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Abstract—Developers of GPU kernels, such as FFT, linear
solvers, etc, tune their code extensively in order to obtain op-
timal performance, making efficient use of different resources
available on the GPU. Complex applications are composed
of several such kernel components. The software engineering
community has performed extensive research on component-
based design to build generic and flexible components, such that
the component can be reused across diverse applications, rather
than optimizing its performance. Since a GPU is used primarily
to improve performance, application performance becomes a
key design issue. The contribution of our work lies in extending
component based design research in a new direction, dealing
with the performance impact of refactoring an application
consisting of the composition of highly tuned kernels. Such
refactoring can make the composition more effective with
respect to GPU resource usage especially when combined with
suitable scheduling. Here we propose a methodology where
developers of highly tuned Kkernels can enable application
designers to optimize performance of the composition. Kernel
developers characterize the performance of a kernel through its
“performance signature”. The application designer combines
these kernels such that such that the performance of the
refactored kernel is better than the sum of the performances of
the individual kernels.This is partly based on the observation
that different kernels may make unbalanced use of different
GPU resources like different types of memory. Kernels may
also have the potential to share data. Refactoring the kernels,
combining them, and scheduling them suitably can improve
performance. We study different types of potential design
optimizations and evaluate their effectiveness on different
types of kernels. This may even involve choosing non-optimal
parameters for an individual kernel. We analyze how the
performance signature of the composition changes from that of
the individual kernels through our techniques. We demonstrate
that our techniques lead to over 50% improvement with some
kernels. Furthermore, the performance of a basic molecular
dynamics application can be improved by around 25.7%, on a
Fermi GPU, compared with an un-refactored implementation.

Keywords-gpu, component reuse, kernel composition, refac-
toring

I. INTRODUCTION

There is growing recognition of the need for good soft-
ware design support on parallel platforms [1]. With the
growing popularity of general purpose computing on Graph-
ics Processing Units (GPU), the need for a suitable design
methodology and tool for the creation of complex appli-
cations on GPUs is becoming increasingly apparent. Such

applications are composed of a large number of kernels.
For example, a GPU port of the QMCPack Quantum Monte
Carlo software [2] consists of around 120 GPU kernels. A
variety of other applications, such as linear flow solvers, are
also built by composing several kernel components. Devel-
opers of such complex GPU applications spend significant
effort and time to fine tune the code for optimal usage of the
GPU resources. Often, the kernel components are generic in
nature and have a potential of being reused in other applica-
tion contexts. An application comprising of a set of kernel
components may have data dependencies, requiring that they
be run in sequence, or they may be run concurrently. A
design methodology, that promotes construction of generic
kernels which can be composed later in other applications to
yield good performance, can significantly reduce the design
effort of complex GPU applications.

The key design concern here is to enable an application
consisting of a set of kernel components to make optimal
use of the hardware resources available in a GPU. Assume
that a reusable kernel is well written, and it has some tunable
parameters, such as the granularity of parallelization, with
a good choice of parameters enabling optimal performance.
Even in such a case, the optimal parameters for the applica-
tion, which is a composition of kernels, does not necessarily
correspond to choosing the optimal parameters for each
component. To illustrate this point, consider two kernel
components A and B, written by GPU experts. Each of them
runs optimally with the entire resource at its disposal. The
resources could be the amount of shared memory used or the
fraction of Streaming Multiprocessor (SM) used. However,
these developers are obviously unaware of the context in
which these modules will be used in future. It could very
well be the case that A and B can be run concurrently,
with 60% of the resources allocated to A and 40% to B,
for optimal performance on some application. Thus, in a
real situation, it will be necessary to optimize functional,
architectural and hardware parameters (number of blocks,
threads per block, register usage etc) of both A and B to
arrive at these magic figures. It has been shown that these
parameters are discrete [3] and even a simple version of an
optimization problem becomes NP-hard.

Constructing a complex software by composing a set of
reusable components has been well studied by the software



engineering research community [4] and many off-the-shelf
design tools are available for building and reuse of compo-
nent libraries. The software is designed to run on a sequential
hardware, where the main design concern has been to make
a component as flexible and generic as possible for maximal
reuse. However, when the underlying hardware becomes
massively data parallel like a GPU, the composition from the
performance point of view becomes extremely challenging,
and the subject has remained relatively less explored.

In this paper we study the composition of GPU kernels,
to build an application and subsequent refactoring! of the
application for performance tuning. Here we do not propose
any approach to optimize individual kernels. Rather, we
have assumed that kernel developers have provided highly
tuned kernels. We propose a design methodology where
the responsibility of a kernel developer is to provide a
“performance signature” to characterize the performance of
a kernel, alongwith its implementation. Assuming that a
set of kernel implementations including the optimal imple-
mentation, and corresponding performance signatures are
available, we show various ways in which an application
developer can compose these kernels such that the resulting
performance is better than the sum of the performances of
the individual kernels. Further, we analyze why particular
compositions work better on different GPU architectures
— an NVIDIA S1050 Tesla and a GTX 480 (Fermi). Our
analysis reveals that different kernels may make unbalanced
use of different GPU resources like different types of
memory. Kernels may also have the potential to share data.
Refactoring the kernels, combining them, and scheduling
them suitably can improve performance.

The paper has been organized as follows. In Section II
we summarize relevant features of the GPU architectures
and CUDA programming. Next, we discuss our design
methodology in Section III. We discuss the experimental
study in Section IV. We compare our work with related work
in Section VII and finally summarize our conclusions.

II. GPU ARCHITECTURE

GPU architecture varies across different versions and
makes. Here, we provide a brief overview of a typical
NVIDIA GPU. A GPU consists of several streaming mul-
tiprocessors (SMs) and an SM can execute one of more
blocks of threads, where a block of threads can synchronize
efficiently through hardware. A GPU has a large global
memory which can be accessed by several SMs. Each SM
has a shared memory which can be accessed by threads
in a thread block. In addition, an SM has several registers
which are exclusively owned by a thread. Threads in a given
thread block, are partitioned into groups called warps. The
GPU scheduler treats a warp as a scheduling unit, where all

IRefactoring involves modifications to the implementation while main-
taining the semantics of a module.

the threads in a warp run in a lock-step fashion, i.e. each
thread in a warp, executes the same instruction in parallel,
on different data.

General purpose GPU programming was popularized by
CUDA? [5], which is an extension to C. In CUDA, the part
of the code (and the associated data structure) that needs to
run in a data parallel manner is called a kernel function. The
process running on the host (CPU) copies relevant data to
the device (GPU) and then calls a kernel. A kernel function
is executed in a GPU by many threads. Once the kernel
completes, its output data needs to be copied back to the
host memory.

Programmers need to fine tune resource usage under
the architectural constraints (which often turns out to be a
complex decision) so as to get an optimal performance [3].
These architectural features include efficient access to dif-
ferent types of memory, such as the global memory, shared
memory, and constant memory, efficient synchronization
within a thread block in contrast to kernel level synchroniza-
tion between blocks, enabling data parallelism by reducing
branch divergence within a warp, etc.

III. DESIGN METHODOLOGY

In order to ensure that the kernel is designed and reused
keeping optimal performance in mind, we propose a two
pronged approach. We describe two specfic roles, one the
kernel developer and the other, the application developer;
along with their responsibilities.

A. Kernel Tuning by Kernel Developer

Kernel developers fine tune the kernel for optimal utiliza-
tion of the GPU resource. As mentioned earlier, we do not
propose any optimization approach for the kernel developer.
We assume that the kernel developer has tested and fine
tuned the kernel such that its performance is optimal. We
also assume that the kernel developer is able to write a
kernel as a library function and make it generic. The kernel
developer often develops multiple implementations of the
code, such as a global memory implementation and a shared
memory implementation, evaluates them with different algo-
rithmic and hardware related parameters, such as threads per
block, and releases the optimal version. We propose that the
kernel developer publishes all the different implementations
of the kernel, including the optimal one and suboptimal ones.
Each implementation is associated with a metadata, called
performance signature.

1) Performance Signature: A performance signature is
a characterization of the performance and resource usage
as a function of parameters under the application develop-
ers control. For example, for a basic molecular dynamics
application shown in Fig.la, we define the performance

2While OpenCL is a standard, CUDA is still popular, and so we describe
it. In any case, the methodology described in this paper is independent of
the programming language used.
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Figure 1. Molecular Dynamics Application:(a)Flow Diagram (b)Design
and Refactoring Strategies

signature for kernel K by values of PS(K, Arch) =<
Reg,T/B, Mem,Time > for a given GPU architecture
Arch. The input Arch takes a nominal value such as
“tesla” or “fermi”. Here Reg indicates the number of
registers per thread required by the given implementation of
K. The next attribute 7'/ B indicates the number of threads
per block required, and Mem attribute characterizes the
type of memory used in the implementation. This attribute
value is also nominal, and is like “global”, “shared”
etc. The performance signature corresponding to the im-
plementation that has optimal performance, is denoted by
PSopt (K, Arch).

The notion of multiple implementations, conforming to an
interface is well-known in the domain of modular software
design. This concept, pioneered by Parnas and others [6],
suggests that a software is a composition of modules where
a module has an interface, with one or more implementations
of the interface. Here we extend this concept, from the
performance point of view. Here the kernel developer not
only provides the optimal version, but also provides a sub-
optimal version of these kernels and their performance
signatures. For example, if a kernel performs optimally
when the data resides in shared memory, the developer also
provides an alternate global memory based implementation
of the kernel. In the next section we demonstrate that
multiple kernel implementations become different design
choices for application developers for the optimal design
of an application.

B. Design Choice Exploration by Application Developer

Given a set of kernels with their performance signatures,
we now describe how an application developer will com-
pose these kernels to build an application. The application
developer begins with a flow graph to define a composite
application created out of a set of predefined kernels such
as the one shown in Figure 1b for molecular dynamics,
which is explained later. Here, K2 and K3 do not have any
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Figure 2. Merge Strategy

dependency whereas K5, K6, and K7 have dependencies.
The dotted line in this figure denotes anti-dependence [7],
[8], that is, the input set to the first kernel intersects the
output set to the next kernel. Similarly the developer can
specify that the kernel K4 in this figure is a reduction
kernel (a design hint, indicating that a shared memory
implementation will yield better performance).

1) Refactoring through Kernel Merging: Merging kernels
can be useful if each kernel makes unbalanced use of GPU
resources, such as registers or threads permitted per block,
so that the combination can make better use of them. Such
merging can also be useful when kernels share data; it may
happen that shared memory is not useful for a particular
kernel because there is not enough data reuse, but the
combined kernel has enough data reuse to make shared
memory useful. If the output of one kernel is the input
to the next, then merging can also reduce data movement.
The performance signature and flow graph can help identify
kernels to be merged. For example, if the optimal implemen-
tation of two kernels, when combined, will not exhaust the
resources available, such as registers and threads per block,
then they may be merged. More interestingly, there may be a
benefit to merging even if non-optimal parameters will not
exhaust the resources, if the performance for non-optimal
parameters is not very different from the performance for
optimal parameters. We later show how the performance
signature for the merged kernels differ from that of a direct
combination of the original kernels. We next describe three
strategies for merging kernels.

Strategy 1: In this strategy kernel K;’s instructions
are executed before K;’s. When K; has a strict data-
dependency on K this is the only feasible merge strategy,
if the dependence can be enforced in each thread block. The
idea is illustrated in Figure 2b.

Next, let’s consider a more complex scenario. The data
flow analysis reveals an anti-dependence [7], [8] between
K5 and K6 which can be removed through the standard
technique of variable cloning and renaming. The following
two merge strategies can be used. Of course, these strategies
can also be used if there is no dependence, though co-
scheduling, which is described later, could be more effective,
unless the kernels share common input which will make
merging beneficial.



Strategy 2: As shown in Figure 2c, we keep the number
of thread blocks same, and different warps perform the
computations of the different original kernels. This implies
that each thread performs double the computation of the
standalone scenario (Fig 2a).

Strategy 3: Like strategy 2, here we let different warps
of the same thread block do computations on different
kernels. However, we keep the workload of each thread to be
the same, which increases the number of blocks, providing
the potential to decrease global memory access latency.

2) Co-Scheduling: Design decisions can be influenced by
hardware architecture. Since a Fermi GPU allows concurrent
execution of kernels, the designer can opt for concurrent
execution of kernels which do not have data dependencies. In
the experiment section we show performances of two inde-
pendent kernels K2 and K3 in Figure 1. We also investigate
the use of this strategy for pseudo parallel execution of two
kernels K7 and K1 in Figure 1, as explained below. The
computation in this flow graph is repeated in a loop. Such
loops are fairly common in scientific applications. In this
particular application, computation of K7 in iteration ¢ is
independent of the computation of KI in iteration ¢ + 1.
They can, consequently, be executed concurrently.

3) Optimal Design Choice: Given above strategies, what
could be the optimal design choice? Given a set of per-
formance signatures for each kernel, including the optimal
signature, which implementation of kernels, say, K5 and K6
should one choose during merging? Is it always the case
that selection of optimal implementations of two kernels
yield optimal result when they are merged? We show in
the following section that this is always not the case and
explain the reason.

The next question is, which merge strategy will work best
in this case? Furthermore, in a flow graph like 1b, should
one merge K5 & K6 or K6 & K7 or K5, K6, & K7? In
the following section we investigate these issues through
experimental study.

IV. EXPERIMENTAL STUDY

For our analysis, we have taken a simple example of
molecular dynamics simulation which works as follows, as
shown in Figure 1a.

1. Initialize: Start with a set of particles, placed in a
3-dimensional box, with initial positions, velocities, and
accelerations drawn from a specified distribution.

2. Compute: Compute the potential energy or force of
each particle using a Lennard-Jones potential. Also compute
the kinetic energy of each particle and then compute total
energies of all particles.

3. Update: Update the position, velocity and acceleration
of each particle.

4. Advance the time-step and go to Step 2 again.

We have converted the above example to CUDA from

the original source’. In Figure 1b we have shown their data
dependencies in a flow graph, where we have used symbolic
names {K1,K2,--- K7} for these kernels. Kernel K1 to
K7 has been run repeatedly for each time step. Note that
in this application, the time taken per iteration is small;
however, the total time for the computation is large because
an extremely large number of iterations are required for a
realistic computation.

In the first part of the experiment, presented in the follow-
ing subsection, we have explained the process of collecting
optimal as well as sub-optimal performance signatures by
a kernel developer. Next we have switched to the role of
an application developer, where the kernel components,
their implementations and performance signatures have been
assumed to be present. Here we have elaborated the selection
of appropriate kernel implementation and composition of
kernels through experimental analysis.

A. Infrastructure Used

We report our results both on an NVIDIA S1050 Tesla
and on an NVIDIA GTX 480 Fermi GPU. For both these
devices, the host is an Intel Xeon 2.5 GHz CPU running
Linux kernel version 2.6.18. The host code has been com-
piled using gcc version 4.3.3 and the kernel code has been
compiled with NVCC version 3.2 and 4.0 on the Tesla and
Fermi GPU respectively. We have reported the performance
using a RDTSC timer on the host that has a resolution
of 1ns. Each kernel execution has been repeated for a
sufficiently large number of times. We ignore the time for
the first iteration, in order to discount the GPU warmup
overhead from our measurement, and then report the average
execution time for the subsequent iterations. We have noted
the kernel launch overhead on the Tesla to be 21us, while
on the Fermi it is 7us.

V. EXPERIMENTS BY KERNEL DEVELOPER

We have run the application by varying the number of
threads per block for a given number of particles. We have
observed the time taken by each kernel. We have also noted
the number of registers being used per thread by each kernel.
Table I shows the performance results of each kernel when
they have been executed on a Tesla (T) and Fermi (F)
respectively. The first part of the table shows the results
when the data resides in global memory.

We have re-implemented kernels K2 to K7 as shared
memory variants and reported their results in the second part
of Table I. We have renamed the shared memory variant of
these kernels as K2sh, K3sh etc.

A. Performance Signature

From Table 1 the kernel developer derives
PS(K,Arch) =< Reg,TB,Mem,Time > for the
kernels K1---K7. Table II shows the optimal signature

3http://people.sc.fsu.edu/jburkardt/f_src/md_open_mp/md_open_mp.f90



Kernel #reg./ Execution time for kernels for varying
thread | #threads/block when data is in GLOBAL memory
32 64 128 256 512
KI(T) 32 75907 | 73.761 | 73.593 | 86.532 | 86.985
KI(F) 32 24.054 | 22907 | 21.343 | 21.385 | 25.651
K2(T) 5 129.885| 104.247| 105.63 | 103.763| 109.35
K2(F) 10 40.793 | 39.956 | 51.670 | 40.119 | 50.234
K3(T) 5 980.849| 849.206| 845.075| 842.143| 875.417
K3(F) 10 345.88 | 345.296| 333.389| 361.69 | 341.983
K4(T) 4 218.244] 168.593| 150.256| 130.614| 117.129
K4(F) 12 86.073 | 74.858 | 56.519 | 49.868 | 44.868
K5(T) 10 427763 | 33.796 | 33.165 | 33.524 | 33.505
K5(F) 12 18.570 | 13.652 | 12.014 | 12.806 | 12.643
K6(T) 10 44224 | 31.396 | 31.695 | 31.681 | 31.601
K6(F) 12 18.001 | 12.621 | 10.938 | 11.729 | 12.148
K7(T) 2 30.706 | 23.868 | 23.362 | 24.538 | 24.261
K7(F) 8 12.162 | 10.173 | 8.985 9.361 9.259
Execution time for kernels for varying
#threads/block when data is in SHARED memory
32 64 128 256 512
K2si(T) | 4 26.011 | 23.883 | 23.936 | 25.114 | 25.394
K2sh(F) | 8 21.001 | 19.905 | 10.363 | 10.450 | 11.164
K3sh(T) | 4 149.61 | 142.946| 113.348| 122.57 | 130.503
K3sh(F) | 8 50.903 | 47.363 | 30.918 | 32.221 | 36.068
K4sh(T) | 4 54.469 | 51.107 | 50.842 | 29.046 | 29.781
K4sh(F) | 8 29.882 | 25.018 | 22.991 | 15.191 | 16.209
K5sh(T) | 8 33258 | 32.979 | 33.696 | 36.405 | 36.949
KS5sh(F) | 13 14.756 | 13.207 | 13.081 | 14.024 | 13.846
Kosh(T) | 8 31.254 | 30.651 | 33.121 | 34.692 | 36.089
K6sh(F) | 10 14.430 | 12.684 | 12.244 | 13.519 | 13.162
K7sh(T) | 3 27.2328| 25.858 | 25.003 | 26.880 | 26.485
K7sh(F) | 8 13.043 | 10.909 | 9.9881 | 10.272 | 10.382
Table 1

PERFORMANCE OF GLOBAL AND SHARED MEMORY IMPLEMENTATIONS
OF KERNELS ON A TESLA (T) AND FERMI (F) GPU FOR 10000
MOLECULES. OPTIMAL PERFORMANCE IS SHOWN IN BOLD AND THE
CORRESPONDING KERNEL IMPLEMENTATION IS IN ITALICS.

Kernel | PSopt (K, Tesla) PS opt (K, Fermi)
Reg | TB | Mem || Reg | TB | Mem
K1 32 128 | G 32 128 | G
K2 4 64 S 8 128 | S
K3 4 128 | S 8 128 | S
K4 4 256 | S 8 256 | S
K5 10 64 S 12 128 | G
K6 8 64 S 12 128 | G
K7 2 128 | G 8 128 | G
Table 11

PERFORMANCE SIGNATURE OF KERNELS ON A TESLA AND FERMI GPU
FOR 10000 MOLECULES. S(DATA RESIDES IN SHARED MEMORY),
G(DATA RESIDES IN GLOBAL MEMORY)

PSope for these kernels in Tesla and Fermi GPUs for 10000
molecules.

Note that the shared memory versions of K5 and K6
perform optimally for Tesla, but for Fermi, it is the global
memory versions of these two kernels that perform the best.

VI. DESIGN CHOICE EXPLORATION- EXPERIMENTS BY
APPLICATION DEVELOPER

Using performance signatures and implementations of
KI1---K7 from kernel developers, we now study the efficacy
of various design strategies introduced in Section III-B, and

present the performance of the overall application.

A. Merge Strategies

Table III shows the performance of different combinations
of kernels and different merge strategies. For K5, K6, and
K7, we have merged K5 and K6 (K56), then K6 and
K7 (K67) and finally K5, K6 and K7 (K567). For each
combination, we have used three merge strategies introduced
in Section III-B. While merging, we have taken both global
and shared memory implementations of these kernels. To
distinguish, we have used the suffix “Mg” to denote global
memory version and “Msh” to denote the shared memory
version of the merged kernel.

The table is divided into four parts. The first part shows
the execution time of the best performing versions of K5,
K6 and K7 as per their PS,,:, shown in Tables I, and IL
We have not run our experiment for block size 32 in case
of the 2nd and 3rd kernel merging strategies because that
would certainly lead to a branch divergence within a warp
leading to poor performance.

Optimal Merging: Table III shows that all strategies
improve performance. We find that when the global memory
implementation of K5 and K6 are merged together using
merge strategy 1, the merged kernel KS6Mgl gives the best
performance on Tesla as well as on Fermi GPU.

Next, from Table III, we observe that when the shared
memory versions of K6 and K7 are merged, the merged
kernel K67Msh gives the best performance on Tesla. How-
ever, when the global memory version of K6 and K7 are
merged, the merged kernel gives optimal performance on
Fermi. Once again, strategy 1 gives the best performance.
The best performance is obtained when K5, K6, K7 are
merged all together using strategy 1, as compared to merging
two kernels at a time.

Register Usage: Register usage is an important factor
in merging kernels, because the merged kernel has a higher
register usage than either kernel. Some previous works [9],
[10] have assumed that merged kernels have register usage
which is the sum of the register usage of each individual
kernel. However, a comparison of the register usage of
the original kernels and the merged kernels from their
performance signatures above shows that the register usage
for the merged kernels is much less than the sum.

1) Analysis of Merging K5 and K6: The merged kernel
having its data in global memory performs better than
merged kernels with data in shared memory in this case. The
version using merging strategy 1, K56Mgl, is 38% faster
than when optimally tuned K5sh and K6sh run in sequence
one after another on a Tesla GPU. On a Fermi GPU, this
merged kernel is 40% faster compared to optimally tuned K5
and K6 executed in sequence. While merging of kernels has
an obvious advantage of kernel launch overhead reduction
(reported in Sec. IV-A), we observe the following additional
performance benefits in favor of global memory. Through



#reg./| Exec. time(us) for kernels for varying #thr/ blk

Kernel
thr.
32 64 128 256 512
K5sh(T) 8 33.258 | 32.979 | 33.696 | 36.405 | 36.949
K5(F) 12 18.570 | 13.652 | 12.014 | 12.806 | 12.643
K6sh(T) 8 31.254 | 30.651 | 33.121 | 34.692 | 36.089
K6(F) 12 18.001 | 12.621 | 10.938 | 11.729 | 12.148
K7(T) 30.706 | 23.868 | 23.362 | 24.538 | 24.261
K7(F) 8 12.162 | 10.173 | 8.985 9.361 9.259
Merging K5 and K6
K56Mg1(T) 14 42.426 | 40.134 | 39.691 | 40.640 | 40.879
K56Mgl1(F) 18 16.603 | 13.873 | 13.727 | 14.107 | 14.237
K56MshI(T) | 13 42.859 | 40.614 | 40.055 | 41.035 | 41.382
K56Mshl1(F) | 16 17.333 | 14.744 | 14.069 | 14.737 | 15.13
K56Mg2(T) 13 NA 54.820 | 54.173 | 55.071 | 56.008
K56Mg2(F) 16 NA 15.233 | 14.694 | 15918 | 17.946
K56Msh2(T) | 13 NA 54.621 | 54.596 | 55.059 | 56.445
K56Msh2(F) | 18 NA 14.812 | 14.731 | 17.569 | 19.161
K56Mg3(T) 10 NA 44.641 | 44282 | 45.480 | 45.166
K56Mg3(F) 12 NA 16.359 | 14.311 | 15.615 | 15.793
K56Msh3(T) | 10 NA 50.421 | 49.884 | 50.659 | 50.676
K56Msh3(F) | 14 NA 14.965 | 14.718 | 15.566 | 16.180
Merging K6 and K7
K67Mgl(T) 11 37.126 | 36.382 | 36.124 | 37.286 | 37.776
K67Mgl(F) 14 13.868 | 11.760 | 11.438 | 11.565 | 12.108
K67Msh1(T) | 11 36.804 | 35.379 | 35.361 | 37.367 | 37.776
K67Mshl(F) | 13 15.133 | 12.375 | 11.843 | 12.476 | 12.726
K67Mg2(T) 10 NA 46.961 | 47.986 | 48.181 | 47.750
K67Mg2(F) 14 NA 13.375 | 12310 | 12.503 | 14.419
K67Msh2(T) | 11 NA 44915 | 45827 | 45.724 | 45.859
K67Msh2(F) | 16 NA 13.348 | 12.841 | 13.367 | 14.317
K67Mg3(T) 10 NA 37.148 | 36.848 | 37.858 | 37.573
K67Mg3(F) 12 NA 13.964 | 12.193 | 12.394 | 13.014
K67Msh3(T) | 10 NA 37.494 | 37.528 | 38.093 | 38.113
K67Msh3(F) | 12 NA 13.419 | 12.675 | 13.289 | 13.885
Merging K5, K6 and K7
K567MgI(T) | 14 49.791 | 48.168 | 47.844 | 50.998 | 50.292
K567Mgl(F) | 18 18.840 | 15.351 | 14.203 | 15.426 | 15.524
KS567Msh1(T)| 13 48.363 | 47.267 | 47.681 | 50.122 | 50.297
K567Mshl1(F)| 20 17.033 | 14.573 | 14.084 | 15.125 | 15.282
Table IIT

PERFORMANCE RESULTS AFTER MERGING KERNELS K35, K6, AND K7 A
TESLA (T) AND FERMI (F) GPU FOR 10000 MOLECULES. THE FINAL
SUFFIX DENOTES THE MERGE STRATEGY USED. OPTIMAL
PERFORMANCE IS SHOWN IN BOLD

CUDA Visual Profiler we have found that storing data in
the shared memory does not bring down the number of
global memory load instructions significantly for K56Mgl.
This implies that there is not enough data to be re-used
when K5 and K6 are merged. Furthermore, a Fermi GPU
caches global memory reads. Using a CUDA Visual Profiler,
we have seen that the ratio of L1 cache hits to misses for
K56Mgl is higher than that of K56Mshl.

Next, we have investigated the reason for strategy 1
to work better here. To begin with, K5 and K6 are not
computation-heavy. To ensure that K5 and K6 run in dif-
ferent warps, the application developer has to write extra
operations in the merged kernel involving modulo operations
having a low instruction throughput. CUDA Visual Profiler
has shown that additional number of instructions added due
to such operations is significantly high in case of strategy 2
and 3, compared to the strategy 1. Next, recall as per strategy
2 (Fig 2c), K56Msh2 performs double the computations per

thread. This leads to two threads of the same half warp on
a Tesla GPU and two threads in the same warp on a Fermi
GPU to access the same memory bank, resulting in bank
conflicts and thus degrading the performance of this merged
kernel. Finally, as per strategy 3 (Fig 2d), the number of
blocks executed by a merged kernel is twice than that created
by strategy 1. Doubling the number of thread blocks adds
to the thread creation overhead, which makes an impact on
performance because K5 and K6 are not computationally
intensive.

2) Analysis of Merging K6 and K7: Table III shows
that at 128 threads per block (T/B) on the Tesla GPU,
K67Mshl gives the best performance and is 37.4 % faster
than when optimally tuned K6sh (64 T/B)and K7 (128 T/B)
are executed in sequence. However, on the Fermi GPU, the
best performing merged kernel K67Mgl runs 42.57% faster
than optimally tuned K6 and K7. On both the Tesla and the
Fermi GPU, the reasons for kernels merged using strategy 1,
to perform better than those kernels merged using strategies
2 and 3; are similar to the reasons that we had discussed
earlier for K56Mgl and K56Mshl.

Unlike merging of K5 and K6, the reason for K67Mshl
where the data resides in the shared memory, to perform
marginally better than K67Mg1 is as follows. Using CUDA
Visual Profiler, we have found that though K67Mg1 executes
10% fewer instructions than K67Msh1, the number of global
memory load instructions for K67Mgl is 25% more than
K67Mshl. So any performance improvement obtained by
K67Mgl by executing fewer instructions than K67Mshl is
offset by a performance degradation due to more global
memory access. This leads to a marginal performance im-
provement for K67Msh1 over K67Mgl.

On a Fermi GPU we find the reverse. Using CUDA
Visual Profiler, we have found that K67Mgl executes 12%
lesser number of instructions compared to K67Mshl. The
number of global memory load instructions for K67Mgl
is 25% more than K67Mshl. The ratio of L1 cache hits
to misses for K67Mgl is higher than K67Mshl. Hence
we see that i) a higher ratio of L1 cache hits, combined
with ii) lesser number of instructions to execute, offsets
any performance degradation due to more global memory
access by K67Mgl. This leads to a marginal performance
improvement for K67Mgl over K67Mshl.

3) Analysis of Merging K5, K6 and K7: Table III shows
that kernel K567Msh (data in shared memory) gives a better
performance consistently than K567Mg. At 64 threads per
block (T/B), K567Msh is 45.66% faster than when optimized
version of K5sh, K6sh (both at 64 T/B) and K7 (128 T/B) are
run in sequence on the Tesla GPU. On the Fermi GPU and at
128 T/B, K567Msh is 57% faster than when optimized K35,
K6 and K7 are run in sequence. The result is quite expected
as there is enough reusable data in the merged kernel and
hence storing such data in the shared memory hides global
memory latency better; the shared data in this case is twice



Exec. time(us) for kernels for varying #thr/ block

Exec. time(us) for kernels for varying #thr/ block

Kernel k) o4 128 256 512 Kernel 32 o4 128 256 [ 512

K2sh 21.001 | 19905 | 10.363 | 10450 | 11.164 K7, i i 12162 | 10.173 | 8.985 | 9361 | 9.259

K3sh 50.903 | 47363 | 30.918 | 32221 | 36.068 KI, G+ itr | 24.054 | 22.907 | 21343 | 21.385 | 25.651

K23Psh 60514 | 58.607 | 37.290 | 38.333 | 42.806 K71P 28.643 | 26253 | 23.939 | 24.297 | 28.100
Table IV Table V

PERFORMANCE COMPARISON BETWEEN K2 AND K3 AND CONCURRENT
EXECUTION OF THE SAME KERNELS (K23PsH) oN A FERMI GPU FOR
10,000 MOLECULES. OPTIMAL PERFORMANCE IS IN BOLD

the amount of shared data in the K5-K6 or K6-K7 merger
cases.

4) Merge Strategies: Merge strategies 2 and 3 too lead
to significant improvement in performance over the unrefac-
tored code, even though strategy 1 performs better than
them with in the application we have considered here. We
can expect them to perform better than strategy 1 in other
applications. For example, strategy 3 has greater parallelism
and so can potentially hide global memory access latency
better than strategies 2 or 3. However, in this particular
application, the extra computation for the modulus proved to
be a significant overhead because the amount of computation
was very small.

B. Concurrent Execution of Kernels

As discussed in Section III-B2, it is possible to run kernels
K2 and K3 concurrently since they don’t have any data
dependencies. It is also possible to interleave the execution
of " time-step of K7 with (i + 1)** of K1 as they don’t
have dependencies either. As Tesla GPU does not support
concurrent kernel execution, we present the results from the
next set of experiments only for the Fermi GPU.

1) Concurrent execution of K2 and K3: Both K2 and K3
are data independent kernels that execute the same number
of thread blocks for a given number of molecules. Table
IV shows the performance comparison of concurrent kernel
K23Psh with that of standalone kernels K2 and K3 that have
been implemented with the data in shared memory.

Clearly, at 128 threads/block K23Psh performs 9.67%
better over the standalone kernels when executed one after
another. We explain the reason later.

2) Executing kernels K7 and K1 in parallel: For any
given iteration, we execute kernel K7 of that iteration with
K1 of the next iteration. Let K71P represent such a pseudo
kernel whose performances have been shown in Table V.
In this table we compare the performance of K71P with
that of standalone kernels K7 and K1 of the next time-step,
both of which have been implemented with their data in
global memory. At 128 threads per block, K71P performs
21% better over the standalone kernels when executed one
after another.

Each of these four kernels (K1, K2, K3 K7) is able to run
8 blocks per SM. In our experiment, for 10,000 molecules
each of these kernels execute 79 blocks leading to 67%
GPU occupancy. Thus, with CUDA stream based concurrent
execution, execution of kernels K2 and K3 are overlapped as

PERFORMANCE COMPARISON BETWEEN K7 AND K1 AND PSEUDO
PARALLEL EXECUTION OF THE SAME (K71P) ON A FERMI GPU FOR
10,000 MOLECULES. OPTIMAL PERFORMANCE IS IN BOLD

also that of K7 and K1 with pseudo parallelism, leading to a
better GPU utilization and overall performance improvement
over sequential execution of kernels.

C. Optimal Design of the Application

Based on performance results of various merge and
concurrent scheduling strategies, the application designer
can now build a complete application. From the complete
application perspective, we still have two design choices.
We have to see if merging of K5, K6, K7 is better than
merging K5, K6 and then execute K7, K1 concurrently. We
have compared execution times* of three versions of the
application using Unix wall clock time on the Fermi GPU,
as discussed below.

1) The first version uses optimized kernels, K1, K2sh,
K3sh, K4sh, K5, K6, and K7 without any further
design optimization. The application takes 12.442s.

2) The second version uses K1, K23P, K4sh, K567Msh
(data in shared memory) as per the optimal design
choice. The application takes 9.243s.

3) The third version uses K1, K23P, K4sh, K56 Mgl (data
in global memory), K7K1P. The application takes
9.368s.

The reason why choice 3 is not as good as 2 is because
K7 takes O(N) while K1 takes O(N?), where N is the
number of molecules. As a result, we do not get the desired
performance benefit when we run them in parallel. Overall,
the design choice 2, which is the optimal composition, gives
us a 25.7% improvement compared to the trivial composition
of optimized kernels in choice 1.

VII. RELATED WORK

Several papers [11], [12], [13], [14], [15] discuss porting
applications to GPUs and improving performance through an
optimal assignment of architectural parameters to achieve
overall execution efficiency. Our goal, in contrast, deals
with a design methodology that improves performance of
an application that consists of a composition of kernels.
Merging kernels plays an important role in this. Merging
kernels has been considered by a couple of other works.
Guevara et.al. [9] consider scheduling independent kernels,
corresponding to independent jobs, on a pre-Fermi GPU.
Due to the absence of concurrent execution on that GPU,
they merge the kernels such that different blocks perform

4The number of iterations was fewer than in a production run



the work of different kernels. Wang et.al. [10] use merging
to optimize power consumption by GPU. While both the
above works in [9], [10] merge kernels, the main purpose
of their work is quite different. In our work, we perform
an experimental study on composition of kernels and their
impact on the performance, which involves different issues,
such as better performance through reuse of data in shared
memory. Of course, the design methodology that we present
is also an important focus of our work.

VIII. CONCLUSION

In this paper we have studied the composition of GPU
kernels, and subsequent refactoring for performance tuning
to build an application. We have proposed a design method-
ology where kernel developers focus on optimal kernel
development and provide performance signatures of a kernel
alongwith different versions of implementations for subse-
quent reuse. From an application developer’s perspective,
we have analyzed various kernel merging techniques and
have shown under what circumstance a particular technique
performs the best. We have also analyzed two different
ways to schedule kernels concurrently when there is no
data dependency between them. Finally we have shown how
an application developer selects the best design strategy to
compose a complete application.

We notice from our study that standalone kernels might
be tuned to give an optimal performance using shared
memory or by using higher number of threads per block
so as to hide global memory latency better. But when
refactoring techniques such as kernel merging is applied
to such optimized kernels, sometimes sub-optimal strategies
when applied to the merged kernel, give us a better result.
We observe that in certain cases the merged kernel produces
a better performance when either the data is moved to the
global memory (in those cases where there is not much
scope for data to be re-used in the merged kernel), or for
smaller number of threads per block or both. In a different
context, the authors [16] had shown that a sub-optimal
data layout for DFTs could help the application, on the
whole, to perform better. The work present here further
substantiates the argument that when designing a complex
application, optimal choices may not correspond to making
optimal choices for each individual component separately.

Our work can be extended in several directions. Our
eventual goal is to incorporate different design decisions that
we have described here, into a design tool, where a part of
the decision selection strategy can be automated. We intend
to investigate if the attributes from a performance signature
is sufficient to predict the performance when the kernel is
reused in a larger application context. Another worthwhile
extension of our work could be partial automation of appli-
cation optimization through the composition of kernels.
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