, PDC 

does not exploit parallelism.   

 Remote RAM Caching 6.2

BlueFS [Nightingale and Flinn 2004] is designed for mobile storage devices (e.g., 

laptop drives, USB thumb drives).  While its primary goal is to reduce energy 

consumption to accommodate the limited battery power of mobile, BlueFS tries not to 

compromise its response time.  It does this by replicating data at a file server as well 

as each mobile device which it manages:  it exploits the now ubiquitous network 

access capabilities of most mobile devices.  BlueFS decides which replica to access by 

analyzing the power states of the various devices as well as the power consumption 

and access time of different access strategies. Updates (writes) are stored on the 

server as a primary replica and pushed to mobile storage devices to act as persistent 

caches.  Furthermore, BlueFS masks the overhead of device state transitions by 

accessing data from alternative sources (e.g., mask the disk spin-up latency by 

fetching some data from the remote replica first). 

BlueFS changes device power states proactively by disclosing hints about the 

devices that it intends to access.  However, simple strategies may not work well if the 

system makes decisions based on processing individual storage requests one at a 

time, since a single request may not justify the overhead of spinning up the local disk.  

BlueFS solves this problem through a mechanism known as ghost hints, which 

computes the opportunity cost of having a series of operations carried out together 

with a changed device state. 

For writes, BlueFS maintains an asynchronous write queue for each available 

storage device, and write operation can be aggregated according to the power state of 

each device.  The write aggregation could amortize the energy cost of spinning up the 

disk and powering on network interfaces.  For data coherence, BlueFS adopts 

optimistic consistency semantics, so that replicas can temporarily become out of sync 

when the network is not available, and most of the conflicting updates can be later 

resolved using version stamps and automated conflict resolvers.  In terms of its 



  
                                                                                                                                         

 

 

performance, BlueFS has shown up to a 55% energy savings and 76% reduction in 

access latency.   

 Data Replication 6.3

FS2 [Huang et al. 2005] replicates frequently accessed data blocks to hot disk regions,  

so that it can reduce the average seek time and associated energy consumption.  

Unlike other schemes that migrate data, FS2 maintains one or more replicas for 

selected data blocks.  Additionally, instead of reserving fixed amounts of disk space 

for periodic layout modifications, FS2 utilizes free space to accommodate replicas 

dynamically.  While accessing data, FS2 can select from available replicas in order to 

reduce seek and rotation overhead as well as energy consumption.  

To manage replicas, at the device-driver layer, FS2 divides a disk into regions, 

and identifies hot regions based on access frequency.  For each hot region, it creates 

replicas of those resident data blocks in other regions that seem to have a read 

relationship with blocks in the hot region.  Replicas are placed in free space closest to 

current disk head positions in hot regions.  However, to know which blocks are free, 

the device layer needs to consult with the file system layer, which keeps track of the 

allocation status and file membership of blocks.  Similarly, the file-system layer 

needs to inform the device-driver layer if original data blocks are deleted from a file, 

and the device-driver layer is then responsible for invaliding its replicas.  

When handling read requests, FS2 chooses the replica closest to the current disk 

head’s position, among other criteria.  For writes, FS2 simply invalidates all related 

replicas and then updates the original.  Invalidation to less frequently accessed 

replicas also occurs if the amount of free space on the disk drops below the low 

watermark.  FS2 uses a hash structure to track locations and usage information of 

data blocks and replicas.  The consistency between the structure and blocks is 

maintained by periodically flushing modified entries in the structure to disk and at 

shutdown time.  In the case of system crashes, the consistency needs to be restored 

through a tool.  By increasing data availability and exploiting free spaces on the disk, 

FS2 could reduce user-perceived access time by 34%.  The computed disk power 

consumption for per disk access also shows a 71% reduction.   

 Local Cache for Remote Data 6.4

GreenFS [Joukov and Sipek 2008] reduces the local disk power consumption by using 

remote storage and local flash whenever possible.  GreenFS reverses the role of 

remote backup and local copy.  When network connectivity is available, updates are 

sent to the remote storage, and the local flash is used to cache reads.  When network 

connectivity is not available, GreenFS uses flash to buffer updates, and the local disk 

spins up at least once a day to synchronize with flash.  Otherwise, the local disk only 

spins up and reads/writes/synchronizes before the local system shuts down, when the 

flash is near full, or when disk is needed to improve the performance. The number of 

disk power cycles is tracked and capped.    

GreenFS saves energy under a variety of workloads: idle, small reads/writes, and 

large reads/writes.  When idle, only remote storage is powered.  For small reads and 

writes, the local flash cache significantly reduces the local disk traffic and saves 

energy.  Even with cache misses, data is read from remote storage through the 

network, which still consumes less power than spinning up and reading the local disk.  

Power for data transfer through network interface may exceed power to spin up disk 

and transfer data with large reads or writes.  As a performance benchmark result, 

GreenFS saved 12% power for servers, 14% for desktops, and 2-3% for mobile devices. 



  

 
 

 VIRTUAL FILE SYSTEM-LEVEL POWER-SAVING TECHNIQUES 7.

The virtual file system is the top layer of the storage stack and serves to provide a 

common interface allowing applications to be agnostic of the file system type.  Energy 

savings achieved at this layer can be enjoyed by all file system types. 

 Encourage IO Bursts 7.1

A disk cannot spin down, even if this load is light.  It is possible, however, to 

redistribute requests to an under-loaded disk (Figure 7.1.1) in such a way that it 

instead experiences shorter periods of maximum load as well as longer periods of 

idleness (Figure 7.1.2).  This access pattern is called burstiness [Papathanasiou and 

Scott 2003]. 

 

Fig. 7.1.1:  A disk under constant low-load with very short idle periods [Papathanasiou and Scott 2003]. 

 

Fig. 7.1.2: A disk with bursts and longer idle periods [Papathanasiou and Scott 2003]. 

 

Papathanasiou and Scott developed a system to increase the burstiness of disk 

accesses in order to allow for more periods of idleness.  To accomplish this, 

modifications were made to the file system and Linux kernel memory management.  

These modifications attempt to pre-fetch data from the disk in much larger chunks 

than existing pre-fetching algorithms.  The goal is to pre-fetch most of the data an 

application will need in a few IO-intensive operations (bursts).  Aggressive policies 

such as pre-fetching all of the files an application references, or all of the files in its 

working directory, are utilized in order to ensure the application does not need to 

make many small requests. 

Additionally, a pre-fetch daemon is added to the kernel in order to provide multi-

process coordination for reads, similar to the update daemon’s existing role for write 

requests.  Without a pre-fetch daemon, each application would independently issue 

read requests that would likely result in out of sync bursts.  Many applications with 



  
                                                                                                                                         

 

 

this policy this would result in the lack of long idle periods from the perspective of 

the disk.  File updates are flushed once per minute.  Depending on applications (e.g., 

compiled .o files, file copying), certain file updates can be postponed to the file-close 

time to address the data loss concerns due to power outage. 

The system was evaluated by measuring the current consumption of a Hitachi 

disk under a read-intensive load (media playback) and a read/write-intensive load 

(media playback and encoding).  Energy savings were computed by comparing the 

current consumption of their system with that of an unmodified Linux kernel.  For 

the read-intensive workload, they found energy savings of 40% with 64MB of RAM 

used for caching, and 79% for 492MB of RAM.  For the combined workload, energy 

savings ranged from a small loss at 64MB to just over 60% savings with 492MB.  

Energy savings can be significant, but at the cost of RAM and an IO-intensive pre-

fetch stage.  Additionally, depending on the workloads, too much RAM devoted for 

prefetching may cause more cache-misses and subsequently negate the effects of 

energy savings.   

 Cache Cold Disks 7.2

Traditional caching techniques target items based on frequency and recency of use, 

thereby avoiding the high cost of disk accesses.  However, in the context of caching 

multiple disks to conserve power, caching can target items from less heavily used 

disks, so that idle periods for those disks can be lengthened to save more power.  Zhu 

et al. [2004] presents a set of cache management algorithms designed with this 

observation to save energy.  In particular, a scheme referred to as “PA” is introduced.  

For each disk, PA tracks important cache-related workload characteristics such as 

the percentage of cold misses (cache misses caused by a first-time access) and the 

cumulative distribution of interval lengths (time between requests).  PA uses the 

profiles it builds to decide which disks are “cold”, where cold disks are the better 

candidates for cache space due to their already relatively low access frequency. 

A cold disk in PA is expected to exhibit few cold cache misses and large interval 

lengths.  All disks which are not classified as cold are regular disks.  To account for 

changes in workloads, this classification is recalculated periodically at the start of a 

time chunk known as an epoch.  This system can then be applied to most cache-

replacement algorithms by modifying them such that they prefer to give cache space 

to cold disks over regular disks.  This means we can make any caching policy power 

aware.  For example, a modified LRU (PA-LRU) will always evict the least-recently-

used block belonging to a regular disk, even if there are older blocks in cache which 

belong to a cold disk. 

PA-LRU was evaluated through simulation of the cache management policies and 

multi-speed disks.  Replaying an online transaction processing trace with 128MB of 

cache space, PA-LRU saved 16% on energy and improved the average response time 

by 50% when compared with a standard LRU caching policy.  However, PA-LRU was 

only able to save 2-3% when replaying the Cello96 trace with 32MB of caching space.  

The decrease in savings is attributed to a high percentage (64%) of cold cache misses 

in the trace.  The lower memory size was chosen to fit the smaller size of the Cello96 

trace. 

PA is an attractive solution to energy-saving concerns since it may be applied to 

existing cache-replacement policies and complements other energy-saving techniques.  

For random and write-intensive workloads, however, PA-LRU is less effective. 



  

 
 

 APPLICATION-LEVEL POWER-SAVING TECHNIQUES 8.

Application developers can implement strategies to help save energy on storage.  

These strategies can utilize high-level knowledge about the application-specific 

workload. 

 Energy-efficient Encoding 8.1

Multi-level cell SSD technology allows for encoding four values (two bits) in each 

memory cell.  These values, however, do not always require the same energy to 

encode.  In fact, encoding the middle two values (10 and 01) can require as much as 

six times the energy and time as encoding the edge values (00 and 11) [Joo et al. 

2007].  While most modern compression techniques focus on encoding a bit string into 

a more compact one to save space, the resulting bit string may not be energy-efficient 

to write to flash.  If we instead focus on energy efficiency, it is possible to encode into 

bit strings, which are more energy efficient to write even when they are less space 

efficient. 

 
Table 8.1.1: Required programming time and energy for a single SSD [Joo et al. 2007]. 

Operation Time (µs) Energy (µJ) 

Program 00 110.00 2.37 

Program 01 644.23 14.77 

Program 10 684.57 15.60 

Program 11 24.93 0.38 

 

Joo et al. [2007] presents an approach for energy-efficient encoding, which allows 

cost (in terms of energy) to be assigned to individual bit patterns to reflect the 

characteristics of the NOR flash storage medium.  In particular, they use 32-bit 

words as the standard data unit size, and define a cost function to predict the energy-

cost to write a data unit.  Due to the parallel way in which NOR flash programs 

memory cells, it is hard to deterministically predict the energy cost of a data unit, so 

a probabilistic algorithm, which determines the expected cost of each symbol is used.  

Finally, integer linear programming is utilized to find an encoding which maximizes 

energy savings.  

This method was able to achieve a 35% energy savings by utilizing 50% more 

space when encoding JPEG images.  No changes are required to the storage stack, 

and this method can be implemented in any application that will use NOR flash for 

storage.  However, storage overhead can be significant, and it is unclear whether this 

encoding scheme incurs additional computational and associated energy overhead. 

 LARGE-SCALE POWER-SAVING TECHNIQUES 9.

Some power saving solutions can be applied on a scale larger than a single machine.  

These large-scale power-saving techniques take advantage of multiple machines 

(such as the layout of a data-center) to find ways to save power in the big picture.   

 Spin-up Tokens 9.1

For archival workloads, reads are fairly rare and performance is often not an 

important concern.  Energy can be saved in these systems by limiting the number of 

disks which are active without seeing an unacceptable change in performance.  One 

way to approach archival systems is to require disks to possess a limited resource 

(e.g., a token) in order to spin up.  This would ensure that only a limited number can 

be active at any one time.  When disks spin down, they release this resource which 

allows another disk to spin up and take its place. 



  
                                                                                                                                         

 

 

Pergamum [Storer et al. 2008] is a large-scale archival workload solution 

employing this mechanism.  The Pergamum system divides a set of hardware into 

tomes (a grouping of a hard disk, flash memory, a low-power CPU and a network 

interface).  Each tome is responsible for running its own copy of software, which 

performs operations such as (1) consistency checking, (2) power management and (3) 

inter-tome operations.  Tomes share data blocks for inter-tome redundancy.   

Pergamum makes use of non-volatile RAM at each tome in order to store 

consistency information and metadata for the underlying storage.  This cache allows 

Pergamum to verify the integrity and existence of both local and distributed data 

without incurring the energy cost of spinning up the underlying disk.  When a tome 

becomes unavailable, its data can be rebuilt by the remaining tomes in the network. 

During normal operation, Pergamum attempts to keep at least 95% of the disks 

in the network idle.  To limit total spin-ups, a Pergamum network has a limited 

number of spin-up tokens available:  these are passed between tomes via the 

Pergamum software and a tome must possess one in order for it to spin up its disks.  

When a tome wants to spin up, it must first request a token from a tome which holds 

one.  When that tome receives multiple requests, it will calculate which tome needs it 

the most based on a variety of factors such as time since last spin-up, number of 

requests, etc. 

Pergamum introduces a storage overhead of about 30%.  If we assume that 

Pergamum meets its goal of keeping an average disk inactive 95% of the time, we can 

roughly calculate the potential energy usage for the average disk as 

                                  .  For the Seagate Savvio® 10K.6 [Seagate 

2012], this yields an average of 5.3 W, or about 67% of the normal active power.  

Since Pergamum is designed for archival workloads, this number cannot be directly 

compared to storage systems with more active workloads. 

 Write Offloading 9.2

Narayanan et al. [2008] introduced a write offloading technique for enterprise 

workloads based on two observations:  (1) idle periods for server-class storage can be 

exploited for power saving, and (2) for enterprise workloads, read operations can be 

largely handled by caching, leading to periods of write-dominant traffic toward the 

backend storage.  By temporarily offloading writes from spun down disks to active 

disks, we can extend the idle periods of spun down disks to achieve greater energy 

efficiency.  When the spun down disks wake up, the offloaded content can be 

migrated to its final destined disks.  This approach also succeeds in buffering writes 

so that many writes can be consolidated into one update propagation instead of 

incurring multiple ones. 

To facilitate this system, each volume in the network is assigned a manager who 

determines when to change the power modes of the associated disks, when and where 

to off-load writes to those disks while they are idle, and when and how to reclaim the 

data to maintain consistency.  When a block is written to an idle volume, the 

volume’s manager chooses some active remote storage (called a logger).  The block is 

temporarily offloaded to that remote storage.  When the volume becomes active again, 

the manager is responsible for reclaiming the latest version of every block which was 

offloaded, as well as invalidating older versions.  Different blocks, as well as different 

versions of the same block, may be offloaded to any number of remote loggers. 

This write-offloading system was evaluated by replaying traces (which were 70% 

reads) on a rack-based testbed and comparing the numbers with those of a baseline 

system, which does not spin down disks or offload writes.  Blocks were offloaded to an 



  

 
 

extra partition on remote hard disks.  A system that offloads to volumes on other 

machines sharing the same rack uses about 40% of the energy the baseline system 

used on the idlest day of the trace, and 80% on the most active day.  For comparison, 

a system that spins down after sixty seconds without reads and ten seconds without 

writes used 64% (idlest) and 87% (most active) of the baseline.  Similar, though 

slightly reduced, savings can be achieved when offloading only to volumes on the 

same machine (rather than the same rack).   

Write offloading can save energy without requiring specialized hardware or 

changes to applications or drivers.  On the other hand, since this approach focuses on 

writes, short intervals between read misses can still consume disk power cycles 

[Verma et al. 2010].     

 Graph Coverage 9.3

In a read-mostly system that employs simple disk mirroring to provide data 

replication, it is more energy-efficient to keep the replica disks spun down than 

active.  For d primary disks with r replicas (r=1 means no replication), this system 

would require dr disks in total, and at least 
 

 
 of them must be active for full 

availability of data.  If we utilize free space on other disks instead of adding a new 

one for each replica, we can achieve even better energy efficiency without sacrificing 

availability or redundancy.  This model can be thought of as a bipartite graph in 

which one part contains storage media and the other contains data.  An edge between 

the parts represents where data resides.  In order to maintain availability, each data 

node must have an edge to an active storage node (Figure 9.2.1). 

 

 

 
Fig. 9.2.1: A bipartite storage-node graph with full coverage.  The shaded storage nodes are powered on.  

Replication factor is two.  Full coverage is achieved. 
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Harnik et al. [2009] proposes an energy-saving model, which emphasizes data 

availability for systems that require replication.  For this model, a data center’s 

storage facilities are divided into storage nodes (the left part of the graph), ranging 

from single disks to entire portions of the data center, which can be independently 

turned on and off.  All stored data is divided into redundancy units (the right part), 

which can represent things like blocks, files, etc.  Each redundancy unit belongs to 

one or more storage nodes (more nodes per unit mean more redundancy) and is 

assigned to them based on a placement function.  Finally, time periods in which the 

data center can expect low utilization are defined. 

This model can be applied to many replication systems by defining specific node 

sizes or placement functions.  Typically, a good placement function tries to minimize 

the number of nodes that must be active to achieve full coverage (where each data 

node has an edge to an active storage node), and does so in a way that does not 

sacrifice performance during high utilization periods.  By varying the placement 

function and number of replications (replications are defined as the number of 

storage nodes a single replication unit is copied to), different full coverage solutions 

can be achieved.  For better energy savings and slightly lower performance, some 

rarely accessed data nodes may be left uncovered by an active storage node 

(particularly if most other data nodes it services are already covered). 

When only two replications are needed, this system performs similar to simply 

mirroring the data and keeping the mirrored set powered down (thus achieving full 

coverage by keeping the primary set powered up).  However, when more than two 

replications are needed, clever placement functions can lead to a much smaller set of 

necessary disks than simple mirroring.   

This model can be applied easily to multi-disk or multi-machine environments, 

and its modularity allows many specialized possibilities to be achieved by varying the 

placement function or number of replications.  Energy savings with a good placement 

function can be significant, with one evaluation showing savings of over 45% at the 

cost of 5% additional storage (with three replications).  Writes are delayed and 

written to a log for later propagation. 

 Energy Proportionality 9.4

Energy proportionality was proposed by Barroso and Holzle [2007].  The basic 

observation is that the energy efficiency tends to be low when a system is lightly 

loaded.  Ideally, the amount of energy expended should be proportional to the amount 

of computation completed.  This paper highlights the inefficiencies in memory and 

the storage subsystems.  A subsequent paper [Guerra et al. 2010] also summarizes 

how existing power-saving techniques can be applied toward realizing energy 

proportionality.   

Amur et al. [2010] proposed a distributed file system called Rabbit, which strives 

to realize this energy proportionality.  That is: it aims to keep the energy efficiency of 

the system at low load the same as the efficiency at the peak load.  To achieve this, 

each replica of data is distributed across more drives than the previous replica 

(Figure 9.4.1).  The first replica, which is distributed among the smallest number of 

drives, is the only replica that must be online to guarantee the availability of data.  

When more performance is needed than this primary replica can supply, additional 

replicas are spun up as necessary to meet increased demand.  Under light loads, 

writes are handled by performing write offloading (see Section 9.2).   



  

 
 

 

Fig. 9.4.1: Rabbit target data layout [Amur et al. 2010]. 

 

An additional goal of Rabbit is the ability to maintain a near ideal energy-

proportional curve in a failure state (i.e., after a disk has failed and during rebuilding 

of a replacement disk).  To mitigate the effects of a failure, each disk is assigned to 

two distinct groups.  These groups should have no intersecting elements except for 

the disk in question.  When data is written to the disk, the primary replica is 

distributed across one group and the second replica is distributed across the other.  

In this way, a failure in the group containing the primary replica should not affect 

the availability of data necessary for recovery since it is stored on separate disks.  

Evaluations through both empirical measurement and simulation with 14 

storage nodes and two datasets showed an average power-proportionality for both 

tests and datasets held above 80%. 

 Hot and Cold Zones 9.5

Based on 2600 Yahoo servers, Kaushik and Bhandarkar [2010] observed that 89% of 

files are actively referenced for about 10 days after their creation, and 60% of files 

become inactive after 20 days.  These observations led to the design of GreenHDFS, 

which classifies files into hot, popular and frequently accessed files, and cold files, 

which have poor locality and low access frequency.  Hot files are stored on high 

performance servers, with files striped to exploit parallelism, and with no power-

saving features enabled.  Cold files are compressed, not striped, and stored on 

storage-intensive servers that aggressively power down system components.  As hot 

files cool down in their reference patterns, they are moved from hot-zone machines to 

cold-zone machines.  As cold files become popular, they are moved from the cold zone 

to the hot zone.  During peak utilization, cold zone servers can still contribute to the 

overall performance.   

GreenHDFS is evaluated using a trace-driven simulator.  Over a three-month 

period, GreenHDFS showed a 26% energy savings when being applied to 2,600 

servers.  Disks in the cold zone made only about 70 power transitions within the 

three-month period.   

 CONCLUSION 10.

This survey has presented a representative set of techniques to reduce power 

consumption in data storage.  Table 10.1 summarizes their key characteristics, and 

interestingly, similar approaches (e.g., content regeneration) at the same layer can 

offer very different tradeoffs.  However, some trends emerge.  The tradeoffs are most 

diverse near the hardware level.  For large-scale solutions, the main tradeoffs are 

extra space for replication and associated costs for data migration and 



  
                                                                                                                                         

 

 

synchronization.  Under interactive and archival workloads, performance can be a 

good tradeoff to achieve energy savings.  Solutions that exploit additional hardware 

may not be able to retain the original reliability semantics, if the hardware 

introduces new failure modes (e.g., failure of non-volatile RAM buffer).   

The table also shows the potential compatibility and conflicts for approaches 

based on their tradeoffs.  For example, approaches from different layers would not be 

compatible if one trades energy with storage capacity; the other, performance.  On 

the other hand, of both approaches share similar tradeoffs (e.g., BlueFS and FS2), 

both approaches are more likely to be combined to achieve greater energy savings.  

However, it is less clear that the net energy savings will compound.   

Overall, depending on the requirements, storage architects can craft their new 

design by choosing the tradeoffs they are willing to compromise, and energy savings 

do not come without a cost.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 

Table 10.1: Summary of Characteristics for Power-saving Techniques. 

Techniques 

Preserving 

peak 

performance 

No need 

for 

extra 

storage 

Preserving 

the reliability 

semantics 

No extra hardware 

(e.g., non-volatile 

RAM for write 

buffering, multi-speed 

disks, extra disks) 

No data 

migration 

overhead 

Little 

extra 

hardware 

cost 

Hardware solutions 

Slower RPM       

Variable RPM disks   ?   ? 

Smaller disk platters       

Higher capacity disks   ?    

Hybrid drives   ?    

Device driver-level solutions 

Spin down disks       

Use flash for buffering   ?   ? 

Deduplication ?  ?    

Multi-device solutions 

Spin down individual  

disks 
      

Use cache disks (MAID)       

Content regeneration  

(RIMAC) 
  ?    

Erasure encoding   ?  ?  

Variable RPM   

(Hibernator) 
  ?    

Erasure encoding   ?  ?  

Replicate data 

(PARAID, SRCMap) 
      

Transposed mirroring       

File system-level solutions 

Popularity-based 

Migration (PDC) 
      

Remote RAM Caching 

(BlueFS) 
      

Replicate data (FS2)       

Local cache for remote 

data (GreenFS) 
      

VFS-level solutions 

Encourage bursty IOs   ?  ?  

Cache cold disks       

Application-level solutions 

Energy-efficient 

encoding 
      

Large-scale solutions 

Spun-up token 

(Pergamum) 
      

Graph coverage    ?   

Write offloading   ?    

Power proportionality 

(Rabbit) 
      

Hot and cold zones ?      

A solution with a certain characteristics is marked by .  Certain characteristics that are unclear and are 

denoted by ‘?’ (e.g., whether variable-RPM drives have the same reliability characteristics as fixed-RPM 

drives). 
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