

1

TrueErase: Full-storage-data-path Per-file Secure Deletion
Sarah Diesburg, Christopher Meyers, Mark Stanovich, Michael Mitchell, Justin Marshall,

Julia Gould, and An-I Andy Wang
Florida State University

{diesburg, meyers, stanovic, mitchell, jmarshal, gould, awang}@cs.fsu.edu

Geoff Kuenning
Harvey Mudd College

geoff@cs.hmc.edu

Abstract

The ability to delete sensitive data securely from electronic

storage is becoming an increasing concern. However,

current per-file deletion solutions tend to be limited to one

segment of the operating system’s storage data path, and

may leave behind sensitive data when interacting with

storage components such as journaling, file-system caches,

and certain storage media such as NAND flash.

 This work introduces TrueErase, a secure-deletion

framework. Through design, implementation, verification,

and evaluation, we show that it is possible to build a

legacy-compatible full-storage-data-path framework that

performs per-file secure deletion, works with common file

systems and emerging solid-state storage, while surviving

common system failures.

Categories and Subject Descriptors: D.4.2 [Storage
Management]: Allocation/deallocation strategies, D.4.3
[File Systems Management]: Access methods, D.4.6
[Security and Protection]: Information flow controls

General Terms: Design, Security.

Keywords: secure deletion, file systems, storage,
security, NAND flash

1. Introduction

The ability to ensure file deletion from digital storage is a

pressing concern, as frequent incidences of data theft

plague government [VE11b], academia [GO11; PS11], and

industry [LE11]. Although wary users may be diligently

emptying their digital trash bins and reformatting their

storage, little do they know that typical deletion methods

only make files invisible to users, while leaving behind

recoverable sensitive data. As a consequence, data thought

to have been erased may still be retrieved from a

decommissioned storage device [GA03; JO09].

Secure deletion is concerned with rendering a file’s

removed content and metadata (e.g., name) irrecoverable.

Achieving secure deletion is difficult due to diverse threat

models. To gain a foothold to address this overarching

problem, this paper focuses on dead forensics attacks on

the local storage device, which occur after the computer

has been shut down properly. Attacks on storage backups

or live systems, cold boot attacks [HA08], covert channels,

and policy violations are beyond our scope.

To simplify our design, we focus on the scenario where

we have full control of the entire storage data path in a

non-distributed environment. Thus, the basic research

question is that under benign user control and system

environments, what holistic solution can we design and

implement to ensure that the secure deletion of a file is

honored throughout the legacy storage data path?

We introduce TrueErase, a framework that irrevocably

deletes data and metadata. Through design,

implementation, verification, and evaluation, we have

demonstrated that TrueErase is unique in the following

combination of properties: (1) TrueErase works with

legacy applications, common file systems, and emerging

storage media (e.g., NAND flash). (2) Unlike techniques

that involve the physical destruction of storage devices

[DO95; BE04; OS11], TrueErase offers the flexibility to

securely delete individual files (e.g., for cases such as

expired client data, statute of limitations, etc.). (3) Unlike

most per-file solutions (§2.1, §8), TrueErase is holistic and

covers the entire storage data path, so that a secure-deletion

operation issued by one segment of the data path (e.g., file

system) will not be negated by another (e.g., flash that

keeps versions of data). (4) TrueErase is designed to

survive common system failures, and (5) the core logic of

the framework is verified systematically.

User space Applications

Kernel space

VFS

File system

Block-layer interface

Kernel/hardware Storage-management layer

Hardware Storage

Figure 2.1. Legacy storage data path.

2. Existing Approaches and Challenges

Typical file deletion removes only the i-node or a file’s

metadata, with the content left on the storage medium until

it is overwritten. Even recreating the file system does not

ensure secure deletion. For example, the MSDOS

format command overwrites 0.11% of the data [GA03].

Various solutions have been proposed; however, most

of them operate at one segment or level/layer, if viewed

vertically on the legacy data path (Figure 2.1). While

layering encourages the portability of individual layers, the

types of information available at each layer restrict the

effectiveness of secure-deletion solutions.

2.1. Existing approaches

Storage-management-level solutions: At the lowest level,

the storage-management layer handles vendor-specific

representations on the storage media. Since this layer

accepts requests from layers above through the block-layer

interface in terms of logical blocks, it has no information

2

on a block’s type (e.g., data, metadata), file ownership, in-

use status, etc. [GA01; SI04].

Subsequently, solutions at this layer tend to operate on

all blocks indiscriminately, with no support for per-file

secure deletion. An example is encrypting the whole

device, and then performing secure deletion via revoking

the master key [HU02; TH06; NI06; KI08; SA08; HU09;

IR11; VE11a]. Note that even if a storage device offers

secure deletion to selective blocks (e.g., per-block

sanitization [WE11]), it needs the ability to map blocks to

files and metadata to support secure deletion at the file

granularity [KI11].

File-system-level solutions: File-system solutions

reside in the virtual file system (VFS) [KL86] and the file-

system layers [JO05; PE05; JO06]. (The VFS implements

common file-system functions such as caching and allows

various file systems to run simultaneously.)

The file-system layer generally is unaware of the

storage medium and has no control over the physical

storage location of data and metadata. Thus, a file system

may issue writes of random bits to the same location,

intending to perform military-grade secure deletion [NI06]

via in-place disk overwrites. Instead, the underlying

storage medium can actually be a flash drive. Such devices

typically write every version of an update (even to the

same logical location) to a different physical location, to

avoid the slow erases required by flash before updating the

same location, negating the intent of secure deletion. Note

that per-file, encryption-based solutions will not solve the

problem, since the lower layer may not honor the secure-

deletion semantics to remove file keys.

File-system-layer solutions may also overlook the

sensitive information left behind by common journaling

mechanisms, which log information to ease recovery.

User-space solutions: At the application layer,

solutions are carried out by user-level programs. Given

that these programs operate through file systems, they

inherit the same constraints. Additionally, user programs

[KO07; NE09; GA10; SM11; PL11; YO11] have limited

control of a file’s metadata, and thus cannot enforce secure

deletion, leading to the leakage of information such as file

names, file sizes, etc.

Cross-layer solutions: Cross-layer secure-deletion

solutions do exist. However, some are not built for the

purpose of secure deletion, and do not interact well with

the legacy storage data path [SI03; SH07]. Ones that are

designed for secure deletion are tailored for specific file

systems or storage media [SI06; LE08; SU08] (see §8).

2.2. Other secure-deletion challenges

There are other secure-deletion challenges as well:

No legacy requests to delete data content: Other than

removing references to data blocks and setting the file size

and allocation bits to zeros, file systems typically do not

issue requests to erase file content. Even issuing zero-

filled data-block requests to the same logical location

cannot achieve secure deletion, as discussed in §2.1.

Complex storage-data-path optimizations: Secure-

deletion operations need to be compatible with legacy

optimizations. In particular, storage requests may be

reordered, merged (concatenated), split, consolidated

(applying one update instead of many to the same

location), cancelled, or buffered (e.g., journaled) with

versions of requests in transit.

Lack of data-path-wide identification: Tracking

request versions across storage layers is complicated by the

possible reuse of runtime data structures, identification

numbers (e.g., i-node), and memory addresses.

System crashes: Our proposed secure-deletion solution

must work with common journal-recovery mechanisms,

and our persistent states need to survive system crashes.

Verification: While verification is often overlooked by

various deletion systems, we need to ensure that (1) secure

deletions are correctly propagated throughout the storage

data path and that (2) various assumptions are checked

whenever possible.

User space Applications

Kernel space

Secure-deletion user model

Type/attribute

propagation module

VFS

File system

Block-layer interface

Kernel/hardware Enhanced storage-management layer

Hardware Storage

Figure 3.1. TrueErase framework (shaded boxes).

3. TrueErase Overview

We introduce TrueErase (shaded boxes in Figure 3.1), a

framework that propagates file-level information to the

block-level storage-management layer, so that per-file

secure deletion can be honored throughout the data path.

Secure-deletion user model: A user can use legacy

attribute-setting tools to specify files and directories whose

data and metadata will be securely deleted. Unmodified

legacy applications can operate on those objects.

Type/attribute propagation module: The VFS and file

system layers can report information and reminders of

pending update events (e.g., zeroing bitmaps) to a

centralized, type/attribute propagation (TAP) module. We

use a global unique-ID scheme to track versions of in-

transit storage requests. To handle legacy optimizations,

TAP only passively gathers and forwards information, and

it does not alter the flow and ordering of update requests.

TAP tracks only transient soft states. Thus, TrueErase

needs no mechanisms to recover its states. During crash

recovery, all operations replayed and reissued by a typical

file system’s journal-recovery procedure are handled

securely. All remnants of data and metadata in the storage

data path from the prior session are securely deleted.

Implicitly extended block-layer interface: The block-

layer interface is, in a sense, extended, so that the storage-

management layer can inquire TAP about file-level

3

information prior to performing secure operations on a

block based on its type(s) (e.g., data, i-node) and attributes.

When the block status is unknown to TAP (e.g., a

missing report from a file system), the block will be

handled securely when removed. (This behavior is

insufficient to achieve secure deletion because typical file

systems do not issue deletion requests for file content.)

Enhanced storage-management layer: We have added

secure-deletion commands for different storage media to

show that our solution generalizes. Due to length

restrictions, most of our descriptions in this paper are

confined to the flash medium.

Certain optimizations are disabled when handling

secure-deletion operations (e.g., storage-built-in caches).

Verification tools: We provide kernel- and user-level

tools to detect illegal changes in the block type, incorrect

triggering of deletion events, and missing reports from the

VFS and file-system layers. Additionally, we provide tools

to verify the core system states and transitions.

Assumptions: Because of the complexity of the storage

data path, in this work, we assume a benign personal

computing environment (e.g., laptops), where a user has

the administrative control of an uncompromised, single-

user, single-file-system, non-RAID, and non-distributed

system. The threat model is the dead forensics attacks,

which occur after a user unmounts and shuts down the

system after completing secure-deletion operations.

At the system level, we assume control of the entire

storage data path, including the storage-management layer.

Because our work focuses on the correct propagation of

information across storage layers to ensure secure deletion,

our solution will not propagate the sensitive status of a file

to another file (e.g., via tainting) or handle

copies/references of files made by users or applications.

Also, we assume the use of common journaling file

systems that adhere to the integrity properties specified by

[SI05] (e.g., ext3). Further, all update events and block

types are reported to our framework. These assumptions

allow us to concentrate on building and verifying the

properties of secure deletion.

4. TrueErase Design

The major areas of TrueErase’s design include (1)

specifying which files or directories are to be securely

deleted via a user model, (2) tracking and propagating

information across storage layers via TAP, (3) enforcing

secure deletion via storage-medium-matching mechanisms

added to the storage-management layer, and (4) exploiting

file-system-integrity properties to identify and handle

corner cases of secure deletion.

4.1. User model

Having a per-file secure-deletion capability is essential

when deleting the entire device is not an option. Also,

deleting all files securely can be prohibitive in terms of the

performance overhead.

Ideally, a user can follow the traditional permission

semantics and apply common extended-attribute-setting

tools to mark a file or directory as sensitive, which means

it will be securely deleted when removed. A legacy

application then can issue normal operations that translate

into secure-deletion operations on those specified files or

directories to remove sensitive file data content, metadata

(e.g., i-node, file name, etc.), and associated copies within

the storage data path.

Toggling the sensitive status: However, certain secure-

deletion semantics cannot easily follow traditional

permission models. For example, toggling the sensitive

status is different from toggling read/write access controls.

To illustrate, prior to a file or directory being marked

sensitive, older versions of data and metadata may have

already been left behind. Without tracking all file versions

or removing old versions for all files at all times,

TrueErase enforces secure deletion only for files or

directories that have stayed sensitive since their creation.

Should a non-sensitive file be marked sensitive, secure

deletion will be carried out on a best-effort basis (indicated

by an extended-attribute flag). That is, only versions of

metadata and file content after the file is marked sensitive

will be securely deleted.

Name handling: Another semantic deviation occurs

when secure deleting a file name. A directory is typically

represented as a special file, with its data content storing

the file names it holds. Although the permissions of a file

are applied to its data content, permission to handle its

name is controlled by its parent directory. However, under

TrueErase, the sensitive status of a file is applied to its

name as well. Thus, marking a file sensitive will also

cause some of its parent directory’s data content to be

securely handled, even if the parent directory is not marked

sensitive. Without this partial marking, marking a file

sensitive would bubble the sensitive status from its parent

to the root directory, negating our per-file solution goal.

One deployment issue is that by the time a user can set

attributes on a file, its name may already be stored non-

sensitively. Without modifying VFS, one remedy is to

create files or directories under a sensitive directory so

they can inherit the attribute implicitly. To ensure that the

name of the top-level sensitive directory will be securely

deleted, a user can use our smkdir wrapper script, which

first creates a directory with a temporary name, marks it

sensitive, and renames it to the sensitive name.

Links: The secure-deletion semantics for hard links

and symbolic links follow traditional permission

semantics. A hard link to a sensitive file will perform

secure deletion when the link count drops to zero. A

symbolic link’s own permissions govern whether its name

and content (path to a target) will be securely deleted,

independent of the object being referenced.

4

4.2. TAP module

The TAP kernel module tracks and propagates information

from the VFS and file-system layers to the storage-

management layer.

What and how to track? We had to solve many issues

with tracking and propagating information.

Where to instantiate requests to delete file content: We

motivate our deletion-tracking design through the

disadvantage of block zeroing for all types of storage.

Given that TAP can propagate information across layers, a

file system can simply send blocks of zeros to TAP with

annotations, and the storage-management layer can tell

which blocks need to be deleted securely. However, for

storage devices such as NAND flash, a previously written

location needs to be explicitly erased (resetting all bits to

1s or 0s) via an erase command before being written again.

Overwriting a location with zeros would trigger both an

erase command and a write of zeros. Also, a subsequent

update to the same location would again trigger an erase

before the update is written.

Instead, TAP allows file systems to attach compact

reminders (e.g., deleting blocks that hold the file content)

to other secure-deletion requests (e.g., setting the allocation

bits to zeros). The storage-management layer can choose a

secure-deletion method that matches the underlying

medium. For the NAND flash case, triggering the erase

command once may be sufficient (details in §4.3).

Tracking deletion is not enough: By the time a secure-

deletion operation is issued for a file, versions of its blocks

may have been created and stored (e.g., due to flash

optimizations), and the current metadata may not reference

old versions. One approach is to track all versions, so that

they can be deleted at secure-deletion time. This approach

potentially allows sensitive updates to the same blocks to

be consolidated. However, tracking these versions requires

persistent states and mechanisms for those states to stay

consistent across system failures.

Instead, TrueErase deletes old versions along the way

to avoid extra persistent states. That is, the secure-deletion

mechanism is triggered for each update that intends to

overwrite a sensitive data or metadata block in place

(secure write for short). Therefore, in addition to deletion

operations, TrueErase needs to track all in-transit updates

of sensitive blocks.

Tracking sensitive updates is still not enough: Given

the small size of per-file metadata, a metadata block often

stores metadata for many files, with possibly mixed

sensitive status. Thus, when a non-sensitive file shares a

metadata block with a sensitive one, updating non-sensitive

metadata may also cause the sensitive metadata to appear

in the storage data path. Thus, any shared metadata blocks

with a mixed sensitive status will be treated sensitively.

Global unique page IDs: Given the possible reuse of

data structures, namespace, and memory addresses within

the storage data path, we added a monotonically increasing

globally unique page ID (i.e., reboot epoch number

concatenated with a counter) to each memory page at its

allocation time, so that even the same page reallocated to

hold versions of the same logical block will have different

page IDs.

Sector-based tracking granularity: Many different

tracking units exist in the data path, such as logical blocks

for file systems, concatenated requests, physical sectors,

and device-specific units. TAP tracks by physical sector,

because it is unique to the storage device and can be

computed from anywhere in the storage data path. The

globally unique page ID and the physical sector number

obtained by TAP from lower layers form a global unique

ID (GUID), which we can use to uniquely associate

attribute propagation with the smallest applicable secure-

deletion unit in the storage data path.

How to interact with TAP? Table 4.2.1 summarizes

the TAP interface. Section 5 describes its usage.

Table 4.2.1. TAP interface.
Core interface

Report_write(): A file system can ask TAP to create per-

physical-sector write entries (or update them if they already exist) to

track updates to a block. To do so, a file system needs to specify the

globally unique page ID of the logical block, its type (e.g. i-node,

data), its sensitive status, and logical sector numbers that will be

translated to physical sector numbers and tracked.

Report_delete(): A file system can ask TAP to create reminders

for pending data deletes for particular sectors. These reminders will

be attached to a write entry with a specified GUID. A file system

can also specify whether the reminder actions should be performed

before/after the piggybacked request.

Report_copy(): The file-system layer can inform TAP via an

origin-destination GUID pair when a memory copy of a block is

made. Reminders associated with sectors within the original block

are transferred to the corresponding sectors of the destination block.

Cleanup_write(): A file system can inform TAP to remove the

write entry with a specified GUID. This call also handles the

scenario when a file has already been created, written, and deleted

before the VFS cache has a chance to flush.

Check_info(): The block layer is unchanged. However, when the

storage-management layer receives a request, it can query TAP via

this call to retrieve information about the request with its GUID.

The retrieved information will indicate the sensitive status of a

storage update and whether deletion reminder requests should be

carried out before or after the update.

Derived interface

Report_write_journal() is a special case of

Report_copy().

Cleanup_journal() is a special case of Report_delete().

Erase_journal() is a special case of Report_delete(),

which erases the entire journal bounds on mount.

4.3. Enhanced storage-management layer

TrueErase does not choose the secure-deletion mechanisms

until a storage request has reached the storage-management

layer. By doing so, we can be assured that the chosen

mechanisms match the characteristics of the underlying

storage medium. We used a NAND flash storage-

management component for this demonstration.

NAND flash basics: NAND flash has the following

characteristics: (1) writing is slower than reading, and

erasure can be more than an order of magnitude slower

5

[CO07]; (2) NAND reads and writes are in flash pages

(e.g., 2-8 Kbytes), but erasures are performed in flash

blocks (e.g., 64-512 Kbytes consisting of contiguous

pages; (3) in-place updates are generally not allowed—

once a page is written, the flash block containing this page

must be erased before this page can be written again, and

other in-use pages in the same flash block need to be

copied during this process—and (4) each storage location

can be erased only about 10K-1M times [CO07].

As a common optimization, when flash receives a

request to overwrite a flash page, the flash translation

layer (FTL) remaps the write to a pre-erased flash page

(with a version stamp) and marks the old flash page as

invalid, to be cleaned later. (Flash overwrites might be

allowed for some special cases.) These invalid pages are

not accessible to components above the block layer, but

can be recovered by forensic techniques [BR07]. To

prolong the lifespan of the flash, wear-leveling techniques

are often used to evenly spread the number of erasures

across all storage locations.

NAND secure commands: We added two secure-

deletion commands to the storage-management layer for

NAND flash:

Secure_delete(): This command pertains to a

group of pages in a single flash block we would like to

secure delete. The command copies other in-use, not-to-

be-deleted pages from the current flash block to other areas

as new page versions, while marking the old versions as

unused. After all other in-use pages have been migrated,

the target page can be marked invalid, and the current flash

block can be erased via the flash erase command.

Secure_write(): Our secure-write command

allows the specified page to be written first before

executing Secure_delete() on the old page (if any).

Storage-management-layer crash handling: When a

crash occurs, it is possible that only some of the in-use

sensitive pages within a flash block have been copied

elsewhere. Since copies are made before erasing the old

versions, we do not need to worry about data loss.

However, other sensitive pages on the same flash block

may now have duplicates. Given that the secure deletion

of the page did not complete, the common journal crash-

recovery mechanism will reissue the operation, so that

other remaining in-use pages in the same flash block can

continue the migration, and the block can then be erased.

Wear leveling: When a NAND flash runs low on

space, it triggers wear leveling to compact in-use pages

into fewer flash blocks. However, this internal storage

reorganization does not consult with higher layers and has

no respect for file boundaries, sensitive status, etc. Thus,

in addition to storing a file’s sensitive status in the

extended attribute, we store a sensitive-status bit in the per-

page control area. (This area also contains checksum and

a page’s in-use status.) With this bit, when a sensitive

page is migrated to a different block, the old block is

erased via Secure_delete().

Note that this bit is primarily for handling internal

device traffic and may not always be in sync with the latest

file-system-level sensitive status. For example, data blocks

of short-lived non-sensitive files may never reach

persistent storage. Thus, whenever a physical page’s

sensitive status disagrees with the sensitive status of an

incoming request, we will mark the page sensitive and treat

it as such.

4.4. File-system-integrity properties and secure deletion

By working with file systems that adhere to the integrity

properties defined by [SI05], TrueErase can leverage cases

that are protected by those properties and use those

properties to flush out corner cases.

In a grossly simplified sense, as long as pieces of file

metadata reference the correct data and metadata versions

throughout the storage data path, the system is considered

consistent. In particular, we are interested in three

properties in [SI05]. The first two are for non-journaling-

based file systems. Without holding both properties (e.g.,

ext2), a non-sensitive file may end up with data blocks

from a sensitive file after a crash recovery. The last one is

needed for journaling-based file systems.

(1) The reuse-ordering property ensures that once a

file’s block is freed, the block will not be reused by another

file before its free status becomes persistent. If violated, a

reused data block may become persistent before the

previous block’s file ownership is updated persistently. A

crash in between will result in the old file owning the data

block of a new file. Then, a secure deletion of the old file

would result in deleting file content of the new one.

Ensuring persistence: We need to disable storage-built-

in write caches or use barriers and device-specific flush

calls to ensure that persistence of an update is achieved.

Static file ownerships and types for in-transit blocks: In

the secure-deletion context, before the free status of a

block becomes persistent, the block will not be reused by

another file or changed into a different block type. With

these guarantees, we do not need to worry about the

possibility of dynamic file ownerships and types for in-

transit blocks.

Block versions in transit: On the other hand, this

property does not mention the uniqueness of the block in

the storage data path, and we still need to use GUIDs for

tracking versions of the block.

Dynamic sensitive-mode changes for in-transit blocks:

Also, the block may change its sensitive status across the

data path. To simplify tracking and the handling of the

sensitive status of a block, we allow only a non-sensitive

in-transit file or directory to be marked sensitive, but a

sensitive object is not allowed to be marked non-sensitive.

(2) The pointer-ordering property ensures that a

referenced data block in memory will become persistent

before the metadata block in memory that references it.

With reversed ordering, a system crash could cause the

persistent metadata block to point to a persistent data block

6

location not yet written. Should this location be allocated

to a new file, a secure deletion of the old file would secure

delete the content of the new file.

Secure-deletion point for data blocks: For a data block

that is no longer referenced by its metadata block during a

normal deletion, this property does not specify a need to

make the data block persistent. This property allows

various file systems to omit the data-content deletion while

not compromising the integrity.

If we want end users to see secure deletion as updating

a data block with zeros, this update needs to become

persistent before the data block’s metadata block that

references it becomes persistent. To be specific, deleting

file content typically involves the following (simplified)

steps: (t1) updating an i-node to set the file size to zero,

(t2) updating metadata blocks (e.g., indirect blocks) to

remove pointers to data blocks, and (t3) updating the

bitmap allocation blocks to indicate the availability of

blocks for reuse. Based on the reuse-reordering property,

the last point at which secure deletion of data blocks can be

inserted is right before step (t3). However, because we

want users to see a partially securely deleted file filled with

zeros after a crash (in a way that is consistent with the file-

integrity constraint), we have inserted (t0) secure deletion

of data blocks just prior to step (t1).

Modified data blocks that are no longer referenced:

The pointer-ordering property also does not specify the fate

of updated data blocks in memory once references to them

are removed. One concern is that these unreferenced

updated data blocks can result in writes that arrive after we

have securely wiped the same data blocks. Currently, the

legacy VFS prohibits such writes from occurring.

Crash after a sensitive data block becomes persistent:

The pointer-ordering property further indicates that right

after a newly allocated sensitive data block becomes

persistent, a crash at this point will result in the block being

unreferenced by its file. To address this concern, we will

perform secure deletion on unreferenced sensitive blocks at

recovery time (see §4.5).

Secure-deletion point for metadata blocks: For

metadata blocks that behave like data blocks (e.g.,

directory content), the deletion point is the same as that of

data blocks. The remaining metadata blocks are securely

updated or deleted as they reach the storage (see §5.2.2).

(3) The non-rollback property ensures that older

versions of data or metadata blocks will not overwrite

newer versions persistently. This property is important for

journaling file systems with versions of storage requests in

transit. If we issue a secure deletion to a block after an

update to the same block, we do not need to worry about

the two affecting the persistent storage in the wrong order

from the file system’s standpoint. However, we need to

worry about reordering at lower layers. We further need to

handle the possibility of consolidating, merging, and

splitting storage requests.

Reordering of requests: A storage device can contain a

built-in cache and determine its own ordering to make

updates persistent. Thus, we need to disable storage-built-

in write caches or use barriers and device-specific flush

calls to ensure that proper orders are enforced.

Consolidation of sensitive and non-sensitive requests:

Certain cases of consolidation are disabled (e.g., repeated

writes of random bits to the same location on disk). When

permitted (such as in the page cache or journal), we make

conservative interpretations of an update’s sensitive status

when consolidating updates. Basically, as long as one of

the updates to a given location is sensitive, the resulting

update will be sensitive.

Merging/splitting of sensitive/non-sensitive requests:

Because TAP tracks the sensitive status at the sector

granularity, concatenating and splitting at the request level

will not affect our tracking and performing secure deletion.

Summary of secure-deletion cases: With file-system-

integrity properties, we can see the structure of secure-

deletion cases and handle them: (1) ensuring that a secure

deletion occurs before a block is persistently declared free,

(2) the dual case of hunting down the persistent sensitive

blocks left behind after a crash but before they are

referenced by file-system metadata persistently, (3) making

sure that secure deletion is not applied to the wrong file,

(4) making sure that a securely deleted block is not

overwritten by a buffered write from a file that no longer

exists, and (5) handling versions of a storage request in

transit (mode changing, reordering, consolidation,

merging, and splitting). Buffering, asynchrony, and

cancelling of requests are handled by TAP.

4.5. Miscellaneous design points

Crash handling: Persistent states at the file-system level

are handled by extended attributes and are protected by

journal-recovery mechanisms. TAP contains no persistent

states and requires no mechanisms for recovery. The

sensitive bits in persistent storage are loosely synchronized

with the file-system layer via the mechanisms in §4.3.

Thus, at recovery time, the journal is replayed with all

operations handled securely. We then securely delete the

entire journal. To hunt down leftover sensitive data

blocks, for flash, we securely delete sensitive blocks that

are not marked allocated by the file system. For disks, we

sequentially overwrite all free space with random bits.

Swapping and hibernation: Swapping and hibernation

are disabled in our current system; handling these features

is future work.

5. TrueErase Implementation

We prototyped TrueErase under Linux 2.6.25.6. We chose

ext3 and its jbd journaling layer due to their popularity and

adherence to file-system integrity properties [SI05].

Because raw flash devices and their development

environments were not widely available when we began

our research, we used SanDisk’s DiskOnChip flash and the

7

associated Inverse NAND File Translation Layer (INFTL)

Linux kernel module as our FTL. Although DiskonChip is

somewhat dated, our design is applicable to modern flash

and development environments.

In terms of the development effort, our user model

required 269 lines of C code; TAP, 939; secure-deletion

commands for flash, 592; user-level development

environment for kernel code, 1,831; and verification

framework, 8,578.

5.1. Extended attributes

We use Linux’s extended attributes to record which files

need secure erasure. A user can mark a file or directory as

sensitive by using the setfattr command to set its

TrueErase.security attribute, and can check the

sensitive status with getfattr.

5.2. TAP module

TAP is implemented as a kernel module that tracks all

update and secure-deletion requests via the interface

mentioned in §4.2. We inserted 60 TAP-reporting calls in

ext3 and jbd, with most of them collocated with

submit_bh() and various dirty functions (e.g.,

ext3_journal_dirty_data). We will give a brief

background on ext3 and jbd to clarify their interactions

with TAP.

5.2.1. Background on ext3, journaling, and jbd

File deletion under ext3: Ext3 deletes the data content of

a file via its truncate function, which involves steps (t1) to

(t3) mentioned in §4.4. Multiple rounds of truncates may

be required for deleting the data content of a large file.

Deleting a file involves these steps: (d1) removing the

name and i-node reference from the directory, (d2) adding

the removed i-node to an orphan list, (d3) truncating the

entire file via (t1) to (t3), (d4) removing the i-node from

the orphan list, (d5) removing the extended attributes, and

(d6) updating the i-node map to free the i-node.

Journaling: Typical journaling employs the notion of a

transaction, so that either the entire group of writes or

none of the writes make it to their final storage locations.

With group-commit semantics, the exact ordering of

updates within a transaction (an update to an i-node

allocation bitmap block) may be relaxed while preserving

correctness, even in the face of crashes.

To achieve this effect, all writes within a transaction are

(j1) journaled or committed to storage persistently before

(j2) they are propagated to their final storage destinations.

(j3) A committed and propagated transaction then can be

discarded from the journal. A committed transaction is

considered permanent, even before its propagation. Thus,

once a block is committed to be free, the block can be used

by another file according to the reuse-ordering property.

At recovery time, committed transactions in the journal

are replayed to re-propagate or continue propagating the

changes to their final destinations. Uncommitted or

halfway written transactions in the journal are aborted,

without their effects reflected in the final storage

destinations.

Jbd: Jbd differentiates file data and metadata (i.e.,

everything else). We chose the commonly used ordered

mode, which journals only metadata but requires (j0) a data

block to be propagated to the final destination before its

metadata blocks are committed to the journal.

5.2.2. Tracking secure-write and -deletion operations

Because all truncation, file deletion, and journaling steps

can be expressed and performed as secure writes and

deletions to data and metadata blocks, we will illustrate

only how these operations are tracked by TAP.

Applicable block types: We perform secure writes and

deletions to sensitive data blocks, i-node blocks, extended-

attribute blocks, indirect blocks, directory blocks, and

those corresponding structures written to the journal. The

remaining metadata blocks are frequently updated (e.g.,

superblocks) and shared among files (e.g., bitmaps) and do

not contain significant information about files. By not

treating these blocks sensitively, we reduce the number of

secure-deletion operations.

Secure data updates (Figure 5.2.2.1): Ext3/jbd calls

Report_write() on sensitive data block updates, and

TAP creates per-sector write entries based on GUIDs.

Under TAP, updates to the same logical block are

consolidated via GUIDs; this behavior matches that of the

page cache.

The data update eventually reaches the storage-

management layer (via ext3 commit), which retrieves the

sensitive status from TAP via Check_info(). The

layer then can perform the secure-write operation that

matches the underlying storage medium, followed by

invoking Cleanup_write() to remove the

corresponding write entries.

ext3/VFS jbd TAP

storage-
management

layer

journal final

Report_writeReport_writeReport_writeReport_write(D)(D)(D)(D)

write(D)write(D)write(D)write(D)

commit(D)commit(D)commit(D)commit(D)

Check_infoCheck_infoCheck_infoCheck_info(D)(D)(D)(D)

Secure_WriteSecure_WriteSecure_WriteSecure_Write(D)(D)(D)(D)

Cleanup_writeCleanup_writeCleanup_writeCleanup_write(D)(D)(D)(D)

(a)

Figure 5.2.2.1. Secure data updates. D is the reported

data block.

Secure metadata updates: A metadata block is

journaled by jbd in ordered mode. Thus, in addition to

writing it securely to its final storage destination, it must be

securely written to and deleted from the journal.

Ext3/jbd also reports metadata updates to TAP via

Report_write(). Repeated updates to the same

metadata entries will lead to updates to TAP write entries

with matching GUIDs. To commit a transaction, jbd calls

8

Report_write_journal() to clone write entries and

their sensitive status, with request destinations altered from

final storage destinations to persistent journal locations.

When the storage-management layer receives the journal

update request via a journal commit, it performs checking,

invokes the secure-write method, and cleans up the cloned

journal write entries via Cleanup_write(), such as in

Figure 5.2.2.2 (a).

The original write entries remain until they are

propagated to their final storage destinations via a journal

checkpoint. The storage-management layer performs

checking, securely writes the metadata to the final

destination, and cleans up the corresponding write entries,

as shown in Figure 5.2.2.2 (b).

ext3/VFS jbd TAP

storage-
management

layer

journal final

Report_writeReport_writeReport_writeReport_write(M)(M)(M)(M)

write(M)write(M)write(M)write(M)

checkpoint(M)checkpoint(M)checkpoint(M)checkpoint(M)

Check_infoCheck_infoCheck_infoCheck_info(M)(M)(M)(M)

commit(MJ)commit(MJ)commit(MJ)commit(MJ)

Check_infoCheck_infoCheck_infoCheck_info(MJ)(MJ)(MJ)(MJ)

Secure_writeSecure_writeSecure_writeSecure_write(M)(M)(M)(M)

Cleanup_writeCleanup_writeCleanup_writeCleanup_write(MJ)(MJ)(MJ)(MJ)

Cleanup_writeCleanup_writeCleanup_writeCleanup_write(M)(M)(M)(M)

Secure_writeSecure_writeSecure_writeSecure_write(MJ)(MJ)(MJ)(MJ)

~
~

~
~

write(SJwrite(SJwrite(SJwrite(SJ))))

Cleanup_journal_tailCleanup_journal_tailCleanup_journal_tailCleanup_journal_tail(SJ)(SJ)(SJ)(SJ)

Report_write_journalReport_write_journalReport_write_journalReport_write_journal(MJ)(MJ)(MJ)(MJ)

Journal_cleanupJournal_cleanupJournal_cleanupJournal_cleanup(SJ, MJ)(SJ, MJ)(SJ, MJ)(SJ, MJ)

Check_infoCheck_infoCheck_infoCheck_info(SJ)(SJ)(SJ)(SJ)

(a)

(b)

(c)

Secure_deleteSecure_deleteSecure_deleteSecure_delete(MJ(MJ(MJ(MJ))))

Figure 5.2.2.2. Secure metadata update. M is the

reported metadata block; MJ is the reported metadata

journal block; and SJ is the reported journal

superblock. Steps (a), (b), and (c) correspond to steps

(j1), (j2), and (j3) in §5.2.1.

ext3/VFS jbd TAP

storage-
management

layer

journal final

Report_deleteReport_deleteReport_deleteReport_delete(D(D(D(D, M), M), M), M)

truncate(D, Mtruncate(D, Mtruncate(D, Mtruncate(D, M))))

commit(D, MJ)commit(D, MJ)commit(D, MJ)commit(D, MJ)

Secure_deleteSecure_deleteSecure_deleteSecure_delete(D)(D)(D)(D)

Check_infoCheck_infoCheck_infoCheck_info(MJ)(MJ)(MJ)(MJ)

Secure_writeSecure_writeSecure_writeSecure_write(MJ(MJ(MJ(MJ))))

Cleanup_writeCleanup_writeCleanup_writeCleanup_write(D, MJ)(D, MJ)(D, MJ)(D, MJ)

~
~

Report_write_journalReport_write_journalReport_write_journalReport_write_journal(MJ)(MJ)(MJ)(MJ)

(a)

Figure 5.2.2.3. Secure data deletion. M is the reported

metadata block; D is the reported data block; MJ is the

reported metadata journal block. Events from Figure

5.2.2.2(b) and (c) occur at the end of this diagram

(omitted for space).

Jbd tracks in-use persistent journal locations through its

own superblock. Periodically, jbd checks the in-use status

of journal locations in its log via

cleanup_journal_tail(). If some of its log is no

longer needed, it updates its superblock allocation pointers

accordingly. We leverage this function to report journal

locations no longer in use to TAP. If any of the locations

match our write entries, we securely delete the location

after the updated journal superblock is written, as shown in

Figure 5.2.2.2 (c). In the case of a crash, we securely

delete all usable journal log locations through

Erase_journal() once transactions have been

securely replayed (not shown in the figure)..

Beyond cleanup_journal_tail(), immediate

secure deletion of journal entries is rather implementation

specific. Thus, we currently use file-system unmounts to

trigger immediate secure deletion of the entire journal.

Secure data deletions: When ext3 wishes to delete the

contents of a sensitive file via its truncate function, it

uses Report_delete() to inform TAP of blocks to be

deleted and an i-node containing the updated file size.

TAP will create secure-deletion reminders for those blocks

attached to the write entry referring to that i-node. When

the i-node write entry is copied via

Report_write_journal(), reminders are transferred

to the copy to ensure that secure deletions are applied to

the matching instance of the i-node update.

When the storage-management layer receives the

request to commit the update of the sensitive i-node to the

journal, it will call Check_info() and retrieve the

sensitive status of the i-node from TAP, along with

locations to be securely deleted before committing the i-

node update. The data areas are then securely deleted

before the journaled i-node update is securely written to

the journal on storage. The storage-management layer then

cleans up the corresponding write entries, as shown in

Figure 5.2.2.2 (b) and (c).

Note that before committing the journaled i-node

update, all pending updates to the data blocks to be deleted

have been propagated to their final storage destinations

because of the pointer-ordering property. Thus, we do not

need to worry about pending updates that will undo our

secure deletions to these blocks.

Ext3/jbd upholds reuse ordering by copying the

allocation bitmap before the deletion into a

b_committed_data field associated with the deletion

transaction. Until the modified bitmap (and file i-node) is

committed, the file system is presented with the old copy

of the bitmap. Thus, within a transaction, we do not have

ambiguity in terms of the file ownership of a block when

applying secure deletion.

If a directory is deleted, its content blocks will be

deleted the same way as deleting the contents from a file.

9

Secure metadata deletions: During a file truncation or

deletion, ext3 also deallocates the following metadata

blocks: extended attribute block(s) and indirect block(s).

Those blocks are attached to the i-node’s list of secure-

deletion reminders as well.

To securely delete an i-node or a file name in a

directory, the block containing the entry is securely

updated and reported via Report_write().

Additionally, we need to zero out the i-node and variable-

length file name in the memory copies, so that they will not

negate the secure write performed at the storage-

management layer.

Miscellaneous cases: When securely writing metadata,

sometimes, an update to a metadata entry occurs in a new

transaction before an old transaction containing the same

entry has been committed. Because modifying blocks

during a journal commit could yield system corruption, jbd

will create a frozen copy for the old transaction. When this

happens, jbd calls Report_copy() so that TAP will

clone write entries for the frozen copy. Any delete

reminders are transferred to the cloned write entry. When

jbd commits the old transaction, it calls

Report_write_journal() to commit write entries

created for the frozen copy.

Another issue is that under jbd, committed transactions

are not propagated immediately to their final destinations.

Across committed transactions, the same metadata entry

(e.g., i-node) might have changed its file ownership and

sensitive status. Thus, jbd may consolidate a non-sensitive

update 1, sensitive update 2, and non-sensitive update 3 to

the same location into a non-sensitive update. To resolve

this issue, once a TAP write entry is marked sensitive, it

remains sensitive until it is securely written.

5.3. Enhanced storage-management layer

We used the INFTL Linux kernel module as our FTL.

Default INFTL behavior: INFTL remaps at the flash

block level, where each 16-Kbyte flash block contains 32

512-byte pages, with a 16-byte control area per page. A

remapped page always has the same offset within a block.

A NAND page can be in three states: empty, valid with

data, or invalid. An empty page can be written, but an

invalid page has to be erased to become an empty page

before it can be written.

INFTL in-place updates: INFTL uses a stack of flash

blocks to provide the illusion of in-place updates. When a

page P1 is first written, an empty flash block B1 is

allocated to hold P1. If P1 is written again (P1’), another

empty flash block B2 is allocated stacked on the top of B1,

with the same page offset holding P1’. Suppose we write

P2, which is mapped to the same block. P2 will be stored

in B2 because it is at the top of the stack, and its page at

page offset for P2 is empty.

A stack will grow until the device becomes full. The

stack then will be flattened into one block containing only

the latest pages to free up space for garbage collection.

INFTL reads: For a read, INFTL traverses from the top

of a stack to the bottom and returns the first valid page. If

the first valid page is marked deleted, or if no data are

found, INFTL will return a page of 0s.

INFTL extension: We added two commands.

Secure write: A secure write is similar to the current

INFTL in-place update. However, if a stack contains a

sensitive page, we set the maximum depth of the stack to 1

(0 is the stack top). Once the maximum is reached, the

stack must be consolidated to depth 0. When

consolidating, instead of leaving old blocks, they are

immediately erased via the flash erase command.

Secure delete: A secure delete is a special case of

secure write. When a page is to be securely deleted, an

empty flash block is allocated on top of the stack. All the

valid pages, minus the page to be securely erased, are

copied to the new block. The old block is then erased.

Optimizations: To improve performance and reduce

flash wear, we aligned the logical block boundaries with

flash block boundaries. The TAP deletion reminders are

grouped by flash blocks. We then can use this information

to securely delete multiple pages on a block with only one

round of migration for other in-use pages.

5.4 Disabled storage-management-layer optimizations

Since jbd waits for writes to reach storage before

continuing between steps (j0), (j1), and (j2), other than

storage-built-in caches, lower-layer reordering cannot

reorder requests between steps and violate file system

constraints. Thus, we used the no-op elevator scheduler.

Our flash has no built-in cache to be disabled.

6. Verification

Our verification efforts include (1) testing the basic cases,

assumptions, and corner cases in §4.4 and (2) verifying the

state space of TAP. Although this level of verification

exceeds that used for most other secure-deletion solutions,

we plan further verification as future work.

6.1. Basic cases

Sanity checks: We verified common cases of secure

writes and deletes for empty, small, and large files and

directories using random file names and sector-aligned

content. After deletion, we scanned the raw storage and

found no remnants of the sensitive information. We also

traced common behaviors involving both sensitive and

non-sensitive objects; when the operation included both a

source and a destination (or target) we tested all four

possible combinations. The operations we checked

included moving objects to new directories, replacing

objects, and making and updating both symbolic and hard

links. We also tested sparse files. In all cases, we verified

that the operations behaved as expected.

PostMark: We ran the PostMark benchmark [KA97]

with default settings, modified with 20% of the files

10

marked sensitive, with random content. Afterwards, we

found no remnants of the sensitive information.

Reporting of all updates: In order to check that all

update events and block types are reported, we looked for

errors in the form of unanticipated block-type changes and

unfound write entries in TAP, etc., which are signs of

missing reports from the file system or the VFS layer.

Currently, 100% of updates are reported.

Corner cases related to file-system integrity properties:

For cases derived from the reuse-ordering property, we

created a mini file system with most of its i-nodes and

blocks locked down (allocated) to encourage reuse. Then

we performed tight append/truncate and file

creation/deletion loops with alternating sensitive status.

We used predetermined random file content to detect

sensitive information leaks and found none.

For cases derived from the pointer-ordering property,

we verified our ability to recover from basic failures and

remove remnants of sensitive information. We also verified

that VFS prohibits unreferenced data blocks from being

written to the storage. Performing fault injections at stages

of truncation, deletion, and journaling will be future work.

Since the page ID component of GUIDs increases

monotonically, we can use this to detect illegal reordering

of sensitive updates for the cases derived from the non-

rollback property. For consolidations within a transaction,

we used tight update loops with alternating sensitive

modes. For consolidations across transactions, we used

tight file creation/deletion loops with alternating sensitive

modes. We checked all consolidation orderings for up to

three requests (e.g., non-sensitive/sensitive/non-sensitive,

sensitive/non-sensitive/sensitive, etc.).

6.2. TAP verification

State representation: We exploited the properties of our

system to trim the state space. (1) A write entry once

created at report time will not consolidate with other write

entries until it is removed. This property is necessary to

assure that each sensitive update is carried out unless

explicitly cancelled. Various consolidation behaviors (e.g.,

page cache) are achieved by performing updates directly to

the write entry. (2) The next state transition is based on

current write entries of different types. With those two

properties, we can reduce the representation of a state to

having at most one write entry of each type, and explore all

state-generating rules.

To illustrate, each state holds one write entry for nine

types of blocks: data, i-node, other metadata, journal copy

of data, journal copy of i-node, journal copy of other

metadata, copy of data, copy of i-node, and copy of other

metadata. Additionally, each write entry has four status

bits: allocated, sensitive, having reminder attached, and

ready-to-be-deleted. Thus, a state is a 9x4 matrix and can

be represented as 36 bits, with 2
36

 states.

State transitions: Each interface call triggers a state

transition based on the specified input parameters. For

example, the first Report_write() on a non-sensitive

i-node will transition from the empty state (a zero matrix),

say S0, to a state S1, where the allocated bit for the i-node

is set to 1. If the Report_write() is called again to

mark the i-node sensitive, S1 is transitioned to a new state

S2, with both the allocated and sensitive bits set to 1s.

State-space enumeration: To enumerate states and

transitions, we permute all TAP interface functions with all

possible input parameters to the same set of write entries.

Given that the enumeration step can be viewed as

traversing a state-space tree in the breadth-first order, the

tree fanout at each level is the total number of interface

call-parameter combinations (261). As an optimization,

we visited only reachable states (starting with the empty

state), and avoided repeated state-space and sub-tree

branches. As a result, we explored a tree depth of 16 and

located ~10K unique reachable states, or ~2.7M state

transitions. Of these, 61% are error transitions; 25%

leading to creating two write entries of the same type,

which is the boundary of our state representation; 5% are

self-transitions; and 9% are legal transitions to other states.

Two-version-programming verification: We wrote a

user-level state-transition program based on hundreds of

conceptual rules (e.g., marking a write entry of any type as

sensitive will set the sensitive bit to 1). The enumerated

state-transition table was reconciled with the one generated

by the TAP kernel module. We identified and repaired

four incorrect rules and three implementation bugs.

Table 7.1. Per-file-operation elapsed times/number of

flash operations under different PostMark settings.
 elapsed times (secs) page reads/writes

 control-area reads/writes erases

base 0.017 55/6 7/6 0.10

0% sensitive files 0.019 63/6 8/6 0.11

1% 0.057 120/19 33/18 0.32

5% 0.13 220/41 80/38 0.73

10% 0.17 280/55 110/51 1.0

7. Empirical Evaluation

We compared TrueErase to the unmodified Linux 2.6.25.6

system running ext3 locally. All reported numbers are

based on 5 runs of experiments. The 90% confidence

intervals are within 22% and are omitted for clarity. In

terms of workloads, we used PostMark [KA97] to measure

the overhead for metadata-intensive small-file I/Os. In

terms of hardware/software settings, we also compiled

OpenSSH [2011] version 5.1p1 to measure the usage for

larger files. We conducted our experiments on an Intel®

Pentium® D CPU 2.80GHz dual-core Dell OptiPlex

GX520 with 4-GB DDR533 and 1-GB DoC MD2203-

D1024-V3-X 32-pin DIP mounted on a PCI-G DoC

evaluation board, running Linux 2.6.25.6.

PostMark: For each run, we used the default

configuration except the following: 10K files, 10K

transactions, 1-KB block size for reads and writes, and a

read bias of 80%. We also modified PostMark to create

11

different percentages of files (chosen randomly) marked

sensitive. Before running tests for each experimental

setting, we dirtied our flash by running PostMark with 0%

sensitive files just enough times to trigger wear leveling.

Thus, our experiments reflect a flash device operating at

steady state. A sync command was issued after each run

and is reflected in the elapsed time.

Table 7.1 shows that when TrueErase operates with no

sensitive files, tracking and increased querying of extended

attributes and metadata account for 10% overhead

compared to the base case. With 1% of files marked

sensitive, an average file operation takes 0.057 seconds,

and this overhead grows sub-linearly since a metadata

block update may consolidate metadata updates for

multiple sensitive files. With 10% of files being sensitive,

an average file operation can take 0.17 seconds, which is

acceptable for interactive use. The high number of page

reads and writes reflects the fact a flash block consists of

32 pages and in-use pages need to be migrated during

secure operations.

OpenSSH compilations: We issued make + sync to

measure the elapsed times for compiling OpenSSH. For

the TrueErase case, we marked the openbsd-compat

directory sensitive before issuing make. Only newly

created files in that directory are updated and deleted

securely, accounting for roughly 27% of the newly

generated files. Before running each set of tests, we dirtied

the flash the same way as we ran PostMark.

Our results show that a user would experience a

slowdown within a factor of two. This overhead reflects

the cost of flash erasure normally hidden by asynchrony.

It also highlights the dated nature of the INFTL page and

block allocation policy. Optimizing flash layout and

developing deletion-time (as opposed to per-update) secure

deletion mechanisms will be areas of future work.

8. Related Work

This section will discuss only cross-layer secure-deletion

solutions. Although all solutions affirm the limitations of

the legacy storage data path, TrueErase differs in her

unique characteristics in using a legacy-compatible,

persistent-state-light, centralized, information-propagation

channel that runs in parallel with the legacy data path.

The ATA8 TRIM command is implemented on some

flash drives to improve performance. It allows the file

system to specify blocks that are no longer in-use, and the

drive can discard them through internal garbage collection.

TRIM was not meant to be a secure-deletion substitute, and

it does not guarantee data deletion [SH07]. A current

study showed that up to 27% of blocks were recoverable

on a TRIM-enabled device [KI11]. Regardless, TRIM

does not ensure secure deletion of file metadata.

A semantically-smart-disk system (SDS) [SI03]

observes disk requests and deduces common file-system-

level information such as block types. The File-Aware

Data-Erasing Disk (FADED) is an ext2-based SDS that

overwrites deleted files at the file-system layer. Since

FADED cannot definitively infer the blocks to be securely

deleted (due to reordering), it has to conservatively leave

the blocks undeleted at times.

A type-safe disk [SI06] directly expands the block-layer

interface and the storage-management layer to perform

free-space management. Using a type-safe disk, a

modified file system can specify the allocation of blocks

and their pointer relationships. As an example, this work

implements secure deletion on ext2. Basically, when the

last pointer to a block is removed, the block can be

securely deleted before it is reused.

Lee et al. [2008] have modified YAFFS, a log-

structured file system for NAND, to handle secure file

deletion. The modified YAFFS encrypts files and stores

each file’s key along with the file’s metadata. Whenever a

file is deleted, its key is erased, and the encrypted data

blocks remain. Sun et al. [2008] modified YAFFS and

exploited certain types of NAND flash that allow

overwriting of pages to achieve secure deletion.

9. Lessons Learned and Conclusion

This paper presents our third version of TrueErase.

Overall, we found retrofitting security features to the

legacy storage data path is more complex than we thought.

Our first version aimed to bypass many legacy

complexities by allowing the file-system layer to securely

allocate and deallocate raw storage directly. However, we

found that asynchrony and optimizations such as request

cancelling and postponing metadata commits via in-

memory journal copies made it hard to pinpoint the

deallocation times, if they occurred at all.

Our first version was also flash-centric, and we

discovered the general lack of raw flash accesses and

development environments. Although vendors aim to hide

complexities of flash internals without exposing the

controls and details for data layout and removal, various

internal optimizations (e.g., caching) and reorganizations

(e.g., wear leveling) can break file-system-integrity

properties and prevent features such as secure deletion.

Our second design used TAP and could work with

various file systems and storage media. However, we had

a limited understanding of how to apply the theoretical

file-system-integrity properties, and were unable to see the

structure of corner cases. Also, our TAP implementation

was not amenable to state-space enumeration.

Finally, our third iteration took the file-system-integrity

properties and verification into consideration, leading to

this current incarnation of TrueErase. In retrospect,

TrueErase would not be possible without a holistic

solution, which highlights the importance of integrating

knowledge across often isolated research areas separated

by layers and research fields.

To summarize, we have presented the design,

implementation, evaluation, and verification of TrueErase,

12

a legacy-compatible, per-file, secure-deletion framework.

We have identified and overcome the challenges of

specifying and propagating information across storage

layers. We have verified TrueErase and its core logic via

cases derived from file-system-integrity properties and

state-space enumeration. Although a secure-deletion

solution that can withstand diverse threats remains elusive,

TrueErase shows a promising step toward this goal.

Acknowledgements

We thank Peter Reiher for reviewing this paper. This work

is sponsored by NSF CNS-0845672/CNS-1065127, DoE

P200A060279, PEO, and FSU. Any opinions, findings,

conclusions, or recommendations expressed in this

material are those of the authors and do not necessarily

reflect the views of the NSF, DoE, PEO, or FSU.

References

[BE04] Bennison PF, Lasher PJ. Data security issues

relating to end of life equipment. Proc. of IEEE Int.

Symposium on Electronics and the Environment, 2004.

 [BR07] Breeuwsma M, de Jongh M, Klaver C, van der

Knijff R, Roeloffs M. Forensic data recovery from

flash memory. Small Scale Digital Device Forensics

Journal, 1(1):1-17, June 2007.

[CO07] Cooke J. Flash memory technology direction.

Proc. of the Windows Hardware Engineering Conf.,

2007.

[DO95] U.S. DoD. National Industrial Security Program

Operating Manual, 5220.22-M, U. S. Government

Printing Office, 1995.

[GA01] Ganger GR. Blurring the line between OSes and

storage devices. Technical Report CMU-CS-01-166,

CMU, 2001.

[GA03] Garfunkel S, Shelat A. Remembrance of data

passed: a study of disk sanitization practices, IEEE

Security and Privacy, 1(1):17-27, January 2003.

[GA10] Garlick J. Scrub utility. computing.llnl.gov, 2010.

[GO11] Goedert, Joseph. Indiana University Health Data

Breach Affects 3,000+,

www.healthdatamanagement.com, 2011.

[HA08] Halderman JA, Schoen SD, Heninger N, Clarkson

W, Paul W, Calandrino JA, Feldman AJ, Appelbaum J,

Felten EW. Lest we remember: cold boot attacks on

encryption keys, USENIX Security, 2008.

[HU02] Hughes G, Wise drives, IEEE Spectrum, pp. 37-

41, August 2002.

[HU09] Hughes GF, Commins DM, Coughlin T, Disposal

of disk and tape data by secure sanitization, IEEE

Security and Privacy, 7(4):29-34, 2009.

[IR11] Ironkey. www.ironkey.com, 2011.

[JO09] Jones A, Dardick GS, Sutherland I, Valli C. The

2007 analysis of information remaining on disks

offered for sale on the second hand market. Int. Journal

of Liability and Scientific Enquiry, 2(1): 53-68, 2009.

[JO05] Joukov N, Zadok E. Adding secure deletion to your

favorite file system. StorageSS, 2005.

[JO06] Joukov N, Papaxenopoulos H, Zadok E. Secure

deletion myths, issues, and solutions. StorageSS, 2006.

[KA97] Katcher J, PostMark: A new file system

benchmark, Technical Report TR3022, Network

Appliance Inc., 1997.

[KI08] Kingston Technology Data Traveler BlackBox

USB Flash Drive Receives FIPS 140-2 Certification.

www.kingston.com, 2008.

[KI11] King C, Vidas T, Empirical analysis of solid state

disk data retention when used with contemporary

operating systems, Digital Investigation, Proc. of the

11
th

 Annual DFRWS Conf., 2011.

[KL86] Kleiman SR, Vnodes: An architecture for multiple

file system types in Sun UNIX. USENIX ATC, 1986.

[KO07] Koch W. The GNU privacy guard.

www.gnupg.org, 2007.

[LE08] Lee J, Heo J, Cho Y, Hong J, Shin SY. Secure

deletion for NAND flash file system. Proc. of the 2008

ACM SAC, 2008.

[LE11] Lerner M, Kennedy T. Stolen laptop puts

thousands at risk of identity theft,

http://www.startribune.com/lifestyle/wellness/1306440

48.html, September 2011.

[NE09] Nester. Wipe. wipe.sourceforge.net, 2009.

[NI06] U.S. NIST. Special Publication 800-88: Guidelines

for Media Sanitization, September 2006.

[OP11] OpenSSH. www.openssh.com, 2011.

[OS11] OSS-Spectrum Project. Disposition of computer

hard drives: specifications for sanitization of hard

drives, attachment 2. oss-spectrum.org, 2011.

[PE05] Peterson ZNJ, Burns R, Herring J, Stubblefield A,

Rubin AD. Secure deletion for a versioning file

system. USENIX FAST, 2005.

[PL11] Shred. UNIX man page. htunixhelp.ed.ac.uk, 2011.

[PS11] Children's details lost in laptop theft,

www.publicservice.co.uk, 2011.

[SA08] SanDisk Cruzer Enterprise FIPS Edition.

www.sandisk.com, 2008.

 [SH07] Shu F, Obr N. Data set management commands

proposal for ATA8-ACS2, www.t13.org, 2007.

[SI03] Sivathanu M, Prabhakaran V, Popovici FI, Denehy

TE, Arpaci-Dusseau AC, Arpaci-Dusseau RH.

Semantically-smart disk systems. USENIX FAST, 2003.

[SI04] Sivathanu M, Bairavasundaram LN, Arpaci-

Dusseau, AC, Arpaci-Dusseau, RH. Life or death at

block-level. OSDI, 2004.

[SI05] Sivathanu M, Arpaci-Dusseau AC, Arpaci-Dusseau

RH, Jha S, A logic of file systems, USENIX FAST,

2005.

[SI06] Sivathanu G, Sundararaman S, Zadok E. Type-safe

disks. OSDI, 2006.

[SM11] Smith J. Mcrypt. mcrypt.sourceforge.net, 2011.

[SU08] Sun K, Choi J, Lee D, Noh SH. Models and design

of an adaptive hybrid scheme for secure deletion of data

13

in consumer electronics. IEEE Trans. on Consumer

Electronics, 54(1):100-104, February 2008.

 [TH06] Thibadeau R, Trusted computing for disk drives

and other peripherals, IEEE Security & Privacy,

4(5):26-33, 2006.

[VE11a] Store ‘n’ Go Corporate Secure–FIPS Edition.

www.verbatim.com, 2011.

[VE11b] Versel, Neil. Military health plan data breach

threatens 4.9 million, www.informationweek.com,

2011.

[WE11] Wei M, Grupp LM, Spada FE, Swanson S.

Reliably erasing data from flash-based solid state

drives. USENIX FAST, 2011.

[YO11] Young E, Hudson T. OpenSSL. www.openssl.org,

2011.

