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Abstract—Compromised machines are one of the key security
threats on the Internet; they are often used to launch various
security attacks such as spamming and spreading malware,
DDoS, and identity theft. Given that spamming provides a key
economic incentive for attackers to recruit the large number
of compromised machines, we focus on the detection of the
compromised machines in a network that are involved in the
spamming activities, commonly known as spam zombies. We
develop an effective spam zombie detection system named SPOT
by monitoring outgoing messages of a network. SPOT is designed
based on a powerful statistical tool called Sequential Probability
Ratio Test, which has bounded false positive and false negative
error rates. Our evaluation studies based on a two-month email
trace collected in a large U.S. campus network show that SPOT
is an effective and efficient system in automatically detecting
compromised machines in a network. For example, among the
440 internal IP addresses observed in the email trace, SPOT
identifies 132 of them as being associated with compromised
machines. Out of the132 IP addresses identified by SPOT,126
can be either independently confirmed (110) or highly likely
(16) to be compromised. Moreover, only7 internal IP addresses
associated with compromised machines in the trace are missed
by SPOT. In addition, we also compare the performance of
SPOT with two other spam zombie detection algorithms based
on the number and percentage of spam messages originated
or forwarded by internal machines, respectively, and show that
SPOT outperforms these two detection algorithms.

Index Terms—Compromised Machines, Spam Zombies, Com-
promised Machine Detection Algorithms

I. I NTRODUCTION

A major security challenge on the Internet is the existence
of the large number of compromised machines. Such machines
have been increasingly used to launch various security attacks
including spamming and spreading malware, DDoS, and iden-
tity theft [1], [10], [14]. Two natures of the compromised
machines on the Internet—sheer volume and wide spread—
render many existing security countermeasures less effective
and defending attacks involving compromised machines ex-
tremely hard. On the other hand, identifying and cleaning
compromised machines in a network remain a significant
challenge for system administrators of networks of all sizes.

In this paper we focus on the detection of the compro-
mised machines in a network that are used for sending
spam messages, which are commonly referred to as spam
zombies. Given that spamming provides a critical economic
incentive for the controllers of the compromised machines to
recruit these machines, it has been widely observed that many

compromised machines are involved in spamming [16], [18],
[25]. A number of recent research efforts have studied the ag-
gregate global characteristics of spamming botnets (networks
of compromised machines involved in spamming) such as the
size of botnets and the spamming patterns of botnets, based on
the sampled spam messages received at a large email service
provider [25], [26].

Rather than the aggregate global characteristics of spam-
ming botnets, we aim to develop a tool for system adminis-
trators to automatically detect the compromised machines in
their networks in an online manner. We consider ourselves
situated in a network and ask the following question: How
can we automatically identify the compromised machines
in the network as outgoing messages pass the monitoring
point sequentially? The approaches developed in the previous
work [25], [26] cannot be applied here. The locally generated
outgoing messages in a network normally cannot provide the
aggregate large-scale spam view required by these approaches.
Moreover, these approaches cannot support the online detec-
tion requirement in the environment we consider.

The nature of sequentially observing outgoing messages
gives rise to the sequential detection problem. In this paper we
will develop a spam zombie detection system, named SPOT,
by monitoring outgoing messages. SPOT is designed based
on a statistical method called Sequential Probability Ratio Test
(SPRT), developed by Wald in his seminal work [21]. SPRT is
a powerful statistical method that can be used to test between
two hypotheses (in our case, a machine is compromised
vs. the machine is not compromised), as the events (in our
case, outgoing messages) occur sequentially. As a simple and
powerful statistical method, SPRT has a number of desirable
features. It minimizes the expected number of observations
required to reach a decision among all the sequential and
non-sequential statistical tests with no greater error rates. This
means that the SPOT detection system can identify a compro-
mised machine quickly. Moreover, both the false positive and
false negative probabilities of SPRT can be bounded by user-
defined thresholds. Consequently, users of the SPOT system
can select the desired thresholds to control the false positive
and false negative rates of the system.

In this paper we develop the SPOT detection system to
assist system administrators in automatically identifying the
compromised machines in their networks. We also evaluate the
performance of the SPOT system based on a two-month email



trace collected in a large U.S. campus network. Our evaluation
studies show that SPOT is an effective and efficient system in
automatically detecting compromised machines in a network.
For example, among the440 internal IP addresses observed
in the email trace, SPOT identifies132 of them as being
associated with compromised machines. Out of the132 IP
addresses identified by SPOT,126 can be either independently
confirmed (110) or are highly likely (16) to be compro-
mised. Moreover, only7 internal IP addresses associated with
compromised machines in the trace are missed by SPOT. In
addition, SPOT only needs a small number of observations to
detect a compromised machine. The majority of spam zombies
are detected with as little as3 spam messages. For comparison,
we also design and study two other spam zombie detection
algorithms based on the number of spam messages and the
percentage of spam messages originated or forwarded by
internal machines, respectively. We compare the performance
of SPOT with the two other detection algorithms to illustrate
the advantages of the SPOT system.

The remainder of the paper is organized as follows. In Sec-
tion II we discuss related work in the area of botnet detection
(focusing on spam zombie detection schemes). We formulate
the spam zombie detection problem in Section III. Section IV
provides the necessary background on SPRT for developing
the SPOT spam zombie detection system. In Section V we
provide the detailed design of SPOT and the two other
detection algorithms. Section VI evaluates the SPOT detection
system based on the two-month email trace, and contrast
its performance with the two other detection algorithms. We
briefly discuss the practical deployment issues and potential
evasion techniques in Section VII, and conclude the paper in
Section VIII.

II. RELATED WORK

In this section we discuss related work in detecting com-
promised machines. We first focus on the studies that utilize
spamming activities to detect bots and then briefly discuss a
number of efforts in detecting general botnets.

Based on email messages received at a large email service
provider, two recent studies [25], [26] investigated the ag-
gregate global characteristics of spamming botnets including
the size of botnets and the spamming patterns of botnets.
These studies provided important insights into the aggregate
global characteristics of spamming botnets by clustering spam
messages received at the provider into spam campaigns us-
ing embedded URLs and near-duplicate content clustering,
respectively. However, their approaches are better suited for
large email service providers to understand the aggregate
global characteristics of spamming botnets instead of being
deployed by individual networks to detect internal compro-
mised machines. Moreover, their approaches cannot support
the online detection requirement in the network environment
considered in this paper. We aim to develop a tool to assist
system administrators in automatically detecting compromised
machines in their networks in an online manner.

Xie, et al. developed an effective tool named DBSpam to
detect proxy-based spamming activities in a network relying
on the packet symmetry property of such activities [23]. We
intend to identify all types of compromised machines involved
in spamming, not only the spam proxies that translate and
forward upstream non-SMTP packets (for example, HTTP)
into SMTP commands to downstream mail servers as in [23].

In the following we discuss a few schemes on detecting
general botnets. BotHunter [8], developed by Guet al., detects
compromised machines by correlating the IDS dialog trace in
a network. It was developed based on the observation that a
complete malware infection process has a number of well-
defined stages including inbound scanning, exploit usage, egg
downloading, outbound bot coordination dialog, and outbound
attack propagation. By correlating inbound intrusion alarms
with outbound communications patterns, BotHunter can detect
the potential infected machines in a network. Unlike BotH-
unter which relies on the specifics of the malware infection
process, SPOT focuses on the economic incentive behind many
compromised machines and their involvement in spamming.

An anomaly-based detection system named BotSniffer [9]
identifies botnets by exploring the spatial-temporal behavioral
similarity commonly observed in botnets. It focuses on IRC-
based and HTTP-based botnets. In BotSniffer, flows are classi-
fied into groups based on the common server that they connect
to. If the flows within a group exhibit behavioral similarity, the
corresponding hosts involved are detected as being compro-
mised. BotMiner [7] is one of the first botnet detection systems
that are both protocol- and structure-independent. In BotMiner,
flows are classified into groups based on similar communica-
tion patterns and similar malicious activity patterns, respec-
tively. The intersection of the two groups is considered to be
compromised machines. Compared to general botnet detection
systems such as BotHunter, BotSniffer, and BotMiner, SPOT
is a light-weight compromised machine detection scheme, by
exploring the economic incentives for attackers to recruit the
large number of compromised machines.

As a simple and powerful statistical method, Sequential
Probability Ratio Test (SPRT) has been successfully applied
in many areas [22]. In the area of networking security, SPRT
has been used to detect portscan activities [11], proxy-based
spamming activities [23], anomaly-based botnet detection [9],
and MAC protocol misbehavior in wireless networks [15].

III. PROBLEM FORMULATION

In this section we formulate the spam zombie detection
problem in a network. In particular, we discuss the network
model and assumptions we make in the detection problem.

Figure 1 illustrates the logical view of the network model.
We assume that messages originated from machines inside the
network will pass the deployed spam zombie detection system.
This assumption can be achieved in a few different scenarios.
First, in order to alleviate the ever-increasing spam volume on
the Internet, many ISPs and networks have adopted the policy
that all the outgoing messages originated from the network
must be relayed by a few designated mail servers in the
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Fig. 1. Network model.

network. Outgoing email traffic (with destination port number
of 25) from all other machines in the network is blocked by
edge routers of the network [13], [19]. In this situation, the
detection system can be co-located with the designated mail
servers in order to examine the outgoing messages. Second,
in a network where the aforementioned blocking policy is
not adopted, the outgoing email traffic can be replicated and
redirected to the spam zombie detection system. We note that
the detection system does not need to be on the regular email
traffic forwarding path; the system only needs a replicated
stream of the outgoing email traffic. Moreover, as we will
show in Section VI, the proposed SPOT system works well
even if it cannot observe all outgoing messages. SPOT only
requires a reasonably sufficient view of the outgoing messages
originated from the network in which it is deployed.

A machine in the network is assumed to be either compro-
mised or normal (that is, not compromised). In this paper we
only focus on the compromised machines that are involved
in spamming. Therefore, we use the term acompromised
machine to denote aspam zombie, and use the two terms
interchangeably. LetXi for i = 1, 2, . . . denote the successive
observations of a random variableX corresponding to the
sequence of messages originated from machinem inside the
network. We letXi = 1 if messagei from the machine is a
spam, andXi = 0 otherwise. The detection system assumes
that the behavior of a compromised machine is different from
that of a normal machine in terms of the messages they
send. Specifically, a compromised machine will with a higher
probability generate a spam message than a normal machine.
Formally,

Pr(Xi = 1|H1) > Pr(Xi = 1|H0), (1)

whereH1 denotes that machinem is compromised andH0

that the machine is normal.
We assume that a sending machinem as observed by the

spam zombie detection system is an end-user client machine.
It is not a mail relay server. This assumption is just for the
convenience of our exposition. The proposed SPOT system can
handle the case where an outgoing message is forwarded by
a few internal mail relay servers before leaving the network.
We discuss practical deployment issues in Section VII. We
further assume that a (content-based) spam filter is deployed
at the detection system so that an outgoing message can be
classified as either a spam or nonspam [20]. The spam filter

does not need to be perfect in terms of the false positive rate
and the false negative rate. From our communications with
network operators, an increasing number of networks have
started filtering outgoing messages in recent years. Based on
the above assumptions, the spam zombie detection problem
can be formally stated as follows. AsXi arrives sequentially
at the detection system, the system determines with a high
probability if machinem has been compromised. Once a
decision is reached, the detection system reports the result,
and further actions can be taken, e.g., to clean the machine.

IV. BACKGROUND ON SEQUENTIAL PROBABILITY RATIO

TEST

In this section we provide the necessary background on the
Sequential Probability Ratio Test (SPRT) for understanding the
proposed spam zombie detection system. Interested readers are
directed to [21] for a detailed discussion on the topic of SPRT.

In its simplest form, SPRT is a statistical method for
testing a simple null hypothesis against a single alternative
hypothesis. Intuitively, SPRT can be considered as an one-
dimensional random walk with two user-specified boundaries
corresponding to the two hypotheses. As the samples of the
concerned random variable arrive sequentially, the walk moves
either upward or downward one step, depending on the value
of the observed sample. When the walk hits or crosses either
of the boundaries for the first time, the walk terminates and
the corresponding hypothesis is selected. In essence, SPRT
is a variant of the traditional probability ratio tests for testing
under what distribution (or with what distribution parameters),
it is more likely to have the observed samples. However,
unlike traditional probability ratio tests that require a pre-
defined number of observations, SPRT works in an online
manner and updates as samples arrive sequentially. Once
sufficient evidence for drawing a conclusion is obtained, SPRT
terminates.

As a simple and powerful statistical tool, SPRT has a num-
ber of compelling and desirable features that lead to the wide-
spread applications of the technique in many areas [22]. First,
both the actual false positive and false negative probabilities
of SPRT can be bounded by the user-specified error rates.
This means that users of SPRT can pre-specify the desired
error rates. A smaller error rate tends to require a larger
number of observations before SPRT terminates. Thus users
can balance the performance (in terms of false positive and
false negative rates) and cost (in terms of number of required
observations) of an SPRT test. Second, it has been proved
that SPRT minimizes the average number of the required
observations for reaching a decision for a given error rate,
among all sequential and non-sequential statistical tests. This
means that SPRT can quickly reach a conclusion to reduce
the cost of the corresponding experiment, without incurring
a higher error rate. In the following we present the formal
definition and a number of important properties of SPRT. The
detailed derivations of the properties can be found in [21].

Let X denote a Bernoulli random variable under consid-
eration with an unknown parameterθ, and X1, X2, . . . the



successive observations onX. As discussed above, SPRT is
used for testing a simple hypothesisH0 that θ = θ0 against a
single alternativeH1 that θ = θ1. That is,

Pr(Xi = 1|H0) = 1− Pr(Xi = 0|H0) = θ0

Pr(Xi = 1|H1) = 1− Pr(Xi = 0|H1) = θ1.

To ease exposition and practical computation, we compute the
logarithm of the probability ratio instead of the probability
ratio in the description of SPRT. For any positive integern =
1, 2, . . ., define

Λn = ln
Pr(X1, X2, . . . , Xn|H1)
Pr(X1, X2, . . . , Xn|H0)

. (2)

Assume thatXi’s are independent (and identically distributed),
we have

Λn = ln

∏n
1 Pr(Xi|H1)∏n
1 Pr(Xi|H0)

=
n∑

i=1

ln
Pr(Xi|H1)
Pr(Xi|H0)

=
n∑

i=1

Zi (3)

whereZi = lnPr(Xi|H1)
Pr(Xi|H0)

, which can be considered as the step
in the random walk represented byΛ. When the observation
is one (Xi = 1), the constantln θ1

θ0
is added to the preceding

value of Λ. When the observation is zero (Xi = 0), the
constantln 1−θ1

1−θ0
is added.

The Sequential Probability Ratio Test (SPRT) for testing
H0 againstH1 is then defined as follows. Given two user-
specified constantsA and B whereA < B, at each stagen
of the Bernoulli experiment, the value ofΛn is computed as
in Eq. (3), then

Λn ≤ A =⇒ acceptH0 and terminate test,

Λn ≥ B =⇒ acceptH1 and terminate test, (4)

A < Λn < B =⇒ take an additional observation

and continue experiment.

In the following we describe a number of important prop-
erties of SPRT. If we considerH1 as a detection andH0

as a normality, an SPRT process may result in two types
of errors: false positive whereH0 is true but SPRT accepts
H1 and false negative whereH1 is true but SPRT accepts
H0. We let α and β denote the user-desired false positive
and false negative probabilities, respectively. There exist some
fundamental relations amongα, β, A, andB [21],

A ≥ ln
β

1− α
, B ≤ ln

1− β

α
,

for most practical purposes, we can take the equality, that is,

A = ln
β

1− α
, B = ln

1− β

α
. (5)

This will only slightly affect the actual error rates. Formally,
let α′ and β′ represent the actual false positive rate and the
actual false negative rate, respectively, and letA and B be
computed using Eq. (5), then the following relations hold,

α′ ≤ α

1− β
, β′ ≤ β

1− α
, (6)

and

α′ + β′ ≤ α + β. (7)

Eqs. (6) and (7) provide important bounds forα′ andβ′. In
all practical applications, the desired false positive and false
negative rates will be small, for example, in the range from
0.01 to 0.05. In these cases,α1−β and β

1−α very closely equal
the desiredα andβ, respectively. In addition, Eq. (7) specifies
that the actual false positive rate and the false negative rate
cannot be both larger than the corresponding desired error rate
in a given experiment. Therefore, in all practical applications,
we can compute the boundariesA andB using Eq. (5), given
the user specified false positive and false negative rates. This
will provide at least the same protection against errors as if we
use the precise values ofA andB for a given pair of desired
error rates. The precise values ofA andB are hard to obtain.

Another important property of SPRT is the number of
observations,N , required before SPRT reaches a decision. The
following two equations approximate the average number of
observations required whenH1 andH0 are true, respectively.

E[N |H1] =
βln β

1−α + (1− β)ln 1−β
α

θ1ln θ1
θ0

+ (1− θ1)ln1−θ1
1−θ0

(8)

E[N |H0] =
(1− α)ln β

1−α + αln 1−β
α

θ1ln θ1
θ0

+ (1− θ1)ln1−θ1
1−θ0

(9)

From the above equations we can see that the average number
of required observations whenH1 or H0 is true depends
on four parameters: the desired false positive and negative
rates (α and β), and the distribution parametersθ1 and θ0

for hypothesesH1 and H0, respectively. We note that SPRT
does not require the precise knowledge of the distribution
parametersθ1 and θ0. As long as the true distribution of
the underlying random variable is sufficiently close to one of
hypotheses compared to another (that is,θ is closer to eitherθ1

or θ0), SPRT will terminate with the bounded error rates. An
imprecise knowledge ofθ1 andθ0 will only affect the number
of required observations for SPRT to reach a decision.

To get some intuitive understanding of the average number
of required observations for SPRT to reach a decision, Fig-
ures 2 (a) and (b) show the value ofE[N |H1] as a function
of θ0 and θ1, respectively, for different desired false positive
rates. The following discussion is in the context of spam
zombie detection. In the figures we set the false negative rate
β = 0.01. In Figure 2 (a) we assume the probability of a
message being spam whenH1 is true to be0.9 (θ1 = 0.9).
That is, we assume the corresponding spam filter have a90%
detection rate. From the figure we can see that it only takes
a small number of observations for SPRT to reach a decision.
For example, whenθ0 = 0.2 (the spam filter has20% false
positive rate), SPRT requires about3 observations to detect
that the machine is compromised if the desired false positive
rate is0.01. As the behavior of a normal machine gets closer
to that of compromised machine (or rather, the false positive
rate of the spam filter increases), i.e.,θ0 increases, a slightly



 0

 5

 10

 15

 20

 25

 30

 35

 0  0.1  0.2  0.3  0.4  0.5

Ε[
Ν

|Η
1]

θ0

α = 0.01
α = 0.005
α = 0.001

(a) θ1 = 0.9

 0

 5

 10

 15

 20

 25

 30

 35

 0.5 0.6 0.7 0.8 0.9 1

Ε[
Ν

|Η
1]

θ1

α = 0.01
α = 0.005
α = 0.001

(b) θ0 = 0.2

Fig. 2. Average number of required observations whenH1 is true (β = 0.01)

higher number of observations are required for SPRT to reach
a detection.

In Figure 2 (b) we assume the probability of a message
being spam from a normal machine to be0.2 (θ0 = 0.2). That
is, the corresponding spam filter has a false positive rate of
20%. From the figure we can see that it also only takes a small
number of observations for SPRT to reach a decision. As the
behavior of a compromised machine gets closer to that of a
normal machine (or rather, the detection rate of the spam filter
decreases), i.e.,θ1 decreases, a higher number of observations
are required for SPRT to reach a detection.

From the figures we can also see that, as the desired
false positive rate decreases, SPRT needs a higher number
of observations to reach a conclusion. The same observation
applies to the desired false negative rate. These observations
illustrate the trade-offs between the desired performance of
SPRT and the cost of the algorithm. In the above discussion,
we only show the average number of required observations
whenH1 is true because we are more interested in the speed of
SPRT-based algorithms in detecting compromised machines.
The study onE[N |H0] shows a similar trend (not shown).

V. SPAM ZOMBIE DETECTION ALGORITHMS

In this section we will develop three spam zombie detection
algorithms. The first one is SPOT, which utilizes the Sequential
Probability Ratio Test (SPRT) presented in the last section.
We discuss the impacts of SPRT parameters on SPOT in the
context of spam zombie detection. The other two spam zombie
detection algorithms are developed based on the number of
spam messages and the percentage of spam messages sent
from an internal machine, respectively. To ease exposition of
the algorithm, we ignore the potential impacts of dynamic IP
addresses [3], [24] and assume that an IP address corresponds
to a unique machine. We will informally discuss the impacts
of dynamic IP addresses on detecting spam zombies at the end
of this section. We will formally evaluate the performance of
the three detection algorithms and the potential impacts of
dynamic IP addresses in the next section, based on a two-
month email trace collected on a large U.S. campus network.

Algorithm 1 SPOT spam zombie detection system
1: An outgoing message arrives at SPOT
2: Get IP address of sending machinem
3: // all following parameters specific to machinem
4: Let n be the message index
5: Let Xn = 1 if message is spam,Xn = 0 otherwise
6: if (Xn == 1) then
7: // spam, Eq. 3
8: Λn+ = ln θ1

θ0
9: else

10: // nonspam
11: Λn+ = ln 1−θ1

1−θ0
12: end if
13: if (Λn ≥ B) then
14: Machinem is compromised. Test terminates form.
15: else if (Λn ≤ A) then
16: Machinem is normal. Test is reset form.
17: Λn = 0
18: Test continues with new observations
19: else
20: Test continues with an additional observation
21: end if

A. SPOT Detection Algorithm

SPOT is designed based on the statistical tool SPRT we
discussed in the last section. In the context of detecting spam
zombies in SPOT, we considerH1 as a detection andH0 as
a normality. That is,H1 is true if the concerned machine is
compromised, andH0 is true if it is not compromised. In
addition, we letXi = 1 if the ith message from the concerned
machine in the network is a spam, andXi = 0 otherwise.
Recall that SPRT requires four configurable parameters from
users, namely, the desired false positive probabilityα, the
desired false negative probabilityβ, the probability that a
message is a spam whenH1 is true (θ1), and the probability
that a message is a spam whenH0 is true (θ0). We discuss
how users configure the values of the four parameters after



we present the SPOT algorithm. Based on the user-specified
values ofα andβ, the values of the two boundariesA andB
of SPRT are computed using Eq. (5).

In the following we describe the SPOT detection algorithm.
Algorithm 1 outlines the steps of the algorithm. When an
outgoing message arrives at the SPOT detection system, the
sending machine’s IP address is recorded, and the message is
classified as either spam or nonspam by the (content-based)
spam filter. For each observed IP address, SPOT maintains
the logarithm value of the corresponding probability ratioΛn,
whose value is updated according to Eq. (3) as messagen
arrives from the IP address (lines6 to 12 in Algorithm 1).
Based on the relation betweenΛn andA andB, the algorithm
determines if the corresponding machine is compromised,
normal, or a decision cannot be reached and additional ob-
servations are needed (lines13 to 21).

We note that in the context of spam zombie detection, from
the viewpoint of network monitoring, it is more important to
identify the machines that have been compromised than the
machines that are normal. After a machine is identified as
being compromised (lines13 and14), it is added into the list of
potentially compromised machines that system administrators
can go after to clean. The message-sending behavior of the
machine is also recorded should further analysis be required.
Before the machine is cleaned and removed from the list, the
SPOT detection system does not need to further monitor the
message sending behavior of the machine.

On the other hand, a machine that is currently normal
may get compromised at a later time. Therefore, we need
to continuously monitor machines that are determined to be
normal by SPOT. Once such a machine is identified by SPOT,
the records of the machine in SPOT are re-set, in particular,
the value ofΛn is set to zero, so that a new monitoring phase
starts for the machine (lines15 to 18).

SPOT requires four user-defined parameters:α, β, θ1, and
θ0. In the following we discuss how a user of the SPOT algo-
rithm configures these parameters, and how these parameters
may affect the performance of SPOT. As discussed in the
previous sectionα andβ are the desired false positive and false
negative rates. They are normally small values in the range
from 0.01 to 0.05, which users of SPOT can easily specify
independent of the behaviors of the compromised and normal
machines in the network. As we have shown in Section IV, the
values ofα andβ will affect the cost of the SPOT algorithm,
that is, the number of observations needed for the algorithm
to reach a conclusion. In general, a smaller value ofα and
β will require a larger number of observations for SPOT to
reach a detection.

Ideally, θ1 and θ0 should indicate the true probability of
a message being spam from a compromised machine and a
normal machine, respectively. However, as we have discussed
in the last section,θ1 and θ0 do not need to accurately
model the behaviors of the two types of machines. Instead,
as long as the true distribution is closer to one of them than
another, SPRT can reach a conclusion with the desired error
rates. Inaccurate values assigned to these parameters will only

affect the number of observations required by the algorithm to
terminate. Moreover, SPOT relies on a (content-based) spam
filter to classify an outgoing message into either spam or
nonspam. In practice,θ1 and θ0 should model the detection
rate and the false positive rate of the employed spam filter,
respectively. We note that all the widely-used spam filters have
a high detection rate and low false positive rate [20].

B. Spam Count and Percentage based Detection Algorithms

For comparison, in this section we present two different
algorithms in detecting spam zombies, one based on the
number of spam messages and another the percentage of spam
messages sent from an internal machine, respectively. For
simplicity, we refer to them as the count-threshold (CT) de-
tection algorithm and the percentage-threshold (PT) detection
algorithm, respectively.

In CT, the time is partitioned into windows of fixed length
T . A user-defined threshold parameterCs specifies the max-
imum number of spam message that may be originated from
a normal machine in any time window. The system monitors
the number of spam messagesn originated from a machine in
each window. Ifn > Cs, then the algorithm declares that the
machine has been compromised.

Similarly, in the PT detection algorithm the time is par-
titioned into windows of fixed lengthT . PT monitors two
email sending properties of each internal machine in each time
window: one is the percentage of spam messages sent from
a machine, another the total number of messages. LetN and
n denote the total messages and spam messages originated
from a machinem within a time window, respectively, then
PT declares machinem as being compromised ifN ≥ Ca

and n
N > P , whereCa is the minimum number of messages

that a machine must send, andP is the user-defined maximum
spam percentage of a normal machine. The first condition is in
place for preventing high false positive rates when a machine
only generates a small number of messages. For example, in
an extreme case, a machine may only send a single message
and it is a spam, which renders the machine to have a100%
spam ratio. However, it does not make sense to classify this
machine as being compromised based on this small number
of messages generated.

In the following we briefly compare the two spam zombie
detection algorithms CT and PT with the SPOT system. The
three algorithms have the similar running time and space
complexities. They all need to maintain a record for each
observed machine and update the corresponding record as
messages arrive from the machine. However, unlike SPOT,
which can provide a bounded false positive rate and false
negative rate, and consequently, a confidence how well SPOT
works, the error rates of CT and PT cannot be a priori
specified.

In addition, choosing the proper values for the four user-
defined parameters (α, β, θ1, and θ0) in SPOT is relatively
straightforward (see the related discussion in the previous
subsection). In contrast, selecting the “right” values for the
parameters of CT and PT are much more challenging and



tricky. The performance of the two algorithms is sensitive to
the parameters used in the algorithm. They require a thorough
understanding of the different behaviors of the compromised
and normal machines in the concerned network and a training
based on the behavioral history of the two different types
of machines in order for them to work reasonably well in
the network. For example, it can be challenging to select the
“best” length of time windows in CT and PT to obtain the
optimal false positive and false negative rates. We discuss
how an attacker may try to evade CT and PT (and SPOT)
in Section VII.

C. Impact of Dynamic IP addresses

In the above discussion of the spam zombie detection
algorithms we have for simplicity ignored the potential impact
of dynamic IP addresses and assumed that an observed IP cor-
responds to a unique machine. In the following we informally
discuss how well the three algorithms fair with dynamic IP
addresses. We formally evaluate the impacts of dynamic IP
addresses on detecting spam zombies in the next section using
a two-month email trace collected on a large U.S. campus
network.

SPOT can work extremely well in the environment of
dynamic IP addresses. To understand the reason we note that
SPOT can reach a decision with a small number of obser-
vations as illustrated in Figure 2, which shows the average
number of observations required for SPRT to terminate with a
conclusion. In practice, we have noted that3 or 4 observations
are sufficient for SPRT to reach a decision for the vast majority
of cases (see the performance evaluation of SPOT in the next
section). If a machine is compromised, it is likely that more
than3 or 4 spam messages will be sent before the (unwitting)
user shutdowns the machine and the corresponding IP address
gets re-assigned to a different machine. Therefore, dynamic IP
addresses will not have any significant impact on SPOT.

Dynamic IP addresses can have a greater impact on the other
two detection algorithms CT and PT. First, both require the
continuous monitoring of the sending behavior of a machine
for at least a specified time window, which in practice can
be on the order of hours or days. Second, CT also requires a
relatively larger number of spam messages to be observed from
a machine before reaching a detection. By properly selecting
the values for the parameters of CT and PT (for example, a
shorter time window for machines with dynamic IP addresses),
they can also work reasonably well in the environment of
dynamic IP addresses. We formally evaluate the impacts of
dynamic IP addresses on detecting spam zombies in the next
section.

VI. PERFORMANCEEVALUATION

In this section we evaluate the performance of the three
detection algorithms based on a 2-month email trace collected
on a large U.S. campus network. We also study the potential
impact of dynamic IP addresses on detecting spam zombies.

TABLE I
SUMMARY OF THE EMAIL TRACE .

Measure Non-spam Spam Aggregate
Period 8/25/2005 – 10/24/2005 (excld. 9/11/2005)
# of emails 6,712,392 18,537,364 25,249,756
# of FSU emails 5,612,245 6,959,737 12,571,982
# of infected emails 60,004 163,222 223,226
# of infected FSU emails 34,345 43,687 78,032

A. Overview of the Email Trace and Methodology

The email trace was collected at a mail relay server de-
ployed in the Florida State University (FSU) campus network
between 8/25/2005 and 10/24/2005, excluding 9/11/2005 (we
do not have trace on this date). During the course of the email
trace collection, the mail server relayed messages destined
for 53 subdomains in the FSU campus network. The mail
relay server ran SpamAssassin [20] to detect spam messages.
The email trace contains the following information for each
incoming message: the local arrival time, the IP address of the
sending machine (i.e., the upstream mail server that delivered
the message to the FSU mail relay server), and whether or not
the message is spam. In addition, if a message has a known
virus/worm attachment, it was so indicated in the trace by an
anti-virus software. The anti-virus software and SpamAssassin
were two independent components deployed on the mail relay
server. Due to privacy issues, we do not have access to the
content of the messages in the trace.

Ideally we should have collected all the outgoing mes-
sages in order to evaluate the performance of the detection
algorithms. However, due to logistical constraints, we were
not able to collect all such messages. Instead, we identified
the messages in the email trace that have been forwarded or
originated by the FSU internal machines, that is, the messages
forwarded or originated by an FSU internal machine and
destined to an FSU account. We refer to this set of messages
as theFSU emailsand perform our evaluation of the detection
algorithms based on the FSU emails. We note the set of FSU
emails does not contain all the outgoing messages originated
from inside FSU, and the compromised machines identified by
the detection algorithms based on the FSU emails will likely be
a lower bound on the true number of compromised machines
inside FSU campus network.

An email message in the trace is classified as eitherspam
or non-spamby SpamAssassin [20] deployed in the FSU mail
relay server. For ease of exposition, we refer to the set of all
messages as theaggregateemails including both spam and
non-spam. If a message has a known virus/worm attachment,
we refer to such a message as aninfected message. We refer to
an IP address of a sending machine as aspam-onlyIP address
if only spam messages are received from the IP address.
Similarly, we refer to an IP address asnon-spam onlyand
mixed if we only receive non-spam messages, or we receive
both spam and non-spam messages, respectively, from the IP
address.

Table I shows a summary of the email trace. As shown
in the table, the trace contains more than25 M emails, of



TABLE II
SUMMARY OF SENDING IP ADDRESSES.

Total Non-spam only Spam only Mixed
# of IP (%) 2,461,114 121,103 (4.9) 2,224,754 (90.4) 115,257 (4.7)
# of FSU IP (%) 440 175 (39.7) 74 (16.8) 191 (43.5)

cluster 1

Time
>T >T

cluster 2 cluster 3

Fig. 3. Illustration of message clustering.

which more than18 M, or about73%, are spam. About half of
the messages in the email trace were originated or forwarded
by FSU internal machines, i.e., contained in the set of FSU
emails. Table II shows the classifications of the observed IP
addresses. As shown in the table, during the course of the
trace collection, we observed more than2 M IP addresses
(2, 461, 114) of sending machines, of which more than95%
sent at least one spam message. During the same course, we
observed440 FSU internal IP addresses.

Table III shows the classification of the observed IP ad-
dresses that sent at least one message carrying a virus/worm
attachment. We note that a higher proportion of FSU internal
IP addresses sent emails with a virus/worm attachment than
the overall IP addresses observed (all emails were destined
to FSU accounts). This could be caused by a few factors.
First, a (compromised) email account in general maintains
more email addresses of friends in the same domain than other
remote domains. Second, an (email-propagated) virus/worm
may adopt a spreading strategy concentrating more on local
targets [2]. More detailed analysis of the email trace can
be found in [5] and [6], including the daily message arrival
patterns, and the behaviors of spammers at both the mail-server
level and the network level.

In order to study the potential impacts of dynamic IP
addresses on the detection algorithms, we obtain the subset of
FSU IP addresses in the trace whose domain names contain
“wireless”, which normally have dynamically allocated IP
addresses. For each of the IP addresses, we group the messages
sent from the IP address into clusters, where the messages in
each cluster are likely to be from the same machine (before
the IP address is re-assigned to a different machine). We group
messages according to the inter-arrival times between consec-
utive messages, as discussed below. Letmi for i = 1, 2, . . .
denote the messages sent from an IP address, andti denote
the time when messagei is received. Then messagesmi for
i = 1, 2, . . . , k belong to the same cluster if|ti − ti−1| ≤ T
for i = 2, 3, . . . , k, and |tk+1 − tk| > T , whereT is an user-
defined time interval. We repeat the same process to group
other messages. Letmi for i = j, j+1, . . . , k be the sequence
of messages in a cluster, arriving in that order. Then|tk − tj |
is referred to as theduration of the cluster, and|tk+1 − tk| is
referred to as thetime intervalbetween two clusters.

Figure 3 illustrates the message clustering process. The
intuition is that, if two messages come closely in time from
an IP address (within a time intervalT ), it is unlikely that the
IP address has been assigned to two different machines within
the short time interval.

In the evaluation studies, we whitelist the known mail
servers deployed on the FSU campus network, given that
they are unlikely to be compromised. If a deployed mail
server forwards a large number of spam messages, it is more
likely that machines behind the mail server are compromised.
However, just based on the information available in the email
trace we cannot decide which machines are responsible for the
large number of spam messages, and consequently, determine
the compromised machines. Section VII discusses how we can
handle this case in practical deployment.

TABLE III
SUMMARY OF IP ADDRESSES SENDING VIRUS/WORM.

Total Non-spam only Spam only Mixed
# of IP 10,385 1,032 6,705 2,648
# of FSU IP 204 19 42 143

B. Performance of SPOT

In this section, we evaluate the performance of SPOT based
on the collected FSU emails. In all the studies, we setα =
0.01, β = 0.01, θ1 = 0.9, andθ0 = 0.2. That is, we assume
the deployed spam filter has a90% detection rate and20%
false positive rate. Many widely-deployed spam filters have
much better performance than what we assume here.

TABLE IV
PERFORMANCE OFSPOT.

Total # FSU IP Detected Confirmed (%) Missed (%)
440 132 126 (94.7) 7 (5.3)

Table IV shows the performance of the SPOT spam zombie
detection system. As discussed above, there are440 FSU
internal IP addresses observed in the email trace. SPOT
identifies 132 of them to be associated with compromised
machines. In order to understand the performance of SPOT in
terms of the false positive and false negative rates, we rely on a
number of ways to verify if a machine is indeed compromised.
First, we check if any message sent from an IP address carries
a known virus/worm attachment. If this is the case, we say we
have a confirmation. Out of the132 IP addresses identified by
SPOT, we can confirm110 of them to be compromised in this
way. For the remaining22 IP addresses, we manually examine
the spam sending patterns from the IP addresses and the
domain names of the corresponding machines. If the fraction
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of the spam messages from an IP address is high (greater than
98%), we also claim that the corresponding machine has been
confirmed to be compromised. We can confirm16 of them to
be compromised in this way. We note that the majority (62.5%)
of the IP addresses confirmed by the spam percentage are
dynamic IP addresses, which further indicates the likelihood
of the machines to be compromised.

For the remaining6 IP addresses that we cannot confirm by
either of the above means, we have also manually examined
their sending patterns. We note that, they have a relatively
overall low percentage of spam messages over the two month
of the collection period. However, they sent substantially more
spam messages towards the end of the collection period. This
indicates that they may get compromised towards the end
of our collection period. However, we cannot independently
confirm if this is the case.

Evaluating the false negative rate of SPOT is a bit tricky by
noting that SPOT focuses on the machines that are potentially
compromised, but not the machines that are normal (see
Section V). In order to have some intuitive understanding of
the false negative rate of the SPOT system, we consider the
machines that SPOT does not identify as being compromised
at the end of the email collection period, but for which SPOT
has re-set the records (lines15 to 18 in Algorithm 1). That is,
such machines have been claimed as being normal by SPOT
(but have continuously been monitored). We also obtain the
list of IP addresses that have sent at least a message with
a virus/worm attachment.7 of such IP addresses have been
claimed as being normal, i.e., missed, by SPOT.

We emphasize that the infected messages are only used
to confirm if a machine is compromised in order to study
the performance of SPOT. Infected messages are not used
by SPOT itself. SPOT relies on the spam messages instead
of infected messages to detect if a machine has been com-
promised to produce the results in Table IV. We make this
decision by noting that, it is against the interest of a profes-
sional spammer to send spam messages with a virus/worm
attachment. Such messages are more likely to be detected by
anti-virus softwares, and hence deleted before reaching the
intended recipients. This is confirmed by the low percentage of
infected messages in the overall email trace shown in Table I.
Infected messages are more likely to be observed during the

spam zombie recruitment phase instead of spamming phase.
Infected messages can be easily incorporated into the SPOT
system to improve its performance.

We note that both the actual false positive rate and the false
negative rate are higher than the specified false positive rate
and false negative rate, respectively. One potential reason is
that the underlying statistical tool SPRT assumes events (in our
cases, outgoing messages) are independently and identically
distributed. However, spam messages belonging to the same
campaign are likely generated using the same spam template
and delivered in batch; therefore, spam messages observed in
time proximity may not be independent with each other. This
can affect the performance of SPOT in detecting compromised
machines. Another potential reason is that the evaluation was
based on the FSU emails, which can only provide a partial
view of the outgoing messages originated from inside FSU.

Figure 4 shows the distributions of the number of actual
observations that SPOT takes to detect the compromised
machines. As we can see from the figure, the vast majority
of compromised machines can be detected with a small
number of observations. For example, more than80% of
the compromised machines are detected by SPOT with only
3 observations. All the compromised machines are detected
with no more than11 observations. This indicates that, SPOT
can quickly detect the compromised machines. We note that
SPOT does not need compromised machines to send spam
messages at a high rate in order to detect them. Here, “quick”
detection does not mean a short duration, but rather a small
number of observations. A compromised machine can send
spam messages at a low rate (which, though, works against
the interest of spammers), but it can still be detected once
enough observations are obtained by SPOT.

C. Performance of CT and PT

In this section we evaluate the performance of CT and PT
and compare their performance with that of SPOT, using the
same two-month email trace collected on the FSU campus
network. Recall that CT is a detection algorithm based on
the number of spam messages originated or forwarded by an
internal machine, and PT based on the percentage of spam
messages originated or forwarded by an internal machine (see
Section V-B).

In this evaluation study, we set the length of time windows
to be 1 hours, that is,T = 1 hour, for both CT and PT.
For CT, we set the maximum number of spam messages that
a normal machine can send within a time window to be30
(Cs = 3), that is, when a machine sends more than30 spam
message within any time windows, CT concludes that the
machine is compromised. In PT, we set the minimum number
of (spam and non-spam) messages within a time window to be
6 (Ca = 6), and the maximum percentage of spam messages
within a time window to be50% (P = 50%). That is, if more
than 50% of all messages sent from a machine are spam in
any time window with at least6 messages in the window, PT
will conclude that the machine is compromised. We choose
the values for the parameters of PT in this way so that it
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is relatively comparable with SPOT. Recall that based on our
empirical study in the last subsection, the minimum number of
observations needed by SPOT to reach a detection is3 (when
α = 0.01, β = 0.01, θ0 = 0.2, andθ1 = 0.9).

TABLE V
PERFORMANCE OFCT AND PT.

Total # FSU IP Detected Confirmed (%) Missed (%)
CT 440 81 79 (59.8) 53 (40.2)
PT 440 84 83 (61.9) 51 (38.1)

Table V shows the performance of CT and PT, which
includes the number of compromised IP addresses detected,
confirmed, and missed. We use the same methods to confirm
a detection or identify a missed IP address as we have done
with the SPOT detection algorithm. From the table we can
see that, CT and PT have a worse performance than SPOT.
For example, CT only detects81 IP addresses as being com-
promised. Among the81 IP addresses,79 can be confirmed
to be associated with compromised machines. However, CT
missed detecting53 IP addresses associated with compromised
machines. The detection rate and false negative rate of CT is
59.8% and40.2%, respectively, much worse than that of SPOT,
which are94.7% and5.3%, respectively. We also note that all
the compromised IP addresses detected (confirmed) using CT
or PT are also detected (confirmed) using the SPOT detection
algorithm. That is, the IP addresses detected (confirmed)
using CT and PT are a subset of compromised IP addresses
detected (confirmed) using the SPOT detection algorithm. The
IP addresses associated with compromised machines that are
missed by SPOT are also missed by CT and PT. We conclude
that SPOT outperforms both CT and PT in terms of both
detection rate and miss rate.

D. Dynamic IP Addresses

In this section we conduct studies to understand the potential
impacts of dynamic IP addresses on the performance of the
three detection algorithms. Given that SPOT outperforms both
CT and PT, our discussion will focus on the impacts on SPOT;
similar observations also apply to CT and PT.

In order to understand the potential impacts of dynamic
IP addresses on the detection algorithms, we group messages
from a dynamic IP address (with domain names containing

“wireless”) into clusters with a time interval threshold of30
minutes. Messages with a consecutive inter-arrival time no
greater than30 minutes are grouped into the same cluster.
Given the short inter-arrival duration of messages within a
cluster, we consider all the messages from the same IP address
within each cluster as being sent from the same machine. That
is, the corresponding IP address has not been re-assigned to a
different machine within the concerned cluster. (It is possible
that messages from multiple adjacent clusters are actually sent
from the same machine.)

Figure 5 shows the cumulative distribution function (CDF)
of the number of spam messages in each cluster. From the
figure we can see that more than90% of the clusters have no
less than10 spam messages, and more than96% no less than
3 spam messages. Given the large number of spam messages
sent within each cluster, it is unlikely for SPOT to mistake
one compromised machine as another when it tries to detect
spam zombies. Indeed, we have manually checked that, spam
messages tend to be sent back to back in a batch fashion when
a dynamic IP address is observed in the trace. Figure 6 shows
the CDF of the number of all messages (including both spam
and non-spam) in each cluster. Similar observations can be
made to that in Figure 5.
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Figure 7 shows the CDF of the durations of the clusters.
As we can see from the figure, more than75% and 58% of
the clusters last no less than30 minutes and one hour (corre-
sponding to the two vertical lines in the figure), respectively.
The longest duration of a cluster we observe in the trace is



about3.5 hours. Figure 8 shows the CDF of the time intervals
between consecutive clusters. As we can see from the figure,
the minimum time interval between two consecutive clusters is
slightly more than30 minutes (31.38 minutes), and the longest
one is close to13 days (18649.38 minutes). Moreover, more
than 88% of all intervals between clusters are longer than1
hour.
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Given the above observations, in particular, the large number
of spam messages in each cluster, we conclude that dynamic
IP addresses will not have any important impact on the
performance of SPOT. SPOT can reach a decision within the
vast majority (96%) of the clusters in the setting we used in the
current performance study. It is unlikely for SPOT to mistake
a compromised machine as another.

VII. D ISCUSSION

In this section we discuss the practical deployment issues
and possible techniques that spammers may employ to evade
the detection algorithms. Our discussions will focus on the
SPOT detection algorithm.

A. Practical Deployment

To ease exposition we have assumed that a sending machine
m (Figure 1) is an end-user client machine. It cannot be a mail
relay server deployed by the network. In practice, a network
may have multiple subdomains and each has its own mail
servers. A message may be forwarded by a number of mail
relay servers before leaving the network. SPOT can work well
in this kind of network environments. In the following we
outline two possible approaches. First, SPOT can be deployed
at the mail servers in each subdomain to monitor the outgoing
messages so as to detect the compromised machines in that
subdomain.

Second, and possibly more practically, SPOT is only de-
ployed at the designated mail servers, which forward all
outgoing messages (or SPOT gets a replicated stream of all
outgoing messages), as discussed in Section III. SPOT relies
on the Received header fields to identify the originating
machine of a message in the network [12], [17]. Given that the
Received header fields can be spoofed by spammers [18],
SPOT should only use theReceived header fields inserted
by the known mail servers in the network. SPOT can determine

the reliableReceived header fields by backtracking from
the last known mail server in the network that forwards the
message. It terminates and identifies the originating machine
when an IP address in theReceived header field is not
associated with a known mail server in the network. The
similar practical deployment methods also apply to the CT
and PT detection algorithms.

B. Possible Evasion Techniques

Given that the developed compromised machine detection
algorithms rely on (content-based) spam filters to classify
messages into spam and non-spam, spammers may try to evade
the detection algorithms by evading the deployed spam filters.
They may send completely meaningless “non-spam” messages
(as classified by spam filters). However, this will reduce the
real spamming rate, and hence, the financial gains, of the
spammers [4]. More importantly, as shown in Figure 2 (b),
even if a spammer reduces the spam percentage to50%, SPOT
can still detect the spam zombie with a relatively small number
of observations (25 whenα = 0.01, β = 0.01, andθ0 = 0.2).
So, trying to send non-spam messages will not help spammers
to evade the SPOT system.

Moreover, in certain environment where user feedback is
reliable, for example, feedback from users of the same network
in which SPOT is deployed, SPOT can rely on classifications
from end users (in addition to the spam filter). Although
completely meaningless messages may evade the deployed
spam filter, it is impossible for them to remain undetected by
end users who receive such messages. User feedbacks may be
incorporated into SPOT to improve the spam detection rate of
the spam filter. As we have discussed in the previous section,
trying to send spam at a low rate will also not evade the SPOT
system. SPOT relies on the number of (spam) messages, not
the sending rate, to detect spam zombies.

As we have discussed in Section V-B, selecting the “right”
values for the parameters of CT and PT are much more
challenging and tricky than those of SPOT. In addition, the
parameters directly control the detection decision of the two
detection algorithms. For example, in CT, we specify the
maximum number of spam messages that a normal machine
can send. Once the parameters are learned by the spammers,
they can send spam messages below the configured threshold
parameters to evade the detection algorithms. One possible
countermeasure is to configure the algorithms with small
threshold values, which helps reduce the spam sending rate
of spammers from compromised machines, and therefore, the
financial gains of spammers. Spammers can also try to evade
PT by sending meaningless “non-spam” messages. Similarly,
user feedback can be used to improve the spam detection rate
of spam filters to defeat this type of evasions.

VIII. C ONCLUSION

In this paper we developed an effective spam zombie detec-
tion system named SPOT by monitoring outgoing messages
in a network. SPOT was designed based on a simple and
powerful statistical tool named Sequential Probability Ratio



Test to detect the compromised machines that are involved
in the spamming activities. SPOT has bounded false positive
and false negative error rates. It also minimizes the number of
required observations to detect a spam zombie. Our evaluation
studies based on a 2-month email trace collected on the FSU
campus network showed that SPOT is an effective and efficient
system in automatically detecting compromised machines in a
network. In addition, we also showed that SPOT outperforms
two other detection algorithms based on the number and
percentage of spam messages sent by an internal machine,
respectively.
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