
Limited Multi-path Routing on Extended Generalized Fat-trees

Santosh Mahapatra, Xin Yuan, Wickus Nienaber

Department of Computer Science, Florida State University, Tallahassee, FL 32306

{mahapatr,xyuan, nienaber}@cs.fsu.edu

Abstract

We consider a general form of routing, called limited multi-path routing, on extended gen-
eralized fat-trees where the number of paths between each pair of processing nodes is a param-
eter. Existing single-path routing and multi-path routing, where all available paths between
a pair of processing nodes can be used for the traffic, are special cases of limited multi-path
routing. We propose path calculation heuristics, including shift-1, disjoint, and random for
limited multi-path routing on extended generalized fat-trees. All of these heuristics are based
on existing single-path routing schemes, work for limited multi-path routing with any given
limit of paths between processing nodes, gracefully increase routing performance as the limit
increases, and reach optimal when all paths between processing nodes are allowed. Extensive
flow-level and flit-level simulation experiments are carried out to study the performance. The
results show that the disjoint heuristic significantly out-performs the other methods.

1 Introduction

The fat-tree topology has been widely adopted in high performance computing (HPC) clusters and
data centers due to its properties such as logarithmic diameter, scalability of bisection-bandwidth,
and multiple shortest paths between any pair of processing nodes. To fully exploit the capabilities
of fat-trees and maximize user-perceived performance, effective routing schemes must be designed
[6].

We consider traffic oblivious routing schemes where the routes are independent of the traffic
condition in the network. Existing traffic oblivious routing schemes for fat-trees include single-
path routing (e.g. [4, 15]) and multi-path routing [16] where all shortest routes between each pair
of processing nodes can be used to route traffic between the pairs. We will call such multi-path
routing unlimited multi-path routing and use the term path for shortest path. Empirical and
theoretical study have shown that single-path routing cannot fully exploit fat-tree capabilities
[6, 16] while unlimited multi-path routing can achieve optimal routing for an arbitrary traffic
pattern on a special fat-tree [16]. However, for reasonably large networks, the number of paths
between a pair of processing nodes can be very large and unlimited multi-path routing will require
significant resources, which may not be available. For example, unlimited multi-path routing
cannot be supported on many reasonably sized InfiniBand networks due to resource constraints.

Since multi-path routing can achieve better load balancing than single-path routing, it would
be desirable to support multi-path routing under various constraints. We propose limited multi-
path routing for fat-trees where the number of paths between each pair of processing nodes is
a parameter. Limited multi-path routing is general in that single-path routing and unlimited
multi-path routing are special forms of limited multi-path routing. With limited multi-path
routing, different multi-path routing schemes can be deployed for networks with different resource

availability. Although single-path routing and unlimited multi-path routing for fat-trees have been
extensively studied, studies pertaining to limited multi-path routing are limited: it is unclear how
to select the limited number of routes for each pair to maximize performance. This is the problem
we consider in this work.

We propose path calculation heuristics for limited multi-path routing on extended generalized
fat-trees, including shift-1, disjoint, and random. The shift-1 and disjoint heuristics are based
on the well-known destination-mod-k single-path routing scheme [15] while the random heuristic
utilizes randomization technique. All of these heuristics work for limited multi-path routing with
any given limit of paths between processing nodes, gracefully increase routing performance as
the limit increases, and reach optimal when all paths between processing nodes are allowed. We
perform extensive flow-level and flit-level simulation experiments to study the performance of the
proposed schemes on various topologies. Our results indicate that limited multi-path routing
performs significantly better than single-path routing even when the number of paths allowed is
small (e.g. 2 or 3 paths). In addition, the disjoint heuristic significantly out-performs the other
methods, which indicates that path selection for limited multi-path routing is important and the
disjoint heuristic is effective in finding the routes for limited multi-path routing.

The rest of the paper is organized as follows. Section 2 describes the related work. The
background of this research is presented in Section 3. Section 4 studies the routing on extended
generalized fat-trees and introduces the proposed routing schemes. The results of our performance
study are discussed in Section 5. Finally, we conclude the paper in Section 6.

2 Related work

Since the inception of the fat-trees as general purpose interconnection networks [8], many variants
of fat-trees have been proposed and studied including the m-port n-trees [10], k-ary n-trees [13],
generalized fat-trees (GFT) and extended generalized fat-trees (XGFT) [12]. The XGFT is the
most generic: almost all other existing variants of fat-trees can be described as XGFTs. Existing
load-balanced traffic oblivious routing schemes for fat-tree networks are limited. Existing single-
path routing schemes mainly include random routing where a random path is selected through a
top level switch for a source-destination (SD) pair [3, 5], the Source-mod-k routing [9, 12, 15], and
the Destination-mod-k routing [4, 5, 10, 15, 17]. The Source-mod-k and the Destination-mod-k
routing have been shown to have negligible difference in performance [15]. Analyses performed
on Destination-mod-k routing have concluded that it is better than random routing [7] and some
adaptive routing [4, 15]. The single-path routing scheme in [16] can only apply to a subset of
XGFT. The unlimited multi-path routing scheme for m-port n-trees has also been investigated
[16]. All existing routing schemes are either single-path or unlimited multi-path. Study related
to limited multi-path routing is limited: the methods to compute paths for limited multi-path
routing have not been developed; the performance impact of limited multi-path routing is not
understood. These are the issues that we investigate in this work.

3 Background

3.1 Extended generalized fat-trees

The extended generalized fat-tree, XGFT , was proposed in [12]. We describe this topology for the
completeness of this paper. An extended generalized fat-tree XGFT (h;m1,m2, ...,mh;w1, w2, ..., wh)

2

has h + 1 levels of nodes with nodes at level 0 (lowest level) only having parents, nodes at level h
(highest level) only having children, all other nodes having both parents and children. Each level
i node, 0 ≤ i ≤ h − 1, has wi+1 parents; and each level i node, 1 ≤ i ≤ h, has mi children. To
connect to other nodes (parents and/or children) in the XGFT, each level i node, 1 ≤ i ≤ h − 1,
has pi = wi+1 + mi ports, each level 0 node has p0 = w1 ports and each level h node has ph = mh

ports. The ports of a node at level i are numbered as 0, 1, . . . , pi − 1 starting at the leftmost
upper port spanning across to the rightmost upper port and then continuing at the lower ports
starting at the leftmost port and spanning across to the rightmost lower port. An example of
port numbering is shown in Figure 2(b). Each level i node, 0 ≤ i ≤ h − 1, is connected to its
wi+1 parents through ports 0, 1, . . . , wi+1 − 1; and each level i node, 1 ≤ i ≤ h, is connected to
its mi children through ports wi+1, wi+1 + 1, . . . , wi+1 + mi − 1 except the level h nodes, which
are connected to their children through ports 0, 1, . . . ,mh − 1. An example of port connectivity is
shown in Figure 2(a). Level 0 nodes are processing nodes while nodes in other levels are switches
or routers. We will call level 0 nodes processing nodes and other nodes switches. Level h switches
will be called top level switches. XGFT (h;m1,m2, ...,mh;w1, w2, ..., wh) has

∏h
i=1 mi processing

nodes (level 0 nodes);
∏h

i=1 wi top level switches (level h nodes).
XGFT (h;m1, ...,mh;w1, ..., wh) is constructed recursively as follows. When h = 0, XGFT (0; ;)

consists of one single node. For h > 0, XGFT (h;m1, ...,mh;w1, ..., wh) is formed by using mh

copies of XGFT (h − 1;m1, ...,mh−1;w1, ..., wh−1) and w1 × w2 × ... × wh top level switches. Let
us number the w1 × w2 × ... × wh top level switches from 0 to w1 × w2 × ... × wh − 1. Similarly,
the w1 × w2 × ... × wh−1 top level switches in the sub- XGFT (h − 1;m1, ...,mh−1;w1, ..., wh−1)
are numbered from 0 to w1 × w2 × ... × wh−1 − 1. Then, each of the top level switches, x,
0 ≤ x ≤ w1×w2×...×wh−1−1, in the mh copies of XGFT (h−1;m1,m2, ...,mh−1;w1, w2, ..., wh−1)
is connected to top level switches wh × x to wh × (x + 1) − 1. At any level l, 0 ≤ l ≤ h, there are
(
∏h

i=l+1 mi) × (
∏l

i=1 wi) nodes.
Alternatively, we can number the nodes by the h + 1 digit tuple (l, ah, ah−1, ..., a1) where l is

the node level; and for all i, l + 1 ≤ i ≤ h, 0 ≤ ai < mi; and for all i, 1 ≤ i ≤ l, 0 ≤ ai < wi.
Examples for XGFT is shown in Figure 1. A node A = (l, ah, ah−1, ..., a1) at level l connects to
node B = (l + 1, bh, bh−1, ..., b1) at level l + 1 such that for all i(6= l), 0 ≤ i < h, ai+1 = bi+1, that
is the node labels match at all digits except at the l-th digit, where they may or may not match.
An example of node labelling is shown in Figure 2(a). For example node (001) at level 1 connects
to nodes (001), (011) at level 2. Next, we will describe some properties of XGFT that will be used
later in the paper.

XGFT(3; 4,4,3; 1,2,2)

XGFT(1; 4; 1) XGFT(2; 4,4; 1,2)

processing nodes

switches

Figure 1: Examples of XGFT

3

000 001 002 010 011 012 100 101 102 110 111 112

000 001 010 011 100 101 110 111

000 010 001 011 100 110 101 111

000 100 200 010 110 210 001 101 201 011 111 211

0

1

0
1

2

0 1

3 4

1

10 0 1 0 0 0 0 0 0 0 0 0 01 1 1 1
1 1 1 1 1 1

0

2
3

4

0
0 0 0 0 0 01 1 1 1 1

1 1

2 2 2
2 2 2 2

3 3 3 3 3 3 3
4 4 4 4 4 4 4

3 3 3 3 3 3 34 4 4 4 4 4 4

0 0
0 0 0 0

1 1
1 1

2
2 2

2 2 2 2
1

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1

(a) Node labelling xgft(3; 3,2,2; 2,2,3)

������������ �������
�

0 i+1w −1

i+1w + m −1i
wi+1

1

level i

.

.
.

.. .

(b) Port Numbering

Figure 2: Node labelling on XGFT (3; 3,2,2; 2,2,3) and port numbering

Property 1: Let the Nearest Common Ancesters (NCA) for two processing nodes S and D
(S 6= D) be at level k(1 ≤ k ≤ h). There are

∏k
i=1 wi different shortest paths between S and D.

If the NCA of processing nodes S and D be at level k, the two nodes are contained in a subtree
XGFT (k;m1, ...,mk;w1, ..., wk). Within this subtree, S can reach D by going up to any of the
top level switches and then down to reach D; and there are

∏k
i=1 wi top level switches in the

sub-XGFT, and thus
∏k

i=1 wi shortest paths between the two nodes.

3.2 Routing and its performance metric

Let the system have N =
∏h

i=1 mi processing nodes, numbered from 0 to N − 1. The traffic
demand is described by an N × N Traffic Matrix (TM). Each entry tmi,j in TM , 0 ≤ i ≤ N − 1,
0 ≤ j ≤ N − 1 is the amount of traffic from node i to node j.

Routing specifies how the traffic for each source-destination (SD) pair is routed through the net-

work. A multi-path routing scheme is characterized by a set of paths MPi,j = {MP 1
i,j , ...,MP

|MPi,j |
i,j }

for each SD pair (i, j), and the fraction of the traffic routed through each path fi,j = {fk
i,j|k =

1, 2, ..., |MPi,j |} such that
∑|MPi,j |

k=1 fk
i,j = 1. Single-path routing schemes are special multi-path

routing with |MPi,j| = 1.
For a given traffic matrix, TM , the performance of a routing scheme is measured by the

maximum link load. Let Links be the set of all links in the network. For a routing scheme r, the
maximum link load for TM is given by

MLOAD(r, TM) = max
l∈Links

{
∑

i,j,k such that l∈MP k
i,j

tmi,j × fk
i,j}.

The optimal routing for TM minimizes the maximum link load. Formally, the optimal load for
a traffic matrix TM is given by

OLOAD(TM) = min
r is a routing

{MLOAD(r, TM)}.

4

The performance ratio of a routing r for TM measures how far r is from being optimal. It is
defined as the maximum link load of r divided by the smallest possible maximum link load on
TM [1].

PERF (r, TM) =
MLOAD(r, TM)

OLOAD(TM)
.

PERF (r, TM) is at least 1. It is exactly 1 if and only if the routing is optimal for TM . The
definition of performance ratio of a routing scheme is extended to be with respect to a set of
traffic matrices [1]. Let Γ be a set of traffic matrics, the performance ratio of r on Γ is defined as

PERF (r,Γ) = max
TM∈Γ

{PERF (r, TM)}.

When the set Γ includes all possible traffic matrices, the performance ratio is referred to as
the oblivious performance ratio [1]. The oblivious performance ratio of a routing r is denoted by
PERF (r). The oblivious performance ratio is the worst performance ratio that a routing obtains
with respect to all traffic matrices. A routing with a minimum oblivious ratio is an optimal
oblivious routing scheme and its oblivious ratio is the optimal oblivious ratio of the network.

3.3 Destination-mod-k routing

Existing single-path routing schemes for XGFT in general can be classfied into two classes: source-
mod-k (s-mod-k) or destination-mod-k (d-mod-k). These two routing approaches have similar
performance. d-mod-k routing is more popular recently since it can be directly realized in Infini-
Band [10]. To establish a path from source s to destination d in an XGFT (h;m1,m2, ...,mh;w1, w2, ..., wh)
at level k along its upward path to the NCA of s and d, d-mod-k chooses a parent node connected
to the port identified by b d∏k

i=1
wi

c mod wk+1.

4 Routing on Extended Generalized Fat-trees

Although d-mod-k routing and unlimited multi-path routing have been proposed, their perfor-
mance ratios on XGFT have not been studied. The performance ratios of single-path and unlim-
ited multi-path routing for 2-level and 3-level, m-port n-trees have been established in [16] but
the study covers m-port n-trees, a subset of XGFTs, and does not cover XGFT in general. In this
section, we will first established the performance ratios of d-mod-k routing and unlimited multi-
path routing on XGFT. The results show (1) that routing with optimal performance ratio can be
achieved with unlimited multi-path routing on XGFT and (2) that the performance ratio for d-
mod-k is poor for certain type of XGFTs. We will then present several limited multi-path routing
schemes of which single-path routing and unlimited multi-path routing are special cases. Limited
multi-path routing allows routing performance and resource requirement in between single-path
routing and unlimited multi-path routing to be achieved. Three limited multi-path routing heuris-
tics are proposed: shift-1, disjoint, and random. The shift-1 and disjoint heuristics are based on
d-mod-k routing while the random heuristic is based on randomization technique. All schemes
gracefully improve the routing performance as the number of paths allowed for each SD pair in-
creases and achieve optimal routing on XGFT when the number of paths allowed is the maximum
possible number of paths for the SD pair.

5

4.1 Performance ratios for single-path and unlimited multi-path routing

XGFT (h;m1, ...,mh;w1, ..., wh) contains mh sub-trees XGFT (h − 1;m1, ...,mh−1;w1, ..., wh−1),
mh ×mh−1 sub-trees XGFT (h− 2;m1, ...,mh−2 ;w1, ..., wh−2), ..., mh ×mh−1 × ...×m1 sub-trees
XGFT (0; ;), which is a single processing node. We will use the notation ST (k) to represent the
set of sub-trees of height k XGFT (k;m1, ...,mk ;w1, ..., wk)’s, stk to represent one of the sub-trees
of height k, and stk to represent the rest of XGFT that are not in stk.

For a traffic matrix TM , the maximum amount of traffic that goes in or out of a particular
sub-tree stk is given by

MT (TM, stk) = max{
∑

i∈stk ,j∈stk

{tmi,j},
∑

i∈stk ,j∈stk

{tmj,i}}

Let us denote TL(k) =
∏k+1

i=1 wi be the number of links connecting stk to other part of the
XGFT. For a TM, let us define

ML(TM) = max
k

((max
stk∈ST (k)

MT (TM, stk))/TL(k)).

Lemma 1: For any traffic matrix TM , the optimal load for TM , OLOAD(TM) ≥ ML(TM).

Proof: Let stm be the sub-tree of height m that has the largest MT (TM,stm)
TL(m) among all sub-trees

(of all different heights), that is, MT (TM,stm)
TL(m) = ML(TM). Since stm only has TL(m) one-

directional links connecting the subtree to the other part of the fat-tree, and the TL(m) links
must collectively carry MT (TM, stm) units of traffic, there exists at least one link whose load must

be at least MT (TM,stm)
TL(m) regardless of the routing algorithm. From the definition of OLOAD(TM),

OLOAD(TM) ≥ MT (TM,stm)
TL(m) = ML(TM). 2.

Let us consider the unlimited multi-path routing scheme where we can use any number of
paths to carry traffic between each SD pair. Consider the following multi-path routing scheme.
For each SD pair, let the number of shortest paths in the XGFT between the SD pair be X. The
routing evenly distributes the load for the SD pair among the X paths. We will call this routing
UMULTI.
Theorem 1: For any XGFT, PERF (UMULTI) = 1.
Proof: Given any XGFT, let stk be any sub-tree at level k. Using UMULTI, for any SD pair
(s, d) such that s ∈ stk and d ∈ stk, the traffic will be evenly distributed among the TL(k) links
going out of stk. Similarly, for any SD pair (s, d) such that s ∈ stk and d ∈ stk, the traffic will be
evenly distributed among the TL(k) incoming links to stk. Hence, both the incoming and out-

going links will have a load no more than MT (TM,stk)
TL(k) . Hence, MLOAD(UMULTI, TM) ≤

maxk((maxstk∈ST (k) MT (TM, stk))/TL(k)) = ML(TM). From Lemma 1, OLOAD(TM) ≥
MT (TM,stm)

TL(m) = ML(TM). Hence,

PERF (UMULTI) = max{
MLOAD(r, TM)

OLOAD(TM)
} ≤ 1.2

Theorem 2 There exists XGFT (h;m1, ...,mh;w1, ..., wh) such that PERF (d − mod − k) ≥∏h
i=1 wi.

Proof: We will prove this Theorem by constructing such an XGFT (h;m1, ...,mh;w1, ..., wh) and

a traffic pattern TM such that MLOAD(d−mod−k,TM)
OLOAD(TM) ≥

∏h
i=1 wi. Let us first fix h, m1, m2, ..., mh,

6

w1, ..., wh. Let A be the smallest integer such that A ×
∏h

i=1 wi ≥
∏h−1

i=1 mi. When
∏h

i=1 mi ≥
(A+

∏h−1
i=1 mi)×

∏h
i=1 wi ≥

∏h−1
i=1 mi, we can construct a traffic pattern that consists of traffic from

each processing in the first level h− 1 subtree (that consists of
∏h−1

i=1 mi processing nodes) to one
other processing nodes in other level h − 1 subtrees such that all traffic are concentrated in one
outgoing link from the subtree. More specifically, the first level h−1 subtree consists of processing
nodes number from 0 to

∏h−1
i=1 mi − 1. The TM consists of traffics in SD pairs (0, A ×

∏h
i=1 wi),

(1, (A +1)×
∏h

i=1 wi), ..., (j, (A + j)×
∏h

i=1 wi), (
∏h−1

i=1 mi − 1, (A +
∏h−1

i=1 mi − 1)×
∏h

i=1 wi), 0 ≤
j ≤

∏h−1
i=1 mi − 1. Each SD pair carries 1 unit of traffic. Note that since A ×

∏h
i=1 wi ≥

∏h−1
i=1 mh

and
∏h

i=1 mi ≥ (A+
∏h−1

i=1 mi)×
∏h

i=1 wi ≥
∏h−1

i=1 mi, all destinations are valid and are in different
level h − 1 subtrees. Since all destination are multiple of

∏h
i=1 wi, using d-mod-k routing, the

output port on each switch involved at level k will be port 0 (b d∏k

i=1
wi

c mod wk+1 = 0). This

leads to the out-going traffic from the subtree to concentrate on the port 0 of the first switch
(all traffic goes through one link). Hence, MLOAD(d − mod − k, TM) =

∏h−1
i=1 mi. From the

proof of Theorem 1, we can see that using UMULTI, the traffic from the subtree will be evenly

distributed to the
∏h

i=1 wi outgoing links from the subtree, Hence, OLOAD(TM) ≤

∏h−1

i=1
mi∏h

i=1
wi

.

Thus, PERF (d − mod − k) = MLOAD(d−mod−k,TM)
OLOAD(TM) ≥

∏h
i=1 wi. 2

As can be seen from Theorem 2, d-mod-k performs much worse than UMULTI. It has been
shown that for 2-level and 3-level, m-port n-tree, even the optimal single-path routing schemes
have much larger performance ratio than UMULTI [16]. The issue with unlimited multi-path
routing is that the number of paths used in the routing algorithm can be too large to be realized
for a reasonably large system. For example, for a 3-level fat-tree with 24-port switches (24-port
3-tree) as the one used in the TACC Ranger supercomputer [14]. The topology is equivalent to
XGFT (3; 12, 12, 24; 1, 12, 12), the largest number of shortest path between two nodes is 12×12 =
144. For the InfiniBand network where different paths require different addresses to realize, the
address space will run out for the unlimited routing scheme. Hence, it is desirable to develop
limited multi-path routing schemes that can achieve better performance than single-path routing
while remaining realizable with limited resources.

4.2 Limited multi-path routing on XGFT

Limited multi-path routing uses multiple paths to carry traffic between each SD pair. The num-
ber of paths allowed for each SD pair is a parameter and is denoted by K. Our multi-path
routing algorithms are built upon a single-path routing scheme. The design objective is that as
K increases, the routing performance should gracefully increase and as K reaches

∏h
i=1 wi, the

maximum possible number of paths between each SD pair, the limited multi-path routing achieves
optimal performance for all traffic patterns. Since d-mod-k routing is a universal single-path rout-
ing scheme for XGFT and has been shown to achieve good performance among single-path routing
schemes, our limited multi-path routing scheme will build upon the d-mod-k routing.

For an XGFT, the set of shortest paths for each SD pair can be easily determined. To compute
paths for multi-path routing with K paths, we must select K paths out of the set of all possible
shortest paths. For example, d-mod-k routing determines one path for each SD pair. In describing
the path computation heuristics for multi-path routing, we will use the following simple enumer-
ation of all shortest paths between each SD pair. Let X be the number of shortest paths between
two processing nodes: we will number the first path (Path 0) to be the path where the sender
goes to the leftmost top level switch in the XGFT and then to the receiver, the second path (Path

7

1) to be the path where the sender goes second leftmost top level switch and then to the receiver,
and the i-th path (Path i − 1) to be the path where the i-th leftmost top level switch is used.
Notice that from each processing node, there is only one path to each of the top level switches.
For example, in XGFT (3; 4, 4, 4; 1, 4, 2) in Figure 3, there are

∏3
i=1 wi = 1 × 4 × 2 = 8 paths

between SD pair (0, 63) are:

• Path 0: (0 → 64 → 80 → 96 → 92 → 79 → 63)

• Path 1: (0 → 64 → 80 → 97 → 92 → 79 → 63)

• Path 2: (0 → 64 → 81 → 98 → 93 → 79 → 63)

• Path 3: (0 → 64 → 81 → 99 → 93 → 79 → 63)

• Path 4: (0 → 64 → 82 → 100 → 94 → 79 → 63)

• Path 5: (0 → 64 → 82 → 101 → 94 → 79 → 63)

• Path 6: (0 → 64 → 83 → 102 → 95 → 79 → 63)

• Path 7: (0 → 64 → 83 → 103 → 95 → 79 → 63)

�� �� �����	
�
������������

���
���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 101100 102 103

0
63

Figure 3: XGFT(3; 4,4,4; 1,4,2)

4.2.1 Random heuristic

Randomization is a powerful technique for routing traffic. For multi-path routing with a maximum
of X paths between each SD pair, the random heuristic basically randomly selects a maximum of K
paths among all shortest paths for the SD pair. When the total number of different shortest paths
is less than K, all of the different paths will be used with the traffic distributed uniformly among
the paths. Hence, for XGFT (h;m1, ...,mh;w1, ..., wh), when K ≥

∏h
i=1 wi, all shortest paths

between each SD pair will be used to carry traffic uniformly: the heuristic becomes UMULTI
and is optimal for any traffic matrix. When K = 1, it has been shown that random heuristic in
general is not as effective as the d-mod-k routing [4, 15]. However, this heuristic can serve as the
benchmark for other heuristics to compare with.

8

4.2.2 Shift-1 heuristic

Since the d-mod-k routing is known to be effective in routing traffic on XGFT [4, 15], we develop
multi-path routing heurstics based on this scheme. The basic idea is to try to create K copies
of d-mod-k routing with each copy carrying 1

K
traffic for each SD pair. The first d-mod-k based

scheme is called the shift-1 heuristic. The idea is to first enumerate all paths between an SD
pair as shown previously and then select K paths built upon d-mod-k routing. Let the number of
possible paths between an SD pair be X and ALLPATHS be the set of paths for the SD pair.
Let us use ALLPATHS[i] to denote Path i for the SD pair. Let path be the path computed by
the d-mod-k routing: path is one path in ALLPATHS, path ∈ ALLPATHS. Let this path be
ALLPATHS[i]. The shift-1 heuristic will use K consecutive paths next to i-th path starting at
index i that is ALLPATHS[i], ALLPATHS[(i+1) mod X], . . . , ALLPATHS[(i+K−1) mod X]
to carry traffic for the SD pair.

For illustration, consider the paths between the SD pair (0, 63) in Figure 3. The path path
computed by d-mod-k routing is (0 → 64 → 83 → 103 → 95 → 79 → 63), that is Path 7. Assuming
that K = 3, the shift-1 heuristic chooses K(= 3) paths as follows. The first path chosen is path
at index i = 7 (Path 7) in ALLPATHS, the second path will be at index (i + 1) mod X =
(7 + 1) mod 8 = 0 and the third path will be at index (i + 2) mod X = (7 + 2) mod 8 = 1.
Therefore we have the K = 3 paths as the following: (0 → 64 → 83 → 103 → 95 → 79 → 63)
(Path 7), (0 → 64 → 80 → 96 → 92 → 79 → 63) (Path 0), (0 → 64 → 80 → 97 → 92 → 79 → 63)
(Path 1).

When K ≥ X, we will only need to use X paths for the SD pair. For XGFT (h;m1,m2, ...,mh;w1, w2, ..., wh),
the largest number of shortest paths for any SD pair is

∏h
i=1 wi. When K ≥

∏h
i=1 wi, all of the

shortest paths between a SD pair are used and the heuristic becomes UMULTI. When K is
small, this heuristic basically uses K copies of d-mod-k paths (each shift is logically equivalent to
one d-mod-k routing for all SD pairs).

One issue with this heuristic is that when K is small, the traffic for each SD pair may be spread
out only at the top level while there may be contention at the lower levels. For example, for SD
pair (0, 63), when K = 3, two of the three paths, Path 0 and Path 1, differ only at the top level
switch: the links at lower level are shared among the multiple paths. As a result, the lower level
links may not be as balanced as the top level links with this heuristic. This limitation motivates
another heuristic, which we call the disjoint heuristic.

4.2.3 Disjoint heuristic

The key idea of the disjoint heuristic is to use a set of size K of d-mod-k paths while making the
K paths for each SD pair as disjoint as possible. Instead of computing paths by shifting the top
level switches in the shift-1 heuristic, the disjoint heuristic shifts the level 1 switches: the links
chosen for two different paths for a SD pair at level 1 switches are different leading to different
switches at level 2, therefore the two paths for the same SD pair with same lowest level switches
are disjoint. For example, for the SD pair (0, 63), Path 7 (0 → 64 → 83 → 103 → 94 → 79 → 63)
and Path 1 (0 → 64 → 80 → 97 → 92 → 79 → 63) forks at the level 1 switch and the sub-paths
between the level 2 switches (64 → 83 → 103 → 94 → 79) and (64 → 80 → 97 → 92 → 79) are
disjoint.

The disjoint heuristic maximizes the use of link-disjoint paths while maintaining the d-mod-k
routing structure. The heuristic first considers w1 paths that fork at the lowest level (level 0)
processing nodes, then considers the w1 × w2 paths that fork at the lowest level switches, then

9

considers w1×w2×w3 paths that fork at the second lowest level switch. Specifically, let an SD pair
with the common ancestor at level k has X =

∏k
i=1 wi different shortest paths. Let the d-mod-k

path be Path i. The heuristic first considers including the w1 Paths i, (i + 1 ×
∏k

i=2 wi) mod X,
..., (i+(w1−1)×

∏k
i=2 wi) mod X. We will call these w1 paths level 1 disjoint paths starting from

i. If K > w2, the w2 × w3 paths that disjoin at level 2 switches considers the following sequence:
level 1 disjoint paths starting from i, level 1 disjoint paths starting from i + 1 ×

∏k
i=3 wi, level 1

disjoint paths starting from i + (w2 − 1)×
∏k

i=3 wi. These are level 2 disjoint paths starting from
i. The higher level disjoint paths can be recursively defined in a similar manner all the way to
level k disjoint paths. Notice that the sequence of paths to be included in the multi-path routing
is in a close-form and can enumerate easily. Using the disjoint paths not only balances the load
at the top level, but also at the lower level and is likely to achieve better load balancing results.
Our performance study indicates that the disjoint heuristic significantly out-performs the other
two heuristics.

For illustration, consider the paths between SD pair (0, 63) in XGFT(3; 4,4,4; 1,4,2) in Figure 3.
In this topology, w1 = 1, w2 = 4, and w3 = 2. There are

∏3
i=1 wi = 1 × 4 × 2 = 8 paths between

the two nodes. The exact path is listed previously. The path path computed by d-mod-k routing
is (0 → 64 → 83 → 103 → 95 → 79 → 63) for the SD pair. Clearly path ∈ ALLPATHS
and its index in ALLPATHS is 7. Since w1 = 1, there is no level 0 disjoint path. The first
w1 × w2 = 1 × 4 = 4, level 2 disjoint paths are Path 7, Path 7 + 1 × 2 mod 8 = 1, Path
7 + 2 × 2 mod 8 = 3, and Path 7 + 3 × 2 mod 8 = 5. By choosing disjoint paths beginning at
the lower levels first and gradually moving upwards, the scheme intuitively provides better traffic
spreading and overcomes the limitations of the shift-1 heuristic.

5 Performance study

This section reports our simulation results. We implement a flow-level and flit-level network sim-
ulator for the proposed schemes and compare the multi-path routing with single-path routing.
In the experiments, we simulate various XGFTs including 3-level trees XGFT (3; 4, 4, 8; 1, 4, 4),
XGFT (3; 8, 8, 16; 1, 8, 8) and XGFT (3; 12, 12, 24; 1, 12, 12), which are topologically equivalent to
8-port 3-tree, 16-port 3-tree and 24-port 3-tree respectively [10], and 2-level trees including
XGFT (2; 4, 8; 1, 4), XGFT (2; 8, 16; 1, 8) and XGFT (2; 12, 24; 1, 12) that are equivalent to 8-port
2-trees, 16-port 2-trees, and 24-port 2-trees respectively.

Two types of traffic are studied in the experiments: permutation traffic where each processing
node sends messages to another processing node (possibly itself) and random uniform traffic.
The performance metrics are maximum link load for flow-level simulation and message delay and
maximum aggregate throughput for flit-level simulation. For permutation traffic, we report the
results of average permutation performance that is obtained as follows. For each topology and each
routing algorithm, we first sample 1000 random permutations and compute the average maximum
permutation load among the 1000 random permutations. We then compute the confidence interval
with 99% confidence level. If the confidence interval is less than 1% of the average, we stop
the simulation and report the average maximum permutation load (the result is deemed to be
sufficiently accurate). If the confidence interval is larger than 1% of the average, we double the
number of samples and repeat the process until the 1% threshold is reached. For random routing,
the results are the average of five random seeds.

Figure 4(a) shows the average maximum link load for permutation traffic using single-path
routing and multi-path routing with different K’s on 2-level XGFT (2; 8, 16; 1, 8). Results on

10

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8A
v
e
r
a
g
e

O
f

M
a
x
i
m
u
m

L
o
a
d

Number of Paths

d-mod-k
shift-1

disjoint
random

(a) XGFT(2; 8,16; 1,8)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70A
v
e
r
a
g
e

O
f

M
a
x
i
m
u
m

L
o
a
d

Number of Paths

d-mod-k
shift-1

disjoint
random

(b) XGFT(3; 8,8,16; 1,8,8)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12A
v
e
r
a
g
e

O
f

M
a
x
i
m
u
m

L
o
a
d

Number of Paths

d-mod-k
shift-1

disjoint
random

(c) XGFT(2; 12,24; 1,12)

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160A
v
e
r
a
g
e

O
f

M
a
x
i
m
u
m

L
o
a
d

Number of Paths

d-mod-k
shift-1

disjoint
random

(d) XGFT(3; 12,12,24; 1,12,12)

Figure 4: Average Link Load

other 2-level trees have a similar trend as seen in Figure 4(c). For 2-level trees, the shift-1
heuristic and the disjoint heuristic are identical, as shown in the figure. As can be seen from the
figure, multi-path routing with either heuristic shift-1, disjoint, and random gracefully improves
the maximum link load as the number of paths per SD pair (K) increases and reaches the optimal
when K = w1 × w2. Both d-mod-k based heuristics are more effective than the random scheme
when K is small.

Figure 4(d) shows the average maximum link load for permutation traffic using single-path
routing and multi-path routing with different K’s on 3-level XGFT (3; 12, 12, 24; 1, 12, 12). Results
on other 3-level trees have a similar trend as seen in Figure 4(b). For 3-level trees, there is
significant difference between shift-1 heuristic and the disjoint heuristic: the disjoint heuristic has
significant better performance as shown in the figure. In fact, for most K’s, disjoint is better than
random which in turn is better than shift-1. Basically, link contention at lower level switches are
significant for the permutation traffic: disjoint and random are able to distribute the load more
evenly at lower level than shift-1. By carefully selecting the paths, disjoint is noticeably better

11

than random for all K <
∏h

i=1 wi. This figure also shows that using multi-path routing, even
for a relatively small K, the performance is much better than sinle-path routing. For the large
XGFT (3; 12, 12, 24; 1, 12, 12) (24-port 3-tree), with 4 or 8 paths, the maximum link load can be
drastically reduced. This shows the effectiveness of limited multi-path routing.

The simulator at the flit-level simulates virtual cut-through (VC) switching to closely resemble
Infiniband networks. In the flit-level simulation, we evaluate the performance using uniform
random traffic, where each source sends traffic to a randomly selected destination node such that
each node in the network has an equal probability of being the destination. Since we are evaluating
the performance of the routing schemes, we run our simulations using only one virtual channel.
The simulator uses credit-base flow-control between switches which implies that a packet is blocked
if the destination port does not have available buffer space. We use a packet size of 10 flits and
a fixed message size of 10 packets. The message arrival follows Poisson distribution with mean
value depending on the offered load. The input and output buffers of each of processing nodes
and switches have a capacity of 4 packets each. We perform experiments by varying the offered
load till the network reaches saturation where the throughput drops sharply and we measure
the average throughput and average message delay. We plot the average message delay against
the normalized offered load and show the maximum throughput achieved against the normalized
offered load in Table 1 under the uniform traffic.

Before we discuss the flit-level simulation results a few finer points about the virtual cut-through
switching should provide good insight into the expected results. It is well known that network
performance under virtual cut-through dramatically decreases when the network is beyond satu-
ration due to tree saturation [2]. Due to the blocking behavior of such techniques messages get
blocked faster thereby augmenting the message delays exponentially when the network is close
to saturation. Therefore, the improvement that would be realized due to better routing schemes
is in the increased throughput and a higher saturation point in terms of offered load. Under
low offered load, the aggregate throughput equals the offered load but beyond saturation, the
throughput decreases.

Num-Path d-mod-k shift-1 random disjoint

1 49.02 - 38.19 -

2 - 54.88 49.07 61.32

4 - 59.03 59.01 67.65

8 - 67.65 69.75 71.35

16 - 65.30 73.41 76.95

Table 1: Throughput Uniform Traffic XGFT(3; 4,4,8; 1,4,4)

Table 1 shows the maximum throughput achieved with different routing schemes under uniform
random traffic. Several observations from the experiments include the following. First, allowing
more paths in general increase the maximum throughput for each heuristic. This reaffirms other
study that multi-path routing allows resources in the network to be used more effectively. Second,
different path selection heuristic can make a significant difference in the performance. For ex-
ample, with K = 8 on topology XGFT (3; 4, 4, 8; 1, 4, 4), shift-1 achieves a maximum throughput
of 67.65%, random achieves a maximum throughput of 69.75%, and disjoint achieves a maxi-
mum throughput of 71.35% under uniform random traffic. When K = 2, disjoint achieves an
improvement of 11.7% over shift-1, and 25.0% over random. When K = 4, disjoint achieves an
improvement of 14.6% over shift-1, and 14.6% over random. Third, in terms of message delay,
multi-path routing is also significantly better than single-path routing. However, allowing more

12

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

M
e
s
s
a
g
e

D
e
l
a
y

(
u
s
)

Offered Load (%)

d-mod-k
disjoint(4)
disjoint(8)
shift-1(4)
shift-1(8)
random(1)
random(4)
random(8)

Figure 5: Message Delay Uniform Traffic XGFT(3; 4,4,8; 1,4,4)

paths in general have a better message delay at medium to high load. This is due to the fact that
more paths increase maximum throughput. At low load, using more paths does not always imply
smaller message delay. With multi-path routing, there are two competing factors that can affect
the average message delay. With more paths, the chance of contention increases as traffic is more
spread out. However, the penalty for network contention decreases since the traffic is more evenly
distributed among the links. Hence, whether increasing the number of paths can improve message
delay is not clean. In the experiments, with the disjoint heuristic, disjoint(4) and disjoint(8)
both have better delay than d-mod-k. But disjoint(4) has better delay than disjoint(8) at low
load. The flit-level simulation results show that for the same K, performance of disjoint is better
than the other multi-path routing shift-1 and random. This matches the results in the flow-level
simulations.

6 Conclusion

We investigate limited multi-path traffic oblivious routing schemes, propose three methods for
computing paths for limited multi-path routing, and evaluate the performance through simula-
tion. Our results indicate that limited multi-path routing can significantly reduce link contention
and improve message delay and throughput over single-path routing schemes. The results also
demonstrate that the path selection method used for limited multi-path routing has significant
impact on the effectiveness of limited multi-path routing and that the disjoint heuristic is effective
in finding paths for limited multi-path routing.

References

[1] D. Applegate and E. Cohen, “Making Intra-Domain Routing Robust to Changing and Un-
certain Traffic Demands: Understanding Fundamental Tradeoffs,” ACM SIGCOMM, pages
313-324, 2003.

13

[2] L. Fernández and J. M. Garcia (Spain), “Congestion Control for High Performance Virtual
Cut-through Networks”, Proceeding (378) Applied Informatics, 2003

[3] J. Flich, M. P. Malumbres, P. Lopez, and J. Duato, Improving Routing Performance in
Myrinet Networks, in IEEE IPDPS, pages 27-32, 2000.

[4] C. Gomez, F. Gilabert, M. Gomez, P. Lopez, and J. Duato, Deterministic versus Adaptive
Routing in Fat-trees, IEEE IPDPS, 2007

[5] R. I. Greenberg and C. E. Lerserson, Ramdonzied Routing on Fat- trees. In 26th Annual
IEEE Symposium on Foundations of Computer Science, pages 241-249, Oct. 1985.

[6] T. Hoefler, T. Schneider, and A. Lumsdain, Multistage Switches are not Crossbars: Effects
of Static Routing in High-Performance Networks, IEEE International Conference on Cluster
Computing, pages 116-125, 2008.

[7] G. Johnson, D. J. Kerbyson, and M. lang, Optimization of InfiniBand for Scientific Applica-
tions, IEEE IPDPS Workshop on Large Scale Parallel Processing (LSPP), 2008.

[8] C.E. Leiserson, “Fat-trees: Universal Networks for hardware efficient supercomputing,” IEEE
trans. on computers, 34(10):892-901, 1985.

[9] C.E. Leiserson, et. al., The Network Architecture of the Connection Machine CM-5, in Proc.
the Fourth Annual ACM Symposium on Parallel Algorithms and ARchitectures, pages 272-
285, 1992.

[10] X. Lin, Y. Chung, and T. Huang, A Multiple LID Routing Scheme for Fat-Tree-Based In-
finiBand Networks. Proceedings of the 18th IEEE International Parallel and Distributed
Processing Symposium (IPDPS04), p. 11a, Sana Fe, NM, April 2004.

[11] W. Nienaber, S. Mahapatra, and X. Yuan, “Routing Schemes to Optimize Permutation
Performance on InfiniBand Interconnects with 2-Level Generalized Fat-tree Topologies,”
Technical Report, Dept. of Computer Science, Florida State University, 2010. Available at
http://www.cs.fsu.edu/∼xyuan/paper/103.pdf.

[12] S. R. Ohring, M. Ibel, S. K. Das, and M. Kumar, “On Generalized Fat Trees,” Proceedings
of the 9th International Parallel Processing Symposium, pages 37-44, 1995.

[13] F. Petrini and M. Vanneschi. “K-ary n-trees: High performance networks for massively par-
allel architectures.” Technical report, 1995.

[14] The TACC Ranger supercomputer, http://www.tacc.utexas.edu/resources/hpc.

[15] G. Rodriguez, C. Minkenberg, R. Beivide, R. P. Luijten, J. Labarta, and M. Valero, Oblivi-
ous Routing Schemes in Extended Generalized Fat Tree Networks, in Workshop on High Per-
formance Interconnects for Distributed Computing (HPI-DC09) in conjunction with IEEE
Cluster 2009, pages 1-8, 2009.

[16] X. Yuan, W. Nienaber, Z. Duan, and R. Melhem, “Oblivious Routing in Fat-Tree Based
System Area Networks with Uncertain Traffic Demands,” IEEE/ACM Transactions on Net-
working, 17(5):1439-1452, Oct. 2009.

[17] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Optimized InfiniBand Fat-tree Rout-
ing for Shift All-to-all Communication Patterns, Concurrency and Computation: Practice
and Experience, 22(2):217- 231, Nov. 2009.

14

