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Abstract. Let P be a set of points in ℝd. We propose GeoFilterKruskal, an algorithm that com-
putes the minimum spanning tree of P using well separated pair decomposition in combination
with a simple modification of Kruskal’s algorithm. When P is sampled from uniform random dis-
tribution, we show that our algorithm runs in O(n log2 n) time with probability at least 1−1/nc for
a given c > 1. Although this is theoretically worse compared to known O(n) [31] or O(n logn) [27,
11, 15] algorithms, experiments show that our algorithm works better in practice for most data
distributions compared to the current state of the art [27]. Our algorithm is easy to parallelize and
to our knowledge, is currently the best practical algorithm on multi-core machines for d > 2.

Key words: Computational Geometry, Experimental Algorithmics, Minimum spanning tree, Well
separated pair decomposition, Morton ordering, multi-core.
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Fig. 1: A GMST of 100 points generated from
the uniform distribution.

Computing the geometric minimum spanning tree (GMST)
is a classic computational geometry problem which arises
in many applications including clustering and pattern
classification [34], surface reconstruction [25], cosmol-
ogy [4, 6], TSP approximations [2] and computer graph-
ics [23]. Given a set of n points P in ℝd, the GMST of P
is defined as the minimum weight spanning tree of the
complete undirected weighted graph of P , with edges
weighted by the distance between their end points. In
this paper, we present a practical deterministic algo-
rithm to solve this problem efficiently, and in a manner
that easily lends itself to parallelization.

It is well established that the GMST is a subset of
edges in the Delaunay triangulation of a point set [29]
and similarly established that this method is inefficient
for any dimension d > 2. It was shown by Agarwal
et al. [1] that the GMST problem is related to solv-
ing bichromatic closest pairs for some subsets of the input set. The bichromatic closest pair problem is
defined as follows: given two sets of points, one red and one green, find the red-green pair with minimum
distance between them [22]. Callahan [8] used well separated pair decomposition and bichromatic closest
pairs to solve the same problem in O(Td(n, n) log n), where Td(n, n) is the time required to solve the
bichromatic closest pairs problem for n red and n green points. It is also known that the GMST problem
is harder than bichromatic closest pair problem, and bichromatic closest pair is probably harder than
computing the GMST [16].

Clarkson [11] gave an algorithm that is particularly efficient for points that are independently and
uniformly distributed in a unit d-cube. His algorithm has an expected running time of O(n�(cn, n)),
where c is a constant depending on the dimension and � is an extremely slow growing inverse Ackermann
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function. Bentley [5] also gave an expected nearly linear time algorithm for computing GMSTs in ℝd.
Dwyer [15] proved that if a set of points is generated uniformly at random from the unit ball in ℝd, its
Delaunay triangulation has linear expected complexity and can be computed in expected linear time.
Since GMSTs are subsets of Euclidean Delaunay triangulations, one can combine this result with linear
time MST algorithms [20] to get an expected O(n) time algorithm for GMSTs of uniformly distributed
points in a unit ball. Rajasekaran [31] proposed a simple expected linear time algorithm to compute
GMSTs for uniform distributions in ℝd. All these approaches use bucketing techniques to execute a
spiral search procedure for finding a supergraph of the GMST with O(n) edges. Unfortunately, finding
k-nearest neighbors for every point, even when k =O(1) is quite an expensive operation in practice for
non-uniform distributions [32], compared to practical GMST algorithms [27, 12].

Narasimhan et al. [27] gave a practical algorithm that solves the GMST problem. They prove that
for uniformly distributed points, in fixed dimensions, an expected O(n log n) steps suffice to compute
the GMST using well separated pair decomposition. Their algorithm, GeoMST2, mimics Kruskal’s al-
gorithm [21] on well separated pairs and eliminates the need to compute bichromatic closest pairs for
many well separated pairs. To our knowledge, this implementation is the state of the art, for practically
computing GMSTs in low dimensions (d > 2). Although, improvements to GeoMST2 [27] have been an-
nounced [24], exhaustive experimental results are lacking in this short announcement. Another problem
with this claim is that even for uniform distribution of points, there are no theoretical guarantees that
the algorithm is indeed any better than O(n2).

Brennan [7] presented a modification to Kruskal’s classic minimum spanning tree (MST) algo-
rithm [21] that operated similar in a manner to quicksort; splitting an edge set into “light” and “heavy”
subsets. Recently, Osipov et al. [28] further expanded this idea by adding a multi-core friendly filtering
step designed to eliminate edges that were obviously not in the MST (Filter-Kruskal). Currently, this
algorithm seems to be the most practical algorithm for computing MSTs on multi-core machines.

The algorithm presented in this paper uses well separated pair decomposition in combination with
a modified version of Filter-Kruskal for computing GMSTs. We use a compressed quad-tree to build a
well separated pair decomposition, followed by a sorting based algorithm similar to Filter-Kruskal. By
using a sort based approach, we eliminate the need to maintain a priority queue [27]. This opens up the
possibility of filtering out well separated pairs with a large number of points, before it becomes necessary
to calculate their bichromatic closest pair. Additionally, we can compute the bichromatic closest pair of
well separated pairs of similar size in batches. This allows for parallel execution of large portions of the
algorithm.

We show that our algorithm has, with high probability, a running time of O(n log2 n) on uniformly
random data in ℝd. Although this is a theoretically worse bound than is offered by the GeoMST2
algorithm, extensive experimentation indicates that our algorithm outperforms GeoMST2 on many dis-
tributions. Our theoretically worse bound comes from the fact that we have used a stricter definition of
high probability than being used in GeoMST2 [27]. We also present experimental results for multi-core
execution of the algorithm.

This paper is organized as follows: In the remainder of this section, we define our notation. In Section
2 we define and elaborate on tools that we use in our algorithm. Section 3 presents our algorithm, and a
theoretical analysis of the running time. Section 4 describes our experimental setup, and Section 5 com-
pares GeoMST2 with our algorithm experimentally. Finally, Section 6 concludes the paper and presents
future research directions.

Notation: Points are denoted by lower-case Roman letters. Dist(p, q) denotes the distance between the
points p and q in L2 metric. Upper-case Roman letters are reserved for sets. Scalars except for c, d, m
and n are represented by lower-case Greek letters. We reserve i, j, k for indexing purposes. Vol() denotes
the volume of an object. For a given quadtree, Box{p, q} denotes the smallest quadtree box containing
points p and q; Fraktur letters (a) denote a quadtree node. MinDist(a, b) denotes the minimum distance
between the quadtree boxes of two nodes. Left(a) and Right(a) denotes the left and right child of a
node. ∣.∣ denotes the cardinality of a set or the number of points in a quadtree node. �(n) is used to
denote inverse of the Ackermann function [13]. The Cartesian product of two sets X and Y , is denoted
X × Y = {(x, y)∣x ∈ Xand y ∈ Y }.
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2 Preliminaries

Before we present our algorithm in detail, we need to describe a few tools which our algorithm uses exten-
sively. These include the well separated pair decomposition, Morton ordering and quadtree construction
that uses this order, a practical algorithm for bichromatic closest pair computation and the union-find
data structure. We describe these tools below.

Morton ordering and Quadtrees: Morton order is a space filling curve with good locality preserving
behavior [18]. Due to this behavior, it is used in data structures for mapping multidimensional data into
one dimension. The Morton order value of a point can be obtained by interleaving the binary represen-
tations of its coordinate values. If we recursively divide a d-dimensional hypercube into 2d hypercubes
until there is only one point in each, and then order those hypercubes using their Morton order value, the
Morton order curve is obtained. In 2 dimensions we refer to this decomposition as a quadtree decompo-
sition, since each square can be divided into four squares. We will explain the algorithm using quadtrees,
but this can be easily extended to higher dimensions. Chan [9] showed that using a few binary operations
for integer coordinates, the relative Morton ordering can be calculated by, determining the dimension in
which corresponding coordinates have the first differing bit in the highest bit position. This technique
can be extended to work for floating point coordinates, with only a constant amount of extra work [12].
In the next paragraph, we briefly state the quadtree construction that we use in our algorithm [10, 17].

Let p1, p2, ..., pn be a given set of points in Morton order. Let the index j be such that Vol(Box{pj−1, pj})
is the largest. Then the compressed quadtreeQ for the point set consists of a root holding the Box{pj−1, pj}
and two subtrees recursively built for p1, ..., pj−1 and pj , .., pn. Note that this tree is simply the Cartesian
tree [17] of Vol(Box{p1, p2}), Vol(Box{p2, p3}), . . . , Vol(Box{pn−1, pn}). A Cartesian tree is a binary tree
constructed from a sequence of values which maintains three properties. First, there is one node in the
tree for each value in the sequence. Second, a symmetric, in-order traversal of the tree returns the original
sequence. Finally, the tree maintains a heap property, in which a parent node has a larger value than
its child nodes. The Cartesian tree can be computed using a standard incremental algorithm in linear
time [17], given the ordering p1, p2, ..., pn [10]. Hence, for both integer as well as floating point coordinates,
the compressed quadtree Q can be computed in O(n log n) [12]. We use a compressed quadtree, as op-
posed to the more common fair split tree [8], because of the ease in which construction can be parallelized.

Well Separated Pair Decomposition [8]: Assume that we are given a compressed quadtree Q, built
on a set of points P in ℝd. Two nodes a and b ∈ Q are said to be an �-well separated pair (�-WSP) if
the diameter of a and the diameter of b are both at most � times the minimum distance between a and
b. An �-well separated pair decomposition (�-WSPD), of size m for a quadtree Q, is a collection of well
separated pairs of nodes {(a1, b1), ..., (am, bm)}, such that every pair of points (p, q) ∈ P ×P (p ∕= q) lies
in exactly one pair (ai, bi). In the following, we use WSP and WSPD to mean well separated pairs and
decompositions with an � value of 1.

On the compressed quadtree Q, one can execute Callahan’s [8] WSPD algorithm [10]. It takes O(n)
time to compute the WSPD, given the compressed quadtree, thus resulting in an overall running time of
O(n log n) for WSPD construction.

Bichromatic Closest Pair Algorithm: Given a set of points in ℝd, the Bichromatic Closest Pair
(BCCP) problem asks to find the closest red-green pair [22]. The computation of the bichromatic closest
pairs is necessary due to the following Lemma from [8]:

Lemma 1. The set of all the BCCP edges of the WSPD contain the edges of the GMST.

Clearly, MinDist(a, b) is the lower bound on the bichromatic closest pair distance of A and B (where
A and B are the point sets contained in a and b respectively). Next, we present the BCCP algorithm:

Algorithm 1 for computing the bichromatic closest pair was proposed by Narsimhan and Zachari-
asen [27]. The input to the algorithm are two nodes a, b ∈ Q, that contain sets A,B ⊆ P and a positive
real number �, which is used by the recursive calls in the algorithm to keep track of the last closest pair
distance found. The output of the algorithm is the closest pair of points (p, q), such that p ∈ A and
q ∈ B with minimum distance � = Dist(p, q). Initially, the BCCP is equal to �, where � represents the
WSP containing only the last point in Morton order of A and the first point in the Morton order of B,
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Algorithm 1 BCCP Algorithm [27]: Compute {p′, q′, �′} =Bccp(a, b[, {p, q, �} = �])

Require: a, b ∈ Q,A,B ⊆ P, � ∈ ℝ+

Require: If {p, q, �} is not specified, {p, q, �} = �, an upper bound on BCCP(a, b).
1: procedure Bccp(a,b[, {p, q, �} = �])
2: if (∣A∣ = 1 and ∣B∣ = 1) then
3: Let p′ ∈ A, q′ ∈ B
4: if Dist(p′, q′) < � then return {p′, q′, Dist(p′, q′)}
5: else
6: if Vol(a) < Vol(b) then Swap(a,b)
7:  =MinDist(Left(a), b)
8: � =MinDist(Right(a), b)
9: if  < � then {p, q, �} =Bccp(Left(a), b, {p, q, �})

10: if � < � then {p, q, �} =Bccp(Right(a), b, {p, q, �})
11: return {p, q, �}
12: end procedure

assuming without loss of generality, all points in A are smaller than all points in B, in Morton order. If
both A and B are singleton sets, then the distance between the two points is trivially the BCCP distance.
Otherwise, we compare Vol(a) and Vol(b) and compute the distance between the lighter node and each
of the children of the heavier node. If either of these distances is less than the closest pair distance
computed so far, we recurse on the corresponding pair. If both of the distances are less, we recurse on
both of the pairs. With a slight abuse of notation, we will denote the length of the actual bichromatic
closest pair edge, between a and b, by BCCP(a,b).

UnionFind Data Structure: The UnionFind data structure maintains a set of partitions indicating
the connectivity of points based on the edges already inserted into the GMST. Given a UnionFind data
structure G, and u, v ∈ P ⊆ ℝd, G supports the following two operations: G.Union(u, v) updates the
structure to indicate the partitions containing u and v are now joined; G.Find(u) returns the node
number of the representative of the partition containing u. Our implementation also does union by rank
and path compression. A sequence of m G.Union() and G.Find() operations on n elements takes O(m�(n))
time in the worst case. For all practical purposes, �(n) ≤ 4 (see [13]).

3 GeoFilterKruskal algorithm

Our GeoFilterKruskal algorithm computes a GMST for P ⊆ ℝd. Kruskal’s [21] algorithm shows that
given a set of edges, the MST can be constructed by considering edges in increasing order of weight.
Using Lemma 1, the GMST can be computed by running Kruskal’s algorithm on the BCCP edges of
the WSPD of P . When Kruskal’s algorithm adds a BCCP edge (u, v) to the GMST, where u, v ∈ P , it
uses the UnionFind data structure to check whether u and v belong to the same connected component. If
they do, that edge is discarded. Otherwise, it is added to the GMST. Hence, before testing for an edge
(u, v) for inclusion into the GMST, it should always attempt to add all BCCP edges (u′, v′) such that
Dist(u′, v′) < Dist(u, v). GeoMST2 [27] avoids the computation of BCCP for many well separated pairs
that already belonged to the same connected component. Our algorithm uses this crucial observation as
well. Algorithm 2 describes the GeoFilterKruskal algorithm in more detail.

The input to the algorithm, is a WSPD of the point set P ⊆ ℝd. All procedural variables are assumed
to be passed by reference. The set of WSPs S is partitioned into set El that contains WSPs with
cardinality less than � (initially 2), and set Eu = S ∖El . We then compute the BCCP of all elements of
set El, and compute � equal to the minimum MinDist(a, b) for all (a, b) ∈ Eu. El is further partitioned
into El1, containing all elements with a BCCP distance less than �, and El2 = El ∖ El1. El1 is passed to
the Kruskal procedure, and El2∪Eu is passed to the Filter procedure. The Kruskal procedure adds
the edges to the GMST or discards them if they are connected. Filter removes all connected WSPs.
The GeoFilterKruskal procedure is recursively called, increasing the threshold value (�) by one each
time, on the WSPs that survive the Filter procedure, until we have constructed the minimum spanning
tree.
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Algorithm 2 GeoFilterKruskal Algorithm

Require: S = {(a1, b1), ..., (am, bm)} is a WSPD, constructed from P ⊆ ℝd ; T = {}.
Ensure: BCCP Threshold � ≥ 2.
1: procedure GeoFilterKruskal(Sequence of WSPs : S, Sequence of Edges : T , UnionFind : G, Integer : �)
2: El = Eu = El1 = El2 = ∅
3: for all (ai, bi) ∈ S do
4: if (∣ai∣+ ∣bi∣) ≤ � then El = El ∪ {(ai, bi)} else Eu = Eu ∪ {(ai, bi)}
5: end for
6: � = min{MinDist{ai, bi} : (ai, bi) ∈ Eu, i = 1, 2, ...,m}
7: for all (ai, bi) ∈ El do
8: {u, v, �} = Bccp(ai, bi)
9: if (� ≤ �) then El1 = El1 ∪ {(u, v)} else El2 = El2 ∪ {(u, v)}

10: end for
11: Kruskal(El1, T,G)
12: Enew = El2 ∪ Eu

13: Filter(Enew,G)
14: if ( ∣T ∣ < (n− 1)) then GeoFilterKruskal(Enew, T,G, � + 1)
15: end procedure
16: procedure Kruskal(Sequence of WSPs : E, Sequence of Edges : T , UnionFind : G)
17: Sort(E): by increasing BCCP distance
18: for all (u, v) ∈ E do
19: if G.Find(u) ∕= G.Find(v) then T = T ∪ {(u, v)} ; G.Union(u, v);
20: end for
21: end procedure
22: procedure Filter(Sequence of WSPs : E, UnionFind : G)
23: for all (ai, bi) ∈ E do
24: if (G.Find(u) = G.Find(v) : u ∈ ai,v ∈ bi) then E = E ∖ {(ai, bi)}
25: end for
26: end procedure

3.1 Correctness

Given previous work by Kruskal [13] as well as Callahan [8], it is sufficient to show two facts to ensure the
correctness of our algorithm. First, we are considering WSPs to be added to the GMST in the order of
their BCCP distance. This is obviously true considering WSPs are only passed to the Kruskal procedure
if their BCCP distance is less than the lower bound on the BCCP distance of the remaining WSPs. Second,
we must show that the Filter procedure does not remove WSPs that should be added to the GMST.
Once again, it is clear that any edge removed by the Filter procedure would have been removed by the
Kruskal procedure eventually, as they both use the UnionFind structure to determine connectivity.

3.2 Analysis of the running time

The real bottleneck of this algorithm, as well as the one proposed by Narasimhan [27], is the computation
of the BCCP. If ∣A∣ = ∣B∣=O(n), the BCCP algorithm stated in section 3 has a worst case time complexity
of O(n2). In this section we improve this bound for uniform distributions.

Let Pr(ℰ) denote the probability of occurrence of an event ℰ . In what follows, we define an event
ℰ to occur with high probability (WHP) if given c > 1, Pr(ℰ) > 1 − 1/nc. Our analysis below shows
that WHP, for uniform distribution, each BCCP computation takes O(log2 n) time. Thus our whole
algorithm takes O(n log2 n) time WHP.

Let P be a set of n points chosen uniformly from a unit hypercube H in ℝd. We draw a grid of n
cells in this hypercube, with the grid length being n−d, and the cell volume equal to 1/n.

Lemma 2. A quadtree box containing c log n cells contains, WHP, O(log n) points.

Proof. Let a be a quadtree box containing c log n cells. The volume of a is c log n/n. Let Xi be a random
variable which takes the value 1 if the itℎ point of P is in a; and 0 otherwise, where i = 1, 2, ..., n. Given
Pr(Xi = 1) = c log n/n and X1, ...,Xn are independent and identically distributed, let X =

∑n
i=0 Xi, which
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is binomially distributed [26] with parameters n and c log n/n. Thus the expected number of points in
a box of volume c log n/n is c log n [26]. Applying Chernoff’s inequality [26], where c′ > e is a given
constant, we see that:

Pr(X > c′ log n) < elogn
c′−1

/c′c
′ logn = nc

′−1/nc
′/ logc′ e.

Now c′/ logc′ e − (c′ − 1) > 1. Therefore, given c′ > e, Pr(X > c′ log n) < 1/n�(c
′) where �(c′) > 1 is a

function of c′. Thus WHP, a quadtree containing c log n/n cells will contain O(log n) points.

Corollary 1. WHP, a quadtree box with fewer than c log n cells contains O(log n) points.

Lemma 3. Each BCCP computation takes O(log2 n) time WHP.

Proof. Let (a, b) be a WSP. Without loss of generality, assume the quadtree box a has larger volume. If
a has � cells, then the volume of a is �/n. Since a and b are well separated, there exists a quadtree box
c with at least the same volume as a, that lies between a and b. Let ℰ denote the event that this region
is empty. Then Pr(ℰ) = (1− �/n)n ≤ 1/e�. Replacing � by c log n we have Pr(ℰ) ≤ 1/nc. Hence if a is
a region containing 
(log n) cells, c contains one or more points with probability at least 1− 1/nc.

Note that BCCP(a, b) must be greater than BCCP(a, c) and BCCP(b, c). Since our algorithm adds
the BCCP edges by order of their increasing BCCP distance, the BCCP edge between c and a, as well
as the one between b and c, will be examined before the BCCP edge between a and b. This causes a
and b to belong to the same connected component, and thus our filtering step will get rid of the well
separated pair (a, b) before we need to compute its BCCP edge. From Lemma 2 we see that a quadtree
box containing c log n cells contains O(log n) points WHP. This fact along with Corollary 1 shows that
WHP we do not have to compute the BCCP for a quadtree box containing more than O(log n) points,
limiting the run time for a BCCP calculation to O(log2 n) WHP.

Lemma 4. WHP, the total running time of the UnionFind operation is O(�(n)n log n).

Proof. From Lemma 3, WHP, all the edges in the minimum spanning tree are BCCP edges of WSPs
which are O(log n) in size. Since we increment � in steps of one, WHP, we make O(log n) calls to
GeoFilterKruskal. In each of such calls, the Filter function is called once, which in turn calls
the Find(u) function of the UnionFind data structure O(n) times. Hence, there are in total O(n log n)
Find(u) operations done WHP. Thus the overall running time of the Union() and Find() operations is
O(�(n)n log n) WHP.

Theorem 1. Total running time of the algorithm is O(n log2 n).

Proof. We partition the list of well separated pairs twice in the GeoFilterKruskal method. The first
time we do it based on the need to compute the BCCP of the well separated pair. We have the sets El
and Eu in the process. This takes O(n) time except for the BCCP computation. In O(n) time we can
find the pivot element of Eu for the next partition. This partitioning also takes linear time. As explained
in Lemma 4, we perform the recursive call on GeoFilterKruskal O(log n) times WHP. Thus the total
time spent in partitioning is O(n log n) WHP. Since the total number of WSPs is O(n), the time spent
in computing all such edges is O(n log2 n). Hence, the total running time of the algorithm is O(n log2 n)
WHP.

Remark 1: Under the assumption that the points in P have integer coordinates, we can modify algo-
rithm 2 such that its running time is O(n). WSPD can be computed in O(n) time if the coordinates of
the points are integers [10]. One can first compute the minimum spanning forest of the k-nearest neighbor
graph of the point set, for some given constant k, using a randomized linear time algorithm [19]. In this
forest, let T ′ to be the tree with the largest number of points. Rajasekaran [31] showed that there are
only n� points left to be added to T ′ to get the GMST, where � ∈ (0, 1). In our algorithm, if the set T is
initialized to T ′, then our analysis shows that WHP, only O(n� log2 n) = O(n) additional computations
will be necessary to compute the GMST.
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Remark 2: Computation of GMST from k-nearest neighbor graph can be parallelized efficiently in a
CRCW PRAM. From our analysis we can infer that in case of a uniformly randomly distributed set
of points P , if we extract the O(log n) nearest neighbors for each point in the set, then these edges
will contain the GMST of P WHP. Callahan [8] showed that it is possible to compute the k-nearest
neighbors of all points in P in O(log n) time using O(kn) processors. Hence, using O(n log n) processors,
the minimum spanning tree of P can then be computed in O(log n) time [33].

Remark 3: We did not pursue implementing the algorithms described in remarks one and two because
they are inherently Monte Carlo algorithms [26]. While they can achieve a solution that is correct with
high probability, they do not guarantee a correct solution. One can design an exact GMST algorithm us-
ing k-nearest neighbor graphs; however preliminary experiments using the best practical parallel nearest
neighbor codes [12, 3] showed construction times that were slower than the GeoFilterKruskal algorithm.
For example, on a two dimensional data set containing one million uniformly distributed points, GeoFil-
terKruskal computed the GMST in 5.5 seconds, while 8-nearest neighbor graph construction took 5.8
seconds [12].

3.3 Parallelization

Parallelization of the WSPD algorithm: In our sequential version of the algorithm, each node of
the compressed quadtree computes whether its children are well separated or not. If the children are
not well separated, we divide the larger child node, and recurse. We can parallelize this loop using
OpenMP [14] with a dynamic load balancing scheme. Since for each node there are O(1) candidates to
be well separated [10], and we are using dynamic load balancing, the total time taken in CRCW PRAM,
given p processors, to execute this algorithm is O(⌈(n log n)/p⌉+ log n) including the preprocessing time
for the Morton order sort.

Parallelization of the GeoFilterKruskal algorithm: Although the whole of algorithm 2 is not
parallelizable, we can parallelize most portions of the algorithm. The parallel partition algorithm [30] is
used in order to divide the set S into subsets El and Eu (See Algorithm 2). � can be computed using
parallel prefix computation. In our actual implementation, we found it to be more efficient to wrap it
inside the parallel partition in the previous step, using the atomic compare-and-swap instruction. The
further subdivision of El, as well as the Filter procedure, are just instances of parallel partition. The
sorting step used in the Kruskal procedure as well as the Morton order sort used in the construction of
the compressed quadtree can also be parallelized [30]. We use OpenMP to do this in our implementation.
Our efforts to parallelize the linear time quadtree construction showed that one can not use more number
of processors on multi-core machines to speed up this construction, because it is memory bound.

4 Experimental Setup

The GeoFilterKruskal algorithm was tested in practice against several other implementations of geometric
minimum spanning tree algorithms. We chose a subset of the algorithms compared in [27], excluding
some based on the availability of source code and the clear advantage shown by some algorithms in the
aforementioned work. In the experimental results section the following algorithms will be referred to:

GeoFilterKruskal was written in C++ and compiled with g++ 4.3.2 with -O3 optimization. Parallel
code was written using OpenMP [14] and the parallel mode extension to the STL [30]. C++ source code for
GeoMST, GeoMST2, and Triangle were provided by Narsimhan. In addition, Triangle used Shewchuk’s
triangle library for Delaunay triangulation [32]. The machine used has 8 Quad-Core AMD Opteron(tm)
Processor 8378 with hyperthreading enabled. Each core has a L1 cache size of 512 KB, L2 of 2MB and
L3 of 6MB with 128 GB total memory. The operating system was CentOS 5.3. All data was generated
and stored as 64 bit C++ doubles.

In the next section there are two distinct series of graphs. The first set displays graphs of total
running time versus the number of input points, for two to five dimensional points, with uniform random
distribution in a unit hypercube. The L2 metric was used for distances in all cases, and all algorithms
were run on the same random data set. Each algorithm was run on five data sets, and the results were
averaged. As noted above, Triangle was not used in dimensions greater than two.

7



Table 1: Algorithm Descriptions
Name Description

GeoFK# Our implementation of Algorithm 2. There are two important differences between the
implementation and the theoretical version. First, the BCCP Threshold � in section
3 is incremented in steps of size O(1) instead of size 1, because this change does not
affect our analysis but helps in practice. Second, for small well separated pairs (less
than 32 total points) the BCCP is computed by a brute force algorithm. In the
experimental results, GeoFK1 refers to the algorithm running with 1 thread. GeoFK8
refers to the algorithm using 8 threads.

GeoMST Described by Callahan and Kosaraju [8]. This algorithm computes a WSPD of the
input data followed by the BCCP of every pair. It then runs Kruskal’s algorithm to
find the MST.

GeoMST2 Described in [27]. This algorithm improves on GeoMST by using marginal distances
and a priority queue to avoid many BCCP computations.

Triangle This algorithm first computes the Delaunay Triangulation of the input data, then
applies Kruskals algorithm. Triangle was only used with two dimensional data.

The second set of graphs shows the mean total running times for two dimensional data of various
distributions, as well as the standard deviation. The distributions were taken from [27] (given n d-
dimensional points with coordinates c1...cd), shown in Table 2.

Table 2: Point Distribution Info
Name Description

unif c1 to cd chosen from unit hypercube with uniform distribution (Ud)

annul c1 to c2 chosen from unit circle with uniform distribution, c3...cd chosen from Ud

arith c1 = 0, 1, 4, 9, 16... c2 to cd are 0
ball c1 to cd chosen from unit hypersphere with uniform distribution

clus c1 to cd chosen from 10 clusters of normal distribution centered at 10 points chosen from Ud

edge c1 chosen from Ud, c2 to cd equal to c1
diam c1 chosen from Ud, c2 to cd are 0

corn c1 to cd chosen from 2d unit hypercubes, each one centered at one of the 2d corners of a (0,2) hypercube
grid n points chosen uniformly at random from a grid with 1.3n points, the grid is housed in a unit hypercube
norm c1 to cd chosen from (−1, 1) with normal distribution
spok For each dimension d′ in d n

d
points chosen with cd′ chosen from U1 and all others equal to 1

2

5 Experimental Results

As shown in Figure 2, GeoFK1 performs favorably in practice for almost all cases compared to other
algorithms (see Table 1). In two dimensions, only Triangle outperforms GeoFK1. In higher dimensions,
GeoFK1 is the clear winner when only one thread is used. Figure 4 shows how the algorithm scales as
multiple threads are used. Eight threads were chosen as a representative for multi-core execution. We ran
experiments for points drawn from uniform random distribution, ranging from two to five dimensions.
In each of these experiments, we also show how the running time of GeoFK1 varies when run on 8
processors. We performed the same set of experiments for point sets from other distributions. Since the
graphs were similar to the ones for uniform distribution, they are not included.

Our algorithm tends to slowdown as the dimension increases, primarily because of the increase in the
number of well separated pairs [27]. For example, the number of well separated pairs generated for a two
dimensional uniformly distributed data set of size 106 was approximately 107, whereas a five dimensional
data set of the same size had 108 WSPs.

Figure 3 shows that in most cases, GeoFK1 performs better regardless of the distribution of the
input point set. Apart from the fact that Triangle maintains its superiority in two dimensions, GeoFK1
performs better in all the distributions that we have considered, except when the points are drawn from
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aritℎ distribution. In the data set from aritℎ, the ordering of the WSPs based on the minimum distance
is the same as based on the BCCP distance. Hence the second partitioning step in GeoFK1 acts as an
overhead. The results from Figure 3 are for two dimensional data. The same experiments for data sets
of other dimensions did not give significantly different results, and so were not included.
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Fig. 2: This series of graphs shows the total running time for each algorithm for varying sized data sets
of uniformly random points, as the dimension increases. Data sets ranged from 106 to 107 points for
2-d data, and 105 to 106 for other dimensions. For each data set size 5 tests were done and the results
averaged.
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Fig. 3: For four different algorithms that compute GMST in two dimensions, this series of graphs show
the mean run time and standard deviation of various distributions (see Table 2). In all cases, algorithms
were run on a series of ten random data sets from a particular distribution. The data set size was 106

points.
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Fig. 4: This figure demonstrates the run time gains of the algorithm as more threads are used. We present
scaling for two architectures. The AMD line was computed on the machine described in Section 4. The
Intel line used a machine with four 2.66GHz Intel(R) Xeon(R) CPU X5355, 4096 KB of L1 cache, and
8GB total memory. All cases were run on 20 data sets from uniform random distribution of size 106

points, final total run time is an average of the results.

6 Conclusions and Future Work

This paper strives to demonstrate a practical GMST algorithm, that is theoretically efficient on uniformly
distributed point sets, works well on most distributions and is multi-core friendly. To that effect we
introduced the GeoFilterKruskal algorithm, an efficient, parallelizable GMST algorithm that in both
theory and practice accomplished our goals. We proved a running time of O(n log2 n) with a strict
definition of high probability, as well as showed extensive experimental results.

This work raises many interesting open problems. Since the main parallel portions of the algorithm
rely on partitioning and sorting, the practical impact of other parallel sort and partition algorithms
should be explored. In addition, since the particular well separated pair decomposition algorithm used is
not relevant to the correctness of our algorithm, the use of a tree that offers better clustering might make
the algorithm more efficient. Experiments were conducted only for L2 metric in this paper. As a part of
our future work, we plan to perform experiments on other metrics. We also plan to do more extensive
experiments on the k-nearest neighbor approach in higher dimensions, for example d > 10.
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