
 1

Quantifying Temporal and Spatial Localities
in Storage Workloads and Transformations by Data Path Components

Cory Fox
Florida State University

Dept. of Computer Science
253 Love Building

Tallahassee, FL 32306, USA
fox@cs.fsu.edu

Dragan Lojpur
Florida State University

Dept. of Computer Science
253 Love Building

Tallahassee, FL 32306, USA
lojpur@cs.fsu.edu

An-I Andy Wang
Florida State University

Dept. of Computer Science
253 Love Building

Tallahassee, FL 32306, USA
awang@cs.fsu.edu

Abstract

 Temporal and spatial localities are basic concepts in
operating systems, and storage systems rely on localities to
perform well. Surprisingly, it is difficult to quantify the
localities present in workloads and how localities are
transformed by storage data path components in metrics that
can be compared under diverse settings.

In this paper, we introduce stack- and block-affinity
metrics to quantify temporal and spatial localities. We
demonstrate that our metrics (1) behave well under extreme
and normal loads, (2) can be used to validate synthetic loads
at each stage of storage optimization, (3) can capture
localities in ways that are resilient to generations of
hardware, and (4) correlate meaningfully with performance.

Our experience also unveiled hidden semantics of
localities and identified future research directions.

1. Introduction

 To increase performance, modern storage consists of
many data path components, from the front-end file system
cache and disk layout management to the back-end disk
controller cache and on-disk caching. Various components
generally exploit the temporal and spatial localities in
workloads to achieve performance gain. However, how
localities of a workload are transformed through individual
optimizations is not well understood, resulting in designs
that are more reflective of the understanding of the front-
end workload than that of the locality characteristics
immediately before the component. The problem worsens
as the storage data path components proliferate over time.
 This research aims to develop temporal and spatial
locality metrics to quantify localities present in workloads
and transformations by various data path components. This
can help us understand (1) how front-end workloads (e.g.,

references sent from a user-level application to the
operating system) properly stress back-end data path
components (e.g., disks), (2) how synthesized front-end
workloads have different effects within the data path from
the original workloads from which they are derived, and (3)
how each storage component shapes localities.
 Although conceptually simple, quantifying localities in
the context of storage data path is challenging for many
reasons: (1) Storage components such as the file system
cache can introduce internal system traffic due to
prefetching, buffered writes, page replacement policies,
metadata accesses, and system events that are sensitive to
physical time and memory resources. Therefore, the
accesses before one storage component do not always have
one-to-one mapping to the accesses after a storage
component. (2) The semantics of locality depend on the
granularity of analysis. At a high level, accesses can be
analyzed in files and directories (although internal storage
components do not operate at these granularities). At a low
level, accesses can be analyzed in blocks and sectors.
Locality computed based on the distance between adjacent
references to files is likely to be poorer than locality based
on the distance between references to blocks, since many
blocks are referenced sequentially within files. (3) Locality
metrics need to be comparable across workloads and system
environments. A workload that exhibits a “90% spatial
locality” on a 50-GB drive should exhibit meaningful
behaviors when applied to a 100-GB drive.
 Existing quantifications of locality are largely performed
within the context of caching. Studies on temporal and
spatial localities also exist independently. However, there
are limitations. The popular metric of the cache-hit rate
[Williams et al. 1996] measures the effectiveness of various
caching policies, but the metric is not applicable when
evaluating data path components such as disk scheduler.
Commonly used stack and block distances [Cherkasova and
Ciardo 2000] can measure how temporal and spatial
localities are transformed by caches. However, they are

 2

highly sensitive to various system settings, and are difficult
to use to compare workloads from different environments.
Some studies evaluate the effects of caching algorithms and
cache sizes on the reference stream using analytical and
simulation methods. However, these analyses often exclude
the effects of traffic internal to a storage system [Vanichpun
and Makowski 2004]. Researchers also have studied tiered
cache management [Chen et al. 2005, Li et al. 2005], but
their focus remained on improving I/O efficiency within a
system, not on making measured effects comparable across
workloads and environments.
 This paper proposes two affinity metrics to evaluate how
data path components transform workloads in terms of
temporal and spatial localities. Through analysis of
workloads with extreme locality characteristics, as well as
applying normal workloads on different data path
components under different environments, we were able to
show that our metrics behave well, are meaningful when
comparing workloads from different environments, and
reflect of performance characteristics. Our exploration
further unveiled the intricacy of locality concepts and
identified research directions to refine our metrics.

2. Background & related work

 This section highlights existing ways to quantify
temporal and spatial localities. Many studies have been
performed within the context of caching.

2.1. Spatial locality

 For disk-based storage, spatial locality measures the
degree to which data objects stored in the physical vicinity
of a disk are used together (i.e., within a short timeframe),
since accessing nearby objects is faster on disks. Although
the mapping of logical disk blocks to physical sectors and
the timing behavior of modern disks are not straightforward
[Anderson 2003], good spatial locality can be often
achieved by accessing logical disk blocks consecutively.
 Interestingly, spatial locality is a by-product of physical
disk layout policies, which are governed by file systems.
Therefore, spatial locality measures how well a workload
matches the underlying disk layout. That is, should a
workload make references to random disk blocks, and
should the disk layout pack those blocks contiguously in the
same random order, the spatial locality of this workload is
high. However, sequential access of randomly stored disk
blocks exhibits poor spatial locality.
 Most file systems exploit spatial localities in three ways:
(1) sequentially accessed disk blocks are stored
contiguously [Ritchie 1974], (2) files stored in the same
directory are collocated [McKusick et al. 1984], and (3)
disk blocks are prefetched, assuming that most accesses are
sequential [Rosenblum and Ousterhout 1990, Cherkasova

and Ciardo 2000]. Given these assumptions, the “spatial
locality” of a workload is often measured in block distance.
 With knowledge of the underlying disk layout, block
distance measures the differences in block numbers between
adjacent references. Figure 2.1 shows that the first
reference has a block distance initialized to the block
number (i.e., 1,000). If block 4,000 is referenced next, its
block distance is 3,000. Thus, the spatial locality of a
workload is the average block distance for all references. A
smaller average indicates a better spatial locality.
 Block distance is sensitive to the number of unique data
objects referenced in a workload. Suppose the same
workload is analyzed at the granularity of a 4-KB block and
a 256-KB block. Two identical reference streams that
request 256-KB at a time can yield very different block
distance numbers. The average block distance based on 4-
KB blocks is likely to be 64 times higher than the average
distance computed in 256-KB blocks, due to the mere
increase in unique data objects.

Block distance is also sensitive to the size of the disk.
Therefore, if workload A with a large disk contains the 10
block references 1, 2, 3, 4, 5, 1001, 1002, 1003, 1004, and
1005, the average block distance is 100.5. If workload B
with a small disk contains the 10 block references 1, 50,
100, 150, 200, 250, 300, 350, 400, and 450, the average
block distance is 45. Based on the averages, one can
conclude that workload B has a better spatial locality, while
workload A has more references made to adjacent blocks.
Therefore, it is difficult to use block distance alone to
compare workloads running in different environments.

Figure 2.1. Block distance calculation.

2.2. Temporal locality

 Temporal locality measures how frequently the same
data object is referenced. Temporal locality exhibited in
workloads is important for many storage optimizations (e.g.,
caching) and thus is an essential characteristic to quantify.
 One common metric to measure temporal locality is
stack distance [Beyls and D’Hollander 2001], defined as
the number of references to unique data objects before
referencing the same object. Since our proposed metrics
are built on this concept, we shall detail it further.
 Suppose the granularity of a reference is a file, and the
algorithm begins with an empty stack. When a file is first
referenced, it is pushed onto the top of the stack. The stack
distance for this reference is either infinite or a pre-defined

1000 4000 2000 6000

1000 3000 2000 4000

block read

block distance

1000 4000 2000 6000

1000 3000 2000 4000

Time

 3

Max (> maximum number of unique files). Whenever a file
is referenced again, the depth (> 0) of the file in the stack is
the stack distance. The referenced file is then removed
from the stack and pushed onto the top of the stack again.
 To illustrate, Figure 2.2 begins with an empty stack
(NULL). File A is referenced for the first time, its stack
distance becomes Max, and the stack now contains one file
(A). Files B and C then are referenced consecutively for the
first time, and the stack distance for each is again Max; B
and C are each pushed onto the top of stack in order of
reference, and the stack now contains three files (C, B, A).
At this point, if file B is referenced, the stack distance of
this reference is 1, which is the depth of File B. File B then
is removed from the stack, and pushed onto the top of stack
(B, C, A). A low average stack distance across all
references in a workload indicates a good temporal locality.
While stack distance can quantify the temporal locality of a
workload, it has limitations. First, similar to block distance,
stack distance is sensitive to the granularity of analysis (e.g.
file vs. 4-Kbyte blocks vs. 512-byte sectors).
 Second, while the lowest possible stack distance is 0, the
Max value is not bounded. To one extreme, when Max >>
the total number of unique data objects, the average stack
distance approaches (Max*the number of unique data
objects)/the number of references, reflecting little about the
ordering of the data references.
 Third, although some variants of stack distance
computation omit first-time references, it becomes
problematic when a significant fraction of the references are
first-time (e.g., Web workloads).

Fourth, since stack distance is sensitive to Max, the
number of unique data objects, and the total number of
references, the resulting average stack distance has no
reference point other than 0 and an arbitrary Max to indicate
whether a workload exhibits good or poor temporal locality.
The metric is mostly useful when performing relative
comparisons between two workloads under similar settings
and applied to similar environments. When a given
workload is exercised in different environments, the results
represented by this metric are not comparable.

Figure 2.2. Sample stack distance.

2.3. Effectiveness of caching

Locality has been widely studied within the context of
caching. Although caching has been studied extensively,
the fact that we are still seeing major storage innovations
based on exploiting locality reflects ample opportunities in
advancing this area [Gill and Modha 2005, Jiang et al.
2005, Ding et al. 2007, Yadgar et al. 2007]. In particular,
few studies address the issue of quantifying localities. A
popular metric is the cache-hit ratio, which is computed by
dividing the number of references served from the cache by
the total number of references, in either files or blocks.
Variants of cache-hit ratios are used to compare various
caching policies [Hsu et al. 2001, Chen et al. 2005].
 Cache-hit ratios can reveal information such as the
working set size. However, a high cache-hit ratio can be
caused by a cache size greater than the working set size,
effective caching policy, or good temporal locality within a
workload. Therefore, this metric provides confounding
information on how a workload is transformed in terms of
spatial and temporal localities. Most important, cache-hit
ratios cannot be applied to analyze non-cache-related
storage data path components (e.g., disk scheduler).

2.4. Effects of cache transformations

 The effects of cache transformations have also been
studied in distributed systems. For example, a log-based
file system [Rosenblum and Ousterhout 1990] was designed
based on the observation that the client cache absorbs the
majority of reads, leaving the write-mostly traffic to the
server side. Multi-tiered coordinated caching examines
how to remove unwanted interactions between cache layers
[Li et al. 2005].
 Not until recently has the size of various caches become
sufficiently large for standalone machines [Wang et al.
2002], and their transformations on temporal and spatial
localities have thus become an area of research interest.
[Zhou et al. 2004] examined the effects of L1 and L2 caches
on memory reference streams. Our study extends their
study to analyze the entire storage data path.
 Locality in Web reference streams has been analyzed
previously using stack distance for temporal locality and
measuring the number of unique sequences for spatial
locality [Almeida et al. 1996]. Although our studies share
similarities in methodology, we focus on the
transformations at various data path locations.
 Researchers have advocated a more thorough analysis of
real-world workloads before creating accurate synthetic
workloads [Wang et al. 2003, Roselli et al. 2005]. Hsu et
al. [2001] introduced a way of viewing reference streams.
By plotting a referenced address modulo 32MB against the
access number, they demonstrated differences between real-
world workloads and synthetically generated ones.

A B C B A

A
B
A

B
A

C

A
C
B

C
B
A

Max Max Max 1 2

reference stream

stack

stack distance

Time

 4

2.5. Aggregate statistics

 Various high-level statistics are used to characterize the
localities of a workload [Almeida et al. 1996, Roselli et al.
2000]. For example, a workload can be analyzed for the
average number of bytes referenced per unit of time, which
can be decomposed into bytes from unique block locations,
or unique bytes [Ferrari 1984]. The ratio of unique bytes to
total bytes can be used to quantify temporal locality, in
terms of how often bytes are repeatedly referenced.
 One concern is that very different reference patterns can
yield similar aggregate statistics, which is particularly
pronounced in synthetic workloads that mimic real-life
workloads via matching aggregate statistics [Hsu et al.
2001]. For example, synthetic workloads often match well
with aggregate statistics before the file system cache, but
their after-cache behavior can deviate from the after-cache
behavior of the real-life workload significantly, as
demonstrated in this paper.

3. Affinity metrics

 We propose two metrics to measure temporal and spatial
localities of workloads—stack affinity and block affinity
respectively.

()diststack
affinitystack

_10log
1_

10 +
= (1)

)_10(log
1_

10 distblock
affinityblock

+
= (2)

Although our metrics seem simple and are built on existing
stack and block distances, our metrics ease comparing
different workloads in different environments.
Conceptually, locality is inversely proportional to the orders
of magnitude changes in stack and block distances. The
rationale reflects the exponential speed of hardware
evolution and how certain performance metrics (e.g., cache
hit rate) improve linearly as the system resources increase
exponentially (e.g., memory size) [Roselli et al. 2000]. We
will first demonstrate the inherent characteristics of these
metrics, and use them to measure storage data path
components transform localities.
 Resiliency to different maximum values: One
drawback of distance metrics is the high sensitivity to the
maximum value due to first-time references and the size of
the disk. To reduce such sensitivity, we first move the
distance metrics to the denominator. So, large distance
values due to various causes push locality metrics toward a
common minimum 0, which means poor locality.
Additionally, we take a logarithmic weighting of the
distance, to achieve two effects. (1) Since hardware
improvements in terms of performance, disk/cache capacity,
and cost are exponential, the logarithmic function dampens

the computed affinity differences due to nearby generations
of hardware. For example, referencing a block 200 GB
away on a disk degrades spatial locality just as significantly
as referencing a block 500 GB away. (2) First-time
references skew the affinity numbers only in a limited way,
such that the resulting affinity values still largely depend on
the ordering of references.
 Boundary conditions: Another drawback of distance
metrics is the difficulty in interpreting locality when the
maximum value is not bounded and specific to
environments. With affinity metrics, we can describe
localities between 0% (poorest) and 100% (highest). The
addition of 10 to the denominator makes the minimum value
of denominator 1 when either the stack distance or block
distance is 0, which represents 100% in both metrics.
 References that lead to good locality behavior are more
exponentially weighted based on the observed relationships
between performance metrics and available system
resources [Roselli et al. 2000]. Recall Section 2.1,
workloads with good localities may exhibit worse original
distance values than those of workloads with poor localities.
Consider the same example from Section 2.1: with the
block-affinity metric, the reference stream on blocks 1, 2, 3,
4, 5, 1001, 1002, 1003, 1004, and 1005 yields a 90% spatial
locality, while the reference stream on blocks 1, 50, 100,
150, 200, 250, 300, 350, 400, and 450 on a small disk
yields a 61% spatial locality. These numbers are more
reflective of how adjacent disk blocks are referenced as
opposed to the differences in disk sizes.
 Granularity of analyses: Although our simple
alterations of the stack and block distance metrics overcome
many existing limitations, affinity can yield very different
numbers for different granularity of analyses. Above the
operating system, logged references are directed to files and
directories, although the storage data path operates in
blocks. Our current solution is to convert the analysis
granularity to blocks, which is the highest common
denominator between the two. (Note that we do not
preclude the possibility of analyzing reference affinities at
the level of physical data locations on the disk).
 This conversion requires locating file blocks on the disk.
However, in many cases, there is no one-to-one mapping of
the referenced blocks, which poses challenges when
applying our metrics to evaluate data path components such
as file system caching. First, the file system cache generates
internal references to the storage systems; thus, reference
blocks after cache may have no corresponding reference
before cache. One example is the prefetching of
consecutive blocks into the cache in anticipation of
sequential access patterns. Another is the committing of
modified memory content to the disk when the available
memory is running low. Second, references to cached
content may not have corresponding after-cache references.
For example, reads (and sometimes writes) to cached data

 5

and resolved cached file path components will not yield
after-cache references. Thus, the total number of unique
data requests can be different across individual data path
components, which is captured by our affinity metrics.

4. Evaluation

 Our experiments included (1) stressing affinity metrics
under workloads with combinations of extreme temporal
and spatial localities, (2) observing affinity metrics under
normal trace replays, (3) applying affinities to compare
characteristics of a trace-replayed workload and a synthetic
workload based on the trace, (4) studying the sensitivity of
affinity metrics across nearby generations of hardware, (5)
correlating affinity and performance metrics, and (6) testing
affinity metrics under workloads from more environments.
 To see the locality transformations by the entire storage
data path, we gathered the affinity values at the data path
front end before going through the file system cache, and at
the back end before requests are forwarded to disk. To see
the effects of individual optimizations, we could selectively
disable optimizations. To illustrate, to see the effects of
disk scheduling, we could bypass file system caching. We
can minimize the effects of write-back policies by using a
read-mostly workload.
 Web workloads: We gathered HTTP access logs from
two Web servers; one from the Department of Computer
Science at Florida State University (FSU) between
11/14/2004 and 12/7/2004 and the other from the
Laboratory of Advanced Systems Research at UCLA,
between 5/8/2005 and 6/7/2005. We selected the week with
the most bytes referenced. Table 1 summarizes the chosen
workloads.
 For each log, we also obtained the file system snapshot,
which consists of all files, directories, hard links, and
symbolic links as well as their i-node creation, modification,
and access timestamps. Before replaying our traces, we
recreated each file system in the order of their creation
dates.
 The Web workloads were replayed on two machines, one
acting as a server and the other as a client (Table 2). The
server hosted an Apache 2.2.2 Web server while HTTP
requests were generated via a multi-threaded replay
program running on the client machine. Each thread
corresponded to a unique IP address.

To accelerate the evaluation process, we sped up the
trace replay by a constant factor derived using the following
method. (1) We replayed the trace with a zero-time delay
between references. (2) We computed the maximum speed-
up factor and divided it by two. With this method, we sped
up both traces by a factor of 128.

The front-end reference stream data were captured on the
server side. To extract file and directory block numbers, we
used debugfs provided by ext2. In addition, we had to

account for the implicit traffic generated during path
resolutions when applying our affinity metrics for analysis.
For example, a reference to /dirA/file1 involves a
reference to / and /dirA before referencing
/dirA/file1.

Table 1. Workload characteristics.
 FSU UCLA Desktop OS-

class
Bytes referenced 4.3 GB 19 GB 50 GB 2.0 GB
Unique bytes
 referenced

133 MB 668 MB 11 GB 1.5 GB

Number of requests 150K 841K 13M 532K
Mean interarrival
 time

4.03 secs 3.08 secs 3.16
msec

27.9
msec

Table 2. Experimental hardware configurations.
 Server Client

Processor 2.8GHz Pentium 4,
 1024-KB cache

2.4GHz Intel Xeon
 512-KB cache

RAM 512-MB Netlist DDR
 PC3200

2-GB Micron DDR
 PC2100

Disks 2 160-GB 7200-RPM
 Seagate Barracuda
 7200.7

40-GB 7200-RPM
 Maxtor 6E040l0

Network Intel 82547Gi Gigabit
 Ethernet Controller

Intel 82545EM
Gigabit
 Ethernet Controller

Operating system Linux 2.6.5 Linux 2.6.16.16
File system Ext2 0.5b Ext2 0.5b

 We modified Linux to capture block references before
they are sent to the disk. We inserted a function pointer in
generic_make_request() in ll_rw_blk.c to
timestamp a bio before calling submit_bio(). When
the bio returned and called its finalization code, we logged
the start time, end time, and block number in the memory
and dumped them at the end of the replay. We set aside
preallocated memory for logging, specified in
grub.conf, to ensure the same memory size setting as the
original Web servers.
 Software development workloads: We gathered traces
from machines used for operating system research and
undergraduate course projects at FSU. The former desktop
trace was taken from 8/20/07 to 8/22/07 and contains 32K
processes. The latter OS-class trace was gathered from
3/8/07 to 3/14/07 and contains 33K processes. Unlike the
read-mostly Web traces, these desktop traces consist of both
read and (up to 24%) write activities.
 We used Forensix [Goel et al. 2005] to gather front-end
traces, which required a different playback system. The file
system recreation and block mapping steps are identical to
the Web workload ones. However, replaying was
performed only on the server only, with one process created
for each process in the trace. We sped up both traces by 32
times.
 For data gathering, the front-end references were logged
as the system replays. Each process kept its own list of files

 6

referenced and bytes accessed. On replay completion, these
file references, including path resolutions, were mapped to
the block level. The back-end reference stream data were
recorded using the same Web logging framework.
 We used the front-end reference stream to calculate the
blocks referenced during the trace. For the backend, we
used the blocks reported by our modified kernel.
 Metrics: In addition to affinity metrics, we also
measured the bandwidth and latency. The backend was
measured right before the block I/O was sent to the storage
device and as soon as the block I/O returned. The latency
was measured on a block-by-block basis.
 For the front end, the latency and bandwidth could be
measured based on either the requested data only (excluding
metadata) or all blocks related to a data request (including
metadata). To align the front-end measurement with the
back, we chose the latter. The front-end bandwidth and
latency for the Web workloads were measured on the client,
and include network effects, while the software-
development measurements were performed on the server.
The performance numbers reflect the end-user experience.

5. Extreme localities

To understand the dynamic range of our metrics when
being transformed by the entire storage data path, we
synthesized workloads to exercise all combinations of high
and low temporal and spatial localities. These workloads
are based on the FSU trace, so the affinity values can be
compared with regular FSU replays. Although these loads
are read-mostly, they serve as a starting point to understand
the rich locality behaviors. As a further simplification,
these replays were single-threaded. The synthesized load
has the total number of references equal to that of the FSU
trace. The request timing is based on an exponential
distribution, with the mean set to the average inter-arrival
time of the FSU trace. Figure 5.1 summarizes the median
affinity values for various locality settings. We used the
median since the lack of back-end traffic sometimes leads to
0 affinity values.

High temporal and spatial localities: To achieve high
spatial and high temporal localities, we created two 1-MB
files in / and read those files alternatively and repeatedly.
 Figure 5.1 shows that the front-end stack and block
affinities are about 0.77 and 0.73, respectively. The front-
end stack affinity was higher than expected, given that each
file is accessed sequentially and contains 256 4-KB blocks.
It turned out that repeated references to ext2 i-nodes and
indirect index blocks improve the temporal affinity.

However, the front-end block affinity was not as high as
expected, because accessing a file also involves referencing
directories in the file path. Although we created our files in
/ to minimize directory lookups, for the purpose of
accounting, each front-end file reference still involves

looking up /, which is not stored near the files, thus, driving
down the front-end block affinity significantly.
 The back-end affinities show values above the 0.95
range. The frequent directory traversal causes directories to
be cached, leaving mostly timestamp updates to disk.
 High temporal locality and low spatial locality: For
this workload, we sorted the files based on their starting
block numbers. We then created a reference stream that
reads the first and the last files.
 Figure 5.1 shows that the front-end stack affinity was
0.72; block affinity, 0.22. The back-end stack affinity
increased to 0.94, while the block affinity increased to 0.56.
 Low temporal locality and high spatial locality: This
case is achieved by reading files in the order of increasing
block numbers, while references within a file remain
sequential. Figure 5.1 shows that the front-end stack
affinity was 0.41; block affinity, 0.47. The back-end stack
affinity was 0.01 and block affinity, 0.94.
 Low temporal and spatial localities: One way to
generate a workload with poor localities is to shuffle the
reference ordering of files randomly in the FSU trace.
 Figure 5.1 shows that the front-end stack and block
affinities were 0.62 and 0.22, respectively. The front-end
stack affinity is relatively high, suggesting that temporal
locality is inherent in the file systems’ hierarchical naming
structure. Also, the random reference stream does not
generate the worst-case locality, because the previous
scenario shows worse front-end stack affinity numbers. The
back-end stack- and block-affinity values were 0.00 and
0.17, respectively.
 Overall: The dynamic range of affinity can capture both
high and low values for temporal and spatial localities.
Front-end stack affinity values tend to reflect the directory
structure captured by the trace, while the back-end affinity
values can span the entire dynamic range.

0
0.2
0.4
0.6
0.8

1

high
temporal
& spatial
localities

high
temporal

& low
spatial

localities

low
temporal

& high
spatial

localities

low
temporal
& spatial
localities

front-end stack affinity
front-end block affinity
backend stack affinity
backend block affinity

Figure 5.1. Affinities for combinations of
temporal and spatial localities, at the front
end (before file system cache) and backend
(before disk) of a storage data path.

6. Web workloads

 Understanding how affinity metrics behave under
extreme localities enables us to better interpret the numbers

 7

under the FSU and UCLA Web workloads. Figure 6.1
shows affinity values over time. The affinity values within
each time interval are averaged because our notion of
locality is inversely correlated with the average orders of
magnitude changes in stack and block distances. The front-
end affinity values are in the mid-range, with high back-end
block affinity and low back-end stack affinity. In reference
to Figure 5.1, the Web workload displays the case of low
temporal and high spatial localities. The back-end stack
affinity increases over time as compulsory misses taper, but
its growth appears to be asymptotic. We confirmed that the
compulsory misses within Web traces are more uniformly
scattered throughout the trace.
 Figure 6.2 shows affinities for the UCLA trace. The
front-end stack affinity was 0.74, which is higher than the
FSU case, with a lower variance due to a higher number of
references per interval. The front-end block affinity was
only 0.28, which is lower than the FSU case, also with a
lower variance.

0

0.2

0.4

0.6

0.8

1

0 50 100
hours

front-end stack affinity
front-end block affinity
back-end stack affinity
back-end block affinity

Figure 6.1. Affinities for the FSU trace.

0

0.2

0.4

0.6

0.8

1

0 50 100
hours

front-end stack affinity
front-end block affinity
back-end stack affinity
back-end block affinity

Figure 6.2. Affinities for the UCLA trace.

7. Trace vs. synthetic workloads

 Affinity metrics enable us to verify the fidelity of
synthetic workloads against trace replays, beyond the front-
end aggregate statistics. Figure 7.1 shows affinities over
time for the low temporal and spatial locality case, based on
random shuffling of references in the FSU trace. This
synthesis technique also preserves many front-end
aggregate statistics (e.g., file size distribution).
 Since the frequency of referencing popular files is
preserved, the synthesized load can preserve front-end stack
affinity with a lower variance. However, random shuffling
of references degrades front-end block affinity significantly.

The back-end stack affinity values diverge over time as
the number of back-end references decreases. Unlike the
original trace, toward the end of the trace, we saw more
repeated references to the popular blocks for timestamp
updates, and fewer compulsory misses (Figure 7.2).
 The back-end and front-end block affinities shared
similar initial values, reflecting initial compulsory misses.
The back-end block affinity then declined asymptotically to
0.20 as most directory and metadata blocks are cached 60
hours into the trace.

In addition, the back-end affinity numbers reveal that the
front end and the backend of a system reach steady states at
different times. Studies conducted without this awareness
can yield misleading results and system designs.

0

0.2

0.4

0.6

0.8

1

0 50 100
hours

front-end stack affinity
front-end block affinity
back-end stack affinity
back-end block affinity

Figure 7.1. Stack and block affinities for the
case of low temporal and spatial localities.

0
0.5

1
1.5

2
2.5

3
3.5

1 10 100 1000
log(hours)

log(comp
misses)

Figure 7.2. Compulsory misses over time
show a log-log-linear relationship in a Web
trace with randomly shuffled references.

8. Portability of affinities

To show the portability of affinity metrics across
neighboring generations of hardware, we replayed the FSU
workload on a similar system setup but with a 160-GB hard
drive as opposed to a 40-GB one. Although the range of
reference data block increased by 4 times, Figure 8.1 shows
affinity characteristics that are very similar to those in
Figure 6.1, suggesting our logarithmic transformations in
the metrics enable us to characterize traces in a way that is
more resilient to the exponential rate of hardware
evolutions.

 8

0

0.2

0.4

0.6

0.8

1

0 50 100
hours

front-end stack affinity
front-end block affinity
back-end stack affinity
back-end block affinity

Figure 8.1: Affinities for the FSU trace with 4
times the disk size.

9. Affinity vs. performance

To demonstrate the relationship between our affinity
metrics and performance, we measured the locality
transformation by the default anticipatory disk scheduler
[Iyer and Druschel 2001] in Linux 2.6.5. We replayed the
FSU traced blocks with multiple threads on the server, with
the O_DIRECT flag to bypass file system caching. The
anticipatory scheduler seeks to reduce ‘deceptive idleness’
by waiting for additional requests from a process before
switching to requests from another process. Without this
style of scheduling the localities inherent in a program
would be broken up by request switching.

The baseline comparison is the noop scheduler, which
sends disk requests in a FIFO order. To ensure sufficient
requests for reordering, we replayed the FSU traces with
zero-think-time delays. To provide a fuller context, we
compared these results with the normal FSU replay (Section
6) with half of the maximum speed-up factor, with both the
file system cache and the anticipatory scheduler running.

Figures 9.1, 9.2, and 9.3 show, at a 90% confidence
interval, that the noop scheduler had the same average
front-end and back-end affinity values and performance
numbers, since the scheduler performs no transformations
on locality. The anticipatory scheduler improved the stack
affinity by 10% and block affinity by 54%. Interestingly,
although the back-end bandwidth increased by 111%, the
front-end bandwidth improved by only 18%. In terms of
latency, the improvement is by two orders of magnitude,
reflecting a significant reduction in disk seek overhead due
to switching requests among processes.

For the third case, the FSU trace replay was slowed
down by a factor of two, effectively reducing the number of
concurrent request streams and the probability of sequential
requests being fragmented due to request multiplexing. As
a result, front-end spatial affinity was 50% better than that
of the noop scheduler. Surprisingly, front-end stack affinity
is less sensitive to the ordering of requests compared to
block affinity. As long as the number of unique blocks
referenced within a time frame is within a similar order of
magnitude, stack affinity would not change much. On the

other hand, minor reordering of requests to distant block
locations can change block affinity significantly.

The enabled file system caching absorbed 45% of stack
affinity from the front, and sequential prefetches improved
spatial affinity in the backend by another 31%.

0
0.2
0.4
0.6
0.8

1

noop
scheduler,
zero-think
time replay

anticipatory
scheduler,
zero-think
time replay

anticipatory
scheduler +
file system

cache,
maximum
speedup/2

front-end stack affinity
front-end block affinity
back-end stack affinity
back-end block affinity

Figure 9.1: Affinities for FSU trace replay
under different configurations.

0
1
2

3
4

noop
scheduler,

zero-think time
replay

anticipatory
scheduler,

zero-think time
replay

anticipatory
scheduler + file
system cache,

maximum
speedup/2

bandwidth
(MB/sec)

front-end
back-end

Figure 9.2: Bandwidth for FSU trace replay
under different configurations.

0
1
2
3
4
5

noop
scheduler,
zero-think
time replay

anticipatory
scheduler,
zero-think
time replay

anticipatory
scheduler +
file system

cache,
maximum
speedup/2

latency (sec) front-end
back-end

Figure 9.3: Latency for FSU trace replay
under different configurations.
In terms of performance, caching improved bandwidth

by 16 times. The front-end latency of the original FSU
replay is not directly comparable due to the inclusion of the
network component. The significant latency variance can
be attributed to either the network or the low back-end stack
affinity. The lack of opportunities for the anticipatory
scheduler to reorder requests due to slowed replay allowed
only 34% latency improvement over the noop case.

Overall, back-end block affinity correlates with
improved bandwidth. While back-end stack affinity does
not seem to contribute to bandwidth, poor back-end stack
affinity seems to introduce high variance to latency.
Intriguingly, front-end and back-end affinities are poorly
correlated.

 9

10. Read & write workloads

 Web traces show how affinity metrics interact with read-
mostly workloads. The next step is to understand the
behaviors of affinities with the presence of writes.

Figures 10.1 and 10.2 show the behavior of affinity
metrics under software development workloads. In both
cases, the front-end affinities were high, which have not
been observed in the read-mostly workloads. One
explanation is that Web accesses mostly read files in their
entirety. In the software development environment, writes
are often made to the same block (e.g., compilation),
resulting in high block and stack affinities.
 Interestingly, the back-end stack affinity was relatively
high in both cases compared to the Web traces, reflecting
synchronous write-through activities (e.g., updating
directory blocks). The correlation coefficients between
front-end and back-end stack affinities for the OS-class
trace and the desktop trace were 0.20 and 0.86 respectively.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
hours

front-end stack affinity
front-end block affinity
back-end stack affinity
back-end block affinity

Figure 10.1. Affinities for the desktop trace.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
hours

front-end stack affinity
front-end block affinity
back-end stack affinity
back-end block affinity

Figure 10.2. Affinities for the OS-class trace.

11. Lessons learned

Although temporal and spatial localities are basic concepts
in the OS arena, our attempt to quantify localities illustrates
that we do not know locality as well as we think.
 First, as we re-examined ways to quantify temporal
localities, cache-hit rates, aggregate statistics, stack
distance, and our stack affinity actually do not capture the
notion of time. Therefore, two consecutive references to
the same object, spaced one month apart, can still be
considered to exhibit good temporal locality. Interestingly,
this property was not obvious until we replayed traces at
different speeds.

Second, ironically, spatial locality is more sensitive to
replay speeds, not because of the notion of time but, rather,
the interruption of sequential transfers due to switching
among concurrent reference streams. While our initial
observation is not conclusive, future investigation will help
us better understand the intricate effects caused by trace
accelerations.
 Third, spatial locality defines how well the reference
stream matches the back-end disk layout. Therefore, when
we quantify the spatial locality in a workload, we assume
disk layout optimizations shared by common file systems.
 Fourth, in many cases locality transformations are
relevant only with a sufficient volume of I/O requests.
Otherwise, optimizations such as disk scheduling cannot
effectively shape the reference localities.
 Fifth, we originally thought temporal and spatial
localities can capture workload characteristics and data path
optimizations well, but we have just begun to grasp the rich
behaviors of workloads and data path interactions. Our
experience suggests that the element of time is captured by
neither locality metric, which warrants future investigations.
Also, optimizations concepts such as data alignment would
not fit well with our metrics, unless we incorporate the
notion of distance with the intricate physical timing of
storage devices.
 Finally, the community is well aware of the difficulty of
building per-trace-format scripts and replay mechanisms,
handling corrupted data entries, analyzing data sets with a
large number of attributes and possible transformations, and
extracting meaningful trends with limited help from
automation. Still, developing empirical metrics based on
workloads from diverse environments will remain a difficult
task for the foreseeable future.

12. Conclusion

 In this paper, we have proposed and demonstrated the
use of stack and block affinities to quantify temporal and
spatial localities. Under normal and extreme workloads,
our metrics behave well. Through two Web server
workloads and two software development workloads,
affinity metrics behave well, and provided meaningful
comparisons across diverse workloads and environments.
Moreover, affinity values can be correlated to performance
and, thus can reveal how data path components contribute
to the overall performance gain.
 We have illustrated how affinity metrics can be used to
evaluate the fidelity of workload generators beyond the
front-end aggregate statistics. We also discovered the
richness of semantics behind localities and research
directions to better characterize storage workloads and data
path transformations.

 10

Acknowledgments

We would like to thank Peter Reiher and Kevin Eustice
for providing the UCLA trace. We also thank Ashvin Goel
for providing the Forensix tool. We additionally thank
Peter Reiher and Geoff Kuenning for reviewing early drafts
of this paper. This research was sponsored by the FSU
FYAP Award and the FSU Planning Grant. Opinions,
findings, and conclusions or recommendations expressed in
this document do not necessarily reflect the views of FSU or
the U.S. government.

References

[Almeida et al. 1996] Almeida V, Bestavros A, Crovella M,

deOliveira A. Characterizing Reference Locality in the WWW.
Technical Report. UMI Order Number: 1996-011., Boston
University, 1996.

[Anderson 2003] Anderson D. You Don.t Know Jack about Disks.
Storage. 1(4), 2003.

[Beyls and D’Hollander 2001] Beyls K, D'Hollander EH. Reuse
Distance as a metric for cache behavior. Proc. of PDCS'01,
August 2001.

[Chen et al. 2005] Chen Z, Zhang Y, Zhou Y, Scott H, Schiefer B.
Empirical Evaluation of Multi-level Buffer Cache
Collaboration for Storage Systems. Proc. of the 2005 ACM
SIGMETRICS, June 2005.

[Cherkasova and Ciardo 2000] Cherkasova L, Ciardo G,
Characterizing Temporal Locality and Its Impact on Web
Server Performance, Proc. of ICCCN'2000, October 2000.

[Ding et al. 2007] Ding X, Jiang S, Chen F, Davis K, Zhang X.
DiskSeen: Exploiting Disk Layout and Access History to
Enhance I/O Prefetch. Proc. of the 2007 USENIX Annual
Technical Conf., June 2007

[Feiertag and Organick 1971] Feiertag RJ, Organick EI. The
Multics Input/Output system. Proc. of the 3rd ACM
Symposium on Operating Systems Principles, October 1971.

[Ferrari 1984] Ferrari D. On the Foundations of Artificial
Workload Design. Proc. of the 1984 ACM SIGMETRICS,
1984.

[Gill and Modha 2005] Gill B, and Modha D. WOW: Wise
Ordering for Writes—Combining Spatial and Temporal
Locality in Non-volatile Caches. Proc. of the 4th USENIX
Conf. on File and Storage Technologies, 2005.

[Goel et al. 2005] Goel A, Feng WC, Maier D, Feng WC, Walpole
J. Forensix: A Robust, High-Performance Reconstruction
System. Proc. of the 2nd International Workshop on Security
in Distributed Computing Systems, June 2005.

[Hsu et al. 2001] Hsu WW, Smith AJ, Young HC. I/O Reference
Behavior of Production Database Workloads and the TPC
Benchmarks—An Analysis at the Logical Level. ACM Trans.
on Database Systems. 26(1), pp. 96-143, March 2001.

[Iyer and Druschel 2001] Iyer S, Druschel P, Anticipatory
Scheduling: A Disk Scheduling Framework to Overcome
Deceptive Idleness in Synchronous I/O. Proc. of the 18th
ACM SOSP, October 2001

[Jiang et al. 2005] Jiang S, Ding X, Chen F, Tan E, Zhang X.
DULO: An Effective Buffer Cache Management Scheme to

Exploit both Temporal and Spatial Localities. Proc. of the 4th
USENIX Conf. on File and Storage Technologies, Dec 2005.

[Li et al. 2005] Li X, Aboulnaga A, Salem K, Sachedina A, Gao
S. Second-tier cache management using write hints. Proc. of
the 4th Conf. on USENIX Conf. on File and Storage
Technologies, September 2005.

[McKusick et al. 1984] McKusick MK, Joy WN, Leffler SJ, Fabry
RS, A Fast File System for UNIX, ACM Trans. on Computer
Systems 2(3), pp. 181-197, August 1984.

[Ritchie 1974] Ritchie D, Thompson K, The UNIX Time-Sharing
System, Communications of ACM 7(7), July 1974

[Roselli et al. 2000] Roselli D, Lorch J, Anderson T. A
Comparison of File System Workloads. Proc. of the 2000
USENIX Annual Technical Conf., June 2000.

[Rosenblum and Ousterhout 1990] Rosenblum M, Ousterhout J,
The LFS Storage Manager Proc. of the 1990 Summer
USENIX, June 1990.

[Shriver et al. 1999] Shriver E, Small C, Smith KA. Why does file
system prefetching work?. Proc. of the Annual Technical
Conf. on 1999 USENIX Annual Technical Conf., June 1999.

[Vanichpun and Makowski 2004] Vanichpun S, Makowski AM,
The Output of a Cache under the Independent Reference
Model – Where did the Locality of Reference Go?, Proc. of
the 2004 SIGMETRICS, June 2004.

[Wang et al. 2003] Wang AA, Kuenning G, Reiher P, Popek G.
The Effects of Memory-rich Environments on File System
Microbenchmarks, Proc. of the 2003 International Symposium
on Performance Evaluation and Computer
Telecommunication Systems, July 2003.

[Wang et al. 2006] Wang AA, Kuenning G, Reiher P, Popek G.
The Conquest File System: Better Performance through a
Disk/Persistent-RAM Hybrid Design. ACM Trans. on. Storage
2(3), pp. 309-348, 2006.

[Weinberg et al. 2005] Weinberg J, McCracken MO, Strohmaier
E, Snavely A. Quantifying Locality in the Memory Access
Patterns of HPC Applications. Proc. of the 2005 ACM/IEEE
Conf. on Supercomputing, November 2005.

[Williams et al. 1996] Williams S, Abrams M, Standbridge CR,
Abdulla G, Fox EA, Removal Policies in Network Caches for
World Wide Web Documents, Proc. of the ACM SIGCOMM,
August 1996.

[Wong and Wilkes 2002] Wong TM, Wilkes J. My Cache or
Yours? Making Storage More Exclusive. Proc. of the General
Track: 2002 USENIX Annual Technical Conf., June 2002.

[Yadgar et al. 2007] Yadgar G, Factor M, and Schuster A. Karma:
Know-it-all Replacement for a Multilevel Cache. Proc. of the
5th USENIX Conf. on File and Storage Technologies,
February 2007.

[Zhou et al. 2004] Zhou Y, Chen Z, Li K Second-Level Buffer
Cache Management. IEEE Trans. on. Parallel and
Distributed. Systems. 15(6), pp. 505-519, June 2004.

