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Abstract 

The ability to delete sensitive data securely from electronic 

storage is becoming an increasing concern. However, 

current per-file deletion solutions tend to be limited to one 

segment of the operating system’s storage data path, and 

may leave behind sensitive data when interacting with 

storage components such as journaling, file-system caches, 

and certain storage media such as NAND flash.  

 This work introduces TrueErase, a secure-deletion 

framework.  Through design, implementation, verification, 

and evaluation, we show that it is possible to build a 

legacy-compatible full-storage-data-path framework that 

performs per-file secure deletion, works with common file 

systems and emerging solid-state storage, while surviving 

common system failures.   

Categories and Subject Descriptors: D.4.2 [Storage 
Management]: Allocation/deallocation strategies, D.4.3 
[File Systems Management]:  Access methods, D.4.6 
[Security and Protection]:  Information flow controls 

General Terms:  Design, Security. 

Keywords: secure deletion, file systems, storage, 
security, NAND flash 

1. Introduction 

The ability to ensure file deletion from digital storage is a 

pressing concern, as frequent incidences of data theft 

plague government [VE11b], academia [GO11; PS11], and 

industry [LE11].  Although wary users may be diligently 

emptying their digital trash bins and reformatting their 

storage, little do they know that typical deletion methods 

only make files invisible to users, while leaving behind 

recoverable sensitive data.  As a consequence, data thought 

to have been erased may still be retrieved from a 

decommissioned storage device [GA03; JO09].   

Secure deletion is concerned with rendering a file’s 

removed content and metadata (e.g., name) irrecoverable.  

Achieving secure deletion is difficult due to diverse threat 

models.  To gain a foothold to address this overarching 

problem, this paper focuses on dead forensics attacks on 

the local storage device, which occur after the computer 

has been shut down properly.  Attacks on storage backups 

or live systems, cold boot attacks [HA08], covert channels, 

and policy violations are beyond our scope.    

To simplify our design, we focus on the scenario where 

we have full control of the entire storage data path in a 

non-distributed environment.  Thus, the basic research 

question is that under benign user control and system 

environments, what holistic solution can we design and 

implement to ensure that the secure deletion of a file is 

honored throughout the legacy storage data path?   

We introduce TrueErase, a framework that irrevocably 

deletes data and metadata.  Through design, 

implementation, verification, and evaluation, we have 

demonstrated that TrueErase is unique in the following 

combination of properties:  (1) TrueErase works with 

legacy applications, common file systems, and emerging 

storage media (e.g., NAND flash).  (2) Unlike techniques 

that involve the physical destruction of storage devices 

[DO95; BE04; OS11], TrueErase offers the flexibility to 

securely delete individual files (e.g., for cases such as 

expired client data, statute of limitations, etc.).  (3) Unlike 

most per-file solutions (§2.1, §8), TrueErase is holistic and 

covers the entire storage data path, so that a secure-deletion 

operation issued by one segment of the data path (e.g., file 

system) will not be negated by another (e.g., flash that 

keeps versions of data).  (4) TrueErase is designed to 

survive common system failures, and (5) the core logic of 

the framework is verified systematically.  
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Figure 2.1.  Legacy storage data path. 

2. Existing Approaches and Challenges 

Typical file deletion removes only the i-node or a file’s 

metadata, with the content left on the storage medium until 

it is overwritten.  Even recreating the file system does not 

ensure secure deletion.  For example, the MSDOS 

format command overwrites 0.11% of the data [GA03].   

Various solutions have been proposed; however, most 

of them operate at one segment or level/layer, if viewed 

vertically on the legacy data path (Figure 2.1).  While 

layering encourages the portability of individual layers, the 

types of information available at each layer restrict the 

effectiveness of secure-deletion solutions.   

2.1.  Existing approaches 

Storage-management-level solutions:  At the lowest level, 

the storage-management layer handles vendor-specific 

representations on the storage media.  Since this layer 

accepts requests from layers above through the block-layer 

interface in terms of logical blocks, it has no information 
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on a block’s type (e.g., data, metadata), file ownership, in-

use status, etc. [GA01; SI04].   

Subsequently, solutions at this layer tend to operate on 

all blocks indiscriminately, with no support for per-file 

secure deletion.  An example is encrypting the whole 

device, and then performing secure deletion via revoking 

the master key [HU02; TH06; NI06; KI08; SA08; HU09; 

IR11; VE11a].  Note that even if a storage device offers 

secure deletion to selective blocks (e.g., per-block 

sanitization [WE11]), it needs the ability to map blocks to 

files and metadata to support secure deletion at the file 

granularity [KI11]. 

File-system-level solutions:  File-system solutions 

reside in the virtual file system (VFS) [KL86] and the file-

system layers [JO05; PE05; JO06].  (The VFS implements 

common file-system functions such as caching and allows 

various file systems to run simultaneously.)  

The file-system layer generally is unaware of the 

storage medium and has no control over the physical 

storage location of data and metadata.   Thus, a file system 

may issue writes of random bits to the same location, 

intending to perform military-grade secure deletion [NI06] 

via in-place disk overwrites.  Instead, the underlying 

storage medium can actually be a flash drive. Such devices 

typically write every version of an update (even to the 

same logical location) to a different physical location, to 

avoid the slow erases required by flash before updating the 

same location, negating the intent of secure deletion.  Note 

that per-file, encryption-based solutions will not solve the 

problem, since the lower layer may not honor the secure-

deletion semantics to remove file keys.   

File-system-layer solutions may also overlook the 

sensitive information left behind by common journaling 

mechanisms, which log information to ease recovery. 

User-space solutions:  At the application layer, 

solutions are carried out by user-level programs.  Given 

that these programs operate through file systems, they 

inherit the same constraints.  Additionally, user programs 

[KO07; NE09; GA10; SM11; PL11; YO11] have limited 

control of a file’s metadata, and thus cannot enforce secure 

deletion, leading to the leakage of information such as file 

names, file sizes, etc.   

Cross-layer solutions:  Cross-layer secure-deletion 

solutions do exist.  However, some are not built for the 

purpose of secure deletion, and do not interact well with 

the legacy storage data path [SI03; SH07].  Ones that are 

designed for secure deletion are tailored for specific file 

systems or storage media [SI06; LE08; SU08] (see §8). 

2.2. Other secure-deletion challenges 

There are other secure-deletion challenges as well:     

No legacy requests to delete data content:  Other than 

removing references to data blocks and setting the file size 

and allocation bits to zeros, file systems typically do not 

issue requests to erase file content.  Even issuing zero-

filled data-block requests to the same logical location 

cannot achieve secure deletion, as discussed in §2.1.   

Complex storage-data-path optimizations:  Secure-

deletion operations need to be compatible with legacy 

optimizations.  In particular, storage requests may be 

reordered, merged (concatenated), split, consolidated 

(applying one update instead of many to the same 

location), cancelled, or buffered (e.g., journaled) with 

versions of requests in transit.    

Lack of data-path-wide identification:  Tracking 

request versions across storage layers is complicated by the 

possible reuse of runtime data structures, identification 

numbers (e.g., i-node), and memory addresses.    

System crashes:  Our proposed secure-deletion solution 

must work with common journal-recovery mechanisms, 

and our persistent states need to survive system crashes. 

Verification: While verification is often overlooked by 

various deletion systems, we need to ensure that (1) secure 

deletions are correctly propagated throughout the storage 

data path and that (2) various assumptions are checked 

whenever possible. 

 
User space Applications 

Kernel space 

Secure-deletion user model 

Type/attribute 

propagation module 

VFS 

File system 

Block-layer interface 

Kernel/hardware Enhanced storage-management layer 

Hardware Storage  

Figure 3.1.  TrueErase framework (shaded boxes). 

3.  TrueErase Overview 

We introduce TrueErase (shaded boxes in Figure 3.1), a 

framework that propagates file-level information to the 

block-level storage-management layer, so that per-file 

secure deletion can be honored throughout the data path.   

Secure-deletion user model:  A user can use legacy 

attribute-setting tools to specify files and directories whose 

data and metadata will be securely deleted.  Unmodified 

legacy applications can operate on those objects.   

Type/attribute propagation module:  The VFS and file 

system layers can report information and reminders of 

pending update events (e.g., zeroing bitmaps) to a 

centralized, type/attribute propagation (TAP) module.  We 

use a global unique-ID scheme to track versions of in-

transit storage requests.  To handle legacy optimizations, 

TAP only passively gathers and forwards information, and 

it does not alter the flow and ordering of update requests.  

TAP tracks only transient soft states.  Thus, TrueErase 

needs no mechanisms to recover its states.  During crash 

recovery, all operations replayed and reissued by a typical 

file system’s journal-recovery procedure are handled 

securely.  All remnants of data and metadata in the storage 

data path from the prior session are securely deleted. 

Implicitly extended block-layer interface:  The block-

layer interface is, in a sense, extended, so that the storage-

management layer can inquire TAP about file-level 
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information prior to performing secure operations on a 

block based on its type(s) (e.g., data, i-node) and attributes. 

When the block status is unknown to TAP (e.g., a 

missing report from a file system), the block will be 

handled securely when removed.  (This behavior is 

insufficient to achieve secure deletion because typical file 

systems do not issue deletion requests for file content.) 

Enhanced storage-management layer:  We have added 

secure-deletion commands for different storage media to 

show that our solution generalizes.  Due to length 

restrictions, most of our descriptions in this paper are 

confined to the flash medium. 

Certain optimizations are disabled when handling 

secure-deletion operations (e.g., storage-built-in caches).   

Verification tools:  We provide kernel- and user-level 

tools to detect illegal changes in the block type, incorrect 

triggering of deletion events, and missing reports from the 

VFS and file-system layers.  Additionally, we provide tools 

to verify the core system states and transitions.   

Assumptions:  Because of the complexity of the storage 

data path, in this work, we assume a benign personal 

computing environment (e.g., laptops), where a user has 

the administrative control of an uncompromised, single-

user, single-file-system, non-RAID, and non-distributed 

system.  The threat model is the dead forensics attacks, 

which occur after a user unmounts and shuts down the 

system after completing secure-deletion operations. 

At the system level, we assume control of the entire 

storage data path, including the storage-management layer.   

Because our work focuses on the correct propagation of 

information across storage layers to ensure secure deletion, 

our solution will not propagate the sensitive status of a file 

to another file (e.g., via tainting) or handle 

copies/references of files made by users or applications. 

Also, we assume the use of common journaling file 

systems that adhere to the integrity properties specified by 

[SI05] (e.g., ext3).  Further, all update events and block 

types are reported to our framework.  These assumptions 

allow us to concentrate on building and verifying the 

properties of secure deletion. 

4.  TrueErase Design 

The major areas of TrueErase’s design include (1) 

specifying which files or directories are to be securely 

deleted via a user model, (2) tracking and propagating 

information across storage layers via TAP, (3) enforcing 

secure deletion via storage-medium-matching mechanisms 

added to the storage-management layer, and (4) exploiting 

file-system-integrity properties to identify and handle 

corner cases of secure deletion. 

4.1.  User model  

Having a per-file secure-deletion capability is essential 

when deleting the entire device is not an option.  Also, 

deleting all files securely can be prohibitive in terms of the 

performance overhead. 

Ideally, a user can follow the traditional permission 

semantics and apply common extended-attribute-setting 

tools to mark a file or directory as sensitive, which means 

it will be securely deleted when removed.  A legacy 

application then can issue normal operations that translate 

into secure-deletion operations on those specified files or 

directories to remove sensitive file data content, metadata 

(e.g., i-node, file name, etc.), and associated copies within 

the storage data path.   

Toggling the sensitive status:  However, certain secure-

deletion semantics cannot easily follow traditional 

permission models.  For example, toggling the sensitive 

status is different from toggling read/write access controls.  

To illustrate, prior to a file or directory being marked 

sensitive, older versions of data and metadata may have 

already been left behind.  Without tracking all file versions 

or removing old versions for all files at all times, 

TrueErase enforces secure deletion only for files or 

directories that have stayed sensitive since their creation.  

Should a non-sensitive file be marked sensitive, secure 

deletion will be carried out on a best-effort basis (indicated 

by an extended-attribute flag). That is, only versions of 

metadata and file content after the file is marked sensitive 

will be securely deleted. 

Name handling:  Another semantic deviation occurs 

when secure deleting a file name.  A directory is typically 

represented as a special file, with its data content storing 

the file names it holds.  Although the permissions of a file 

are applied to its data content, permission to handle its 

name is controlled by its parent directory.  However, under 

TrueErase, the sensitive status of a file is applied to its 

name as well.   Thus, marking a file sensitive will also 

cause some of its parent directory’s data content to be 

securely handled, even if the parent directory is not marked 

sensitive.  Without this partial marking, marking a file 

sensitive would bubble the sensitive status from its parent 

to the root directory, negating our per-file solution goal. 

One deployment issue is that by the time a user can set 

attributes on a file, its name may already be stored non-

sensitively.  Without modifying VFS, one remedy is to 

create files or directories under a sensitive directory so 

they can inherit the attribute implicitly.  To ensure that the 

name of the top-level sensitive directory will be securely 

deleted, a user can use our smkdir wrapper script, which 

first creates a directory with a temporary name, marks it 

sensitive, and renames it to the sensitive name.     

Links:  The secure-deletion semantics for hard links 

and symbolic links follow traditional permission 

semantics.  A hard link to a sensitive file will perform 

secure deletion when the link count drops to zero.  A 

symbolic link’s own permissions govern whether its name 

and content (path to a target) will be securely deleted, 

independent of the object being referenced. 
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4.2.  TAP module 

The TAP kernel module tracks and propagates information 

from the VFS and file-system layers to the storage-

management layer.   

What and how to track?  We had to solve many issues 

with tracking and propagating information. 

Where to instantiate requests to delete file content:  We 

motivate our deletion-tracking design through the 

disadvantage of block zeroing for all types of storage.  

Given that TAP can propagate information across layers, a 

file system can simply send blocks of zeros to TAP with 

annotations, and the storage-management layer can tell 

which blocks need to be deleted securely.  However, for 

storage devices such as NAND flash, a previously written 

location needs to be explicitly erased (resetting all bits to 

1s or 0s) via an erase command before being written again.  

Overwriting a location with zeros would trigger both an 

erase command and a write of zeros.  Also, a subsequent 

update to the same location would again trigger an erase 

before the update is written.   

Instead, TAP allows file systems to attach compact 

reminders (e.g., deleting blocks that hold the file content) 

to other secure-deletion requests (e.g., setting the allocation 

bits to zeros).  The storage-management layer can choose a 

secure-deletion method that matches the underlying 

medium.  For the NAND flash case, triggering the erase 

command once may be sufficient (details in §4.3). 

Tracking deletion is not enough:  By the time a secure-

deletion operation is issued for a file, versions of its blocks 

may have been created and stored (e.g., due to flash 

optimizations), and the current metadata may not reference 

old versions.  One approach is to track all versions, so that 

they can be deleted at secure-deletion time.  This approach 

potentially allows sensitive updates to the same blocks to 

be consolidated.  However, tracking these versions requires 

persistent states and mechanisms for those states to stay 

consistent across system failures. 

Instead, TrueErase deletes old versions along the way 

to avoid extra persistent states.  That is, the secure-deletion 

mechanism is triggered for each update that intends to 

overwrite a sensitive data or metadata block in place 

(secure write for short).  Therefore, in addition to deletion 

operations, TrueErase needs to track all in-transit updates 

of sensitive blocks. 

Tracking sensitive updates is still not enough:  Given 

the small size of per-file metadata, a metadata block often 

stores metadata for many files, with possibly mixed 

sensitive status.  Thus, when a non-sensitive file shares a 

metadata block with a sensitive one, updating non-sensitive 

metadata may also cause the sensitive metadata to appear 

in the storage data path.  Thus, any shared metadata blocks 

with a mixed sensitive status will be treated sensitively. 

Global unique page IDs:  Given the possible reuse of 

data structures, namespace, and memory addresses within 

the storage data path, we added a monotonically increasing 

globally unique page ID (i.e., reboot epoch number 

concatenated with a counter) to each memory page at its 

allocation time, so that even the same page reallocated to 

hold versions of the same logical block will have different 

page IDs.   

Sector-based tracking granularity:  Many different 

tracking units exist in the data path, such as logical blocks 

for file systems, concatenated requests, physical sectors, 

and device-specific units.  TAP tracks by physical sector, 

because it is unique to the storage device and can be 

computed from anywhere in the storage data path.  The 

globally unique page ID and the physical sector number 

obtained by TAP from lower layers form a global unique 

ID (GUID), which we can use to uniquely associate 

attribute propagation with the smallest applicable secure-

deletion unit in the storage data path.   

How to interact with TAP?  Table 4.2.1 summarizes 

the TAP interface.  Section 5 describes its usage. 

 

Table 4.2.1.  TAP interface. 
Core interface 

Report_write():  A file system can ask TAP to create per-

physical-sector write entries (or update them if they already exist) to 

track updates to a block.  To do so, a file system needs to specify the 

globally unique page ID of the logical block, its type (e.g. i-node, 

data), its sensitive status, and logical sector numbers that will be 

translated to physical sector numbers and tracked. 

Report_delete():  A file system can ask TAP to create reminders 

for pending data deletes for particular sectors.  These reminders will 

be attached to a write entry with a specified GUID.  A file system 

can also specify whether the reminder actions should be performed 

before/after the piggybacked request.   

Report_copy():  The file-system layer can inform TAP via an 

origin-destination GUID pair when a memory copy of a block is 

made.  Reminders associated with sectors within the original block 

are transferred to the corresponding sectors of the destination block.   

Cleanup_write():  A file system can inform TAP to remove the 

write entry with a specified GUID.  This call also handles the 

scenario when a file has already been created, written, and deleted 

before the VFS cache has a chance to flush.   

Check_info():  The block layer is unchanged.  However, when the 

storage-management layer receives a request, it can query TAP via 

this call to retrieve information about the request with its GUID.  

The retrieved information will indicate the sensitive status of a 

storage update and whether deletion reminder requests should be 

carried out before or after the update.   

Derived interface  

Report_write_journal() is a special case of 

Report_copy(). 

Cleanup_journal() is a special case of Report_delete().   

Erase_journal() is a special case of Report_delete(), 

which erases the entire journal bounds on mount. 

4.3.  Enhanced storage-management layer 

TrueErase does not choose the secure-deletion mechanisms 

until a storage request has reached the storage-management 

layer.  By doing so, we can be assured that the chosen 

mechanisms match the characteristics of the underlying 

storage medium.  We used a NAND flash storage-

management component for this demonstration.    

NAND flash basics:  NAND flash has the following 

characteristics:  (1) writing is slower than reading, and 

erasure can be more than an order of magnitude slower 
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[CO07]; (2) NAND reads and writes are in flash pages 

(e.g., 2-8 Kbytes), but erasures are performed in flash 

blocks (e.g., 64-512 Kbytes consisting of contiguous 

pages; (3) in-place updates are generally not allowed—

once a page is written, the flash block containing this page 

must be erased before this page can be written again, and 

other in-use pages in the same flash block need to be 

copied during this process—and (4) each storage location 

can be erased only about 10K-1M times [CO07].   

As a common optimization, when flash receives a 

request to overwrite a flash page, the flash translation 

layer (FTL) remaps the write to a pre-erased flash page 

(with a version stamp) and marks the old flash page as 

invalid, to be cleaned later.  (Flash overwrites might be 

allowed for some special cases.)  These invalid pages are 

not accessible to components above the block layer, but 

can be recovered by forensic techniques [BR07].  To 

prolong the lifespan of the flash, wear-leveling techniques 

are often used to evenly spread the number of erasures 

across all storage locations.   

NAND secure commands:  We added two secure-

deletion commands to the storage-management layer for 

NAND flash:   

Secure_delete():  This command pertains to a 

group of pages in a single flash block we would like to 

secure delete.  The command copies other in-use, not-to-

be-deleted pages from the current flash block to other areas 

as new page versions, while marking the old versions as 

unused.  After all other in-use pages have been migrated, 

the target page can be marked invalid, and the current flash 

block can be erased via the flash erase command. 

Secure_write():  Our secure-write command 

allows the specified page to be written first before 

executing Secure_delete() on the old page (if any).   

Storage-management-layer crash handling:  When a 

crash occurs, it is possible that only some of the in-use 

sensitive pages within a flash block have been copied 

elsewhere.  Since copies are made before erasing the old 

versions, we do not need to worry about data loss.  

However, other sensitive pages on the same flash block 

may now have duplicates.  Given that the secure deletion 

of the page did not complete, the common journal crash-

recovery mechanism will reissue the operation, so that 

other remaining in-use pages in the same flash block can 

continue the migration, and the block can then be erased.  

Wear leveling:  When a NAND flash runs low on 

space, it triggers wear leveling to compact in-use pages 

into fewer flash blocks.  However, this internal storage 

reorganization does not consult with higher layers and has 

no respect for file boundaries, sensitive status, etc.  Thus, 

in addition to storing a file’s sensitive status in the 

extended attribute, we store a sensitive-status bit in the per-

page control area.  (This area also contains checksum and 

a page’s in-use status.)  With this bit, when a sensitive 

page is migrated to a different block, the old block is 

erased via Secure_delete().  

Note that this bit is primarily for handling internal 

device traffic and may not always be in sync with the latest 

file-system-level sensitive status.  For example, data blocks 

of short-lived non-sensitive files may never reach 

persistent storage.  Thus, whenever a physical page’s 

sensitive status disagrees with the sensitive status of an 

incoming request, we will mark the page sensitive and treat 

it as such.     

4.4.  File-system-integrity properties and secure deletion 

By working with file systems that adhere to the integrity 

properties defined by [SI05], TrueErase can leverage cases 

that are protected by those properties and use those 

properties to flush out corner cases. 

In a grossly simplified sense, as long as pieces of file 

metadata reference the correct data and metadata versions 

throughout the storage data path, the system is considered 

consistent.  In particular, we are interested in three 

properties in [SI05].  The first two are for non-journaling-

based file systems.  Without holding both properties (e.g., 

ext2), a non-sensitive file may end up with data blocks 

from a sensitive file after a crash recovery.  The last one is 

needed for journaling-based file systems. 

(1) The reuse-ordering property ensures that once a 

file’s block is freed, the block will not be reused by another 

file before its free status becomes persistent.  If violated, a 

reused data block may become persistent before the 

previous block’s file ownership is updated persistently.  A 

crash in between will result in the old file owning the data 

block of a new file.  Then, a secure deletion of the old file 

would result in deleting file content of the new one. 

Ensuring persistence:  We need to disable storage-built-

in write caches or use barriers and device-specific flush 

calls to ensure that persistence of an update is achieved.   

Static file ownerships and types for in-transit blocks:  In 

the secure-deletion context, before the free status of a 

block becomes persistent, the block will not be reused by 

another file or changed into a different block type.  With 

these guarantees, we do not need to worry about the 

possibility of dynamic file ownerships and types for in-

transit blocks. 

Block versions in transit:  On the other hand, this 

property does not mention the uniqueness of the block in 

the storage data path, and we still need to use GUIDs for 

tracking versions of the block.   

Dynamic sensitive-mode changes for in-transit blocks:  

Also, the block may change its sensitive status across the 

data path.  To simplify tracking and the handling of the 

sensitive status of a block, we allow only a non-sensitive 

in-transit file or directory to be marked sensitive, but a 

sensitive object is not allowed to be marked non-sensitive.   

(2) The pointer-ordering property ensures that a 

referenced data block in memory will become persistent 

before the metadata block in memory that references it.  

With reversed ordering, a system crash could cause the 

persistent metadata block to point to a persistent data block 
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location not yet written.  Should this location be allocated 

to a new file, a secure deletion of the old file would secure 

delete the content of the new file. 

Secure-deletion point for data blocks:  For a data block 

that is no longer referenced by its metadata block during a 

normal deletion, this property does not specify a need to 

make the data block persistent.  This property allows 

various file systems to omit the data-content deletion while 

not compromising the integrity.   

If we want end users to see secure deletion as updating 

a data block with zeros, this update needs to become 

persistent before the data block’s metadata block that 

references it becomes persistent.  To be specific, deleting 

file content typically involves the following (simplified) 

steps:  (t1) updating an i-node to set the file size to zero, 

(t2) updating metadata blocks (e.g., indirect blocks) to 

remove pointers to data blocks, and (t3) updating the 

bitmap allocation blocks to indicate the availability of 

blocks for reuse.  Based on the reuse-reordering property, 

the last point at which secure deletion of data blocks can be 

inserted is right before step (t3).  However, because we 

want users to see a partially securely deleted file filled with 

zeros after a crash (in a way that is consistent with the file-

integrity constraint), we have inserted (t0) secure deletion 

of data blocks just prior to step (t1).   

Modified data blocks that are no longer referenced:  

The pointer-ordering property also does not specify the fate 

of updated data blocks in memory once references to them 

are removed.  One concern is that these unreferenced 

updated data blocks can result in writes that arrive after we 

have securely wiped the same data blocks.  Currently, the 

legacy VFS prohibits such writes from occurring.   

Crash after a sensitive data block becomes persistent:  

The pointer-ordering property further indicates that right 

after a newly allocated sensitive data block becomes 

persistent, a crash at this point will result in the block being 

unreferenced by its file.  To address this concern, we will 

perform secure deletion on unreferenced sensitive blocks at 

recovery time (see §4.5). 

Secure-deletion point for metadata blocks:  For 

metadata blocks that behave like data blocks (e.g., 

directory content), the deletion point is the same as that of 

data blocks.  The remaining metadata blocks are securely 

updated or deleted as they reach the storage (see §5.2.2).   

(3) The non-rollback property ensures that older 

versions of data or metadata blocks will not overwrite 

newer versions persistently.  This property is important for 

journaling file systems with versions of storage requests in 

transit.  If we issue a secure deletion to a block after an 

update to the same block, we do not need to worry about 

the two affecting the persistent storage in the wrong order 

from the file system’s standpoint.  However, we need to 

worry about reordering at lower layers.  We further need to 

handle the possibility of consolidating, merging, and 

splitting storage requests. 

Reordering of requests:  A storage device can contain a 

built-in cache and determine its own ordering to make 

updates persistent.  Thus, we need to disable storage-built-

in write caches or use barriers and device-specific flush 

calls to ensure that proper orders are enforced.   

Consolidation of sensitive and non-sensitive requests:  

Certain cases of consolidation are disabled (e.g., repeated 

writes of random bits to the same location on disk).  When 

permitted (such as in the page cache or journal), we make 

conservative interpretations of an update’s sensitive status 

when consolidating updates.  Basically, as long as one of 

the updates to a given location is sensitive, the resulting 

update will be sensitive.   

Merging/splitting of sensitive/non-sensitive requests:  

Because TAP tracks the sensitive status at the sector 

granularity, concatenating and splitting at the request level 

will not affect our tracking and performing secure deletion. 

Summary of secure-deletion cases:  With file-system- 

integrity properties, we can see the structure of secure-

deletion cases and handle them:   (1) ensuring that a secure 

deletion occurs before a block is persistently declared free, 

(2) the dual case of hunting down the persistent sensitive 

blocks left behind after a crash but before they are 

referenced by file-system metadata persistently, (3) making 

sure that secure deletion is not applied to the wrong file, 

(4) making sure that a securely deleted block is not 

overwritten by a buffered write from a file that no longer 

exists, and (5) handling versions of a storage request in 

transit (mode changing, reordering, consolidation, 

merging, and splitting).  Buffering, asynchrony, and 

cancelling of requests are handled by TAP. 

4.5.  Miscellaneous design points 

Crash handling:  Persistent states at the file-system level 

are handled by extended attributes and are protected by 

journal-recovery mechanisms.  TAP contains no persistent 

states and requires no mechanisms for recovery.   The 

sensitive bits in persistent storage are loosely synchronized 

with the file-system layer via the mechanisms in §4.3. 

Thus, at recovery time, the journal is replayed with all 

operations handled securely.  We then securely delete the 

entire journal.  To hunt down leftover sensitive data 

blocks, for flash, we securely delete sensitive blocks that 

are not marked allocated by the file system.  For disks, we 

sequentially overwrite all free space with random bits.   

Swapping and hibernation:  Swapping and hibernation 

are disabled in our current system; handling these features 

is future work.   

5.  TrueErase Implementation 

We prototyped TrueErase under Linux 2.6.25.6.  We chose 

ext3 and its jbd journaling layer due to their popularity and 

adherence to file-system integrity properties [SI05].  

Because raw flash devices and their development 

environments were not widely available when we began 

our research, we used SanDisk’s DiskOnChip flash and the 
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associated Inverse NAND File Translation Layer (INFTL) 

Linux kernel module as our FTL.  Although DiskonChip is 

somewhat dated, our design is applicable to modern flash 

and development environments.   

In terms of the development effort, our user model 

required 269 lines of C code; TAP, 939; secure-deletion 

commands for flash, 592; user-level development 

environment for kernel code, 1,831; and verification 

framework, 8,578.    

5.1.  Extended attributes 

We use Linux’s extended attributes to record which files 

need secure erasure.  A user can mark a file or directory as 

sensitive by using the setfattr command to set its 

TrueErase.security attribute, and can check the 

sensitive status with getfattr.   

5.2.  TAP module 

TAP is implemented as a kernel module that tracks all 

update and secure-deletion requests via the interface 

mentioned in §4.2.   We inserted 60 TAP-reporting calls in 

ext3 and jbd, with most of them collocated with 

submit_bh() and various dirty functions (e.g., 

ext3_journal_dirty_data).  We will give a brief 

background on ext3 and jbd to clarify their interactions 

with TAP. 

5.2.1. Background on ext3, journaling, and jbd 

File deletion under ext3:  Ext3 deletes the data content of 

a file via its truncate function, which involves steps (t1) to 

(t3) mentioned in §4.4.  Multiple rounds of truncates may 

be required for deleting the data content of a large file.   

Deleting a file involves these steps:   (d1) removing the 

name and i-node reference from the directory, (d2) adding 

the removed i-node to an orphan list, (d3) truncating the 

entire file via (t1) to (t3), (d4) removing the i-node from 

the orphan list, (d5) removing the extended attributes, and 

(d6) updating the i-node map to free the i-node. 

Journaling:  Typical journaling employs the notion of a 

transaction, so that either the entire group of writes or 

none of the writes make it to their final storage locations. 

With group-commit semantics, the exact ordering of 

updates within a transaction (an update to an i-node 

allocation bitmap block) may be relaxed while preserving 

correctness, even in the face of crashes.   

To achieve this effect, all writes within a transaction are 

(j1) journaled or committed to storage persistently before 

(j2) they are propagated to their final storage destinations.  

(j3) A committed and propagated transaction then can be 

discarded from the journal.  A committed transaction is 

considered permanent, even before its propagation.  Thus, 

once a block is committed to be free, the block can be used 

by another file according to the reuse-ordering property. 

At recovery time, committed transactions in the journal 

are replayed to re-propagate or continue propagating the 

changes to their final destinations.  Uncommitted or 

halfway written transactions in the journal are aborted, 

without their effects reflected in the final storage 

destinations. 

Jbd:  Jbd differentiates file data and metadata (i.e., 

everything else).  We chose the commonly used ordered 

mode, which journals only metadata but requires (j0) a data 

block to be propagated to the final destination before its 

metadata blocks are committed to the journal.   

5.2.2. Tracking secure-write and -deletion operations 

Because all truncation, file deletion, and journaling steps 

can be expressed and performed as secure writes and 

deletions to data and metadata blocks, we will illustrate 

only how these operations are tracked by TAP.   

Applicable block types:  We perform secure writes and 

deletions to sensitive data blocks, i-node blocks, extended-

attribute blocks, indirect blocks, directory blocks, and 

those corresponding structures written to the journal.  The 

remaining metadata blocks are frequently updated (e.g., 

superblocks) and shared among files (e.g., bitmaps) and do 

not contain significant information about files.  By not 

treating these blocks sensitively, we reduce the number of 

secure-deletion operations. 

Secure data updates (Figure 5.2.2.1):  Ext3/jbd calls 

Report_write() on sensitive data block updates, and 

TAP creates per-sector write entries based on GUIDs.  

Under TAP, updates to the same logical block are 

consolidated via GUIDs; this behavior matches that of the 

page cache.   

The data update eventually reaches the storage-

management layer (via ext3 commit), which retrieves the 

sensitive status from TAP via Check_info().  The 

layer then can perform the secure-write operation that 

matches the underlying storage medium, followed by 

invoking Cleanup_write() to remove the 

corresponding write entries.   

ext3/VFS jbd TAP

storage-
management 

layer

journal final

Report_writeReport_writeReport_writeReport_write(D)(D)(D)(D)

write(D)write(D)write(D)write(D)

commit(D)commit(D)commit(D)commit(D)

Check_infoCheck_infoCheck_infoCheck_info(D)(D)(D)(D)

Secure_WriteSecure_WriteSecure_WriteSecure_Write(D)(D)(D)(D)

Cleanup_writeCleanup_writeCleanup_writeCleanup_write(D)(D)(D)(D)

(a)

 
Figure 5.2.2.1.  Secure data updates.  D is the reported 

data block. 

 
Secure metadata updates:  A metadata block is 

journaled by jbd in ordered mode.  Thus, in addition to 

writing it securely to its final storage destination, it must be 

securely written to and deleted from the journal.  

Ext3/jbd also reports metadata updates to TAP via 

Report_write().  Repeated updates to the same 

metadata entries will lead to updates to TAP write entries 

with matching GUIDs.  To commit a transaction, jbd calls 



 

8 
 

Report_write_journal() to clone write entries and 

their sensitive status, with request destinations altered from 

final storage destinations to persistent journal locations.  

When the storage-management layer receives the journal 

update request via a journal commit, it performs checking, 

invokes the secure-write method, and cleans up the cloned 

journal write entries via Cleanup_write(), such as in 

Figure 5.2.2.2 (a).  

The original write entries remain until they are 

propagated to their final storage destinations via a journal 

checkpoint.  The storage-management layer performs 

checking, securely writes the metadata to the final 

destination, and cleans up the corresponding write entries, 

as shown in Figure 5.2.2.2 (b). 

ext3/VFS jbd TAP

storage-
management 

layer

journal final

Report_writeReport_writeReport_writeReport_write(M)(M)(M)(M)

write(M)write(M)write(M)write(M)

checkpoint(M)checkpoint(M)checkpoint(M)checkpoint(M)

Check_infoCheck_infoCheck_infoCheck_info(M)(M)(M)(M)

commit(MJ)commit(MJ)commit(MJ)commit(MJ)

Check_infoCheck_infoCheck_infoCheck_info(MJ)(MJ)(MJ)(MJ)

Secure_writeSecure_writeSecure_writeSecure_write(M)(M)(M)(M)

Cleanup_writeCleanup_writeCleanup_writeCleanup_write(MJ)(MJ)(MJ)(MJ)

Cleanup_writeCleanup_writeCleanup_writeCleanup_write(M)(M)(M)(M)

Secure_writeSecure_writeSecure_writeSecure_write(MJ)(MJ)(MJ)(MJ)

~
~

~
~

write(SJwrite(SJwrite(SJwrite(SJ))))

Cleanup_journal_tailCleanup_journal_tailCleanup_journal_tailCleanup_journal_tail(SJ)(SJ)(SJ)(SJ)

Report_write_journalReport_write_journalReport_write_journalReport_write_journal(MJ)(MJ)(MJ)(MJ)

Journal_cleanupJournal_cleanupJournal_cleanupJournal_cleanup(SJ, MJ)(SJ, MJ)(SJ, MJ)(SJ, MJ)

Check_infoCheck_infoCheck_infoCheck_info(SJ)(SJ)(SJ)(SJ)

(a)

(b)

(c)

Secure_deleteSecure_deleteSecure_deleteSecure_delete(MJ(MJ(MJ(MJ))))

 
Figure 5.2.2.2.  Secure metadata update.  M is the 

reported metadata block; MJ is the reported metadata 

journal block; and SJ is the reported journal 

superblock.  Steps (a), (b), and (c) correspond to steps 

(j1), (j2), and (j3) in §5.2.1. 

ext3/VFS jbd TAP

storage-
management 

layer

journal final

Report_deleteReport_deleteReport_deleteReport_delete(D(D(D(D, M), M), M), M)

truncate(D, Mtruncate(D, Mtruncate(D, Mtruncate(D, M))))

commit(D, MJ)commit(D, MJ)commit(D, MJ)commit(D, MJ)

Secure_deleteSecure_deleteSecure_deleteSecure_delete(D)(D)(D)(D)

Check_infoCheck_infoCheck_infoCheck_info(MJ)(MJ)(MJ)(MJ)

Secure_writeSecure_writeSecure_writeSecure_write(MJ(MJ(MJ(MJ))))

Cleanup_writeCleanup_writeCleanup_writeCleanup_write(D, MJ)(D, MJ)(D, MJ)(D, MJ)

~
~

Report_write_journalReport_write_journalReport_write_journalReport_write_journal(MJ)(MJ)(MJ)(MJ)

(a)

 
Figure 5.2.2.3.  Secure data deletion.  M is the reported 

metadata block; D is the reported data block; MJ is the 

reported metadata journal block.  Events from Figure 

5.2.2.2(b) and (c) occur at the end of this diagram 

(omitted for space). 

 
Jbd tracks in-use persistent journal locations through its 

own superblock.  Periodically, jbd checks the in-use status 

of journal locations in its log via 

cleanup_journal_tail().  If some of its log is no 

longer needed, it updates its superblock allocation pointers 

accordingly.  We leverage this function to report journal 

locations no longer in use to TAP.  If any of the locations 

match our write entries, we securely delete the location 

after the updated journal superblock is written, as shown in 

Figure 5.2.2.2 (c).   In the case of a crash, we securely 

delete all usable journal log locations through 

Erase_journal() once transactions have been 

securely replayed (not shown in the figure).. 

Beyond cleanup_journal_tail(), immediate 

secure deletion of journal entries is rather implementation 

specific.  Thus, we currently use file-system unmounts to 

trigger immediate secure deletion of the entire journal. 

Secure data deletions: When ext3 wishes to delete the 

contents of a sensitive file via its truncate function, it 

uses Report_delete() to inform TAP of blocks to be 

deleted and an i-node containing the updated file size.  

TAP will create secure-deletion reminders for those blocks 

attached to the write entry referring to that i-node.  When 

the i-node write entry is copied via 

Report_write_journal(), reminders are transferred 

to the copy to ensure that secure deletions are applied to 

the matching instance of the i-node update. 

When the storage-management layer receives the 

request to commit the update of the sensitive i-node to the 

journal, it will call Check_info() and retrieve the 

sensitive status of the i-node from TAP, along with 

locations to be securely deleted before committing the i-

node update. The data areas are then securely deleted 

before the journaled i-node update is securely written to 

the journal on storage.  The storage-management layer then 

cleans up the corresponding write entries, as shown in 

Figure 5.2.2.2 (b) and (c). 

Note that before committing the journaled i-node 

update, all pending updates to the data blocks to be deleted 

have been propagated to their final storage destinations 

because of the pointer-ordering property.  Thus, we do not 

need to worry about pending updates that will undo our 

secure deletions to these blocks.   

Ext3/jbd upholds reuse ordering by copying the 

allocation bitmap before the deletion into a 

b_committed_data field associated with the deletion 

transaction.  Until the modified bitmap (and file i-node) is 

committed, the file system is presented with the old copy 

of the bitmap.  Thus, within a transaction, we do not have 

ambiguity in terms of the file ownership of a block when 

applying secure deletion. 

If a directory is deleted, its content blocks will be 

deleted the same way as deleting the contents from a file. 
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Secure metadata deletions:  During a file truncation or 

deletion, ext3 also deallocates the following metadata 

blocks:  extended attribute block(s) and indirect block(s).  

Those blocks are attached to the i-node’s list of secure-

deletion reminders as well. 

To securely delete an i-node or a file name in a 

directory, the block containing the entry is securely 

updated and reported via Report_write().  

Additionally, we need to zero out the i-node and variable-

length file name in the memory copies, so that they will not 

negate the secure write performed at the storage-

management layer. 

Miscellaneous cases:  When securely writing metadata, 

sometimes, an update to a metadata entry occurs in a new 

transaction before an old transaction containing the same 

entry has been committed.  Because modifying blocks 

during a journal commit could yield system corruption, jbd 

will create a frozen copy for the old transaction.  When this 

happens, jbd calls Report_copy() so that TAP will 

clone write entries for the frozen copy.  Any delete 

reminders are transferred to the cloned write entry.  When 

jbd commits the old transaction, it calls 

Report_write_journal() to commit write entries 

created for the frozen copy.  

Another issue is that under jbd, committed transactions 

are not propagated immediately to their final destinations.  

Across committed transactions, the same metadata entry 

(e.g., i-node) might have changed its file ownership and 

sensitive status.  Thus, jbd may consolidate a non-sensitive 

update 1, sensitive update 2, and non-sensitive update 3 to 

the same location into a non-sensitive update.  To resolve 

this issue, once a TAP write entry is marked sensitive, it 

remains sensitive until it is securely written.  

5.3. Enhanced storage-management layer  

We used the INFTL Linux kernel module as our FTL.   

Default INFTL behavior:  INFTL remaps at the flash 

block level, where each 16-Kbyte flash block contains 32 

512-byte pages, with a 16-byte control area per page.  A 

remapped page always has the same offset within a block. 

A NAND page can be in three states:  empty, valid with 

data, or invalid.  An empty page can be written, but an 

invalid page has to be erased to become an empty page 

before it can be written. 

INFTL in-place updates: INFTL uses a stack of flash 

blocks to provide the illusion of in-place updates.  When a 

page P1 is first written, an empty flash block B1 is 

allocated to hold P1.  If P1 is written again (P1’), another 

empty flash block B2 is allocated stacked on the top of B1, 

with the same page offset holding P1’.  Suppose we write 

P2, which is mapped to the same block.  P2 will be stored 

in B2 because it is at the top of the stack, and its page at 

page offset for P2 is empty. 

A stack will grow until the device becomes full.  The 

stack then will be flattened into one block containing only 

the latest pages to free up space for garbage collection. 

INFTL reads:  For a read, INFTL traverses from the top 

of a stack to the bottom and returns the first valid page.  If 

the first valid page is marked deleted, or if no data are 

found, INFTL will return a page of 0s. 

INFTL extension:  We added two commands. 

Secure write:  A secure write is similar to the current 

INFTL in-place update.  However, if a stack contains a 

sensitive page, we set the maximum depth of the stack to 1 

(0 is the stack top).  Once the maximum is reached, the 

stack must be consolidated to depth 0.  When 

consolidating, instead of leaving old blocks, they are 

immediately erased via the flash erase command. 

Secure delete:  A secure delete is a special case of 

secure write.  When a page is to be securely deleted, an 

empty flash block is allocated on top of the stack.  All the 

valid pages, minus the page to be securely erased, are 

copied to the new block.  The old block is then erased. 

Optimizations: To improve performance and reduce 

flash wear, we aligned the logical block boundaries with 

flash block boundaries.  The TAP deletion reminders are 

grouped by flash blocks.  We then can use this information 

to securely delete multiple pages on a block with only one 

round of migration for other in-use pages.   

5.4 Disabled storage-management-layer optimizations 

Since jbd waits for writes to reach storage before 

continuing between steps (j0), (j1), and (j2), other than 

storage-built-in caches, lower-layer reordering cannot 

reorder requests between steps and violate file system 

constraints.  Thus, we used the no-op elevator scheduler.  

Our flash has no built-in cache to be disabled. 

6.  Verification  

Our verification efforts include (1) testing the basic cases, 

assumptions, and corner cases in §4.4 and (2) verifying the 

state space of TAP.   Although this level of verification 

exceeds that used for most other secure-deletion solutions, 

we plan further verification as future work.   

6.1. Basic cases  

Sanity checks:  We verified common cases of secure 

writes and deletes for empty, small, and large files and 

directories using random file names and sector-aligned 

content. After deletion, we scanned the raw storage and 

found no remnants of the sensitive information.  We also 

traced common behaviors involving both sensitive and 

non-sensitive objects; when the operation included both a 

source and a destination (or target) we tested all four 

possible combinations.  The operations we checked 

included moving objects to new directories, replacing 

objects, and making and updating both symbolic and hard 

links.  We also tested sparse files.  In all cases, we verified 

that the operations behaved as expected. 

PostMark:  We ran the PostMark benchmark [KA97] 

with default settings, modified with 20% of the files 
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marked sensitive, with random content.  Afterwards, we 

found no remnants of the sensitive information.   

Reporting of all updates:  In order to check that all 

update events and block types are reported, we looked for 

errors in the form of unanticipated block-type changes and 

unfound write entries in TAP, etc., which are signs of 

missing reports from the file system or the VFS layer.  

Currently, 100% of updates are reported. 

Corner cases related to file-system integrity properties:  

For cases derived from the reuse-ordering property, we 

created a mini file system with most of its i-nodes and 

blocks locked down (allocated) to encourage reuse.  Then 

we performed tight append/truncate and file 

creation/deletion loops with alternating sensitive status.  

We used predetermined random file content to detect 

sensitive information leaks and found none. 

For cases derived from the pointer-ordering property, 

we verified our ability to recover from basic failures and 

remove remnants of sensitive information. We also verified 

that VFS prohibits unreferenced data blocks from being 

written to the storage. Performing fault injections at stages 

of truncation, deletion, and journaling will be future work. 

Since the page ID component of GUIDs increases 

monotonically, we can use this to detect illegal reordering 

of sensitive updates for the cases derived from the non-

rollback property.  For consolidations within a transaction, 

we used tight update loops with alternating sensitive 

modes.  For consolidations across transactions, we used 

tight file creation/deletion loops with alternating sensitive 

modes.  We checked all consolidation orderings for up to 

three requests (e.g., non-sensitive/sensitive/non-sensitive, 

sensitive/non-sensitive/sensitive, etc.). 

6.2. TAP verification  

State representation:  We exploited the properties of our 

system to trim the state space.  (1) A write entry once 

created at report time will not consolidate with other write 

entries until it is removed.  This property is necessary to 

assure that each sensitive update is carried out unless 

explicitly cancelled.  Various consolidation behaviors (e.g., 

page cache) are achieved by performing updates directly to 

the write entry.  (2) The next state transition is based on 

current write entries of different types.  With those two 

properties, we can reduce the representation of a state to 

having at most one write entry of each type, and explore all 

state-generating rules.   

To illustrate, each state holds one write entry for nine 

types of blocks:  data, i-node, other metadata, journal copy 

of data, journal copy of i-node, journal copy of other 

metadata, copy of data, copy of i-node, and copy of other 

metadata.  Additionally, each write entry has four status 

bits:  allocated, sensitive, having reminder attached, and 

ready-to-be-deleted.  Thus, a state is a 9x4 matrix and can 

be represented as 36 bits, with 2
36

 states.   

State transitions:  Each interface call triggers a state 

transition based on the specified input parameters.  For 

example, the first Report_write() on a non-sensitive 

i-node will transition from the empty state (a zero matrix), 

say S0, to a state S1, where the allocated bit for the i-node 

is set to 1.  If the Report_write() is called again to 

mark the i-node sensitive, S1 is transitioned to a new state 

S2, with both the allocated and sensitive bits set to 1s.   

State-space enumeration:  To enumerate states and 

transitions, we permute all TAP interface functions with all 

possible input parameters to the same set of write entries.  

Given that the enumeration step can be viewed as 

traversing a state-space tree in the breadth-first order, the 

tree fanout at each level is the total number of interface 

call-parameter combinations (261).  As an optimization, 

we visited only reachable states (starting with the empty 

state), and avoided repeated state-space and sub-tree 

branches.  As a result, we explored a tree depth of 16 and 

located ~10K unique reachable states, or ~2.7M state 

transitions.  Of these, 61% are error transitions; 25% 

leading to creating two write entries of the same type, 

which is the boundary of our state representation; 5% are 

self-transitions; and 9% are legal transitions to other states.   

Two-version-programming verification:  We wrote a 

user-level state-transition program based on hundreds of 

conceptual rules (e.g., marking a write entry of any type as 

sensitive will set the sensitive bit to 1).  The enumerated 

state-transition table was reconciled with the one generated 

by the TAP kernel module.  We identified and repaired 

four incorrect rules and three implementation bugs. 

 

Table 7.1.  Per-file-operation elapsed times/number of 

flash operations under different PostMark settings. 
 elapsed times (secs) page reads/writes 

 control-area reads/writes erases 

base 0.017 55/6 7/6 0.10 

0% sensitive files  0.019 63/6 8/6 0.11 

1% 0.057 120/19 33/18 0.32 

5% 0.13 220/41 80/38 0.73 

10% 0.17 280/55 110/51 1.0 

7.  Empirical Evaluation  

We compared TrueErase to the unmodified Linux 2.6.25.6 

system running ext3 locally.  All reported numbers are 

based on 5 runs of experiments.  The 90% confidence 

intervals are within 22% and are omitted for clarity.  In 

terms of workloads, we used PostMark [KA97] to measure 

the overhead for metadata-intensive small-file I/Os.  In 

terms of hardware/software settings, we also compiled 

OpenSSH [2011] version 5.1p1 to measure the usage for 

larger files.  We conducted our experiments on an Intel® 

Pentium® D CPU 2.80GHz dual-core Dell OptiPlex 

GX520 with 4-GB DDR533 and 1-GB DoC MD2203-

D1024-V3-X 32-pin DIP mounted on a PCI-G DoC 

evaluation board, running Linux 2.6.25.6. 

PostMark:  For each run, we used the default 

configuration except the following:  10K files, 10K 

transactions, 1-KB block size for reads and writes, and a 

read bias of 80%.  We also modified PostMark to create 
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different percentages of files (chosen randomly) marked 

sensitive.  Before running tests for each experimental 

setting, we dirtied our flash by running PostMark with 0% 

sensitive files just enough times to trigger wear leveling.  

Thus, our experiments reflect a flash device operating at 

steady state.  A sync command was issued after each run 

and is reflected in the elapsed time.   

Table 7.1 shows that when TrueErase operates with no 

sensitive files, tracking and increased querying of extended 

attributes and metadata account for 10% overhead 

compared to the base case.  With 1% of files marked 

sensitive, an average file operation takes 0.057 seconds, 

and this overhead grows sub-linearly since a metadata 

block update may consolidate metadata updates for 

multiple sensitive files.  With 10% of files being sensitive, 

an average file operation can take 0.17 seconds, which is 

acceptable for interactive use.  The high number of page 

reads and writes reflects the fact a flash block consists of 

32 pages and in-use pages need to be migrated during 

secure operations. 

OpenSSH compilations:  We issued make + sync to 

measure the elapsed times for compiling OpenSSH.  For 

the TrueErase case, we marked the openbsd-compat 

directory sensitive before issuing make.  Only newly 

created files in that directory are updated and deleted 

securely, accounting for roughly 27% of the newly 

generated files.  Before running each set of tests, we dirtied 

the flash the same way as we ran PostMark. 

Our results show that a user would experience a 

slowdown within a factor of two.  This overhead reflects 

the cost of flash erasure normally hidden by asynchrony.   

It also highlights the dated nature of the INFTL page and 

block allocation policy.  Optimizing flash layout and 

developing deletion-time (as opposed to per-update) secure 

deletion mechanisms will be areas of future work.    

 

8.  Related Work 

This section will discuss only cross-layer secure-deletion 

solutions.  Although all solutions affirm the limitations of 

the legacy storage data path, TrueErase differs in her 

unique characteristics in using a legacy-compatible, 

persistent-state-light, centralized, information-propagation 

channel that runs in parallel with the legacy data path. 

The ATA8 TRIM command is implemented on some 

flash drives to improve performance.  It allows the file 

system to specify blocks that are no longer in-use, and the 

drive can discard them through internal garbage collection.  

TRIM was not meant to be a secure-deletion substitute, and 

it does not guarantee data deletion [SH07].  A current 

study showed that up to 27% of blocks were recoverable 

on a TRIM-enabled device [KI11].  Regardless, TRIM 

does not ensure secure deletion of file metadata. 

A semantically-smart-disk system (SDS) [SI03] 

observes disk requests and deduces common file-system-

level information such as block types.  The File-Aware 

Data-Erasing Disk (FADED) is an ext2-based SDS that 

overwrites deleted files at the file-system layer.  Since 

FADED cannot definitively infer the blocks to be securely 

deleted (due to reordering), it has to conservatively leave 

the blocks undeleted at times. 

A type-safe disk [SI06] directly expands the block-layer 

interface and the storage-management layer to perform 

free-space management.  Using a type-safe disk, a 

modified file system can specify the allocation of blocks 

and their pointer relationships.  As an example, this work 

implements secure deletion on ext2.  Basically, when the 

last pointer to a block is removed, the block can be 

securely deleted before it is reused.   

Lee et al. [2008] have modified YAFFS, a log-

structured file system for NAND, to handle secure file 

deletion.  The modified YAFFS encrypts files and stores 

each file’s key along with the file’s metadata.  Whenever a 

file is deleted, its key is erased, and the encrypted data 

blocks remain.  Sun et al. [2008] modified YAFFS and 

exploited certain types of NAND flash that allow 

overwriting of pages to achieve secure deletion.   

9.  Lessons Learned and Conclusion 

This paper presents our third version of TrueErase.   

Overall, we found retrofitting security features to the 

legacy storage data path is more complex than we thought.  

Our first version aimed to bypass many legacy 

complexities by allowing the file-system layer to securely 

allocate and deallocate raw storage directly.  However, we 

found that asynchrony and optimizations such as request 

cancelling and postponing metadata commits via in-

memory journal copies made it hard to pinpoint the 

deallocation times, if they occurred at all.   

Our first version was also flash-centric, and we 

discovered the general lack of raw flash accesses and 

development environments.  Although vendors aim to hide 

complexities of flash internals without exposing the 

controls and details for data layout and removal, various 

internal optimizations (e.g., caching) and reorganizations 

(e.g., wear leveling) can break file-system-integrity 

properties and prevent features such as secure deletion.   

Our second design used TAP and could work with 

various file systems and storage media.  However, we had 

a limited understanding of how to apply the theoretical 

file-system-integrity properties, and were unable to see the 

structure of corner cases.  Also, our TAP implementation 

was not amenable to state-space enumeration. 

Finally, our third iteration took the file-system-integrity 

properties and verification into consideration, leading to 

this current incarnation of TrueErase.  In retrospect, 

TrueErase would not be possible without a holistic 

solution, which highlights the importance of integrating 

knowledge across often isolated research areas separated 

by layers and research fields.   

To summarize, we have presented the design, 

implementation, evaluation, and verification of TrueErase, 
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a legacy-compatible, per-file, secure-deletion framework.  

We have identified and overcome the challenges of 

specifying and propagating information across storage 

layers.  We have verified TrueErase and its core logic via 

cases derived from file-system-integrity properties and 

state-space enumeration.  Although a secure-deletion 

solution that can withstand diverse threats remains elusive, 

TrueErase shows a promising step toward this goal. 

Acknowledgements 

We thank Peter Reiher for reviewing this paper.  This work 

is sponsored by NSF CNS-0845672/CNS-1065127, DoE 

P200A060279, PEO, and FSU.  Any opinions, findings, 

conclusions, or recommendations expressed in this 

material are those of the authors and do not necessarily 

reflect the views of the NSF, DoE, PEO, or FSU.  

References 

[BE04] Bennison PF, Lasher PJ. Data security issues 

relating to end of life equipment.  Proc. of IEEE Int. 

Symposium on Electronics and the Environment, 2004. 

 [BR07] Breeuwsma M, de Jongh M, Klaver C, van der 

Knijff R, Roeloffs M.  Forensic data recovery from 

flash memory.  Small Scale Digital Device Forensics 

Journal, 1(1):1-17, June 2007. 

[CO07] Cooke J.  Flash memory technology direction.  

Proc. of the Windows Hardware Engineering Conf., 

2007. 

[DO95] U.S. DoD. National Industrial Security Program 

Operating Manual, 5220.22-M, U. S. Government 

Printing Office, 1995. 

[GA01] Ganger GR.  Blurring the line between OSes and 

storage devices.  Technical Report CMU-CS-01-166, 

CMU, 2001. 

[GA03] Garfunkel S, Shelat A.  Remembrance of data 

passed: a study of disk sanitization practices, IEEE 

Security and Privacy, 1(1):17-27, January 2003. 

[GA10] Garlick J. Scrub utility.   computing.llnl.gov, 2010. 

[GO11] Goedert, Joseph.  Indiana University Health Data 

Breach Affects 3,000+, 

www.healthdatamanagement.com, 2011. 

[HA08] Halderman JA, Schoen SD, Heninger N, Clarkson 

W, Paul W, Calandrino JA, Feldman AJ, Appelbaum J, 

Felten EW.  Lest we remember:  cold boot attacks on 

encryption keys, USENIX Security, 2008. 

[HU02] Hughes G, Wise drives, IEEE Spectrum, pp. 37-

41, August 2002. 

[HU09] Hughes GF, Commins DM, Coughlin T, Disposal 

of disk and tape data by secure sanitization, IEEE 

Security and Privacy, 7(4):29-34, 2009. 

[IR11] Ironkey.  www.ironkey.com, 2011. 

[JO09]  Jones A, Dardick GS, Sutherland I, Valli C.  The 

2007 analysis of information remaining on disks 

offered for sale on the second hand market. Int. Journal 

of Liability and Scientific Enquiry, 2(1): 53-68, 2009. 

[JO05] Joukov N, Zadok E. Adding secure deletion to your 

favorite file system. StorageSS, 2005. 

[JO06] Joukov N, Papaxenopoulos H, Zadok E. Secure 

deletion myths, issues, and solutions. StorageSS, 2006. 

[KA97] Katcher J, PostMark: A new file system 

benchmark, Technical Report TR3022, Network 

Appliance Inc., 1997. 

[KI08] Kingston Technology Data Traveler BlackBox 

USB Flash Drive Receives FIPS 140-2 Certification.  

www.kingston.com, 2008. 

[KI11] King C, Vidas T, Empirical analysis of solid state 

disk data retention when used with contemporary 

operating systems, Digital Investigation, Proc. of the 

11
th

 Annual DFRWS Conf., 2011. 

[KL86] Kleiman SR, Vnodes: An architecture for multiple 

file system types in Sun UNIX. USENIX ATC, 1986. 

[KO07] Koch W. The GNU privacy guard. 

www.gnupg.org, 2007. 

[LE08] Lee J, Heo J, Cho Y, Hong J, Shin SY. Secure 

deletion for NAND flash file system. Proc. of the 2008 

ACM SAC, 2008.  

[LE11] Lerner M, Kennedy T.  Stolen laptop puts 

thousands at risk of identity theft, 

http://www.startribune.com/lifestyle/wellness/1306440

48.html, September 2011. 

[NE09] Nester. Wipe. wipe.sourceforge.net, 2009.   

[NI06] U.S. NIST.  Special Publication 800-88: Guidelines 

for Media Sanitization, September 2006. 

[OP11] OpenSSH. www.openssh.com, 2011. 

[OS11] OSS-Spectrum Project. Disposition of computer 

hard drives: specifications for sanitization of hard 

drives, attachment 2.  oss-spectrum.org, 2011. 

[PE05] Peterson ZNJ, Burns R, Herring J, Stubblefield A, 

Rubin AD.  Secure deletion for a versioning file 

system.  USENIX FAST, 2005. 

[PL11] Shred. UNIX man page. htunixhelp.ed.ac.uk, 2011. 

[PS11] Children's details lost in laptop theft, 

www.publicservice.co.uk, 2011. 

[SA08] SanDisk Cruzer Enterprise FIPS Edition.  

www.sandisk.com, 2008. 

 [SH07] Shu F, Obr N.  Data set management commands 

proposal for ATA8-ACS2, www.t13.org, 2007. 

[SI03] Sivathanu M, Prabhakaran V, Popovici FI, Denehy 

TE, Arpaci-Dusseau AC, Arpaci-Dusseau RH. 

Semantically-smart disk systems. USENIX FAST, 2003. 

[SI04] Sivathanu M, Bairavasundaram LN, Arpaci-

Dusseau, AC, Arpaci-Dusseau, RH. Life or death at 

block-level.  OSDI, 2004. 

[SI05] Sivathanu M, Arpaci-Dusseau AC, Arpaci-Dusseau 

RH, Jha S, A logic of file systems, USENIX FAST, 

2005. 

[SI06] Sivathanu G, Sundararaman S, Zadok E. Type-safe 

disks. OSDI, 2006. 

[SM11] Smith J. Mcrypt. mcrypt.sourceforge.net, 2011.  

[SU08] Sun K, Choi J, Lee D, Noh SH. Models and design 

of an adaptive hybrid scheme for secure deletion of data 



 

13 
 

in consumer electronics. IEEE Trans. on Consumer 

Electronics, 54(1):100-104, February 2008. 

 [TH06] Thibadeau R, Trusted computing for disk drives 

and other peripherals, IEEE Security & Privacy, 

4(5):26-33, 2006. 

[VE11a]  Store ‘n’ Go Corporate Secure–FIPS Edition.  

www.verbatim.com, 2011. 

[VE11b] Versel, Neil. Military health plan data breach 

threatens 4.9 million, www.informationweek.com, 

2011. 

[WE11] Wei M, Grupp LM, Spada FE, Swanson S.  

Reliably erasing data from flash-based solid state 

drives.  USENIX FAST, 2011. 

[YO11] Young E, Hudson T.  OpenSSL. www.openssl.org, 

2011.   


