On Nonblocking Folded-Clos Networks
in Computer Communication Environments

Xin Yuan
Department of Computer Science, Florida State University, Tallahassee, FL. 32306
xyuan@cs.fsu.edu

Abstract—Folded-Clos networks, also referred to as fat-trees,
have been widely used as interconnects in large scale high
performance computing clusters. The switching capability of
such interconnects in the computer communication environment,
however, is not well understood. In particular, the concept
of nonblocking interconnects, which is often used by system
vendors, has only been studied in the telephone communication
environment with the assumption of a centralized controller. Such
“nonblocking”networks do not support nonblocking communica-
tions in computer communication environments where the net-
work control is distributed. In this paper, we investigate folded-
Clos networks that are nonblocking in computer communication
environments and establish nonblocking conditions for various
routing schemes including deterministic routing and adaptive
routing.

I. INTRODUCTION

Clos networks and their variations such as folded-Clos (also
referred to as fat-trees) have been widely used for multipro-
cessor interconnects and system area networks. Almost all
large scale commodity high performance computing clusters
are interconnected with such topologies.

A three-stage Clos network has the input stage, the middle
stage, and the output stage. The input stage consists of n X m
switches; the middle stage consists of r x r switches; and the
output stage consists of m x n switches. There are r input
switches, r output switches, and m middle switches with each
of the input and output switches having a link connecting
to each of the middle switches. Fig. 1 (a) depicts a three-
stage Clos network. We will use the notion Clos(n,m,r)
to denote the Clos network with parameters n, m, and r. A
folded-Clos (fat-tree) network is the one-sided version of the
Clos network: it basically merges the corresponding input and
output switches into one switch. Fig. 1 (b) shows a folded-
Clos (fat-tree) network. Clos(n, m,r) corresponds to a two
level fat-tree: the lower level switches are n +m X n +m
switches while the top level switches are r x r switch. We
will use the notion ftree(n 4+ m,r) to denote such a fat-tree.

The switching capability of Clos(n,m,r) and ftree(n +
m,) is similar and is determined by the parameters n, m, and
r. The study of such networks has focused on finding the most
cost effective values for n, m, and r to achieve nonblocking
communication, that is, the ability to establish a connection
from an arbitrary input port to an arbitrary output port without
causing contention. A nonblocking network can provide con-
nectivity for any permutation communication, which consists
connections from arbitrary input ports to arbitrary output ports

m-1

(b) ftree(n+m, r)

(a) Clos(n, m, r)

Fig. 1. Clos and folded-Clos networks

with the restriction that each input or output port can be used at
most once in the communication. The most important results in
this area are summarized in various nonblocking conditions for
Clos networks including strictly nonblocking [2], wide-sense
nonblocking [4], [16], and rearrangeably nonblocking [3]. Al-
though these nonblocking conditions results are significant, all
of them were obtained with the assumption that a centralized
controller is used to manage all network resources, which
renders the results not applicable to computer communications
where the network control is distributed.

When used in computing clusters, folded-Clos based in-
terconnects are often treated as the replacement of central
crossbar switches, which can support any permutation com-
munication with full bisection bandwidth [7]. Although many
folded-Clos based interconnects for clusters are “nonblocking”
(strictly, wide sense, or rearrangeably) in theory, the delivered
performance is far-from that of crossbar switches [5], [7].
Without the centralized controller that takes all connection
requests and manages all network resources, even a strictly
nonblocking network can still block a permutation communi-
cation.

We define a nonblocking folded-Clos network in the com-
puter communication environment to be one that, with dis-
tributed control, can support any permutation communication
without network contention. Using this definition, if a folded-
Clos based interconnect is nonblocking, it can support any
permutation communication with no contention and can thus
achieve full bisection bandwidth for any permutation commu-
nication: such an interconnect behaves like a crossbar switch.

The understanding of folded-Clos based interconnects in
computer communication environments is insufficient: tech-

niques for building truly nonblocking folded-Clos intercon-
nects in computer communication environments have not been
developed; it is unclear what the cost of such interconnects will
be. This paper addresses these issues. We investigate folded-
Clos networks that are nonblocking in computer communi-
cation environments, develop techniques for building such
networks, and establish nonblocking conditions for folded-
Clos networks with distributed control under various routing
schemes including deterministic routing and adaptive routing.
The major results include the following.

o With single-path deterministic routing, it is not cost
effective to build nonblocking ftree(n + m,r) with
r < 2n + 1. Using relatively small top level switches
to build nonblocking ftree(n + m,r) is not effective.

o With single-path deterministic routing, when r > 2n+1,
the nonblocking condition for ftree(n 4+ m,r) is m >
n?. Using single-path deterministic routing, O(N+/N)-
port nonblocking interconnects can be constructed using
O(N) N-port switches. Commonly used multipath de-
terministic routing schemes have the same nonblocking
condition as single-path routing.

o With adaptive routing, when r < n€ there exists a
function f(n) = O(n2_ci1) such that the nonblocking
condition for ftree(n + m,r) is m > f(n). Adaptive
routing allows using a smaller number of top level
switches to achieve nonblocking communication in com-
parison to deterministic routing.

Our results advance the basic understanding of folded-Clos
networks in computer communication environments. They can
be used in feasibility analysis for building nonblocking folded-
Clos based interconnects under other constraints, and directly
applied to build such interconnects.

The rest of the paper is structured as follows. Section II
discusses the related work. Section III describes the back-
ground and notations used in the paper. Section IV considers
deterministic routing, derives the nonblocking condition, and
presents the routing scheme for nonblocking ftree(n +m,r)
with single-path deterministic routing. Section V considers
adaptive routing and shows that adaptive routing improves
the nonblocking condition over deterministic routing. Finally,
Section VI concludes the paper.

II. RELATED WORK

The switching capability of Clos networks in the context
of switching telephone traffics has been extensive studied.
Various nonblocking conditions have been established. A Clos
network is strictly nonblocking if it is always possible to
set up a connecting path from an idle input port to an idle
output port independent of the existing connections and the
path search algorithm. Clos showed [2] that Clos(n, m,r) is
strictly nonblocking if the number of middle stage switches
m > 2n — 1. A network is wide-sense nonblocking when
it is always possible to set up a path from an idle input
port to an idle output by suitably choosing routes for new
connections. The conditions for a network to be wide-sense
nonblocking depend on the routing algorithm; some results are

obtained [4], [16]. A network is rearrangeably nonblocking if
a new connection from an idle input port to an idle output
port can always be established by rearranging the paths for
existing connections. Benes [3] showed that a Clos network
is rearrangeably nonblocking if m > n. All these results
assume a centralized controller and cannot be directly applied
to computer networks with distributed control.

After Leiserson introduced the fat-tree topology to computer
networks [10], [11], the topology has become popular and
extensive research has been performed on this topology. The
topology has been greatly extended [13], [14]. Since traditional
nonblocking networks are blocking in the computer commu-
nication environment, most studies have focused on under-
standing the performance of such networks by analyzing the
blocking probability [6], [9], [15], or developing techniques
to reduce the blocking probability [1], [6], [9], [15], [17].
Various routing techniques including randomized routing [6],
[15], multi-path routing[1], [17], and adaptive routing [9], have
been proposed to minimize the blocking probability. Even
with all these improvements, recent studies still show that the
contemporary fat-tree based interconnects offer much lower
performance than crossbar switches [5], [7]. In this paper, we
investigate folded-Clos networks that are truly nonblocking
in computer communication environments. This research is
completely different from all existing work in the area.

III. BACKGROUND AND NOTATIONS

This paper focuses on ftree(n+m,r)’s that are nonblock-
ing in computer communication environments. An example
ftree(n +m,r) is shown in Fig. 1 (b). There are two layers
of switches and one layer of leaf nodes in the topology.
The leaf nodes are communication sources and destinations.
ftree(n + m,r) have r bottom level n + m-port switches
and m top level r-port switches. It supports r x n leaf nodes.
The links in this topology are bidirectional. The links from
leaf nodes to bottom level switches and from bottom level
switches to top level switches are uplinks. The links from top
level switches to bottom level switches and from bottom level
switches to leaf nodes are downlinks. As shown in Fig. 1 (b),
we number the m top level switches from 0 to m — 1, the
r bottom level switches from O to r — 1, and the r x n leaf
nodes from 0 to r X n — 1. Other numbering schemes will also
be used in the paper. They will be introduced before they are
used.

Let us denote (s, d) a source-destination (SD) pair with
source node s to destination node d. SRC(s,d) is the switch
that s is in and DST(s,d) is the switch d is in. We say
that SRC(s,d) is the source switch of (s,d) and that (s,d)
starts from SRC(s, d). Similarly, DST (s, d) is the destination
switch of (s,d) and (s,d) ends at DST'(s,d). A communica-
tion pattern can be represented by a set of SD pairs.
Definition 1: A permutation communication, or permutation,
is a communication pattern where each leaf node can be the
source in at most one SD pair and the destination in at most
one SD pair in the communication pattern.

Property 1: Let (s1,d;1) and (s2,d2) be two SD pairs in a
permutation. s; # se and dy # ds.

This property can be obtained from the definition of per-
mutation. Since ftree(n 4+ m,r) have r x n leaf nodes, a
permutation communication can at most have r x n SD pairs.
When all source nodes and all destination nodes are used in a
permutation, there are exactly » X n SD pairs. A permutation,
however, does not require all leaf nodes to be used.

To support the communication for a SD pair, a path
must be used to carry the traffics for the communication. In
the computer communication environment, distributed control
is used. The network control is performed by the routing
algorithm, which determines the routes for SD pairs. We
consider several widely used routing algorithms for folded-
Clos networks: single-path deterministic routing, multi-path
deterministic routing, and adaptive routing. In single-path
deterministic routing, one path is used to carry all traffics for
each SD pair and the path for each SD pair is pre-determined.
In multi-path deterministic routing, the traffics for the same
SD pair are distributed among multiple pre-determined paths
either in a deterministic or random manner. In adaptive routing,
different paths can be used for one SD pair and the path to be
used is determined dynamically based on the traffic condition.

With a given routing algorithm, when two SD pairs in

a communication pattern are routed through one network
link, we say that the communication pattern causes network
contention.
Definition 2: A folded-Clos network is nonblocking with
a routing algorithm if any permutation communication can
be supported without network contention using the routing
algorithm on the network.

I'V. DETERMINISTIC ROUTING

This section considers nonblocking folded-Clos networks
with deterministic routing. We will first consider single-path
deterministic routing and then discuss multi-path routing.

A. Single-path deterministic routing

In single-path deterministic routing, a path is deterministi-
cally assigned to each SD pair. The following lemma gives the
condition for a folded-Clos network to be nonblocking with
single-path deterministic routing.

Lemma 1: For any single-path deterministic routing,
ftree(n+m, r) is nonblocking if and only if each link carries
traffics either from one source or to one destination.

Proof: We will prove the necessary condition by contradiction.
Let a link L in ftree(n + m,r) carries traffics from more
than one source and to more than one destination. There
exists at least two SD pairs, (s1,d;) and (s2,d2), s1 # S
and d; # do, whose traffics are routed through L. The
communication pattern that contains only these two SD pairs
is a permutation. Since the routing is deterministic, there is
contention on link L for this permutation and thus, the network
is not nonblocking. Hence, if ftree(n+m,r) is nonblocking,
each link in the network carries traffics either from one source
or one destination.

We will now prove the sufficient condition by contradiction.
Assume that we have a permutation P that can cause network
contention: there exists two SD pairs in P that are routed
through one link. Let the two SD pairs be (s1,d;) and (s2, d2)
and the link be L. Since P is a permutation, we have s1 # $o
and dy # do (Property 1). This contradicts to the assumption
that link L only carries traffics either from one source or to one
destination. Hence, if each link in the network carries traffics
either from one source or to one destination, ftree(n+m,r)
is nonblocking. O

In ftree(n + m,r), each link between a leaf node and a
bottom level switch only connects to one leaf node: the traffics
on such a link is either to that leaf node or from the leaf
node regardless of the routing algorithm. Such a link does not
have contention for any permutation. The links between top
level switches and bottom level switches may have contention.
Since a nonblocking network must support any permutation,
all possible SD pairs must be assigned a path by the routing
algorithm. For SD pair (s, d), where s and d are not in the
same bottom level switch, it must be routed through a top
level switch and use the links between top level switches and
bottom level switches. There are r(r — 1)n? such SD pairs in
ftree(n + m,r) that must be routed carefully.

In deriving the nonblocking condition for single-path de-
terministic routing, we must determine the smallest m such
that all of the r(r — 1)n? SD pairs can be routed with each
link supporting SD pairs with either the same source or the
same destination. We will use a subgraph of ftree(n+m,r) to
analyze the number of SD pairs that can be routed through one
top level switch. Fig. 2 shows the subgraph, which contains
all lower level switches in ftree(n + m,r), but only one top
level switch. The subgraph is effectively ftree(n + 1,7), a
regular tree topology with the root having r children and each
bottom level switch having n leaf nodes.

‘o\
‘ 0 ‘ ‘ 1 ‘ ..0
fooel feael

O OO

2n—1 n(r—1) m-1

0 n—1 n

Fig. 2. The subgraph of ftree(n + m,r) (ftree(n +1,7))

Lemma 2: Consider using the ftree(n + 1,r) topology to
route a subset of all possible SD pairs with source and
destination in different switches. If each link can carry traffics
either from one source or to one destination, then the largest
number of SD pairs that can be routed through the root is at
most 7 X (r — 1) when r > 2n+ 1 and 2nr when r < 2n+ 1.
Proof: Let S be a largest set of SD pairs that are routed
through the root switch when all links carry traffics either to
one destination or from one source. To count the number of SD
pairs in .S, we partition the SD pairs in .S into three types: (1)
the SD pairs whose source switch has 2 or more sources in the

SD pairs in S, (2) the SD pairs whose destination switch has 2
or more destinations in the SD pairs in S, and (3) the SD pairs
whose source switch has one source and whose destination
switch has one destination in the SD pairs in S. Let us denote
the number of type (1) SD pairs in S be NU M;, the number
of type (2) SD pairs be NU M, the number of type (3) SD
pairs be NU M3, and the total number of SD pairs in S be
NUM.

Let the number of switches that have 2 or more sources in
the SD pairs in S be A; the number of switches that have 2
or more destinations be B. Consider the number of type (1)
SD pairs. Since there are two or more sources in each of such
switches, all these sources in one switch must communicate
with one destination. Otherwise, the link from the switch to
the root will carries SD pairs from more than one source and
to more than one destination. Hence, one switch can contribute
at most n such SD pairs to NUM; (when all of the leaf nodes
in the switch are sources). Since there are A such switches,
the number of such SD pairs, NU M, is at most A x n.

NUM,; < Axn.

Similarly,
NUM; < B x n.

Now, consider the number of type (3) SD pairs, NU M3. Since
there are A switches that cannot be source switches for type
(3) SD pairs, at most r — A switches can be source switches
for such SD pairs. Since each switch can at most have one
destination in type (3) SD pairs, each source can at most
communicate to r — 1 destinations (one destination in each
of the » — 1 switches other than the source switch). Hence,

NUM; < (r—A) x (r—1).

Using a similar logic, by excluding switches with 2 or more
destinations, we have

NUM;3 < (r—B) x (r—1).

Combine these two inequations, we obtain
A+B

NUM;3; <rx(r—1)—()(r—1).

Therefore, the total number of SD pairs,

NUM< NUM; + NUMs + NUM;
<Axn+Bxn+rx(r—1)— 248 x (r-1)
=rx(r—1)+2B x2xn+1-7)

When r >2n+1, 248 x 2xn+1—-r) <0 and
NUM <rx(r—1).

When 7 < 2n+1, 22 x (2xn+1-r) > 0. Since A < r
and B <r,

NUM<rx(r—1)+2B x 2xn+1-7)
<rx(r—1)+2@2xn+1-r)
=2XxXnxr.

Theorem 1: when r < 2n + 1, the number of ports supported
by a nonblocking ftree(n+m,r) with any single-path deter-
ministic routing is no more than 2(n + m).

Proof: Regardless of the routing algorithm used, a total of
r(r—1)n? SD pairs must be routed through top level switches
in ftree(n + m,r). From Lemma 1 and Lemma 2, when
r < 2n+ 1, each top level switch can route at most 2 x n x r
SD pairs in a nonblocking ftree(n 4+ m,r) for any single-
path deterministic routing scheme. Hence, there are at least

rr—ln® _ (r=Dn top level switches needed; and m >

2nr 2
@. The number of ports supported by ftree(n+m,r) is
rxn <25 xn+n)<2(m+n). O

Theorem 1 indicates that it is not effective to build non-
blocking folded-Clos networks using relatively small top level
switches. When r < 2n+1, the total number of ports supported
by a nonblocking folded-Clos network is at most twice that
in its bottom level switches. Hence, one should focus on
nonblocking folded-Clos networks with relatively large top
level switches (r > 2n + 1).

Theorem 2: Let ftree(n + m,r) be nonblocking with any
single-path deterministic routing. When r» > 2n+1, m > n2.
Proof: Similar to the proof of Theorem 1, regardless of the
routing algorithm used, 7(r — 1)n? SD pairs must be routed
through top level switches. From Lemma 1 and Lemma 2,
when r > 2n + 1, each top level switch can route at most
r(r — 1) SD pairs in a nonblocking ftree(n + m,r) for any
single-path deterministic routing scheme. Hence, there are at

_ 2 .
least % = n? top level switches needed; and m > n?.

Theorem 2 gives the lower bound of the number of top level
switches needed to make ftree(n 4+ m,r) nonblocking with
any single-path deterministic routing. The following theorem
establishes that this lower bound can be achieved: the m > n?
nonblocking condition is tight.

Theorem 3: There exists a single-path deterministic routing
algorithm for ftree(n +n?,r) that supports all permutations
without network contention. In other words, ftree(n +n?,r)
is nonblocking using that routing algorithm.

Proof: We will first describe the routing algorithm and then
prove ftree(n +n?,r) is nonblocking with the routing algo-
rithm.

In ftree(n+mn?, 1), there are n? top level switches. We will
number of n? top level switches by (i,5), 0 <i <n —1 and
0 < j <n — 1. There are r bottom level switches numbered
from O to r — 1. Each bottom level switch v, 0 < v <r —1,
connects to n leaf nodes numbered as (v, k), 0 < k <n —1.
The routing algorithm routes SD pair (s = (v,1),d = (w, 7)),
0<v#w<r—1and0<1,j <n—1, through top level
switch (¢, 7). That is, SD pair (s = (v,1),d = (w, j)) is routed
through path (v,i) — v — (i,j) — w — (w, 7). Note that
when v = w, (s = (v,i),d = (v,J)) is routed through path
(v,8) = v — (v,).

Using this algorithm, each uplink in ftree(n+n?2,r) carries
traffics from one source. This obviously holds for the uplinks
from leaf nodes to bottom level switches. Consider the uplink

from an arbitrary bottom level switch v to an arbitrary top
level switch (¢, j). There are 7 — 1 SD pairs on this link: (s =
(U7i)7d = (Omj))’ (8 = (v,4),d = (Lj))’ e (S = (v,4),d =
(v—=1,9), (s = (v,9),d = (v+1,7)), ..., (s = (v,1),d =
(r,7)). There is only one source (v,7) for all the SD pairs.
Similarly, each downlink in ftree(n + n?,r) carries traffics
to one destination. Consider the downlink from an arbitrary
top level switch (4,7) to an arbitrary bottom level switch v.
There are » — 1 SD pairs on this link: (s = (0,1),d = (v, j)),
(s =(L,i),d= (v,7)), ..., (s = (v—1,0),d = (v,])), (s =
(v+1,7),d = (v,5)), ..., (s = (1,%),d = (v, 7)). There is only
one destination (v, j) in all the SD pairs. Fig. 3 shows the SD
pairs routed through the links between top level switch (3, j)
and bottom level switch v. Hence, the algorithm routes SD
pairs such that each link in ftree(n + n2,r) carries traffics
either from at most one source or to at most one destination.
It follows from Lemma 1 that the network is nonblocking. O

v=1 H v H v+l ‘oo. T ‘

(0. j) v-1,j) (v, 1) (v+1,j) @)

(a) SD pairs in the uplink from switch v to switch (i, j)

v-1 ‘ ‘ v ‘ ‘ v+l

se e ‘ r ‘
T
0,) (v=1,1) (3] (v+1,1) (r, 1)

(b) SD pairs in the downlink from switch (i, j) to switch v

Fig. 3. SD pairs routed through links between top level switch (7, j) and
bottom level switch v

Analysis. The main application of Clos networks is to
build large (nonblocking) interconnects from smaller switches.
Here, we compare nonblocking folded-Clos networks in com-
puter communication environments with tradition rearrange-
ably nonblocking networks in their capability to build larger
interconnects.

Consider the case when the same sized switches are used
to build the nonblocking networks. That is r = m + n. We
will use the m-port n-trees (F'T'(m, n)) [12] as a representative
rearrangeably nonblocking folded-Clos in the comparison. Our
two level nonblocking folded-Clos network, f tree(n+n2, n—+
n?), uses 2n2 + n n? + n-port switches to support n> + n?
nonblocking ports. Let N = n? +n, our nonblocking network
uses roughly 2N N-port switches to support roughly N 3
nonblocking ports. Traditional FT(N,2) uses % N-port
switches to support NTZ ports [12]. Table I compares that
number of ports and the number of switches needed for the
two types of folded-Clos networks.

We emphasize that our nonblocking networks behave like
crossbar switches while F'T'(m,n) is not nonblocking in the
computer communication environment. It is thus expected that
our nonblocking networks are more expensive to construct.

building | ftree(n +n?,n+n?) [FT(n+n?,2)
block # of # of # of # of
size switches ports switches | ports
20-port 36 80 30 200
(4447
30-port 55 150 45 450
(5452
42-port 88 252 63 884
(6 + 62)
TABLE I

SIZE OF NONBLOCKING ftree(n +n?,n +n?) AND FT(n + n?,2)

Our technique allows larger nonblocking folded-Clos networks
to be constructed from smaller switches as shown in Table I,
and is optimal for building such networks with single-path
deterministic routing.

To support larger numbers of ports, the method to build
2-level nonblocking folded-Clos networks can be recursively
applied to build more levels of nonblocking folded-Clos net-
works. For example, to obtain a 3-level nonblocking network,
a 2-level nonblocking network can be used to replace each
of either the top level switches or the bottom level switches
in 2-level networks. Since our nonblocking ftree(n + m,r)
supports all permutations with no contention, it can be shown
by induction that the recursively-built larger network will
also support all permutations with no contention and is thus
nonblocking. One question is whether it is more effective to
replace bottom level switches or top level switches. Theorem
1 gives the answer to this question: it is more beneficial to
have large top level switches. Hence, when building more
than two levels folded-Clos networks, one should replace
top level switches with nonblocking networks. Using this
approach, a three-level nonblocking folded-Clos network built
with n+n2-port switches will resemble ftree(n+n?, n3+n?),
with each top level n® 4 n2-port switch being realized with
a ftree(n + n?,n + n?). This nonblocking network has
2n*+3n3+n? n?+n-port switches and supports n*+n3 ports.
Let N = n + n% The three-level nonblocking folded-Clos
network uses O(N?) O(N)-port switches to obtain an O(N?)-
port nonblocking network. As a comparison, F'T'(N,3) uses
O(N?) O(N)-port switches to obtain O(N?3)-port fat-trees.

B. Multipath routing

Besides single-path deterministic routing, other routing
schemes such as multipath routing [12] have also been de-
veloped for folded-Clos networks. For example, InfiniBand
allows multiple paths to be set-up between two end-points
[8]. In multipath routing, the traffics for the same SD pair
are distributed among multiple paths either in a deterministic
or random manner. Single-path routing is a form of multi-
path routing. Multipath routing schemes usually can achieve
better load balance in folded-Clos networks than single-path
routing [17]. For nonblocking folded-Clos networks, however,
splitting traffics from one SD pairs to multiple paths does not
improve the nonblocking condition: assuming that the timing
for using different paths for a SD pair is unpredictable, which
is common for multipath routing, to achieve nonblocking

communication for any permutation, Lemma 1 still needs to
hold, which leads to the same bound in Theorem 2 (m > n?)
for multipath deterministic routing.

V. ADAPTIVE ROUTING

This section studies nonblocking ftree(m+n,r) with adap-
tive routing. For ftree(n + m,r), the adaptivity is achieved
only in input switches (bottom level). Once a packet reaches
the top level switch, there is only one path to each destination
and no adaptivity is possible. Intuitively, adaptive routing
allows more flexibility than deterministic routing and thus,
may require a smaller number of top level switches to achieve
nonblocking communication for any permutation. We will
show in this section that adaptive routing indeed improves
the nonblocking condition over deterministic routing, which
indicates that more cost effective nonblocking ftree(n+m,r)
can be built with adaptive routing than with deterministic
routing.

Since the adaptivity is achieved by input switches, for a
given permutation P, we can partition the SD pairs in P into
r disjoint subsets P°, P!, .., P! where P!, 0 <i <r —
1, contains all SD pairs whose sources are in bottom level
switch 4. We will use the phrase SD pairs from the same switch
to denote SD pairs whose sources are in the same switch,
D pairs from different switches to denote SD pairs whose
sources are in different switches, SD pairs to the same switch
to denote SD pairs whose destinations are in the same switch,
and SD pairs to different switches to denote SD pairs whose
destinations are in different switches. Our routing algorithm
has the following assumptions.

o For a given set of SD pairs whose the sources are in
one bottom-level switch, the switch can use any possible
route for each of the SD pairs. This assumption models
adaptive routing.

o There is no global information shared among different
switches. Each input switch adapts based on its local traf-
fic pattern. Routing and traffic patterns in other switches
do not affect the routing decision. Note that routing based
on global information has the same effect as having a
centralized controller.

Lemma 3: Let (s1,d;) and (s2,d2) be two arbitrary SD pairs
where dy # ds are in the same switch. If an adaptive routing
algorithm for ftree(n 4+ m,r) guarantees to route such two
SD pairs through different top level switches, then routes for
any two SD pairs in any permutation whose sources are in
different input switches will not have network contention using
the adaptive routing algorithm.

Proof: Let us denote SRC(s,d) the source switch of SD
pair (s,d) and DST(s,d) the destination switch of SD pair
(s,d). Let (s1,d1) and (s2,d2) to be arbitrary two SD pairs
in a permutation where s; and so are in different switches
(SRC(s1,d1) # SRC(s2,dz)). We will prove that under the
assumption in the lemma, these two SD pairs will not have
contention. Let (s1,d;) be routed through top level switch
A and (s2,ds) be routed through top level switch B (A and
B may be the same). Since SRC(s1,d1) # SRC(s2,ds),

uplinks SRC(s1,d1) — A and SRC(s2,d2) — B are
different regardless whether A = B or not, and there is
no contention in the uplinks for the two SD pairs. For the
downlink A — DST(s1,d;) and B — DST(s2,ds), there
are two cases. When DST(s1,d1) = DST(s2,ds), since
(s1,d1) and (s2, d2) are from one permutation communication,
dy # dsy. By the assumption of this lemma, we have A # B
and thus, the downlinks for the two SD pairs are different
and there is no network contention. When DST(s1,d;) #
DST(s2,ds), regardless whether A = B or not, the downlinks
A — DST(s1,d1) and B — DST(s2,ds) are different and
there is no contention. O

This lemma indicates that using a class of adaptive routing
algorithms that guarantee to use different top level switches to
route SD pairs with different destinations in the same switch,
SD pairs from different switches in a permutation will not
have contention. We will use the term class DIFF to denote
this class of routing algorithms. This has two implications.
First, using a class DIFF algorithm, SD pairs from different
switches can be routed independently. Second, to achieve
nonblocking communication, a class DIFF algorithm can focus
on avoid contention for SD pairs from one switch: SD pairs
from different switches will not have contention. Class DIFF
algorithms are the base for our proposed adaptive routing
algorithm for nonblocking ftree(n + m,r).

For ftree(n + m,r), there exists a ¢ such that r < n°.
For practical folded-Clos networks, c is a small constant. For
example, in ftree(n+m,n?), c = 2. In ftree(n+m,n+n),
¢ = 3. In our adaptive routing algorithm, we will number the
r bottom level switches with ¢ n-based digits: S¢.—15.—2..-50,
0<s;<n—1forall 0 <7< c—1; and we will number the
r x n leaf nodes in ftree(n+m,r) with ¢+ 1 n-based digits:
Se—1S¢—2...80p, Where s._15._9...5¢ is the switch that the leaf
node is in, and 0 < p < n—1 is the local node number within
switch s._1S¢._2...50.

Our adaptive routing algorithm for ftree(n +m,r) sched-
ules the SD pairs from each switch separately. SD pairs from
each switch are routed in phases. In each phase, SD pairs
are routed over (c + 1) x n top level switches. We will use
the term configuration to denote the group of (¢ + 1) x n
top level switches used in one scheduling phase. The routing
algorithm is the same for different configurations. Within each
configuration, we further partition the (¢ + 1) x n top level
switches into ¢ + 1 groups of n switches. We will call each
of the groups of n top level switches, a partition. Each of the
c+1 partitions is to schedule different types of SD pairs using
a class DIFF routing scheme. In each of the partitions, the n
top level switches are numbered from 0 to n — 1.

The first partition is used to route traffics to destinations
with different local node numbers. In this partition, top level
switch ¢ is only used to carry SD pairs with destinations
whose local node number p = ¢ for all bottom level switches:
the routing algorithm makes sure that only SD pairs whose
destinations have different local node numbers are routed
through this partition.

Lemma 4: Let (s1,di = sl_j..sipb)), (s2,da =

c

s2_1..8%p?)), ..., and (sp,dy = s¥_,...skp")) be a set of SD
pairs from the same (arbitrary) switch in a permutation, where
pl,p?,...,p" are different numbers. All of the k SD pairs can
be routed through the first partition without contention.

Proof: We will first prove that the routes for (si,dy =
st_i..siph), (s2,da = s%_,..83p?)), ..., and (sg,dx =
sk_,...skp*)), do not have contention with the routes for SD
pairs from other switches, and then show that routes for the
SD pairs do not have contention between each other. Using
the routing scheme, SD pairs whose destinations have a local
node number p, 0 < p < n — 1, are routed through top level
switch p: the routing algorithm is a class DIFF algorithm.

From Lemma 3, the routes for (si,d; = sl _j..sipl)),

(s2,dy = s2_1...82p%)), ..., and (sp,dy = sF_;...skpF)) will
not have contention with the routes for SD pairs from other
switches.

The routing algorithm routes (s;,d; = si_;...shp"), 0 <
i < k, to top level switch p’. Since p', p?, ..., p¥ are different:
the paths for all of the SD pairs are link-disjoint and do not
have contention. Thus, all of the k£ SD pairs can be routed
through the first partition without contention. O

Lemma 4 implies that at least one SD pair in any permu-
tation from each switch can be routed through this partition
without contention. Since each switch can have at most n SD
pairs in a permutation, at most n such partitions are needed
to achieve nonblocking communication for any permutation.
However, n such partitions have n? top level switches. Thus,
this naive scheme does not improve nonblocking condition in
comparison to single-path deterministic routing.

The first partition is used to route SD pairs to destinations
with different local node numbers, which is the first digit in
the ¢ + 1 n-based digits numbering scheme for leaf nodes.
The second partition is used to route SD pairs to destinations
with different second digit values using a class DIFF routing
scheme. In the second partition, top level switch ¢ carries
traffics (from any sources) to destinations (s._i...81(sp =
N = 0)), (scz1...51(s0 = (i + D%n)(p = 1)),...
((se—1---81(s0 = (i +)%n)(p = 7))s -r ((Se=1.--51(80 =
(i+n—1)%n)(p = n—1)). Here, % is the module operation.
Using this routing scheme, different destinations in the same
switch are also routed through different top level switches.
For an arbitrary bottom level switch s._1...50, SD pairs with
destination s._;...s00 are routed through top level switch
switch sp, destination S._j...sgl through top level switch
(so — 1)%n, ..., and destination s.—1...807, 0 < j < n —1,
through top level switch (sg — j)%n in the partition. Clearly,
SD pairs with different destinations in the same switch are
routed through different top level switches. Thus, the routing
for the second partition is also a class DIFF routing algorithm.

The routing in other ¢ — 1 partitions is similar to that in the
second partition. Basically, the i-th partition, 2 < i < ¢+ 1,
is used to route SD pairs to destinations with different i-th
digit values (different s;_o values) using a class DIFF routing
algorithm. Specifically, in the i-th partition, top level switch ¢
carries traffics to destinations (s¢—1...(s;—2 =)...s0(p = 0)),
(Sc_l...(Si_g = (’L+ 1)%71)80(]) = 1)), . ((80_1...(81'_2 =

(i +)%n))...solp = 7)) s ((Se=1---(8i—2 = (i + n —
1)%n)...so(p = n — 1)). Following a similar logic for the
routing in the second partition, the routing for the ¢-th partition,
2 <1< c+1,is a class DIFF routing algorithm.

Lemma 5: Let (s1,d1 = st_;...s8p'), (s2,d2 = s2_;...s3p%),
voes (81, di = s%_,...sEp¥) be a set of SD pairs from the same
switch in a permutation, where forone i, 2 <7 < c+1, 51172,
$2 5, ..., 8¥_, are different. All of the k SD pairs can be routed
through the ¢-th partition without contention

Proof: Since the routing in the i-th partition is a class DIFF
routing algorithm, from Lemma 3, routes for the set of SD
pairs will have no contention with routes for SD pairs from
other switches in the i-th partition. _

In the i-th partition, (sj,d; = s._;..s{p?), 1 < j <k, is
routed to top level switch s7_,. Since s! o, 52 o, ..., s¥ , are
different: the paths for all the SD pairs are link-disjoint. Thus,
All of the k£ SD pairs can be routed through the i-th partition
without contention. O

Lemma 5 implies that at least one SD pair from each switch
can be routed through the i-th partition, 2 < 7 < ¢ + 1.
Lemma 4 and Lemma 5 show that each of the partitions in a
configuration can be used to route a set of SD pairs from each
switch in a permutation whose destinations differ in one digit
in the ¢ + 1 digits n-based representation. We will call a set
of SD pairs that can be routed through a partition without
causing contention the set of SD pairs that can be routed
through the partition. Moreover, the routing schemes in all
partitions are class DIFF schemes, which guarantees that SD
pairs from different switches routed through the same partition
do not have contention.

Our adaptive routing algorithm for nonblocking ftree(n +
m,r), called NONBLOCKINGADAPTIVE, is presented in
Fig. 4. Since the routing in each partition is a class DIFF
routing algorithm, routing SD pairs from different switches for
the same partition will not have contention and can be done
independently. The routing algorithm routes SD pairs from
each source switch independently. It considers configurations
one at a time, greedily finds the largest number of SD pairs
that can be routed through one of the unused partitions in
each configuration, and routes the SD pairs to partition. This
scheme is repeated with more configurations until all SD pairs
are routed. After the configurations for SD pairs from all
switches are computed, the algorithm merges the routes for
SD pairs from different source switches (lines (14) and (15)):
the corresponding partitions in each configuration for SD pairs
from different switches can be routed through the same n
top level switches without contention. In the description, we
assume that there are sufficient number of top level switches
to be allocated. We will prove the upper bound of the number
of top level switches required for this algorithm in Theorem
5.

Theorem 4: Algorithm NONBLOCKINGADAPTIVE results
in nonblocking communication.

Proof: The algorithm routes SD pairs in Lines (7) and (8) in
Fig 4. Since it always routes SD pairs that can be routed on
a partition to the partition, from lemma 4 and Lemma 5, the

Algorithm NONBLOCKINADAPTIVE:
Input: A permutation P
Output: the routes for all SD pairs in P

(1) Let P}, 0<i<r—1,be the set of SD pairs in P
from switch 7;
(2) Foreach P!, 0<i<r—1do

3 ;=0
(4) While (P is not empty) do
5) C’;i = new configuration; x;++;
(6) While ((P? is not empty) and
(Cfﬁ has unused partitions)) do
7 Find the largest subset of P?,

LSET, that can be routed on one of
the unused partition, PART, in C. ;

(8) Route SD pairs in LSET on PART;,
) Mark PART as used,
(10) P =P’ — LSET;
(11 End while
(12) End while
(13) End for
(14) Let totalconf be the largest z;, 0 < i <71 —1;
(15) For j=0 to totalconf — 1 do
merge C’;, 0 <1¢ <r—1, into one configuration;
(16) End for

Fig. 4. An adaptive routing algorithm for nonblocking ftree(n +m,r)

communication is nonblocking for any permutation. O
Analyzing the number of top level switches needed by the
algorithm is more challenging. Before we prove the upper
bound for the number of top level switches needed in NON-
BLOCKINGADAPTIVE, we will show that this algorithm
requires less than n? top level switches for any permutation
in ftree(n + m,r). For any two SD pairs from a switch in
a permutation, the destinations are different: they differ in
at least one digit in the ¢ + 1 n-based digits representation.
The two SD pairs can be routed through one partition in a
configuration. Hence, the LSET found in line (7) in the first
iteration after a new configuration is allocated will have at
least two SD pairs when there are more than one SD pair in
Pi. In other iterations, when P? is not empty, the LSET at
least contains one SD pair from each switch since each unused
partition can at least route one SD pair for each switch with no
contention. Hence, the c+1 partitions in one configuration can
route at least route ¢ + 2 SD pairs for a source switch. Since
each switch can have at most n SD pairs in a permutation,
at most 35 configurations and 35 X cn = ﬁr—énz top
level switches are needed. In the following, we will show
that NONBLOCKINGADAPTIVE improve the nonblocking
condition asymptotically.
Lemme 6: Consider a set of numbers encoded with ¢ + 1 n-
based digits, d.d._1...dg. For any k different numbers, there
exilsts at least one 7, 0 < ¢ < ¢, such that there are at least
k=+T numbers in the set of k different numbers with different

d;.
Proof: Let the number of different values of each1 digit d;
among the k different numbers be X;. If X; < ke+1 for all
0 < i < ¢, then at most Xy x X1 x ... x X, different numbers
can be in the set. Hence, £ < Xy x X7 x ... x X, < k, which
cannot ble true. Hence, there exists at least one ¢ such that
X; > ket1. 0
Theorem 5: Let r < n® where ¢ is a constant. Algorithm
NONBLOCKINGADAPTIVE requires at most O(n27clﬁ)
top level switches to route any permutation in ftree(n+m,r).
Proof: Consider the number of configurations needed by NON-
BLOCKINGADAPTIVE for any permutation communication.
Each source switch will have at most n SD pairs to route
in a permutation. From Lemma 6, among the n different
destinations in the n SD pairs, which are represented by
¢ + 1 n-based digits, there exists an 7, 0 < 7 < ¢, such
that there are ne+1 destinlations whose encoding differs in
the ¢-th digit. A set of n=¥T SD pairs with one for each of
those destinations can be routed through a partition (Lemma
4 and Lemma 5). Since the largest subset of P’ that can be
routed on one partition is found in line (7) in Fig. 4, the first
partition agter each new configuration is allocated will route
at least n=+7 SD pairs for each source switch when |P*| = n.
Let T'(n) be the number of configurations needed when each
switch has n SD pairs in a permutation to be routed. We have
T(n) < T(n—n=7) + L.

Forn > X > 3, N > X > (%)ﬁ Hence,

T(n) <T(n/2)+ T

=O(n'~ =1

_ - -1
<SHTFAH G+ () 1)

Hence, the number of top level switches needed for the
algorithm is not more than T'(n) X ¢ x n = O(n2_$),
assuming c is a constant. O

Algorithm NONBLOCKINGADAPTIVE asymptotically
improves the nonblocking condition for ftree(n +m,r) with
deterministic routing. However, it may not achieve the lower
bound of m for adaptive routing. The tight nonblocking
condition for ftree(n + m,r) with adaptive routing is still
open for investigation.

VI. CONCLUSION

We study folded-Clos networks that are nonblocking in
computer communication environments and develop tech-
niques to construct such networks. We show that it is not
effective to build nonblocking folded-Clos with small top level
switches. We prove that for ftree(n + m,r) with single-path
deterministic routing, the nonblocking condition is m > n2.
We give the single-path routing scheme that can be used to
build nonblocking ftree(n + n2,r), which is optimal. We
further prove that using adaptive routing, the nonblocking
condition can be improved over deterministic routing. Our
results indicate that it is possible to build large nonblocking

folded-Clos networks in computer communication environ-
ments using smaller components. This paper leaves an open
problem to be investigated in the future: what is the tight
nonblocking condition for ftree(n + m,r) with adaptive
routing?

ACKNOWLEDGMENT

The author thanks Prof. Piyush Kumar for providing the
proof for the bound derived from the recurrence T'(n) < T'(n—
1
n+1) 4+ 1, which is used in the proof of Theorem 5.

[1]

[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]
(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

Y. Aydogan, C. B. Stunkel, C. Aykanat, and B. Abali, “Adaptive Source
Routing in Multistage Interconnection Networks,” the 10th International
Parallel Processing Symposium, pages 258-267, 1996.

C. Clos, “A Study of Non-Blocking Switching Networks,” Bell System
Technical Journal, 32:406-424, 1953.

V.E. Benes, “On Rearrangeable Three-Stage Connecting Networks,” Bell
System Technical Journal, 41(5):1481-1492, Sept. 1962.

V.E. Benes, “Mathematical Theory of Connecting Networks and Tele-
phone Traffic,” Tcademic Press, 1965.

P. Geoffray and t. Hoefler, “Adaptive Routing Strategies for Modern
High Performance Networks,” the 16th IEEE Symposium on High
Performance Interconnects, pages 165-172, August 2008.

R. I. Greenberg and C. E. Lerserson, “Ramdonzied Routing on Fat-
trees.” In 26th Annual IEEE Symposium on Foundations of Computer
Science, pages 241-249, Oct. 1985.

T. Hoefler, T. Schneider, and A. Lumsdain, “Multistage Switches are not
Crossbars: Effects of Static Routing in High-Performance Networks,”
IEEE International Conference on Cluster Computing, pages 116-125,
2008.

Infiniband”™ Trade Association, Infiniband 7™ Architecture Specifi-
cation, Release 1.2, October 2004.

J. Kim, W. J. Dally, and D. Abts, “Adaptive Routing in High-Radix Clos
Network,” ACM SC’2006, November 2006.

C.E. Leiserson, “Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing,” IEEE Transactions on Computers, 34(10):892-901,
October 1985.

C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M.
N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre,
D. S. Wells, M. C. Wong-Chan, S-W. Yang, and R. Zak, “The network
architecture of the Connection Machine CM-5.” Journal of Parallel and
Distributed Computing, 33(2):145-158, Mar 1996.

X. Lin, Y. Chung, and T. Huang, “A Multiple LID Routing Scheme for
Fat-Tree-Based Infiniband Networks.” Proceedings of the 18th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS’04),
p- lla, Sana Fe, NM, April 2004.

S.R. Ohring, M. Ibel, S.K. Das, M.J. Kumar, “On Generalized Fat Trees,”
International Parallel Processing Symposium, pages 37-44, April 1995.
F. Petrini and M. Vanneschi, “k-ary n-trees: High Performance Networks
for Massively Parallel Architectures,” International Parallel Processing
Symposium (IPPS), pages 87-87, 1997.

A. Singh, “Load-Balanced Routing in Interconnection Networks,” PhD
thesis, Stanford University, 2005.

Y. Yang and J. Wang, “Wide-Sense Nonblocking Clos Networks under
Packing Strategy,” IEEE Trans. on Computers, 48(3):265-284, March
1999.

X. Yuan, W. Nienaber, Z. Duan, and R. Melhem, “Oblivious Routing in
Fat-tree Based System Area Networks with Uncertain Traffic Demands,”
ACM SIGMETRICS, pages 337-348, June 2007.

