
A Traceback Attack on Freenet
Guanyu Tian, Zhenhai Duan

Florida State University
{tian, duan}@cs.fsu.edu

Todd Baumeister, Yingfei Dong
University of Hawaii

{baumeist, yingfei}@hawaii.edu

Abstract—Freenet is a popular peer to peer anonymous net-
work, with the objective to provide the anonymity of both content
publishers and retrievers. Despite more than a decade of active
development and deployment and the adoption of well-established
cryptographic algorithms in Freenet, it remains unanswered how
well the anonymity objective of the initial Freenet design has been
met. In this paper we develop a traceback attack on Freenet,
and show that the originating machine of a content request
message in Freenet can be identified; that is, the anonymity
of a content retriever can be broken, even if a single request
message has been issued by the retriever. We present the design
of the traceback attack, and perform Emulab-based experiments
to confirm the feasibility and effectiveness of the attack. With
randomly chosen content requesters (and random contents stored
in the Freenet testbed), the experiments show that, for24% to
43% of the content request messages, we can identify their orig-
inating machines. We also briefly discuss potential solutions to
address the developed traceback attack. Despite being developed
specifically on Freenet, the basic principles of the traceback
attack and solutions have important security implications for
similar anonymous content sharing systems.

I. I NTRODUCTION

Freenet is a distributed content sharing system, where users
can both insert and retrieve files [7]. As a popular peer to
peer anonymous network [2], Freenet aims to provide the
anonymity of both content publishers and retrievers. (In this
paper we use the two termsfile andcontentinterchangeably.)
In Freenet, users contribute a portion of their hard disk space
to form a global distributed storage sharing system. Global
file operations such as insertion, retrieval, and deletion are all
managed by the Freenet system itself. The location where a
file is stored in Freenet is determined by a unique routing key
associated with the file. Each node in Freenet only knows the
information of their immediate neighbors. Mechanisms such
as hop-by-hop forwarding of user messages, and rewriting the
(source) address of the messages at each node, are employed
in Freenet to support user anonymity.

Freenet supports two operational modes—Darknet and
Opennet. In Darknet, only trusted friends can get connected
to each other, where in Opennet, anyone can get connected
on Freenet. In this paper we focus on the Opennet mode of
Freenet, and we always mean the Opennet mode whenever we
refer to Freenet. We note that the large-scale public Freenet
on the Internet is operating in the Opennet mode in order for
arbitrary users to join the Freenet. (Private) Freenet operating
in the Darknet mode tends to be of smaller scale among a
limited number of trusted friends. In addition, the stronger
security provided by Darknet is not based on improved pro-

tocols or architectures, but rather on assumed stronger trust
among members of a Darknet. Attacks on Opennet, such as
the traceback attack developed in this paper, can be launched
on a Darknet if a member of the Darknet decides to do so (or
it is subverted and controlled by an attacker).

Freenet has undergone more than a decade of active de-
velopment and deployment, and is widely used by privacy-
conscious users for sharing files [2]. The high-level security
mechanisms adopted by Freenet, such as hop-by-hop message
forwarding and address rewriting, are time-proven means to
support user anonymity; in addition, the cryptographic algo-
rithms used in Freenet, such as hash algorithm, symmetric and
asymmetric key algorithms, are all well-established. However,
we note that various finer-grained design and development
decisions of Freenet have not been thoroughly investigated,
and it remains unanswered how well the anonymity objective
of the original Freenet design has been met.

A number of watermarking-based traceback attacks (see,
for example, [9], [10], [16]) have been developed onlow-
latencypeer to peer anonymous networks such as Tor [4], [14],
which aims to support anonymous communication services
for interactive applications. In such low-latency anonymous
networks, the message forwarding delay budget at each node is
limited. Consequently, watermarking-based traceback attacks
can be successfully carried out on such networks. In contrast to
low-latency anonymous networks, anonymous content sharing
systems such as Freenet do not have much constraint on
the message forwarding delay budget. Any traffic patterns
that may be embedded in messages of such networks can
be easily destroyed. Existing watermarking-based traceback
attacks on low-latency anonymous networks will not work well
on anonymous content sharing systems such as Freenet.

In this paper we explore a few fine-grained design and de-
velopment decisions made in Freenet and develop a traceback
attack on Freenet. In particular, we show that the originating
machine of a content request message can be identified. That
is, the anonymity of a content retriever can be broken in
Freenet, even if only a single request message has been issued
from the corresponding machine. In developing this traceback
attack, we exploit a few design and development features in
the Freenet system, including methods to prevent routing loop
of content request messages, the handling of various messages
in Freenet, and mechanisms for a Freenet node to populate and
update its routing table [1].

In the developed traceback attack, an attacker will deploy a
number of monitoring nodes in Freenet to passively observe

2

content request messages passing through the nodes. Once an
interested request message (based on routing key) is observed,
the attacker will iteratively connect to the neighbors of a node
n that has seen (either forwarded or initiated) the interested
request message, and query these neighbors to determine other
nodes that have seen the message. After all nodes that have
seen the message have been identified, the originating machine
of the message can be determined if the message forwarding
path satisfies certain conditions.

In this paper we will present the details of the developed
traceback attack on Freenet, and perform experimental studies
to investigate the feasibility and effectiveness of the attack on
the Emulab-based Freenet testbed [5]. The experiments are
carried out using the source code of Freenet 0.7 (the current
version of Freenet), extended to support the traceback attack.
With randomly chosen nodes to initiate content requests to
random files stored in the Emulab-based Freenet testbed, our
experimental studies show that, for24% to 43% of content
request messages, we can identify their originating machines.
For the rest of the content request messages that we cannot
uniquely determine the originating machines, we are able to
identify all the nodes that have either initiated or forwarded a
content request message.

Furthermore, we briefly explore a few potential countermea-
sures to address the developed traceback attack, and provide
a simple yet powerful insight into the design and develop-
ment of peer to peer anonymous networks so that similar
traceback attacks can be effectively mitigated. By attacking
and providing proper security countermeasures on Freenet,
we hope to enhance the anonymity strength of Freenet, and
improve the user confidence in this anonymous content sharing
system. We leave thorough investigation of potential solutions
to the developed traceback attack as future work. We note that
although the traceback attack and the solutions are developed
specifically on Freenet, the basic principles of the traceback
attack and the solutions have important security implications
for the design and development of similar peer to peer,
anonymous content sharing systems.

The remainder of the paper is organized as follows. In
Section II we provide the necessary background on Freenet.
We present the traceback attack on Freenet in Section III, and
perform experimental studies in Section IV. We briefly discuss
the potential solutions to the traceback attack and related work
in Section V, and conclude the paper and discuss future work
in Section VI.

II. BACKGROUND ON FREENET

In this section we provide a brief overview of the basic
operations of Freenet that are most relevant to the current
work. We refer interested readers to [7] and [3] for more details
of Freenet.

Freenet is a peer to peer, anonymous content sharing system,
with each node (a machine running Freenet) contributing a
portion of its hard disk space. As a peer to peer system, nodes
may join and depart from Freenet dynamically at any time. In
Freenet, each node is associated with a location in thecircular

range [0, 1], where location 0 and location 1 are considered
the same. The location of a node is randomly chosen by the
node when it first joins Freenet. In order for arbitrary nodes
to join Freenet, a set of seed nodes are provided, from which
a new node can get connected to other nodes on Freenet.

When Freenet program starts on a node with locationx (or
when the node still needs more neighbors), an announcement
message carrying the identification information of the node
will be sent out and routed towards locationx on Freenet.
Intermediate nodes along the forwarding path of the message
can add the requesting node as a neighbor if they still need
more neighbors. In default, each Freenet node can have up to
40 neighbors. Given that the announcement message is routed
towards the locationx, it is likely that the majority of these
intermediate nodes are close to locationx. As a consequence,
although nodes join Freenet in a distributed, asynchronous
fashion, the topology of Freenet is semi-structured [12] in
that, with a high probability, nodes with close-by locations
are clustered together, and at the same time, a node may also
connect to a neighbor with a far-away location. The semi-
structured Freenet topology greatly improves the routing and
lookup of data messages in Freenet, with a strong resilience
to node departures or failures.

Freenet data insertion and retrieval involve a number of
different types of messages. In this paper we only focus on
Content Hash Key(CHK) based content messages, in which
the routing key is the SHA-256 hash of the corresponding
data to be inserted or retrieved. The CHK routing key is
used to uniquely identify the corresponding data on Freenet.
To a degree, CHK messages are the most fundamental in
Freenet. For routing purpose, the CHK routing key is converted
into a location value in the same range of [0, 1], and the
corresponding message will be routed towards that location
when received by a node.

In the following we will first describe the handling of CHK
content request message, which is issued by a node when the
user requests a file on Freenet. Each message is associated
with a CHK routing key, a hop-to-live (HTL) value, and
a unique identifier (UID). When a node receives a content
request message, it will check if it has the corresponding data
in its local data store. If it does, it will return the data along
the reverse path of the request message, and nodes along the
path may cache the data to better serve potential later requests
on the same file. Data cache also helps to spread popular data,
which are requested by many Freenet users. If the current node
does not have the requested data, it will forward the request
message to the next closest neighbor based on the routing key.

In order to improve the likelihood that a message is routed
to a destination node storing the requested data, the routing
decision is made based on the distance between the CHK
routing key (after being converted to a value between 0 and
1), and the locations of the neighbors of the current node,and
the locations of the neighbors of its neighbors. That is, Freenet
uses two-hop routing lookup instead of one-hop lookup (only
based on the locations of the immediate neighbors), which
helps improve the routing efficiency and avoid local minimum

3

in the Freenet topology. For this purpose, each node in Freenet
has the location information of its immediate neighbors, and
the neighbors of its immediate neighbors.

The HTL value in a content request message is used to
determine the number of hops the message should be for-
warded along a forwarding path. Each intermediate node will
decrease the value, and when it reaches 0, the corresponding
request message will be discarded instead of being forwarded.
In addition, aData not Foundfailure message will be sent back
to the upstream node, which will be further propagated back
to the content requester to indicate the failure of the content
request. In Freenet, for security reasons, a node may not
decrease the HTL value to 0 when it already reaches 1, with
a configured probability. Otherwise, an attacker can precisely
control how far a content request message can be forwarded.
As a consequence of this random behavior, a content request
message may be forwarded along a path longer than the
specified HTL value in the message.

When a request message cannot be forwarded due to reasons
other than HTL = 0 (for example, no additional neighbors
are available), the request will be backtracked to the upstream
node where it comes from, in the sense that the upstream node
will forward the request onto the next closest neighbor (if it is
available). This process continues until either HTL becomes
0, the requested data is found, or all possible routes have been
tried but the data cannot be found. The default maximum initial
value of HTL is18.

The UID in a content request message is used by nodes
to uniquely identify a message, and to prevent routing loops.
UIDs are randomly generated and are of length of8 bytes, it is
unlikely that two unrelated messages will have the same UID
value in Freenet. When a node receives a request message, it
will check if it has seen this UID before. If it does, areject
with loop message will be sent back to the upstream neighbor
where the message comes from. Each node maintains a list
of UIDs that it has seen but has not finished processing the
associated request message (the corresponding reply has not
been received). It will also maintain a queue of the UIDs that
the node has finished processing (the corresponding reply has
come back), which can hold up to10, 000 UIDs. The oldest
UID will be deleted from the queue when the UID of a newly
completely message needs to be inserted into the queue and the
queue is already full. Completed request messages of different
types share the same UID queue. As a consequence, areject
with loop message will be sent back as long as the current
node has seen the corresponding UID in the incoming request
message, regardless of the type of the request message.

The handling of CHK data insertion messages is similar
to that of data request messages. A data insertion message
is routed towards a destination location based on the CHK
routing key. The message is forwarded until HTL reaches 0.
After the HTL drops below a configured threshold, intermedi-
ate nodes along the path may write the data into its local data
store, based on a few conditions. Relying on the threshold on
the HTL value, Freenet prevents a file from being stored too
close to the inserting node so as to improve the security of

content inserter.
Another relevant message type is probe message, which

is mainly used for administrative and debugging purposes.
For example, when a node receives a probe message, it will
send back its routing table information. Similarly, each probe
message is associated with a UID. In addition, it also carries
a destination location, to which the probe message should be
forwarded. Valid destination location value should be in the
same range of [0, 1]. When a probe message with an invalid
location value (outside the range [0, 1]) arrives at a node, the
message will be discarded instead of being forwarded.

III. T RACEBACK ATTACK ON FREENET

In this section we will present the design of the traceback
attack on Freenet. The traceback attack has two important
components—connecting an attack node to a suspect node in
Freenet, and querying a neighbor to determine if it has seen
a content request message with a particular UID value. In the
following we will first describe the two important components
of the traceback attack, and then we will describe the traceback
process to identify all the nodes that have seen (either initiated
or forwarded) a content request message, and the difficulties
and opportunities in identifying the originating machine of a
content request message. Towards the end of this section, we
present techniques to identify the originating machine of a
content request message when the forwarding path satisfies
certain conditions.

A. Connecting to a Freenet Node

As one of the important steps in the traceback attack, an
attacker needs to connect an attack nodea to a suspect Freenet
node n so that a and n become neighbors of each other.
The assumption is that the attacker knows the location of the
suspect noden. We have developed an effective method to
carry out this task and the details are reported in [1]. In the
following we provide a brief overview of the method. The key
insight of the method is to exploit the neighbor addition and
replacement approach adopted by nodes in Freenet.

In Freenet, each node can have a pre-specified maximum
number of neighbors (40 in default). When an announcement
message arrives at a node and the node does not have enough
neighbors yet, the requesting node will be automatically ac-
cepted as a new neighbor. Otherwise (the node already has the
maximum number of neighbors), the node will check a key
condition to determine if an existing neighbor can be replaced
by the requesting node. Neighbors at a node are classified
into a few pre-defined categories, depending on how they get
connected to the node. For example, one category is the set
of neighbors that are connected to the node via announcement
messages.

The key condition to determine if the node should perform
a neighbor replacement operation is if any of the neighbor
categories has successfully served at least a pre-configured
minimum number of content requests. The exact intention of
this condition is not explicitly stated in the Freenet design
(or its source code), we can only speculate that this condition

4

is used to make sure that the node has accumulated enough
knowledge of the neighbors in their capacity in serving content
requests. When this condition is satisfied, the least recently
used (LRU) neighbor of the node will be replaced by the
requesting (attack) node, regardless of the category of the
neighbor. We note that this condition can be easily satisfied
at “busy” nodes, which forwards a large number of requests
and replies. The default minimum number of requests to be
successfully served for performing neighbor replacement is10.

If the condition is not currently satisfied at the suspect
noden, we can repeatedly perform file insertion and retrieval
operations to enforce this condition. Given that we know the
location of the suspect noden, we can insert files with routing
keys surrounding its location. Given that the routing key of
a file is the SHA-256 hash of the file, a large number of
files can be pre-composed so that the location range [0, 1]
can be reasonably covered by their routing keys. Note that,
due to the nature of hash functions, we do not need to have
sophisticated file structure and content in order to have a
reasonable coverage of the complete location range. (As a
matter of fact, all files used for this purpose in the experimental
studies in Section IV are of one line text string, and we only
slightly change the text string in different files in order to
obtain a totally different routing key.)

In order to enforce the neighbor replacement condition at
the suspect noden, we choose the files with routing keys that
are close to the suspect node and insert them into Freenet.
By this file insertion operation, we know a number of files
that are located close to the suspect node. We then request
the inserted files on a different attack node. After we have
successfully retrieved the files for a number of times exceeding
the minimum threshold, we will announce a node into the
Freenet with a location that is close to the suspect node. If
the new node becomes the neighbor of the suspect node, we
are done. Otherwise, we will repeat this process until the new
node becomes the neighbor of the suspect node.

B. Querying a Neighbor

Another important component of the developed traceback
attack is to determine if a neighbor has seen a message with a
particular UID. Recall that each Freenet node maintains a list
of UIDs associated with request messages that the node has
not finished processing (the corresponding reply has not come
back), and a queue of UIDs associated with request messages
that the node has finished processing (the corresponding reply
has come back). For simplicity, we refer to both as the set
of UIDs maintained by the node. In order to determine if a
neighbor has seen a content request message with a UID value,
we can send a request message with the same UID value.

A key requirement of sending this request message to a
neighbor is that, the message should not be forwarded any
further by the neighbor. Should this occur, this (forged) request
message may pollute the Freenet in terms of the nodes that
have seen the UID value. More specifically, letN denote the
set of nodes that have initiated or forwarded an interested
content request message with a particular UID value. If the

forged request message is forwarded beyond the intended
neighbor, nodes that have not previously seen the interested
content request message will now see the corresponding UID
value. Our traceback attack algorithm may falsely identify this
node as a member ofN , and the result of the traceback attack
could be wrong.

Our first try was to send a content request message to a
neighbor with the desired UID value, but with the initial value
of HTL set to1. However, it turns out that this cannot prevent
the content request message from being further forwarded by
the neighbor. As we have discussed in Section II, with a
configured probability, the value of HTL will not be decreased
when it already reaches1, and the corresponding content
request message will be further forwarded (a message is only
discarded when HTL reaches0 or it cannot be forwarded due
to routing issues). Due to this issue, instead of sending a forged
content request message, we will send a probe message with
the desired UID value to a neighbor.

The trick to prevent this probe message from being further
forwarded by the neighbor is to select an invalid destination
location value outside the range [0, 1]. Recall that, different
request messages, including both content request messages and
probe messages, share the same data structures maintained by
a node to record recently observed UIDs. Moreover, a probe
message carrying an invalid destination location value will
be discarded by the receiving node. Combining these two
features, we know that, when a neighbor receives a probe
message constructed in this way, it will return areject with
loop message if the neighbor has seen a message with the
UID value previously. And more importantly, regardless if the
neighbor has seen the UID value before, it will not further
forward this probe message, so that no other nodes on the
Freenet will be polluted by this forged probe message.

monitored

Monitoring node
Routing keys
to be

k−1 kn n

Attack nodes

Fig. 1. Illustration of the traceback attack.

C. Identifying All Nodes Seeing A Content Request Message

In this subsection we present the details of the traceback
process to identify all nodes that have seen a content request
message on Freenet (see Figure 1). After all such nodes have
been identified, in the next subsection we present techniques to
identify the originating machine of a message. An attacker will
deploy a number of monitoring nodes in Freenet, with each
maintaining a set of interested routing keys to be monitored
(the routing keys are calculated based on the files to be
monitored). A monitoring node will passively observe the
content request messages passing through the node and try to
match their routing keys with the routing keys to be monitored.

5

nj nk−1

Fig. 2. Case 1:nj forwarding request tonk−1.

nj nk−1

Fig. 3. Case 2:nk−1 forwarding request tonj ,
but backtracked fromnj .

nj nk−1

Fig. 4. Case 3: No message forwarding between
nj andnk−1.

To improve the chance for the attacker to catch an interested
request message on Freenet, the monitoring nodes should be
spread over the location space of [0, 1].

When an interested content request message is identified,
a few pieces of information will be forwarded to an attack
node, including the content request message itself and the set
of neighboring nodes to determine which of them (if any) has
seen the corresponding UID value. We note that we already
know the upstream nodenk from which the request message
comes from at the monitoring node. In this case, the neighbors
of nk will be sent to an attack node (instead of neighbors of the
monitoring node). Note that we have the neighbor information
of nk at the monitoring node, due to the two-hop routing
scheme of Freenet. To ease exposition, we will refer to the
set of neighbor nodes forwarded to the attack node (along
with the content request message) as the suspect nodes.

Note that the set of suspect nodes will not include the
downstream node along the forwarding path of the request
message, which we know has seen the corresponding UID
before. In the initial step of the traceback attack, it is the
monitoring node. For example, as shown in Figure 1, the
monitoring node is a neighbor ofnk, which is the downstream
node ofnk along the forwarding path of the message. We do
not need to include it as a suspect node. In the later steps
of the traceback attack, it is the neighbor from which we
are tracing back to the current node. For example, shown in
Figure 1, assuming that we have traced back fromnk to nk−1,
when we try to determine if the neighbors ofnk−1 have seen
the corresponding UID before, we will not includenk, the
downstream node ofnk−1 along the forwarding path of the
message, as one of the suspect nodes.

When an attack nodea receives the information, it will try to
determine one by one if any of the suspect nodes has seen the
corresponding UID value (i.e., the content request message) by
utilizing the two components that we have discussed above.
In particular, for each suspect noden, the attack nodea will
first connect to the node (Section III-A), and then it will send
a probe message with the corresponding UID value to the
node to determine if the suspect node has seen the UID before
(Section III-B). Conceptually, we can consider that the attack
node maintains a queue of the suspect nodes, and each time
it removes one suspect node from the queue to determine if
the suspect node has seen a particular UID value.

If a suspect nodenk−1 has seen the UID value before,
the neighbors ofnk−1 will be added into the queue, and the
traceback process continues (by removing the next suspect
node from the queue). Note that, given that the attack node
is a neighbor ofnk−1, we have the neighbor information of

nk−1, due to the two-hop routing scheme of Freenet. When
the queue becomes empty, the complete traceback process to
identify all nodes that have seen the corresponding content
request message is finished.

D. Difficulties in Identifying Originating Machine

In order to understand the difficulties in tracing back a
general content request message to its originating machine,
we consider two different traceback situations. In the first
case, at each step of the traceback process, there is only one
suspect node that has seen the concerned UID value before;
while in the second case, multiple suspect nodes have seen the
UID value before. We refer to the traceback paths in the first
case aslinear reverse paths, and in the second case asnon-
linear reverse paths. Note that a reverse path associated with a
content request message is concerned with the traceback path
starting at a monitoring node (back towards the origin), which
is different from theforwarding paththat the message takes
from the origin towards the destination (up to the monitoring
node for traceback purpose).

In Freenet, a message forwarding path will be linear if
the message does not backtrack along the forwarding path
(see Section II). However, as we will show later, a linear
forwarding path does not always result in a linear reverse
path, which makes it important for us to make the distinction
between forwarding paths and reverse paths. In the following
we will illustrate the difficulties in identifying the originating
machine of a message along a non-linear reverse path. More
specifically, during the traceback process of a message, when
we trace back from a nodenk−1 to determine if any of
the corresponding suspect nodes (i.e., neighbors ofnk−1, but
excluding downstream neighbor nodenk, from which we trace
back to nodenk−1, see Figure 1), more than one suspect nodes
have seen the interested UID value.

We note that when we query if a suspect node has seen
a UID value, we cannot determine the time when the corre-
sponding content request message is received, and also we
cannot determine the direction of the message forwarding.
What we can obtain is only the fact if the node has seen
the UID value. This makes it hard to determine which of
the suspect nodes is the upstream node ofnk−1 along the
forwarding path of the request message, when multiple of them
have seen the corresponding UID value.

To illustrate the difficulties in determining the upstream
node ofnk−1 in this case, we show three possible forwarding
situations in Figures 2, 3, and 4. We note that they are not all
the possible cases, but rather a few representative examples.
A neighbornj of nodenk−1 may have seen a particular UID

6

value because it forwards the corresponding request message
to nk−1 (see Figure 2). However, as shown in Figure 3, it is
also possible that nodenk−1 forwards the request tonj , but
then the message is backtracked fromnj to nk−1, because
the message cannot be further forwarded. (It is possible that
the message has been further forwarded by nodenj to other
nodes, before the backtrack fromnj to nk−1 occurs.)

Moreover, as shown in Figure 4, it is also possible that
the two neighborsnj and nk−1 have no direct interaction
regarding the forwarding of the message, although both of
them have seen the UID value. In this case, nodenj did not
directly forward the message tonk−1, and nodenk−1 also did
not directly forward the message to nodenj . As shown in the
figure, nodenj receives the message with the corresponding
UID value but forwards the message to a different node
(rather than nodenk−1), and similarly, nodenk−1 receives
the message from a different node (instead of nodenj). When
this occurs, we note that the traceback process will observe a
non-linear reverse path, even if the forwarding path is linear.

Without the information of message forwarding time or
direction, in general it is hard for us to distinguish different
cases, and uniquely identify the upstream node at a nodenk−1,
when multiple suspect nodes have seen a particular UID value.
Consequently, we will aim to identify the originating machine
of a content request message only if the reverse path is linear.
However, we note that, identifying the originating machine
of a request message associated with a linear reverse path
is not trivial, and we cannot always successfully determine
the originating machine of a message in this case. The key
challenge is that, when we trace back along a linear reverse
path fromnk−1 to a single suspect nodenj , we still need to
determine which of the two cases presented in Figures 2 and 3
is true, that is, to determine if a backtrack has occurred. Note
that the case presented in Figure 4 will not occur on a linear
reverse path; otherwise, the reverse path will not be linear.

In the next subsection we will present a few techniques to
identify the conditions under which we can uniquely determine
the originating machine of a message associated with a linear
reverse path, by exploiting the routing policy of Freenet. We
point out that such conditions can be applied to the traceback
of certain messages associated with non-linear reverse paths.
However, in this work we will only apply them to messages
associated with linear reverse paths for two reasons. First,
although they can be applied to messages associated with
non-linear reverse paths, the complexity of determining the
originating machines of such messages will be much higher
than those associated with a linear reverse path. Moreover,
the rate to successfully determine the originating machine of
such messages can be potentially lower than those associated
with a linear reverse path. Second, the experimental studies
in Section IV based on realistic Freenet testbeds show that
it is not uncommon for a message to be associated with
a linear reverse path on Freenet. This phenomena is likely
caused by the interplay of a number of factors in Freenet,
including the semi-structured network topology of Freenet,
strong connectivity among Freenet nodes and two-hop routing

lookup, and a reasonably large HTL value.
The semi-structured network topology ensures that a content

request message will be forwarded towards the destination
node (where the content is stored) rather quickly, instead of
being forwarded as a random walk. The strong connectivity
among Freenet nodes and the two-hop routing lookup ensure
that there is likely a path to any destination from any orig-
inating machine of a content request message. A reasonably
large HTL value, coupled with the above other factors, make
it unlikely for a content request message to backtrack. All
these factors help to have a linear forwarding path of request
messages in Freenet. We note that a linear forwarding path
will result in a linear reverse path if the situation presented
in Figure 4 does not occur, and a high percentage of linear
forwarding paths will in general imply a high percentage of
linear reverse paths, which helps to identify the originating
machine of the corresponding content request message. In
addition, we would like to emphasize that,even ifonly a small
number of content request messages can be traced back, it still
presents a significant security threat to users of Freenet.

E. Identifying Originating Machine

In this subsection we present techniques to identify the
conditions under which we can uniquely determine the origi-
nating machine of a content request message associated with
a linear reverse path (unless otherwise specified, all messages
considered in this subsection are associated with a linear
reverse path).

Recall that, as we have discussed in Section II, a Freenet
node n will choose the next closest neighbor to forward a
message to based on the distance between the routing key and
the location of neighbors (and their neighbors). Consequently,
it is possible for us to determine the forwarding direction of
a message by exploiting the routing policy of Freenet. We
first define a few notations. Consider a forwarding path of a
message, we letn → h denote that the message is forwarded
from noden to nodeh, andn ¿ h denote that the message
is forwarded from nodeh to noden, and then backtracked
from n to h (it is possible that the message has been further
forwarded byn to other nodes, before being backtracked to
nodeh).

Similarly, consider a reverse path associated with a message,
we letn ´ h denote that we trace back the message from node
h to noden. In addition, we letn0 ´ n1 ´ . . . ´ nk−1 ´
nk . . . ´ nm denote the complete reverse path, wherenm is
the attacker’s monitoring node, andn0 is the last node along
the reverse path, of which no suspect nodes have seen the
concerned UID value. In addition, we letd(n) denote the
distance from the noden to the destination implied by the
routing key of the message. For the convenience of discussion,
we define the length of a (linear) path as the number ofnodes
on the path. In the following we establish the conditions under
which we can uniquely identify the originating machine of a
message, through a series of lemmas.

First, we consider a trivial case where the length of the
reverse path of a message is two, i.e.,n0 ´ nm. In this case,

7

it is easy for us to see thatn0 is the originating machine of
the message. We state this fact in the following lemma.

Lemma 1 (C1: Path with length of two). Given a linear
reverse pathn0 ´ nm, which is of length of two,n0 is the
originating machine of the message.

In the following we focus on linear reverse paths that are
longer than two.

Lemma 2. Given a linear reverse pathn0 ´ . . . ´ nk−1 ´
nk ´ nk+1 . . . ´ nm, backtrack can be started at most
one time during the forwarding of the message, along the
corresponding forwarding path.

Proof: We prove this lemma by contradiction. Assume
two (or more) instances of backtracks have occurred along
the forwarding path of the message. We consider two cases.
In the first case, the two instances of backtracks occur at the
same node, say nodenk. We first note that, given that we are
tracing back from nodenk+1 to nodenk, nodenk+1 is not
part of the backtracks, which have occurred before we start the
traceback process. Moreover, the two instances of backtracks
must involve two different neighbors ofnk. As a consequence,
two suspect nodes ofnk should have seen the corresponding
UID value, and therefore, the reverse path cannot be linear,
which contradicts the assumption that the reverse path is linear.

In the second case, the two instances of backtracks occur
at two different nodes, say nodesnj andnk. Without loss of
generality, we assume thatnj is ahead of nodenk along the
forwarding path, that is, nodenj forwards the message to node
nk (possibly passing through a few other nodes). Therefore,
there is a forwarding pathnj → . . . → nk−1 → nk. Note
that, the instance of backtrack initiated by nodenk must use a
neighbor different fromnk−1 as the next hop, given thatnk−1

is the upstream node ofnk. Therefore, similarly, two suspect
nodes ofnk should have seen the corresponding UID value,
which again contradicts the assumption that the reverse path
is linear.

Lemma 3 (Neighbor preference condition at a node).Given
a linear reverse pathn0 ´ . . . ´ nk−1 ´ nk ´ nk+1 . . . ´
nm, consider an arbitrary nodenk betweenn1 and nm−1

(inclusive), nodenk cannot have initiated a traceback instance
to nodenk−1, if the conditiond(nk+1) < d(nk−1) holds.

Proof: We prove this lemma by contradiction. Assume
that nodenk has indeed initiated a traceback instance to node
nk−1. From Lemma 2 we know that no other nodes on the
corresponding forwarding path has started another backtrack.
In particular, we know thatnk → nk+1 and we know that
this message forwarding must occur afternk ¿ nk−1, given
that we are tracing back fromnk+1 to nk. Put in another
way, when nodenk first decided the next hop to forward the
message to, it selected nodenk−1, and then selectednk+1

after the message was backtracked fromnk−1. However, this
contradicts the assumption thatd(nk+1) < d(nk−1).

Lemma 4 (C2: Neigbhor preference along path).Given a

linear reverse pathn0 ´ . . . ´ nk−1 ´ nk ´ nk+1 . . . ´
nm, n0 is the originating machine of the message if, for
every nodenk betweenn1 andnm−1 (inclusive), the condition
d(nk+1) < d(nk−1) holds.

Proof: Based on Lemma 3, we know that no nodes
betweenn1 and nm−1 (inclusive) have initiated an instance
of backtrack. Therefore,n0 must be the originating machine
of the message.

We comment that C2 (Lemma 4) does not required(n) to
be monotonically decreasing along the forwarding path of the
message. It only requires the condition to be held between
each pair of every other nodes along the forwarding path. As
an example, consider a simple reverse path0.76 ´ 0.87 ´
0.10 ´ 0.05 (for destination0.06). For simplicity, let us
only use one-hop routing (instead of two-hop routing), that
is, the distance from a node to a destination is only based
on the location of the node (instead of locations of the node
and its neighbors). It is easy to verify that the distance to
the destination does not monotonically decrease along the
corresponding forwarding path. However, it satisfies C1, and
we can determine that0.76 is the originating machine of the
corresponding message.

Lemma 5 (C3: Neigbhor preference atn1). Given a linear
reverse pathn0 ´ n1 . . . ´ nk−1 ´ nk ´ nk+1 . . . ´ nm,
n0 is the originating machine of the message if there exists at
least one neighborn of n1 that has not seen the UID value,
but the conditiond(n) < d(n0) holds.

Proof: We prove this lemma by contradiction. Assuming
n0 is not the originating machine of the message, that is
n0 → n1 does not hold. Then we must haven0 ¿ n1, that
is, the message was sent fromn1 to n0 but backtracked to
n1. The instance of backtrack may have been initiated byn1

or by some other node along the path. However, both cases
can be proved similarly and we do not make the distinction.
Importantly, note that whenn1 determined the next hop to
forward the message, it selectedn0 over n (which has not
seen the UID value), which contradicts the assumption that
d(n) < d(n0).

We will use C1, C2, and C3 (Lemmas 1, 4, and 5) to
identify the originating machine of a content request message.
Given a linear reverse path identified by the traceback process
presented in the last subsection, we check if either C1, C2, or
C3 is satisfied.

IV. PERFORMANCEEVALUATION

In this section we perform Emulab-based experimental
studies to evaluate the feasibility and effectiveness of the
developed traceback attack on a realistic Freenet testbed. In the
following we will first describe the setup of the experimental
studies, and then we will present the results of the studies.

A. Experimental Setup

We carry out the experimental studies using the Emulab
testbed [5], and Freenet 0.7. We extend the source code of
Freenet 0.7 to add the functionalities to support the traceback

8

attack. A number of bash scripts have also been written to
largely automate the traceback attack.

The Freenet networks we used in the experimental studies
consist of70 nodes.4 out of the 70 nodes are seed nodes,
through which other nodes can get connected to the Freenet
testbed. The set of70 nodes in each Freenet network does
not include the attack nodes (see Figure 1), which are not
connected to the network before an attack starts. We use a set
of 5 additional nodes as attack nodes (theoretically, one attack
node is sufficient to carry out the attack). We perform 3 sets of
experiments, each consisting of 100 experimental runs. Each
set of experiments use an identical Freenet topology, which
is randomly constructed as follows. When we first start a set
of experiments, each node will randomly select a location and
contact a seed node to join the Freenet. The locations of the
seed nodes are also randomly selected by the individual seed
nodes, and seed nodes are started before other general nodes
are started. After all nodes have joined the Freenet testbed (and
therefore the network topology of the Freenet is formed), we
then run100 experimental studies on the Freenet testbed (or
simply the Freenet).

The 100 experimental studies in each set are grouped into
10 clusters, with each consisting of10 experiments. For each
group of 10 experiments, we insert a random file into the
Freenet, we then randomly choose a node to retrieve the file
to complete one experimental run. To make an experiment
meaningful, we do ensure that the randomly selected orig-
inating machine does not already have the file. After each
experimental run, we restore the Freenet to the original state
before the file is requested (i.e., we remove the file from all
the caches due to this file request, and the data store of the
file requester), before we perform the next experimental run, so
that it will not be affected by previous experimental runs. After
a group of10 experimental runs, a different file is inserted into
the Freenet, and the experiments are repeated.

After a set of100 experimental runs, we will re-start the
Emulab-based Freenet testbed, so that a different Freenet
topology will be constructed for the next set of100 experi-
ments. (Different randomly selected node locations will cause
different Freenet topologies.) We repeat this process three
times (for the three sets of100 experimental runs).

In our experiments, each node can have at most4 neigh-
bors. Without loss of generality, we use the nodes storing
a requested file as the monitoring nodes. We note that this
maximizes the length of the path that we need to trace back.
In addition, a traceback attack is initiated after the monitoring
node has sent back the requested file. That is, we rely on
the queue of UIDs that a node has finished processing the
corresponding request message to determine if it has seen a
UID value before. We believe that, in real traceback attacks on
the public Freenet, requested files should also be returned to
help minimize the suspicion of a file requester that it is being
traced back, as the requested file comes back as expected. We
refer to the three sets of experimental runs asS1, S2, andS3,
respectively.

B. Results

In this subsection we present the results of the Emulab-
based experimental studies. First we investigate how well we
can determine the originating machine of a content request
message. Table I shows the results. For three sets of experi-
ments, we can successfully determine the originating machine
of 43%, 24%, and41% of request messages, respectively.

TABLE I
RESULTS OF EXPERIMENTAL STUDIES.

Successful
Set Total Number Percentage
S1 100 43 43%
S2 100 24 24%
S3 100 41 41%

We make two observations from the results. First, the
successful rate to determine the originating machine of a
content request message is reasonably high (ranging from
24% to 43%). As we have discussed in Section III, this is
likely caused by a number of factors of Freenet, including
semi-structured network topology, strong connectivity among
nodes and two-hop routing lookup, and reasonably large HTL
value. Second, the successful rate to determine the originating
machine of a content request message varies greatly from24%
to 43%. The specifics of the Freenet network topology, the
location of the file to be requested, and the location of the node
to initiate a file request will all likely affect the forwarding
path of the content request message, and consequently, the
chance for the originating machine of the request message to
be determined.

Despite the variation in the successful rate, we emphasize
that, as shown in Table I, the probability to determine the
originating machine of a content request message is reasonably
high in the performed experiments. In addition, as we have
discussed in Section III, for the rest of the content request
messages that we cannot determine the originating machine,
we can identify all the machines that have either initiated
or forwarded the message, which could be helpful forensic
information in some investigative cases.

TABLE II
CLASSIFICATION OF MESSAGES SUCCESSFULLY TRACED BACK.

Set Total successful C1 C2 C3 C2 & C3
S1 43 17 19 24 17
S2 24 11 4 13 4
S3 41 25 12 12 8

In order to better understand the results of the experimental
studies, in Table II we show the number of messages whose
originating machine are successfully identified by rules C1,
C2, and C3, respectively. In the table we also should the
number of messages that are successfully traced back by both
rules C2 and C3. From the figure we can see that, although
the originating machines of a large number of messages are
determined because of the path length of two (i.e.,C1), C2 and
C3 are indeed effective in identifying originating machines

9

of messages that traverse a long path before encountering a
monitoring node. In particular, it shows that the ruleC3 alone
is already very effective in helping determining the originating
machine of a message.

TABLE III
PROPERTIES OF MESSAGE PATHS.

Forwarding Reverse
Set Linear Non-linear Linear (Failed) Non-linear
S1 98 2 80 (37) 20
S2 85 15 55 (31) 45
S3 94 6 69 (28) 31

So far we have argued that, due to a number of protocol
features of Freenet, it is likely that a message will traverse
a linear forwarding path (without backtrack). In Table III
we show the properties of message paths. In particular, we
show the number of forwarding paths that are linear and that
are non-linear, respectively (columns 2 and 3 in the table).
As we have discussed in Section III, we cannot determine
the originating machine of a message if the corresponding
forwarding path is not linear. As we can see from the table,
it is quite common for a forwarding path to be linear in
the performed experiments. As we have discussed above,
the combination of semi-structured Freenet topology, strong
connectivity among nodes and two-hop routing lookup, and
reasonably large HTL value will likely cause forwarding path
of content request messages to be linear, instead of containing
backtracked branches (as shown in Figure 3).

A linear forwarding path increases the chance for us to de-
termine the originating machine of the corresponding request
message. However, note that a linear forwarding path does
not guarantee the identification of the originating machine.
As shown in Figure 4, a linear forwarding path may contain
two neighboring nodes that have not directly interacted with
each other regarding the forwarding of the request message.
This complicates the identification of the originating machine
of the message, as it appears to the traceback algorithm that
multiple neighbors have seen the same UID value; that is, we
have a non-linear reverse path. Whenever we have a non-linear
reverse path, the traceback algorithm will not try to determine
the originating machine of the message, given the traceback
difficulties presented in Section III.

In Table III we also show the number of reverse paths
that are linear and non-linear, respectively. In addition, we
also show that number of linear reverse paths that wefailed
to identify the originating machines of the corresponding
messages. We note that the majority of linear forwarding paths
indeed result in linear reverse paths. However, a large number
of them do not meet the condition of either C1, C2, or C3, and
therefore, we cannot determine the corresponding originating
machines. We did verify that, for all these linear reverse paths
that do not meet either C1, C2, or C3, the last node along
a traceback path (i.e.,n0) is indeed the originating machine
of the corresponding message. However, we do not claim
that we can successfully identify them, given that in a real-
world attack (where we do not have access to the forwarding

path), we cannot determine if a backtrack has occurred. On the
other hand, we note that this could provide additional forensic
information in investigative cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n
(C

D
F)

Path length

S1-forward
S2-forward
S3-forward
S1-reverse
S2-reverse
S3-reverse

Fig. 5. Length distribution of linear paths.

Figure 5 shows the empirical cumulative distribution func-
tion (CDF) of the lengths of all linear forwarding paths and all
linear reverse paths. From the figure we can see that content
request messages inS2 in general traverse a longer forwarding
path than those inS1 and S3, which could partially explain
the worse performance obtained inS2 (as shown in Table III,
S2 also contains more non-linear forwarding paths). However,
we caution that forwarding path length is only one factor that
will affect the chance for the originating machine of a content
request message to be determined. As we have discussed, other
factors such as the specifics of Freenet topology will also likely
affect the probability to determine the originating machines.

In the figure, we also show the length distribution linear
reverse paths. As we can see from the figure, on average, linear
reverse paths are shorter than linear forwarding paths, which
indicates as the length of a linear forwarding path increases,
the chance for the corresponding reverse path to be non-linear
also increases; that is, the chance for the case presented in
Figure 4 increases, which is intuitively reasonable.

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 4 5 6 7 8 9 10 11

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n
(C

D
F)

Path length

S1-succeed
S2-succeed
S3-succeed

S1-fail
S2-fail
S3-fail

Fig. 6. Length distribution of linear reverse paths.

In order to examine if path lengths have an impact on
the possibility for a path to satisfy the conditionsC2 and
C3, in Figure 6 we show the CDF of all linear reverse
paths with a length greater than2, including the ones that
we can successfully determine the originating machines of
the corresponding messages (with lengthsucceed), and the

10

ones we cannot (with lengthfail). (We exclude all paths with
length of2 because they meet conditionC1). As we can see
from the figure, path lengths do not have much impact on
the possibility for a path to meet conditionsC2 or C3. This
is intuitively sound because the specifics of the connectivity
between neighboring nodes (i.e., the location) along a path
should play more role in meeting the conditions than the length
of the path.

V. D ISCUSSION ANDRELATED WORK

In this section we will first discuss potential solutions to the
developed traceback attack, and then we will briefly present
related work on attacks on peer to peer anonymous networks.

A. Potential Solutions

The design of the traceback attack in Section III depends
on a number of design and development decisions made in
Freenet, including, for example, the two-hop routing lookup
and neighbor replacement policy. It is clear that changing
any of these design and development decisions will likely
makethedeveloped traceback attack on Freenet less effective,
or eliminate the attack altogether. However, identifying the
optimal solution to address the problem is not simple. For
example, changing either the two-hop routing lookup or the
neighbor replacement policy will make it much harder to carry
out the designed traceback attack. On the other hand, they will
also likely affect the performance and adaptivity of Freenet.

Given that Freenet is only a semi-structured (instead of com-
pletely structured) peer to peer network, removing the two-
hop routing lookup will likely greatly affect the performance
of Freenet in locating requested files. Similarly, disallowing
a Freenet node to replace an existing neighbor with a new
node will prevent Freenet from re-organizing its topological
structure, based on, for example, performance of the neigh-
bors, and this will also make it hard for a new node to join
Freenet. Another potential solution is to dynamically change
the UID value of a request message along the forwarding path.
However, this will likely affect the effectiveness of forwarding
loop prevention in Freenet.

In addition, although such solutions may help addressthe
developed traceback attack, they may not work for other po-
tential traceback attacks. We note that, although the traceback
attack presented in this paper only targets content request
messages on Freenet, it can be potentially extended to trace
back other types of messages on Freenet. Moreover, it may be
generalized to attack other anonymous file storage and retrieval
systems that are built using the similar techniques as Freenet.
We need to develop a generic solution that can help address
the fundamentals of this type of traceback attacks, instead of
individual attacks.

We note that the key capability that the traceback attack
relies on is being able to query a Freenet node to determine its
state regarding the forwarding of a message (or rather the cor-
responding UID value). That is, by certain means, an attacker
can distinguish a node that has forwarded a message from
a node that has not forwarded a message. If this distinction

can be somehow identified, an attacker can then determine
the forwarding of a message, and a traceback attack can be
potentially carried out. We therefore believe that, in order to
prevent this and other traceback attacks on Freenet (and similar
peer to peer anonymous networks), special attention should
be paid to the design and development of the system so that,
anyone external to a node should not be able to determine the
message forwarding state at the node.

Following this simple yet powerful observation, a more
proper solution to the traceback attack is to change the
response of a Freenet node to an incoming request (or probe)
message with a UID that has been observed by the node.
Instead of sending back aReject with Loopfailure message to
inform the requester this fact, a more general failure message
should be sent back so that the requester cannot determine
the message forwarding state of the node. Specific failure
messages currently used in Freenet, such asReject with Loop,
Route not Found, andData not Foundshould all be replaced by
this general failure message. After receiving such a message,
the requester knows that it cannot use the node to locate the
requested file, but it cannot infer if the node has seen the
corresponding request message before.

We caution that, given the complexity of the Freenet system,
before such a solution can be adopted on Freenet, we need to
thoroughly evaluate the potential impacts of this solution on
the behavior and performance of Freenet. In particular, such
a solution should not (greatly) affect any optimizations that
the Freenet system may perform to re-organize its network
structure to speed up the locating and forwarding of contents
stored in the network.

Accidentally, the above insight in developing generic so-
lutions to address traceback attacks on Freenet is similar to
the behavioral equivalence, or theweak bi-similarityproperty
of systems modeled using theπ-calculus[11]. In essence, this
property states that, if two processes are weakly bi-similar, we
cannot distinguish the two processes based on the observations
of the input to and output from the two processes. In the
context of Freenet traceback attacks we have discussed, if two
nodes are weakly bi-similar, an attacker cannot tell which of
the two nodes (if any) have initiated or forwarded a message
previously, after sending query messages to both nodes.

B. Related Work

In this subsection we briefly discuss the related work. We
first describe general traceback attacks on peer to peer (p2p)
anonymous networks, and then we describe traceback attacks
on low-latency p2p anonymous networks such as Tor [4].
Towards the end of this section we discuss attacks specific
to Freenet.

A number of theoretical attack models on p2p anonymous
networks have been developed, including the predecessor
attack [15] and the eclipse attack [13]. They do not target any
particular p2p anonymous networks; rather, they investigate
the relationship between the number and coverage of attacking
nodes and the likelihood that any message can be traced back.
They were developed based on the fact that the members of

11

p2p anonymous networks are dynamic. If a sufficient portion
of a p2p anonymous network consists of attack nodes, it is
likely that they can collaborate to identify the possible origin
of a message.

Such studies provide us with some guideline on the de-
ployment of attacking nodes on a p2p anonymous network.
However, in this work we are more interested in attacks that
exploit the operational features of a p2p anonymous network
instead of attacks that rely on a large number of attack nodes
to cover the critical regions of a p2p anonymous network.
In addition, real-world p2p anonymous networks including
Freenet have taken steps to prevent a large number of nodes in
any individual network domain from joining the networks, so
that it is becoming hard to launch such attacks from a single
network domain. The traceback attack developed in this paper
requires much less resources on the attacker compared to this
type of attacks.

A number of watermarking techniques have been developed
to trace back traffic on low-latency p2p anonymous networks
such as Tor (see, for example, [9], [10], [16]). However, as
we have discussed in Section I, existing watermarking-based
traceback attacks on low-latency anonymous networks will
not work well on anonymous content sharing systems such
as Freenet, given that nodes in such networks do not have
much constraint on the time to process and forward a message.
Any traffic pattern that may be embedded in messages of such
networks for the traceback purpose can be easily destroyed.

An attack called Pitch Black has been developed on
Freenet [6]. Pitch Black works in the Darknet mode of Freenet,
which allows the swapping of locations between neighboring
nodes, based on the distance to their respective neighbors.
By continuously lying the distance to its current neighbors,
an attack node can force benign nodes to swap to a highly
concentrated location region. This will render an imbalanced
distribution of nodes in the location range of [0, 1], where a
small number of nodes will be responsible for a large portion
of contents stored in Freenet, which can cause unnecessary
congestion and even file loss in Freenet. However, the Pitch
Black attack targets deteriorating the performance of Freenet
instead of tracing back the origin of any messages. In addition,
it only works in Darknet mode of Freenet. Freenet in the
Opennet mode does not support location swapping between
neighboring nodes.

Freenet project has also documented a few potential attacks
on Opennet [8], including node harvesting on Freenet, mobile
attacker source tracing, and routing table takeover. The attack
developed in this paper is a complete, practical, and efficient
attack on Freenet to trace back a content request message to its
originating machine. Importantly, this work helps to illustrate
the security issues in the design and development of Freenet,
and to provide insights on how to improve Freenet and similar
p2p anonymous networks to proactively defend against similar
traceback attacks.

VI. CONCLUSION AND FUTURE WORK

In this paper we have developed a practical and efficient
traceback attack on Freenet by exploring a few design and
development decisions made in Freenet. In addition, we have
also performed Emulab-based experimental studies to confirm
the feasibility and effectiveness of the developed traceback
attack. As future work, we will explore opportunities to further
investigate the performance of the developed traceback attack
on larger-scale Freenet testbeds. The scale of our current
experiments was constrained by the resources we can obtain
from the Emulab system. We will extend the attack to trace
back other types of request messages on Freenet, and explore
the possibility to generalize the attack onto other peer to
peer anonymous content sharing systems. In addition, we will
fully investigate potential solutions to address the developed
traceback attack.

REFERENCES

[1] T. Baumeister, Y. Dong, Z. Duan, and G. Tian. A routing table insertion
attack on Freenet. In Submitted toASE/IEEE International Conference
on Cyber Security, Washington D.C., USA, Dec. 2012.

[2] C. Callanan, H. Dries-Ziekenheiner, A. Escudero-Pascual, and
R. Guerra. Leaping over the firewall: A review of censorship circum-
vention tools. Report by Freedom House, Apr. 2011.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. InInternational
Workshop On Designing Privacy Enhancing Technologies: Design Issues
In Anonymity And Unobservability, 2001.

[4] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. InIn Proceedings of the 13 th Usenix Security
Symposium, 2004.

[5] Emulab. Network emulation testbed. http://www.emulab.net/.
[6] N. S. Evans, C. GauthierDickey, and C. Grothoff. Routing in the dark:

Pitch black. InProceedings of ACSAC, 2007.
[7] Freenet. https://freenetproject.org/.
[8] Freenet. Opennet attacks. https://wiki.freenetproject.org/Opennet

attacks/.
[9] J. Huang, X. Pan, X. Fu, and J. Wang. Long PN code based DSSS

watermarking. InProc. IEEE INFOCOM, 2011.
[10] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia. A new cell

counter based attack against Tor. InACM Conference on Computer and
Communications Security, 2009.

[11] R. Milner. Communicating and mobile systems - theπ-calculus.
Cambridge University Press, 1999.

[12] O. Sandberg. Distributed routing in small-world networks. InProceed-
ings of 8th Workshop on Algorithm Engineering and Experiments, Jan.
2006.

[13] A. Singh, T. wan Ngan, P. Druschel, and D. S. Wallach. Eclipse attacks
on overlay networks: Threats and defenses. InProc. IEEE INFOCOM,
2006.

[14] Tor. https://www.torproject.org/.
[15] M. K. Wright, M. Adler, B. N. Levine, and C. Shields. The predecessor

attack: An analysis of a threat to anonymous communications systems.
ACM Transactions on Information and System Security, 7, 2004.

[16] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao. DSSS based flow
marking technique for invisible traceback. InProceedings of IEEE
Symposium on Security and Privacy, May 2007.

