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Abstract—Compromised machines are one of the key security compromised machines are involved in spamming [16], [18],
threat.? Ontttheklmemﬁt; they are often USded to |6:jl!n0h valrious [25]. A number of recent research efforts have studied the ag-
security attacks such as spamming and spreading malware, ot ;

DDoS, and identity theft. Given that spamming provides a key gregate glot_)al CharaCt.e”S“.CS of spgmmlng b(.)tnets (networks
economic incentive for attackers to recruit the large number O_f compromised machines |nvqlved in spamming) such as the
of compromised machines, we focus on the detection of the Size of botnets and the spamming patterns of botnets, based on
compromised machines in a network that are involved in the the sampled spam messages received at a large email service
spamming activities, commonly known as spam zombies. We_lprovider [25], [26].

develop an effective spam zombie detection system named SPO Rather than th r | | char risti f m-
by monitoring outgoing messages of a network. SPOT is designed ather than the aggregate global characteristics of spa

based on a powerful statistical tool called Sequential Probability ming botnets, we _alm to develop a tool for _System admlnls-
Ratio Test, which has bounded false positive and false negative trators to automatically detect the compromised machines in
error rates. Our evaluation studies based on a two-month email their networks in an online manner. We consider ourselves
trace collected in a large U.S. campus network show that SPOT gjtuated in a network and ask the following question: How

is an eff_ectlve and_efflc_lent system in automatically detecting can we automatically identify the compromised machines
compromised machines in a network. For example, among the .

440 internal IP addresses observed in the email trace, SPOT " _the netWOF_k as outgoing messages pass t_he momtormg
identifies 132 of them as being associated with compromised Point sequentially? The approaches developed in the previous
machines. Out of the132 IP addresses identified by SPOT126 work [25], [26] cannot be applied here. The locally generated
can be either independently confirmed (110) or highly likely outgoing messages in a network normally cannot provide the
(16) to be compromised. Moreover, only internal IP addresses o 4qregate large-scale spam view required by these approaches.
associated with cc_)r_npromlsed machines in the trace are missed Moreover, these approaches cannot support the online detec-
by SPOT. In addition, we also compare the performance of N ¢ - )
SPOT with two other spam zombie detection algorithms based tion requirement in the environment we consider.
on the number and percentage of spam messages originated The nature of sequentially observing outgoing messages
or forwarded by internal machines, respectively, and show that gives rise to the sequential detection problem. In this paper we
SPOT outperforms these two detecﬂ.on algorithms. will develop a spam zombie detection system, named SPOT,
pr(lrr:ﬂg:d“a;sr;n?ggggsﬁ%gg&ﬁrr'nis’ Spam Zombies, Com- by monitlor'ing outgoing messages. SPOT is d('afsigned. based
on a statistical method called Sequential Probability Ratio Test
(SPRT), developed by Wald in his seminal work [21]. SPRT is
a powerful statistical method that can be used to test between
A major security challenge on the Internet is the existent®@o hypotheses (in our case, a machine is compromised
of the large number of compromised machines. Such machings the machine is not compromised), as the events (in our
have been increasingly used to launch various security attackse, outgoing messages) occur sequentially. As a simple and
including spamming and spreading malware, DDoS, and idgmewerful statistical method, SPRT has a number of desirable
tity theft [1], [10], [14]. Two natures of the compromisedfeatures. It minimizes the expected number of observations
machines on the Internet—sheer volume and wide spreadegquired to reach a decision among all the sequential and
render many existing security countermeasures less effectien-sequential statistical tests with no greater error rates. This
and defending attacks involving compromised machines axeans that the SPOT detection system can identify a compro-
tremely hard. On the other hand, identifying and cleaningised machine quickly. Moreover, both the false positive and
compromised machines in a network remain a significafdlse negative probabilities of SPRT can be bounded by user-
challenge for system administrators of networks of all sizeslefined thresholds. Consequently, users of the SPOT system
In this paper we focus on the detection of the compra@an select the desired thresholds to control the false positive
mised machines in a network that are used for sendiagd false negative rates of the system.
spam messages, which are commonly referred to as sparim this paper we develop the SPOT detection system to
zombies. Given that spamming provides a critical economéssist system administrators in automatically identifying the
incentive for the controllers of the compromised machines tmmpromised machines in their networks. We also evaluate the
recruit these machines, it has been widely observed that mamgrformance of the SPOT system based on a two-month email

I. INTRODUCTION



trace collected in a large U.S. campus network. Our evaluationXie, et al. developed an effective tool named DBSpam to
studies show that SPOT is an effective and efficient systemdetect proxy-based spamming activities in a network relying
automatically detecting compromised machines in a netwoidn the packet symmetry property of such activities [23]. We
For example, among thé40 internal IP addresses observedntend to identify all types of compromised machines involved
in the email trace, SPOT identifies32 of them as being in spamming, not only the spam proxies that translate and
associated with compromised machines. Out of tB2 IP forward upstream non-SMTP packets (for example, HTTP)
addresses identified by SPAR6 can be either independentlyinto SMTP commands to downstream mail servers as in [23].
confirmed (10) or are highly likely (6) to be compro- In the following we discuss a few schemes on detecting
mised. Moreover, only internal IP addresses associated witgeneral botnets. BotHunter [8], developed by &al., detects
compromised machines in the trace are missed by SPOT.chmpromised machines by correlating the IDS dialog trace in
addition, SPOT only needs a small number of observationsametwork. It was developed based on the observation that a
detect a compromised machine. The majority of spam zombigsmplete malware infection process has a number of well-
are detected with as little &sspam messages. For comparisordefined stages including inbound scanning, exploit usage, egg
we also design and study two other spam zombie detectidownloading, outbound bot coordination dialog, and outbound
algorithms based on the number of spam messages andatiack propagation. By correlating inbound intrusion alarms
percentage of spam messages originated or forwarded viayh outbound communications patterns, BotHunter can detect
internal machines, respectively. We compare the performartbe potential infected machines in a network. Unlike BotH-
of SPOT with the two other detection algorithms to illustratanter which relies on the specifics of the malware infection
the advantages of the SPOT system. process, SPOT focuses on the economic incentive behind many
The remainder of the paper is organized as follows. In Seesmpromised machines and their involvement in spamming.
tion 1l we discuss related work in the area of botnet detection An anomaly-based detection system named BotSniffer [9]
(focusing on spam zombie detection schemes). We formulidentifies botnets by exploring the spatial-temporal behavioral
the spam zombie detection problem in Section Ill. Section Isimilarity commonly observed in botnets. It focuses on IRC-
provides the necessary background on SPRT for developimgsed and HTTP-based botnets. In BotSniffer, flows are classi-
the SPOT spam zombie detection system. In Section V wWed into groups based on the common server that they connect
provide the detailed design of SPOT and the two oth#o. If the flows within a group exhibit behavioral similarity, the
detection algorithms. Section VI evaluates the SPOT detectiomrresponding hosts involved are detected as being compro-
system based on the two-month email trace, and contragsed. BotMiner [7] is one of the first botnet detection systems
its performance with the two other detection algorithms. Wéat are both protocol- and structure-independent. In BotMiner,
briefly discuss the practical deployment issues and potentil@ws are classified into groups based on similar communica-
evasion techniques in Section VII, and conclude the papertian patterns and similar malicious activity patterns, respec-
Section VIII. tively. The intersection of the two groups is considered to be
compromised machines. Compared to general botnet detection
1. RELATED WORK systems such as BotHunter, BotSniffer, and BotMiner, SPOT
is a light-weight compromised machine detection scheme, by
In this section we discuss related work in detecting conexploring the economic incentives for attackers to recruit the
promised machines. We first focus on the studies that utilizdge number of compromised machines.
spamming activities to detect bots and then briefly discuss aAs a simple and powerful statistical method, Sequential
number of efforts in detecting general botnets. Probability Ratio Test (SPRT) has been successfully applied
Based on email messages received at a large email serwcenany areas [22]. In the area of networking security, SPRT
provider, two recent studies [25], [26] investigated the adras been used to detect portscan activities [11], proxy-based
gregate global characteristics of spamming botnets includisgamming activities [23], anomaly-based botnet detection [9],
the size of botnets and the spamming patterns of botneiasd MAC protocol misbehavior in wireless networks [15].
These studies provided important insights into the aggregate
global characteristics of spamming botnets by clustering spam
messages received at the provider into spam campaigns udn this section we formulate the spam zombie detection
ing embedded URLs and near-duplicate content clusterimgpblem in a network. In particular, we discuss the network
respectively. However, their approaches are better suited foodel and assumptions we make in the detection problem.
large email service providers to understand the aggregatd-igure 1 illustrates the logical view of the network model.
global characteristics of spamming botnets instead of beil¢e assume that messages originated from machines inside the
deployed by individual networks to detect internal comprazetwork will pass the deployed spam zombie detection system.
mised machines. Moreover, their approaches cannot suppins assumption can be achieved in a few different scenarios.
the online detection requirement in the network environmehtrst, in order to alleviate the ever-increasing spam volume on
considered in this paper. We aim to develop a tool to assike Internet, many ISPs and networks have adopted the policy
system administrators in automatically detecting compromisdtat all the outgoing messages originated from the network
machines in their networks in an online manner. must be relayed by a few designated mail servers in the
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does not need to be perfect in terms of the false positive rate
and the false negative rate. From our communications with
network operators, an increasing number of networks have
started filtering outgoing messages in recent years. Based on
the above assumptions, the spam zombie detection problem
can be formally stated as follows. A%; arrives sequentially

at the detection system, the system determines with a high
probability if machinem has been compromised. Once a
decision is reached, the detection system reports the result,
Fig. 1. Network model. and further actions can be taken, e.g., to clean the machine.

IV. BACKGROUND ON SEQUENTIAL PROBABILITY RATIO
network. Outgoing email traffic (with destination port number TEST

of 25) from all other machines in the network is blocked by | this section we provide the necessary background on the
edge routers of the network [13], [19]. In this situation, th&equential Probability Ratio Test (SPRT) for understanding the
detection system can be co-located with the designated mgposed spam zombie detection system. Interested readers are
servers in order to examine the outgoing messages. SecQjjfhcted to [21] for a detailed discussion on the topic of SPRT.
in a network where th'e aforementiqned blocking.policy IS In its simplest form, SPRT is a statistical method for
not adopted, the outgoing email traffic can be replicated apgkting a simple null hypothesis against a single alternative
redirected_to the spam zombie detection system. We note thﬁ‘bothesis. Intuitively, SPRT can be considered as an one-
the detection system does not need to be on the regular emg@hensional random walk with two user-specified boundaries
traffic forwarding path; the system only needs a replicatedresponding to the two hypotheses. As the samples of the
stream of the outgoing email traffic. Moreover, as we Wikkoncerned random variable arrive sequentially, the walk moves
show in Section VI, the proposed SPOT system works Welliher upward or downward one step, depending on the value
even if it cannot observe all outgoing messages. SPOT oRfythe observed sample. When the walk hits or crosses either
requires a reasonably sufficient view of the outgoing messaggishe boundaries for the first time, the walk terminates and
originated from the network in which it is deployed. the corresponding hypothesis is selected. In essence, SPRT
A machine in the network is assumed to be either comprg 5 variant of the traditional probability ratio tests for testing
mised or normal (that is, not compromised). In this paper Wgger what distribution (or with what distribution parameters),
only focus on the compromised machines that are involvgdis more likely to have the observed samples. However,
in spamming. Therefore, we use the termcampromised ynjike traditional probability ratio tests that require a pre-
machineto denote aspam zombieand use the two terms gefined number of observations, SPRT works in an online
interchangeably. LeX; for i = 1,2,... denote the successivemanner and updates as samples arrive sequentially. Once
observations of a random variabl€ corresponding to the gyfficient evidence for drawing a conclusion is obtained, SPRT
sequence of messages originated from machinimside the torminates.
network. We letX; = 1 if messagei from the machine is @ A a simple and powerful statistical tool, SPRT has a num-
spam, andX; = 0 otherwise. The detection system assumeggyr of compelling and desirable features that lead to the wide-
that the behavior of a compromised machine is different frogbread applications of the technique in many areas [22]. First,
that of a normal machine in terms of the messages thgyih the actual false positive and false negative probabilities
send. Specifically, a compromised machine will with a highgf SpRT can be bounded by the user-specified error rates.
probability generate a spam message than a normal machifi§s means that users of SPRT can pre-specify the desired
Formally, error rates. A smaller error rate tends to require a larger
Pr(X; = 1|Hy) > Pr(X; = 1|Ho), 1) number of observations before SPRT terminates. Th_u_s users
can balance the performance (in terms of false positive and
where H; denotes that machine: is compromised and{, false negative rates) and cost (in terms of number of required
that the machine is normal. observations) of an SPRT test. Second, it has been proved
We assume that a sending machineas observed by the that SPRT minimizes the average number of the required
spam zombie detection system is an end-user client machiakservations for reaching a decision for a given error rate,
It is not a mail relay server. This assumption is just for theamong all sequential and non-sequential statistical tests. This
convenience of our exposition. The proposed SPOT system eaeans that SPRT can quickly reach a conclusion to reduce
handle the case where an outgoing message is forwardedthry cost of the corresponding experiment, without incurring
a few internal mail relay servers before leaving the network. higher error rate. In the following we present the formal
We discuss practical deployment issues in Section VII. Wkefinition and a number of important properties of SPRT. The
further assume that a (content-based) spam filter is deployd=tailed derivations of the properties can be found in [21].
at the detection system so that an outgoing message can bieet X denote a Bernoulli random variable under consid-
classified as either a spam or nonspam [20]. The spam fil@ation with an unknown parametér and X, X,,... the



successive observations of. As discussed above, SPRT isand

used for testing a simple hypothedig thatd = 6, against a o +8 <a+tp @)
single alternativeld; thatd = 6. That is, a
L y
Pr(X: = 1|Hy) = 1— Pr(X:=0|Ho) =6y Eqgs. (5) and (7) prowde |mport§1nt bounds tdrg_ndﬁ .In
all practical applications, the desired false positive and false
Pr(X;=1[H) = 1—=Pr(X;=0[H:)= 6. negative rates will be small, for example, in the range from

. - - o 8
To ease exposition and practical computation, we compute fh@1 10 0.05. In these cases;®; and ;= very closely equal
logarithm of the probability ratio instead of the probabilitfh® desiredx andj, respectively. In addition, Eq. (7) specifies
ratio in the description of SPRT. For any positive integet that the actual false positive rate and the false negative rate

1,2,..., define cannot be both larger than the corresponding desired error rate
in a given experiment. Therefore, in all practical applications,
A = BPrXe, Xo, - XalHY) (2) We can compute the boundariesand B using Eq. (5), given
! Pr(X1, Xa, ..., Xyu|Ho) the user specified false positive and false negative rates. This
Assume thafX,’s are independent (and identically distributed)Vill Provide at least the same protection against errors as if we
we have use the precise values df and B for a given pair of desired

N n n error rates. The precise values_éfand B are hard to obtain.
A :lnH1 Pr(Xi|H)) :ZZHPT(X”HO — ZZ, (3) Another important property of SPRT is the number of
" I Pr(XilHy) & Pr(Xi|Hy) <= observations)V, required before SPRT reaches a decision. The
Pr(Xi|H: following two equations approximate the average number of

whereZ; = I”WMO)’ which can be considered as the stegpservations required wheff; and H, are true, respectively.
in the random walk represented By When the observation

is one (X; = 1), the constantn L is added to the preceding BinZ- + (1 - pB)Int~
value of A. When the observation is zeroX{ = 0), the E[N|H,] = g1In% 1 (1— 6,)ini=0 (8)
constantin{=g- is added. e 5 ' e

The Sequential Probability Ratio Test (SPRT) for testing EIN|H, = (I —a)ing=; + aln—7= ©)

Hy againstH; is then defined as follows. Given two user-
specified constantgl and B where A < B, at each stage
of the Bernoulli experiment, the value of, is computed as From the above equations we can see that the average number

61Ingt + (1 — 61)Ini=g:

in Eq. (3), then of required observations whef/; or H, is true depends
) on four parameters: the desired false positive and negative
An <A = acceptH, and terminate test rates @ and ), and the distribution parameteés and 6,

A, > B = acceptH; and terminate test(4) for hypothesedd; and H,, respectively. We note that SPRT
A<A,<B — take an additional observation  does not require the precise knowledge of the distribution
parametersd; and 6y. As long as the true distribution of
the underlying random variable is sufficiently close to one of

In the following we describe a number of important prophypotheses compared to another (thaf iss, closer to eithef;
erties of SPRT. If we considef; as a detection andi, Or 6y), SPRT will terminate with the bounded error rates. An
as a normality, an SPRT process may result in two typ#gprecise knowledge af; andd, will only affect the number
of errors: false positive wherél, is true but SPRT acceptsof required observations for SPRT to reach a decision.

H, and false negative wherfl; is true but SPRT accepts To get some intuitive understanding of the average number
Hy. We let o and 3 denote the user-desired false positivef required observations for SPRT to reach a decision, Fig-
and false negative probabilities, respectively. There exist somi@s 2 (a) and (b) show the value B{N|H,]| as a function

and continue experiment

fundamental relations among 3, A, and B [21], of 6y and 6;, respectively, for different desired false positive
3 1-3 rates. The following discussion is in the context of spam
A> lnl , B<lIn , zombie detection. In the figures we set the false negative rate
— (6%

8 = 0.01. In Figure 2 (a) we assume the probability of a
for most practical purposes, we can take the equality, that {aessage being spam whéfy is true to be0.9 (6, = 0.9).
3 1-8 That is, we assume the corresponding spam filter had@a
A=in—ro — (5) detection rate. From the figure we can see that it only takes

. _ - a small number of observations for SPRT to reach a decision.
This will only slightly affect the actual error rates. Formallyg, example, wher, — 0.2 (the spam filter hag0% false

/ / i
let o’ and 5’ represent the actual false positive rate and the,giive rate), SPRT requires abatitobservations to detect

actual false negative rate, respectively, andAeand B be 5t the machine is compromised if the desired false positive
computed using Eg. (5), then the following relations hold, 5o is0.01. As the behavior of a normal machine gets closer

P > 16} 6 to that of compromised machine (or rather, the false positive
* =7 B’ A= 1—a’ ®) rate of the spam filter increases), i.8;, increases, a slightly

, B=lIn
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Fig. 2.  Average number of required observations wiignis true (3 = 0.01)

higher number of observations are required for SPRT to realgorithm 1 SPOT spam zombie detection system
a detection. 1: An outgoing message arrives at SPOT

In Figure 2 (b) we assume the probability of a message: Get IP address of sending machime
being spam from a normal machine to e (6, = 0.2). That  3: // all following parameters specific to machine
is, the corresponding spam filter has a false positive rate of Letn be the message index
20%. From the figure we can see that it also only takes a smali: Let X,, =1 if message is spam¥,, = 0 otherwise
number of observations for SPRT to reach a decision. As thé: if (X,, == 1) then
behavior of a compromised machine gets closer to that of & // spam, Eq. 3
normal machine (or rather, the detection rate of the spam filte3: A+ = l”le]
decreases), i.ef, decreases, a higher number of observation®: else
are required for SPRT to reach a detection. 10:  // nonspam

From the figures we can also see that, as the desired An+ :m}:Z;
false positive rate decreases, SPRT needs a higher numbzrend if
of observations to reach a conclusion. The same observatith if (A, > B) then
applies to the desired false negative rate. These observatiéds Machinem is compromised. Test terminates for.
illustrate the trade-offs between the desired performance 4f: else if (A, < A) then
SPRT and the cost of the algorithm. In the above discussioté: Machinem is normal. Test is reset fon.
we only show the average number of required observations A, =0
whenH is true because we are more interested in the speedif ~ Test continues with new observations
SPRT-based algorithms in detecting compromised machings; else
The study onE[N|Hy] shows a similar trend (not shown). 20:  Test continues with an additional observation

21: end if

V. SPAM ZOMBIE DETECTIONALGORITHMS

In this section we will develop three spam zombie detection
algorith_rr_]s. The_first one is SPOT, which utiI_izes the Sequer?ti,g! SPOT Detection Algorithm
Probability Ratio Test (SPRT) presented in the last section.
We discuss the impacts of SPRT parameters on SPOT in th&POT is designed based on the statistical tool SPRT we
context of spam zombie detection. The other two spam zomldiscussed in the last section. In the context of detecting spam
detection algorithms are developed based on the numberzombies in SPOT, we considéf; as a detection andl, as
spam messages and the percentage of spam messagesaseatmality. That is,H; is true if the concerned machine is
from an internal machine, respectively. To ease exposition @dmpromised, andd, is true if it is not compromised. In
the algorithm, we ignore the potential impacts of dynamic I&ddition, we letX; = 1 if the ith message from the concerned
addresses [3], [24] and assume that an IP address correspondshine in the network is a spam, aid = 0 otherwise.
to a uniqgue machine. We will informally discuss the impactRecall that SPRT requires four configurable parameters from
of dynamic IP addresses on detecting spam zombies at the andrs, namely, the desired false positive probabilitythe
of this section. We will formally evaluate the performance adesired false negative probability, the probability that a
the three detection algorithms and the potential impacts mmiessage is a spam whéf is true @), and the probability
dynamic IP addresses in the next section, based on a twlat a message is a spam wh&p is true @p). We discuss
month email trace collected on a large U.S. campus netwoHaw users configure the values of the four parameters after



we present the SPOT algorithm. Based on the user-specifegféct the number of observations required by the algorithm to
values ofa and 3, the values of the two boundariegsand B terminate. Moreover, SPOT relies on a (content-based) spam
of SPRT are computed using Eq. (5). filter to classify an outgoing message into either spam or

In the following we describe the SPOT detection algorithnmonspam. In practiced; and 6, should model the detection
Algorithm 1 outlines the steps of the algorithm. When arate and the false positive rate of the employed spam filter,
outgoing message arrives at the SPOT detection system, tbgpectively. We note that all the widely-used spam filters have
sending machine’s IP address is recorded, and the message liggh detection rate and low false positive rate [20].
classified as either spam or nonspam by the (content-based) ) )
spam filter. For each observed IP address, SPOT maintafhsSPam Count and Percentage based Detection Algorithms
the logarithm value of the corresponding probability raftig, For comparison, in this section we present two different
whose value is updated according to Eqg. (3) as messageilgorithms in detecting spam zombies, one based on the
arrives from the IP address (lingsto 12 in Algorithm 1). number of spam messages and another the percentage of spam
Based on the relation betwedn, and A and B, the algorithm messages sent from an internal machine, respectively. For
determines if the corresponding machine is compromisezimplicity, we refer to them as the count-threshold (CT) de-
normal, or a decision cannot be reached and additional dbetion algorithm and the percentage-threshold (PT) detection
servations are needed (liné8 to 21). algorithm, respectively.

We note that in the context of spam zombie detection, fromIn CT, the time is partitioned into windows of fixed length
the viewpoint of network monitoring, it is more important tdl’. A user-defined threshold parametéy specifies the max-
identify the machines that have been compromised than th&um number of spam message that may be originated from
machines that are normal. After a machine is identified asnormal machine in any time window. The system monitors
being compromised (linek3 and14), it is added into the list of the number of spam messagesriginated from a machine in
potentially compromised machines that system administrat@ach window. Ifn > Cj, then the algorithm declares that the
can go after to clean. The message-sending behavior of thachine has been compromised.
machine is also recorded should further analysis be requiredSimilarly, in the PT detection algorithm the time is par-
Before the machine is cleaned and removed from the list, ttitoned into windows of fixed lengti’. PT monitors two
SPOT detection system does not need to further monitor temail sending properties of each internal machine in each time
message sending behavior of the machine. window: one is the percentage of spam messages sent from

On the other hand, a machine that is currently normalmachine, another the total number of messagesM.and
may get compromised at a later time. Therefore, we needdenote the total messages and spam messages originated
to continuously monitor machines that are determined to ff®m a machinem within a time window, respectively, then
normal by SPOT. Once such a machine is identified by SPCAT declares machine: as being compromised iN > C,
the records of the machine in SPOT are re-set, in particuland 5 > P, whereC,, is the minimum number of messages
the value ofA,, is set to zero, so that a new monitoring phastaat a machine must send, aRds the user-defined maximum
starts for the machine (linels to 18). spam percentage of a normal machine. The first condition is in

SPOT requires four user-defined parametesss, 6;, and place for preventing high false positive rates when a machine
6. In the following we discuss how a user of the SPOT alg@nly generates a small number of messages. For example, in
rithm configures these parameters, and how these parameterextreme case, a machine may only send a single message
may affect the performance of SPOT. As discussed in thed it is a spam, which renders the machine to hate0&%
previous sectiomr and are the desired false positive and falsspam ratio. However, it does not make sense to classify this
negative rates. They are normally small values in the rangechine as being compromised based on this small number
from 0.01 to 0.05, which users of SPOT can easily specifyof messages generated.
independent of the behaviors of the compromised and normaln the following we briefly compare the two spam zombie
machines in the network. As we have shown in Section 1V, thietection algorithms CT and PT with the SPOT system. The
values ofa and 3 will affect the cost of the SPOT algorithm,three algorithms have the similar running time and space
that is, the number of observations needed for the algoritttomplexities. They all need to maintain a record for each
to reach a conclusion. In general, a smaller valuexaind observed machine and update the corresponding record as
G will require a larger number of observations for SPOT tmessages arrive from the machine. However, unlike SPOT,
reach a detection. which can provide a bounded false positive rate and false

Ideally, #; and 6, should indicate the true probability ofnegative rate, and consequently, a confidence how well SPOT
a message being spam from a compromised machine andiaaks, the error rates of CT and PT cannot be a priori
normal machine, respectively. However, as we have discussgecified.
in the last sectionf; and §, do not need to accurately In addition, choosing the proper values for the four user-
model the behaviors of the two types of machines. Insteatkfined parametersy( 3, 6,1, and 6y) in SPOT is relatively
as long as the true distribution is closer to one of them thatraightforward (see the related discussion in the previous
another, SPRT can reach a conclusion with the desired ersoibsection). In contrast, selecting the “right” values for the
rates. Inaccurate values assigned to these parameters will ggdyameters of CT and PT are much more challenging and



TABLE |

tricky. The performanpe of the two algorithms is_ sensitive to SUMMARY OF THE EMAIL TRACE.

the parameters used in the algorithm. They require a thorough

understanding of the different behaviors of the compromis =('i;/'e<’?155fe g‘/ggfz%%?l 73 jgggél( IdA%E/JEQ/l;‘é% 5
. . . n“erlo - excid. D

and normal machme; in the.concerned network'and a trainifg S omais 6.712.392] 18,537 364 25,249,756

based on the behavioral history of the two different typeSz of FSU emails 5.612,245| 6,959,737 12,571,982

of machines in order for them to work reasonably well in # of infected emails 60,004 163,222 223,226

the network. For example, it can be challenging to select thé& of infected FSU emailg 34,345 43,687 78,032

“best” length of time windows in CT and PT to obtain the
optimal false positive and false negative rates. We discuss . )
how an attacker may try to evade CT and PT (and SPOfy Overview of the Email Trace and Methodology
in Section VII. The email trace was collected at a mail relay server de-
ployed in the Florida State University (FSU) campus network
between 8/25/2005 and 10/24/2005, excluding 9/11/2005 (we
do not have trace on this date). During the course of the email
In the above discussion of the spam zombie detectig@ce collection, the mail server relayed messages destined
algorithms we have for simplicity ignored the potential impagbr 53 subdomains in the FSU campus network. The mail
of dynamic IP addresses and assumed that an observed IP gfly server ran SpamAssassin [20] to detect spam messages.
responds to a unique machine. In the following we informallyhe email trace contains the following information for each
discuss how well the three algorithms fair with dynamic Ifhcoming message: the local arrival time, the IP address of the
addresses. We formally evaluate the impacts of dynamic ¢Bnding machine (i.e., the upstream mail server that delivered
addresses on detecting spam zombies in the next section usiitgmessage to the FSU mail relay server), and whether or not
a two-month email trace collected on a large U.S. camptife message is spam. In addition, if a message has a known
network. virus/worm attachment, it was so indicated in the trace by an
SPOT can work extremely well in the environment ofnti-virus software. The anti-virus software and SpamAssassin
dynamic IP addresses. To understand the reason we note fhee two independent components deployed on the mail relay
SPOT can reach a decision with a small number of obseerver. Due to privacy issues, we do not have access to the
vations as illustrated in Figure 2, which shows the averagentent of the messages in the trace.
number of observations required for SPRT to terminate with aldeally we should have collected all the outgoing mes-
conclusion. In practice, we have noted tBair 4 observations sages in order to evaluate the performance of the detection
are sufficient for SPRT to reach a decision for the vast majorigygorithms. However, due to logistical constraints, we were
of cases (see the performance evaluation of SPOT in the naat able to collect all such messages. Instead, we identified
section). If a machine is compromised, it is likely that morehe messages in the email trace that have been forwarded or
than3 or 4 spam messages will be sent before the (unwittingyiginated by the FSU internal machines, that is, the messages
user shutdowns the machine and the corresponding IP addfessarded or originated by an FSU internal machine and
gets re-assigned to a different machine. Therefore, dynamicd®stined to an FSU account. We refer to this set of messages
addresses will not have any significant impact on SPOT. as theFSU emailsand perform our evaluation of the detection
Dynamic IP addresses can have a greater impact on the othigorithms based on the FSU emails. We note the set of FSU
two detection algorithms CT and PT. First, both require themails does not contain all the outgoing messages originated
continuous monitoring of the sending behavior of a machirieom inside FSU, and the compromised machines identified by
for at least a specified time window, which in practice cathe detection algorithms based on the FSU emails will likely be
be on the order of hours or days. Second, CT also requirea fower bound on the true number of compromised machines
relatively larger number of spam messages to be observed frimside FSU campus network.
a machine before reaching a detection. By properly selectingAn email message in the trace is classified as eitipam
the values for the parameters of CT and PT (for example,oanon-spamby SpamAssassin [20] deployed in the FSU mail
shorter time window for machines with dynamic IP addressesglay server. For ease of exposition, we refer to the set of all
they can also work reasonably well in the environment ohessages as thaggregateemails including both spam and
dynamic IP addresses. We formally evaluate the impacts mdn-spam. If a message has a known virus/worm attachment,
dynamic IP addresses on detecting spam zombies in the nertrefer to such a message asrfiected messag#\Ve refer to
section. an IP address of a sending machine apam-onlyiP address
if only spam messages are received from the IP address.
VI. PERFORMANCEEVALUATION Similarly, we refer to an IP address a®n-spam onlyand
mixedif we only receive non-spam messages, or we receive
In this section we evaluate the performance of the thréeth spam and non-spam messages, respectively, from the IP
detection algorithms based on a 2-month email trace collecteddress.
on a large U.S. campus network. We also study the potentialTable | shows a summary of the email trace. As shown
impact of dynamic IP addresses on detecting spam zombieés. the table, the trace contains more th2ZhM emalils, of

C. Impact of Dynamic IP addresses



TABLE I
SUMMARY OF SENDING |IP ADDRESSES

Total Non-spam only| Spam only Mixed
#of IP (%) 2,461,114 121,103 (4.9) | 2,224,754 (90.4) 115,257 (4.7)
#of FSU IP 06) | 440 175 (39.7) 74 (16.8) 191 (43.5)

| 1 cluster2 cluster3 . . .
cluster Figure 3 illustrates the message clustering process. The

T T T W T W TWT intuition is that, if two messages come closely in time from
: — = Time an IP address (within a time interva)), it is unlikely that the
ST TST IP address has been assigned to two different machines within

the short time interval.

In the evaluation studies, we whitelist the known mail
servers deployed on the FSU campus network, given that
they are unlikely to be compromised. If a deployed mail

ever forwards a large number of spam messages, it is more
by FSU internal machines, i.e., contained in the set of F ely that _machmes behind t'he mall'server are cqmpromlsec_i.
wever, just based on the information available in the email

emails. Table Il shows the classifications of the observed : ; : X
: . race we cannot decide which machines are responsible for the
addresses. As shown in the table, during the course of 1i e

race collecion, we observed more than 1P adresses 2 T L E P DRSS T PR S LS
(2,461, 114) of sending machines, of which more thas% b '

. handle this case in practical deployment.
sent at least one spam message. During the same course, We

observed440 FSU internal IP addresses. TABLE III
Table 1ll shows the classification of the observed IP ad- SUMMARY OF IP ADDRESSES SENDING VIRUSNORM.

dresses that sent at least one message carrying a virus/worm -

. . . Total Non-spam only| Spam only | Mixed
attachment. We note that a higher proportion of FSU internal#orip 10,385 | 1,032 6,705 2648
IP addresses sent emails with a virus/worm attachment thamn # of FSU IP | 204 19 42 143
the overall IP addresses observed (all emails were destined
to FSU accounts). This could be caused by a few factors.
First, a (compromised) email account in general maintaifis Performance of SPOT

more email addresses of friends in the same domain than othefh, this section, we evaluate the performance of SPOT based
remote domains. Second, an (email-propagated) virus/wogR the collected FSU emails. In all the studies, we set
may adopt a spreading strategy concentrating more on logal1, 5 = 0.01, 6, = 0.9, andf, = 0.2. That is, we assume
targets [2]. More detailed analysis of the email trace caRe deployed spam filter has®% detection rate an@0%
be found in [5] and [6], including the daily message arrivahise positive rate. Many widely-deployed spam filters have
patterns, and the behaviors of spammers at both the mail-sefygich better performance than what we assume here.
level and the network level.

In order to study the potential impacts of dynamic IP PERFORTGENLEE'\SFSPOT
addresses on the detection algorithms, we obtain the subset of '
FSU IP addresses in the trace whose domain names contain Total # FSU 1P| Detected| Confirmed @%) | Missed 03)
“wireless”, which normally have dynamically allocated IP 440 132 126 (94.7) 7(5.3)
addresses. For each of the IP addresses, we group the messages
sent from the IP address into clusters, where the messages ifable IV shows the performance of the SPOT spam zombie
each cluster are likely to be from the same machine (befatetection system. As discussed above, there 4dfe FSU
the IP address is re-assigned to a different machine). We granternal IP addresses observed in the email trace. SPOT
messages according to the inter-arrival times between conseéentifies 132 of them to be associated with compromised
utive messages, as discussed below. /etfor + = 1,2,... machines. In order to understand the performance of SPOT in
denote the messages sent from an IP addresst,aénote terms of the false positive and false negative rates, we rely on a
the time when messaggeis received. Then messages for number of ways to verify if a machine is indeed compromised.
1 =1,2,...,k belong to the same cluster |if;, — ¢;_1| < T First, we check if any message sent from an IP address carries
fori=2,3,...,k, and|ty+1 — tx| > T, whereT is an user- a known virus/worm attachment. If this is the case, we say we
defined time interval. We repeat the same process to grdugve a confirmation. Out of the32 IP addresses identified by
other messages. Let; fori = j,5+1,..., k be the sequence SPOT, we can confirm10 of them to be compromised in this
of messages in a cluster, arriving in that order. Then-¢;| way. For the remaining2 IP addresses, we manually examine
is referred to as thduration of the cluster, andit,1 — tx| is the spam sending patterns from the IP addresses and the
referred to as théime intervalbetween two clusters. domain names of the corresponding machines. If the fraction

Fig. 3. lllustration of message clustering.

which more thari8 M, or about73%, are spam. About half of
the messages in the email trace were originated or forwar




1 ‘ " NUmbe of Observations <o spam zombie recruitment phase instead of spamming phase.
Infected messages can be easily incorporated into the SPOT

0.8 r . .
system to improve its performance.

g o6 ] We note that both the actual false positive rate and the false
8 negative rate are higher than the specified false positive rate
o044y ] and false negative rate, respectively. One potential reason is

that the underlying statistical tool SPRT assumes events (in our
cases, outgoing messages) are independently and identically
0 ‘ ‘ ‘ distributed. However, spam messages belonging to the same
oz 4 N|6H & w0 B campaign are likely generated using the same spam template
! and delivered in batch; therefore, spam messages observed in
Fig. 4. Number of actual observations time proximity may not be independent with each other. This
can affect the performance of SPOT in detecting compromised
machines. Another potential reason is that the evaluation was
of the spam messages from an IP address is high (greater thased on the FSU emails, which can only provide a partial
98%), we also claim that the corresponding machine has begBw of the outgoing messages originated from inside FSU.
confirmed to be compromised. We can confitthof them to  Figure 4 shows the distributions of the number of actual
be compromised in this way. We note that the majoi8.5%) observations that SPOT takes to detect the compromised
of the IP addresses confirmed by the spam percentage mggchines. As we can see from the figure, the vast majority
dynamic IP addresses, which further indicates the likelihoed compromised machines can be detected with a small
of the machines to be compromised. number of observations. For example, more tH&0% of
For the remaining IP addresses that we cannot confirm byhe compromised machines are detected by SPOT with only
either of the above means, we have also manually examiri@bservations. All the compromised machines are detected
their sending patterns. We note that, they have a relativalyth no more tharl1 observations. This indicates that, SPOT
overall low percentage of spam messages over the two mopén quickly detect the compromised machines. We note that
of the collection period. However, they sent substantially mo&POT does not need compromised machines to send spam
spam messages towards the end of the collection period. Tinsssages at a high rate in order to detect them. Here, “quick”
indicates that they may get compromised towards the eddtection does not mean a short duration, but rather a small
of our collection period. However, we cannot independentlyumber of observations. A compromised machine can send
confirm if this is the case. spam messages at a low rate (which, though, works against
Evaluating the false negative rate of SPOT is a bit tricky bhe interest of spammers), but it can still be detected once
noting that SPOT focuses on the machines that are potentialyough observations are obtained by SPOT.
compromised, but not the machines that are normal (see
Section V). In order to have some intuitive understanding & Performance of CT and PT
the false negative rate of the SPOT system, we consider thén this section we evaluate the performance of CT and PT
machines that SPOT does not identify as being compromisaad compare their performance with that of SPOT, using the
at the end of the email collection period, but for which SPO3ame two-month email trace collected on the FSU campus
has re-set the records (linés to 18 in Algorithm 1). That is, network. Recall that CT is a detection algorithm based on
such machines have been claimed as being normal by SP®& number of spam messages originated or forwarded by an
(but have continuously been monitored). We also obtain tigernal machine, and PT based on the percentage of spam
list of IP addresses that have sent at least a message witssages originated or forwarded by an internal machine (see
a virus/worm attachmen@ of such IP addresses have beeSection V-B).
claimed as being normal, i.e., missed, by SPOT. In this evaluation study, we set the length of time windows
We emphasize that the infected messages are only usede 1 hours, that is]” = 1 hour, for both CT and PT.
to confirm if a machine is compromised in order to studior CT, we set the maximum number of spam messages that
the performance of SPOT. Infected messages are not usedormal machine can send within a time window to 3fe
by SPOT itself. SPOT relies on the spam messages insté&d = 3), that is, when a machine sends more tl3@rmspam
of infected messages to detect if a machine has been camessage within any time windows, CT concludes that the
promised to produce the results in Table IV. We make thieachine is compromised. In PT, we set the minimum number
decision by noting that, it is against the interest of a profesf (spam and non-spam) messages within a time window to be
sional spammer to send spam messages with a virus/wa@nC, = 6), and the maximum percentage of spam messages
attachment. Such messages are more likely to be detectednithin a time window to be&50% (P = 50%). That is, if more
anti-virus softwares, and hence deleted before reaching than 50% of all messages sent from a machine are spam in
intended recipients. This is confirmed by the low percentageafy time window with at leasi messages in the window, PT
infected messages in the overall email trace shown in Tablenill conclude that the machine is compromised. We choose
Infected messages are more likely to be observed during the values for the parameters of PT in this way so that it

0.2
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0 ‘ ‘ Spam messages ——«— 0 ‘ ‘ ‘ ‘ Messages ——
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400
Number of spam messagesin a cluster Number of messagesin a cluster
Fig. 5. Distribution of spam messages in each cluster. Fig. 6. Distribution of total messages in each cluster.

is relatively comparable with SPOT. Recall that based on otwireless”) into clusters with a time interval threshold &
empirical study in the last subsection, the minimum number ofinutes. Messages with a consecutive inter-arrival time no
observations needed by SPOT to reach a detecti8r(ighen greater than30 minutes are grouped into the same cluster.

a=0.01, 6 =0.01, 6, = 0.2, and6; = 0.9). Given the short inter-arrival duration of messages within a
cluster, we consider all the messages from the same IP address
TABLE V ithi hel bei p h hine. Th
PERFORMANCE OFCT AND PT. within each cluster as being sent from the same machine. That
is, the corresponding IP address has not been re-assigned to a
o Zztoal #FSU IP gftected ?gr(\g;m;d ) gﬂ?iS(Sf(;iz%) different machine within the concerned cluster. (It is possible
57140 o1 . (61:9) 1 (38:1) that messages from multiple adjacent clusters are actually sent

from the same machine.)
Table V shows the performance of CT and PT, which Figure 5 shows the cumulative dlstrlbutlon function (CDF)
fdthe number of spam messages in each cluster. From the

includes the number of compromised IP addresses detecigd, that tha% of the clusters h
confirmed, and missed. We use the same methods to conf [gyire we can see that more o of the clusters have no
s thanl0 spam messages, and more ti98f% no less than

a detection or identify a missed IP address as we have d e Gi the | b f
with the SPOT detection algorithm. From the table we Ca&hspam messages. Liven the fargeé number of spam messages

see that, CT and PT have a worse performance than SPéerm within each cluster, it is unlikely for SPOT to mistake
For exarhple CT only detectl IP addresses as being comOné compromised machine as another when it tries to detect

promised. Among th&1 IP addresses(9 can be confirmed spam zombies. Indeed, we have manuglly checked thf'it’ sham
to be associated with compromised machines. However, giessages tend to be ;ent back to pack na batch fashion when
missed detectind3 IP addresses associated with compromis dynamic IP address is observed in the t.race. F igure 6 shows
machines. The detection rate and false negative rate of C'II § CDF of the qumber of all messages (mcludlng both spam
59.8% and40.2%, respectively, much worse than that ofSPO'I‘:’,mOI ”°”'Spam) n each cluster. Similar observations can be
which are94.7% and5.3%, respectively. We also note that a”made to that in Figure 5.

the compromised IP addresses detected (confirmed) using CT

or PT are also detected (confirmed) using the SPOT detection
algorithm. That is, the IP addresses detected (confirmed)
using CT and PT are a subset of compromised IP addresses
detected (confirmed) using the SPOT detection algorithm. The
IP addresses associated with compromised machines that are
missed by SPOT are also missed by CT and PT. We conclude
that SPOT outperforms both CT and PT in terms of both
detection rate and miss rate.
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D. Dynamic IP Addresses 0 2000 4000 6000 8000 10000 12000 14000
. . . . Cluster durati d
In this section we conduct studies to understand the potential uster duration (seconds)
impacts of dynamic IP addresses on the performance of the Fig. 7. Distribution of the cluster duration.

three detection algorithms. Given that SPOT outperforms both
CT and PT, our discussion will focus on the impacts on SPOT;Figure 7 shows the CDF of the durations of the clusters.
similar observations also apply to CT and PT. As we can see from the figure, more tha@sf% and 58% of

In order to understand the potential impacts of dynamtbe clusters last no less th&d minutes and one hour (corre-
IP addresses on the detection algorithms, we group messagmnding to the two vertical lines in the figure), respectively.
from a dynamic IP address (with domain names containifidne longest duration of a cluster we observe in the trace is



about3.5 hours. Figure 8 shows the CDF of the time intervalthe reliableReceived header fields by backtracking from
between consecutive clusters. As we can see from the figutee last known mail server in the network that forwards the
the minimum time interval between two consecutive clustersinisessage. It terminates and identifies the originating machine
slightly more thar80 minutes §1.38 minutes), and the longestwhen an IP address in thReceived header field is not
one is close tal3 days (8649.38 minutes). Moreover, more associated with a known mail server in the network. The
than 88% of all intervals between clusters are longer than similar practical deployment methods also apply to the CT
hour. and PT detection algorithms.

1 : : B. Possible Evasion Techniques

Given that the developed compromised machine detection
algorithms rely on (content-based) spam filters to classify

0.8

06| ] messages into spam and non-spam, spammers may try to evade
the detection algorithms by evading the deployed spam filters.
04 1 They may send completely meaningless “non-spam” messages

(as classified by spam filters). However, this will reduce the

o2 real spamming rate, and hence, the financial gains, of the

Cumulative Distribution Function (CDF)

0 ‘ ‘ Interval —~— spammers [4]. More importantly, as shown in Figure 2 (b),
1o 100 1000 10000 100000 even if a spammer reduces the spam percentag@élto SPOT
Interval between clusters (minutes) . . . .
can still detect the spam zombie with a relatively small number
Fig. 8. Distribution of time intervals between clusters. of observations25 whena = 0.01, 3 = 0.01, and§, = 0.2).

So, trying to send non-spam messages will not help spammers

Given the above observations, in particular, the large nump@revade the SPOT system.
of spam messages in each cluster, we conclude that dynamiMOreover, in certain environment where user feedback is
IP addresses will not have any important impact on tHgliable, for example, feedback from users of the same network
performance of SPOT. SPOT can reach a decision within tifeWhich SPOT is deployed, SPOT can rely on classifications
vast majority 06%) of the clusters in the setting we used in thd0m end users (in addition to the spam filter). Although
current performance study. It is unlikely for SPOT to mistakeompletely meaningless messages may evade the deployed

a compromised machine as another. spam filter, it is impossible for them to remain undetected by
end users who receive such messages. User feedbacks may be
VII. DiscussioN incorporated into SPOT to improve the spam detection rate of

In this section we discuss the practical deployment issuée spam filter. As we have discussed in the previous section,
and possible techniques that spammers may employ to eviféng to send spam at a low rate will also not evade the SPOT
the detection algorithms. Our discussions will focus on ttgystem. SPOT relies on the number of (spam) messages, not
SPOT detection algorithm. the sending rate, to detect spam zombies.

As we have discussed in Section V-B, selecting the “right”
values for the parameters of CT and PT are much more

To ease exposition we have assumed that a sending machinallenging and tricky than those of SPOT. In addition, the
m (Figure 1) is an end-user client machine. It cannot be a mairameters directly control the detection decision of the two
relay server deployed by the network. In practice, a netwodetection algorithms. For example, in CT, we specify the
may have multiple subdomains and each has its own maibximum number of spam messages that a normal machine
servers. A message may be forwarded by a number of maéin send. Once the parameters are learned by the spammers,
relay servers before leaving the network. SPOT can work wétley can send spam messages below the configured threshold
in this kind of network environments. In the following weparameters to evade the detection algorithms. One possible
outline two possible approaches. First, SPOT can be deployadintermeasure is to configure the algorithms with small
at the mail servers in each subdomain to monitor the outgoitigeshold values, which helps reduce the spam sending rate
messages so as to detect the compromised machines in tfisgpammers from compromised machines, and therefore, the
subdomain. financial gains of spammers. Spammers can also try to evade

Second, and possibly more practically, SPOT is only d&T by sending meaningless “non-spam” messages. Similarly,
ployed at the designated mail servers, which forward alser feedback can be used to improve the spam detection rate
outgoing messages (or SPOT gets a replicated stream ofddilspam filters to defeat this type of evasions.
outgoing messages), as discussed in Section Ill. SPOT relies
on the Received header fields to identify the originating VIIl. CoNCLUSION
machine of a message in the network [12], [17]. Given that theIn this paper we developed an effective spam zombie detec-
Received header fields can be spoofed by spammers [18jpn system named SPOT by monitoring outgoing messages
SPOT should only use thReceived header fields insertedin a network. SPOT was designed based on a simple and
by the known mail servers in the network. SPOT can determipewerful statistical tool named Sequential Probability Ratio

A. Practical Deployment



Test to detect the compromised machines that are involved] M. Xie, H. Yin, and H. Wang. An effective defense against email spam

in the spamming activities. SPOT has bounded false positive laundering. INACM Conference on Computer and Communications
. L Security Alexandria, VA, October 30 - November 3 2006.
and false negative error rates. It also minimizes the number[g{] Y. Xie. E. Xu. K. Achan. E. Gillum. M. Goldszmidt. and T. Wobber.

required observations to detect a spam zombie. Our evaluation How dynamic are IP addresses? Mmoc. ACM SIGCOMM Kyoto,
studies based on a 2-month email trace collected on the FSU Japan, Aug. 2007.

. . . . [28] Y. Xie, F. Xu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov.
campus network showed that SPOT is an effective and efﬂménﬁj Spamming botnets: Signatures and characteristics. Proc. ACM

system in automatically detecting compromised machines in a SIGCOMM Seattle, WA, Aug. 2008.
network. In addition, we also showed that SPOT outperforni] L. Zhuang, J. Dunagan, D. R. Simon, H. J. Wang, |. Osipkov, G. Hulten,

. . and J. D. Tygar. Characterizing botnets from email spam records. In
two other detection algorlthms based on the number and Proc. of 1st Usenix Workshop on Large-Scale Exploits and Emergent

percentage of spam messages sent by an internal machine, Threats San Francisco, CA, Apr. 2008.
respectively.
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