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Abstract 
 

 Temporal and spatial localities are basic concepts in 
operating systems, and storage systems rely on localities to 
perform well.  Surprisingly, it is difficult to quantify the 
localities present in workloads and how localities are 
transformed by storage data path components in metrics that 
can be compared under diverse settings.   

In this paper, we introduce stack- and block-affinity 
metrics to quantify temporal and spatial localities.  We 
demonstrate that our metrics (1) behave well under extreme 
and normal loads, (2) can be used to validate synthetic loads 
at each stage of storage optimization, (3) can capture 
localities in ways that are resilient to generations of 
hardware, and (4) correlate meaningfully with performance. 

Our experience also unveiled hidden semantics of 
localities and identified future research directions. 

 
 
1. Introduction 
 
 To increase performance, modern storage consists of 
many data path components, from the front-end file system 
cache and disk layout management to the back-end disk 
controller cache and on-disk caching.  Various components 
generally exploit the temporal and spatial localities in 
workloads to achieve performance gain.  However, how 
localities of a workload are transformed through individual 
optimizations is not well understood, resulting in designs 
that are more reflective of the understanding of the front-
end workload than that of the locality characteristics 
immediately before the component.  The problem worsens 
as the storage data path components proliferate over time. 
 This research aims to develop temporal and spatial 
locality metrics to quantify localities present in workloads 
and transformations by various data path components.  This 
can help us understand (1) how front-end workloads (e.g., 

references sent from a user-level application to the 
operating system) properly stress back-end data path 
components (e.g., disks), (2) how synthesized front-end 
workloads have different effects within the data path from 
the original workloads from which they are derived, and (3) 
how each storage component shapes localities. 
 Although conceptually simple, quantifying localities in 
the context of storage data path is challenging for many 
reasons:  (1) Storage components such as the file system 
cache can introduce internal system traffic due to 
prefetching, buffered writes, page replacement policies, 
metadata accesses, and system events that are sensitive to 
physical time and memory resources.  Therefore, the 
accesses before one storage component do not always have 
one-to-one mapping to the accesses after a storage 
component.  (2) The semantics of locality depend on the 
granularity of analysis.  At a high level, accesses can be 
analyzed in files and directories (although internal storage 
components do not operate at these granularities).  At a low 
level, accesses can be analyzed in blocks and sectors.  
Locality computed based on the distance between adjacent 
references to files is likely to be poorer than locality based 
on the distance between references to blocks, since many 
blocks are referenced sequentially within files.  (3) Locality 
metrics need to be comparable across workloads and system 
environments.  A workload that exhibits a “90% spatial 
locality” on a 50-GB drive should exhibit meaningful 
behaviors when applied to a 100-GB drive. 
 Existing quantifications of locality are largely performed 
within the context of caching.  Studies on temporal and 
spatial localities also exist independently.  However, there 
are limitations.  The popular metric of the cache-hit rate 
[Williams et al. 1996] measures the effectiveness of various 
caching policies, but the metric is not applicable when 
evaluating data path components such as disk scheduler.  
Commonly used stack and block distances [Cherkasova and 
Ciardo 2000] can measure how temporal and spatial 
localities are transformed by caches.  However, they are 
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highly sensitive to various system settings, and are difficult 
to use to compare workloads from different environments.  
Some studies evaluate the effects of caching algorithms and 
cache sizes on the reference stream using analytical and 
simulation methods.  However, these analyses often exclude 
the effects of traffic internal to a storage system [Vanichpun 
and Makowski 2004].  Researchers also have studied tiered 
cache management [Chen et al. 2005, Li et al. 2005], but 
their focus remained on improving I/O efficiency within a 
system, not on making measured effects comparable across 
workloads and environments.  
 This paper proposes two affinity metrics to evaluate how 
data path components transform workloads in terms of 
temporal and spatial localities.  Through analysis of 
workloads with extreme locality characteristics, as well as 
applying normal workloads on different data path 
components under different environments, we were able to  
show that our metrics behave well, are meaningful when 
comparing workloads from different environments, and 
reflect of performance characteristics.  Our exploration 
further unveiled the intricacy of locality concepts and 
identified research directions to refine our metrics. 
 
2. Background & related work 
 
 This section highlights existing ways to quantify 
temporal and spatial localities.  Many studies have been 
performed within the context of caching.   
 
2.1. Spatial locality 
 
 For disk-based storage, spatial locality measures the 
degree to which data objects stored in the physical vicinity 
of a disk are used together (i.e., within a short timeframe), 
since accessing nearby objects is faster on disks.  Although 
the mapping of logical disk blocks to physical sectors and 
the timing behavior of modern disks are not straightforward 
[Anderson 2003], good spatial locality can be often 
achieved by accessing logical disk blocks consecutively.  
 Interestingly, spatial locality is a by-product of physical 
disk layout policies, which are governed by file systems.  
Therefore, spatial locality measures how well a workload 
matches the underlying disk layout.  That is, should a 
workload make references to random disk blocks, and 
should the disk layout pack those blocks contiguously in the 
same random order, the spatial locality of this workload is 
high.  However, sequential access of randomly stored disk 
blocks exhibits poor spatial locality.   
 Most file systems exploit spatial localities in three ways:  
(1) sequentially accessed disk blocks are stored 
contiguously [Ritchie 1974], (2) files stored in the same 
directory are collocated [McKusick et al. 1984], and (3) 
disk blocks are prefetched, assuming that most accesses are 
sequential [Rosenblum and Ousterhout 1990, Cherkasova 

and Ciardo 2000].  Given these assumptions, the “spatial 
locality” of a workload is often measured in block distance.   
 With knowledge of the underlying disk layout, block 
distance measures the differences in block numbers between 
adjacent references.  Figure 2.1 shows that the first 
reference has a block distance initialized to the block 
number (i.e., 1,000).  If block 4,000 is referenced next, its 
block distance is 3,000.  Thus, the spatial locality of a 
workload is the average block distance for all references.  A 
smaller average indicates a better spatial locality.   
 Block distance is sensitive to the number of unique data 
objects referenced in a workload.  Suppose the same 
workload is analyzed at the granularity of a 4-KB block and 
a 256-KB block.  Two identical reference streams that 
request 256-KB at a time can yield very different block 
distance numbers.  The average block distance based on 4-
KB blocks is likely to be 64 times higher than the average 
distance computed in 256-KB blocks, due to the mere 
increase in unique data objects.   

Block distance is also sensitive to the size of the disk.  
Therefore, if workload A with a large disk contains the 10 
block references 1, 2, 3, 4, 5, 1001, 1002, 1003, 1004, and 
1005, the average block distance is 100.5.  If workload B 
with a small disk contains the 10 block references 1, 50, 
100, 150, 200, 250, 300, 350, 400, and 450, the average 
block distance is 45.  Based on the averages, one can 
conclude that workload B has a better spatial locality, while 
workload A has more references made to adjacent blocks.  
Therefore, it is difficult to use block distance alone to 
compare workloads running in different environments. 

 
Figure 2.1. Block distance calculation. 

  
2.2. Temporal locality 
 
 Temporal locality measures how frequently the same 
data object is referenced.  Temporal locality exhibited in 
workloads is important for many storage optimizations (e.g., 
caching) and thus is an essential characteristic to quantify. 
 One common metric to measure temporal locality is 
stack distance [Beyls and D’Hollander 2001], defined as 
the number of references to unique data objects before 
referencing the same object.  Since our proposed metrics 
are built on this concept, we shall detail it further.   
 Suppose the granularity of a reference is a file, and the 
algorithm begins with an empty stack.  When a file is first 
referenced, it is pushed onto the top of the stack.  The stack 
distance for this reference is either infinite or a pre-defined 
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Max (> maximum number of unique files).  Whenever a file 
is referenced again, the depth (> 0) of the file in the stack is 
the stack distance.  The referenced file is then removed 
from the stack and pushed onto the top of the stack again.  
 To illustrate, Figure 2.2 begins with an empty stack 
(NULL).  File A is referenced for the first time, its stack 
distance becomes Max, and the stack now contains one file 
(A).  Files B and C then are referenced consecutively for the 
first time, and the stack distance for each is again Max; B 
and C are each pushed onto the top of stack in order of 
reference, and the stack now contains three files (C, B, A).  
At this point, if file B is referenced, the stack distance of 
this reference is 1, which is the depth of File B.  File B then 
is removed from the stack, and pushed onto the top of stack 
(B, C, A).  A low average stack distance across all 
references in a workload indicates a good temporal locality. 
While stack distance can quantify the temporal locality of a 
workload, it has limitations.  First, similar to block distance, 
stack distance is sensitive to the granularity of analysis (e.g. 
file vs. 4-Kbyte blocks vs. 512-byte sectors).   
 Second, while the lowest possible stack distance is 0, the 
Max value is not bounded.  To one extreme, when Max >> 
the total number of unique data objects, the average stack 
distance approaches (Max*the number of unique data 
objects)/the number of references, reflecting little about the 
ordering of the data references.   
 Third, although some variants of stack distance 
computation omit first-time references, it becomes 
problematic when a significant fraction of the references are 
first-time (e.g., Web workloads).   

Fourth, since stack distance is sensitive to Max, the 
number of unique data objects, and the total number of 
references, the resulting average stack distance has no 
reference point other than 0 and an arbitrary Max to indicate 
whether a workload exhibits good or poor temporal locality.  
The metric is mostly useful when performing relative 
comparisons between two workloads under similar settings 
and applied to similar environments.  When a given 
workload is exercised in different environments, the results 
represented by this metric are not comparable. 

 
Figure 2.2. Sample stack distance. 

 
 
 

2.3. Effectiveness of caching 
 
Locality has been widely studied within the context of 
caching.  Although caching has been studied extensively, 
the fact that we are still seeing major storage innovations 
based on exploiting locality reflects ample opportunities in 
advancing this area [Gill and Modha 2005, Jiang et al. 
2005, Ding et al. 2007, Yadgar et al. 2007].  In particular, 
few studies address the issue of quantifying localities.  A 
popular metric is the cache-hit ratio, which is computed by 
dividing the number of references served from the cache by 
the total number of references, in either files or blocks.  
Variants of cache-hit ratios are used to compare various 
caching policies [Hsu et al. 2001, Chen et al. 2005].   
 Cache-hit ratios can reveal information such as the 
working set size.  However, a high cache-hit ratio can be 
caused by a cache size greater than the working set size, 
effective caching policy, or good temporal locality within a 
workload.  Therefore, this metric provides confounding 
information on how a workload is transformed in terms of 
spatial and temporal localities.  Most important, cache-hit 
ratios cannot be applied to analyze non-cache-related 
storage data path components (e.g., disk scheduler).   
 
2.4. Effects of cache transformations 
 
 The effects of cache transformations have also been 
studied in distributed systems.  For example, a log-based 
file system [Rosenblum and Ousterhout 1990] was designed 
based on the observation that the client cache absorbs the 
majority of reads, leaving the write-mostly traffic to the 
server side.  Multi-tiered coordinated caching examines 
how to remove unwanted interactions between cache layers 
[Li et al. 2005].   
 Not until recently has the size of various caches become 
sufficiently large for standalone machines [Wang et al. 
2002], and their transformations on temporal and spatial 
localities have thus become an area of research interest.   
[Zhou et al. 2004] examined the effects of L1 and L2 caches 
on memory reference streams.  Our study extends their 
study to analyze the entire storage data path. 
 Locality in Web reference streams has been analyzed 
previously using stack distance for temporal locality and 
measuring the number of unique sequences for spatial 
locality [Almeida et al. 1996].  Although our studies share 
similarities in methodology, we focus on the 
transformations at various data path locations.  
 Researchers have advocated a more thorough analysis of 
real-world workloads before creating accurate synthetic 
workloads [Wang et al. 2003, Roselli et al. 2005].  Hsu et 
al. [2001] introduced a way of viewing reference streams.  
By plotting a referenced address modulo 32MB against the 
access number, they demonstrated differences between real-
world workloads and synthetically generated ones.   
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2.5. Aggregate statistics 
 
 Various high-level statistics are used to characterize the 
localities of a workload [Almeida et al. 1996, Roselli et al. 
2000].  For example, a workload can be analyzed for the 
average number of bytes referenced per unit of time, which 
can be decomposed into bytes from unique block locations, 
or unique bytes [Ferrari 1984].  The ratio of unique bytes to 
total bytes can be used to quantify temporal locality, in 
terms of how often bytes are repeatedly referenced.   
 One concern is that very different reference patterns can 
yield similar aggregate statistics, which is particularly 
pronounced in synthetic workloads that mimic real-life 
workloads via matching aggregate statistics [Hsu et al. 
2001].  For example, synthetic workloads often match well 
with aggregate statistics before the file system cache, but 
their after-cache behavior can deviate from the after-cache 
behavior of the real-life workload significantly, as 
demonstrated in this paper.  
 
3. Affinity metrics 
 
 We propose two metrics to measure temporal and spatial 
localities of workloads—stack affinity and block affinity 
respectively.   

( )diststack
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+
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Although our metrics seem simple and are built on existing 
stack and block distances, our metrics ease comparing 
different workloads in different environments.  
Conceptually, locality is inversely proportional to the orders 
of magnitude changes in stack and block distances.  The 
rationale reflects the exponential speed of hardware 
evolution and how certain performance metrics (e.g., cache 
hit rate) improve linearly as the system resources increase 
exponentially (e.g., memory size) [Roselli et al. 2000].  We 
will first demonstrate the inherent characteristics of these 
metrics, and use them to measure storage data path 
components transform localities. 
 Resiliency to different maximum values:  One 
drawback of distance metrics is the high sensitivity to the 
maximum value due to first-time references and the size of 
the disk.  To reduce such sensitivity, we first move the 
distance metrics to the denominator.  So, large distance 
values due to various causes push locality metrics toward a 
common minimum 0, which means poor locality.  
Additionally, we take a logarithmic weighting of the 
distance, to achieve two effects.  (1) Since hardware 
improvements in terms of performance, disk/cache capacity, 
and cost are exponential, the logarithmic function dampens 

the computed affinity differences due to nearby generations 
of hardware.  For example, referencing a block 200 GB 
away on a disk degrades spatial locality just as significantly 
as referencing a block 500 GB away.  (2) First-time 
references skew the affinity numbers only in a limited way, 
such that the resulting affinity values still largely depend on 
the ordering of references.   
 Boundary conditions:  Another drawback of distance 
metrics is the difficulty in interpreting locality when the 
maximum value is not bounded and specific to 
environments.  With affinity metrics, we can describe 
localities between 0% (poorest) and 100% (highest).  The 
addition of 10 to the denominator makes the minimum value 
of denominator 1 when either the stack distance or block 
distance is 0, which represents 100% in both metrics. 
 References that lead to good locality behavior are more 
exponentially weighted based on the observed relationships 
between performance metrics and available system 
resources [Roselli et al. 2000].  Recall Section 2.1, 
workloads with good localities may exhibit worse original 
distance values than those of workloads with poor localities.  
Consider the same example from Section 2.1: with the 
block-affinity metric, the reference stream on blocks 1, 2, 3, 
4, 5, 1001, 1002, 1003, 1004, and 1005 yields a 90% spatial 
locality, while the reference stream on blocks 1, 50, 100, 
150, 200, 250, 300, 350, 400, and 450 on a small disk 
yields a 61% spatial locality.  These numbers are more 
reflective of how adjacent disk blocks are referenced as 
opposed to the differences in disk sizes. 
 Granularity of analyses:  Although our simple 
alterations of the stack and block distance metrics overcome 
many existing limitations, affinity can yield very different 
numbers for different granularity of analyses.  Above the 
operating system, logged references are directed to files and 
directories, although the storage data path operates in 
blocks.  Our current solution is to convert the analysis 
granularity to blocks, which is the highest common 
denominator between the two.  (Note that we do not 
preclude the possibility of analyzing reference affinities at 
the level of physical data locations on the disk).   
 This conversion requires locating file blocks on the disk.  
However, in many cases, there is no one-to-one mapping of 
the referenced blocks, which poses challenges when 
applying our metrics to evaluate data path components such 
as file system caching.  First, the file system cache generates 
internal references to the storage systems; thus, reference 
blocks after cache may have no corresponding reference 
before cache.  One example is the prefetching of 
consecutive blocks into the cache in anticipation of 
sequential access patterns.  Another is the committing of 
modified memory content to the disk when the available 
memory is running low.  Second, references to cached 
content may not have corresponding after-cache references.  
For example, reads (and sometimes writes) to cached data 
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and resolved cached file path components will not yield 
after-cache references.  Thus, the total number of unique 
data requests can be different across individual data path 
components, which is captured by our affinity metrics.  
 
4. Evaluation 
 
 Our experiments included (1) stressing affinity metrics 
under workloads with combinations of extreme temporal 
and spatial localities, (2) observing affinity metrics under 
normal trace replays, (3) applying affinities to compare 
characteristics of a trace-replayed workload and a synthetic 
workload based on the trace, (4) studying the sensitivity of 
affinity metrics across nearby generations of hardware, (5) 
correlating affinity and performance metrics, and (6) testing 
affinity metrics under workloads from more environments. 
 To see the locality transformations by the entire storage 
data path, we gathered the affinity values at the data path 
front end before going through the file system cache, and at 
the back end before requests are forwarded to disk.  To see 
the effects of individual optimizations, we could selectively 
disable optimizations.  To illustrate, to see the effects of 
disk scheduling, we could bypass file system caching.  We 
can minimize the effects of write-back policies by using a 
read-mostly workload. 
 Web workloads:  We gathered HTTP access logs from 
two Web servers; one from the Department of Computer 
Science at Florida State University (FSU) between 
11/14/2004 and 12/7/2004 and the other from the 
Laboratory of Advanced Systems Research at UCLA, 
between 5/8/2005 and 6/7/2005.  We selected the week with 
the most bytes referenced.  Table 1 summarizes the chosen 
workloads. 
 For each log, we also obtained the file system snapshot, 
which consists of all files, directories, hard links, and 
symbolic links as well as their i-node creation, modification, 
and access timestamps.  Before replaying our traces, we 
recreated each file system in the order of their creation 
dates.   
 The Web workloads were replayed on two machines, one 
acting as a server and the other as a client (Table 2).  The 
server hosted an Apache 2.2.2 Web server while HTTP 
requests were generated via a multi-threaded replay 
program running on the client machine.  Each thread 
corresponded to a unique IP address.    

To accelerate the evaluation process, we sped up the 
trace replay by a constant factor derived using the following 
method.  (1) We replayed the trace with a zero-time delay 
between references.  (2) We computed the maximum speed- 
up factor and divided it by two.  With this method, we sped 
up both traces by a factor of 128.   

The front-end reference stream data were captured on the 
server side.  To extract file and directory block numbers, we 
used debugfs provided by ext2.  In addition, we had to 

account for the implicit traffic generated during path 
resolutions when applying our affinity metrics for analysis.  
For example, a reference to /dirA/file1 involves a 
reference to / and /dirA before referencing 
/dirA/file1.   

Table 1. Workload characteristics. 
 FSU UCLA Desktop OS-

class 
Bytes referenced 4.3 GB 19 GB 50 GB 2.0 GB 
Unique bytes  
  referenced 

133 MB 668 MB 11 GB 1.5 GB 

Number of requests 150K 841K 13M 532K 
Mean interarrival  
  time  

4.03 secs 3.08 secs 3.16 
msec 

27.9 
msec 

Table 2. Experimental hardware configurations. 
 Server Client 

Processor 2.8GHz Pentium 4,  
  1024-KB cache 

2.4GHz Intel Xeon  
 512-KB cache 

RAM 512-MB Netlist DDR  
  PC3200 

2-GB Micron DDR  
  PC2100  

Disks 2 160-GB 7200-RPM  
  Seagate Barracuda  
  7200.7  

40-GB 7200-RPM  
  Maxtor 6E040l0  

Network Intel 82547Gi Gigabit  
  Ethernet Controller 

Intel 82545EM 
Gigabit  
  Ethernet Controller 

Operating system Linux 2.6.5 Linux 2.6.16.16 
File system Ext2 0.5b Ext2 0.5b 

 We modified Linux to capture block references before 
they are sent to the disk.  We inserted a function pointer in 
generic_make_request() in ll_rw_blk.c to 
timestamp a bio before calling submit_bio().  When 
the bio returned and called its finalization code, we logged 
the start time, end time, and block number in the memory 
and dumped them at the end of the replay.  We set aside 
preallocated memory for logging, specified in 
grub.conf, to ensure the same memory size setting as the 
original Web servers. 
 Software development workloads:  We gathered traces 
from machines used for operating system research and 
undergraduate course projects at FSU.  The former desktop 
trace was taken from 8/20/07 to 8/22/07 and contains 32K 
processes.  The latter OS-class trace was gathered from 
3/8/07 to 3/14/07 and contains 33K processes. Unlike the 
read-mostly Web traces, these desktop traces consist of both 
read and (up to 24%) write activities.  
 We used Forensix [Goel et al. 2005] to gather front-end 
traces, which required a different playback system.  The file 
system recreation and block mapping steps are identical to 
the Web workload ones.  However, replaying was 
performed only on the server only, with one process created 
for each process in the trace.  We sped up both traces by 32 
times. 
 For data gathering, the front-end references were logged 
as the system replays.  Each process kept its own list of files 
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referenced and bytes accessed.  On replay completion, these 
file references, including path resolutions, were mapped to 
the block level.  The back-end reference stream data were 
recorded using the same Web logging framework.  
 We used the front-end reference stream to calculate the 
blocks referenced during the trace.  For the backend, we 
used the blocks reported by our modified kernel.   
 Metrics:  In addition to affinity metrics, we also 
measured the bandwidth and latency.  The backend was 
measured right before the block I/O was sent to the storage 
device and as soon as the block I/O returned.  The latency 
was measured on a block-by-block basis. 
 For the front end, the latency and bandwidth could be 
measured based on either the requested data only (excluding 
metadata) or all blocks related to a data request (including 
metadata).  To align the front-end measurement with the 
back, we chose the latter.  The front-end bandwidth and 
latency for the Web workloads were measured on the client, 
and include network effects, while the software-
development measurements were performed on the server.  
The performance numbers reflect the end-user experience. 
 
5. Extreme localities 
  

To understand the dynamic range of our metrics when 
being transformed by the entire storage data path, we 
synthesized workloads to exercise all combinations of high 
and low temporal and spatial localities.  These workloads 
are based on the FSU trace, so the affinity values can be 
compared with regular FSU replays.  Although these loads 
are read-mostly, they serve as a starting point to understand 
the rich locality behaviors.  As a further simplification, 
these replays were single-threaded.  The synthesized load 
has the total number of references equal to that of the FSU 
trace.  The request timing is based on an exponential 
distribution, with the mean set to the average inter-arrival 
time of the FSU trace.  Figure 5.1 summarizes the median 
affinity values for various locality settings.  We used the 
median since the lack of back-end traffic sometimes leads to 
0 affinity values.   

High temporal and spatial localities:  To achieve high 
spatial and high temporal localities, we created two 1-MB 
files in / and read those files alternatively and repeatedly.   
 Figure 5.1 shows that the front-end stack and block 
affinities are about 0.77 and 0.73, respectively.  The front-
end stack affinity was higher than expected, given that each 
file is accessed sequentially and contains 256 4-KB blocks.  
It turned out that repeated references to ext2 i-nodes and 
indirect index blocks improve the temporal affinity.   

However, the front-end block affinity was not as high as 
expected, because accessing a file also involves referencing 
directories in the file path.  Although we created our files in 
/ to minimize directory lookups, for the purpose of 
accounting, each front-end file reference still involves 

looking up /, which is not stored near the files, thus, driving 
down the front-end block affinity significantly.    
 The back-end affinities show values above the 0.95 
range.  The frequent directory traversal causes directories to 
be cached, leaving mostly timestamp updates to disk.   
 High temporal locality and low spatial locality:  For 
this workload, we sorted the files based on their starting 
block numbers.  We then created a reference stream that 
reads the first and the last files.   
 Figure 5.1 shows that the front-end stack affinity was 
0.72; block affinity, 0.22.  The back-end stack affinity 
increased to 0.94, while the block affinity increased to 0.56.     
 Low temporal locality and high spatial locality:  This 
case is achieved by reading files in the order of increasing 
block numbers, while references within a file remain 
sequential.  Figure 5.1 shows that the front-end stack 
affinity was 0.41; block affinity, 0.47.  The back-end stack 
affinity was 0.01 and block affinity, 0.94. 
 Low temporal and spatial localities: One way to 
generate a workload with poor localities is to shuffle the 
reference ordering of files randomly in the FSU trace.   
 Figure 5.1 shows that the front-end stack and block 
affinities were 0.62 and 0.22, respectively.  The front-end 
stack affinity is relatively high, suggesting that temporal 
locality is inherent in the file systems’ hierarchical naming 
structure.  Also, the random reference stream does not 
generate the worst-case locality, because the previous 
scenario shows worse front-end stack affinity numbers.  The 
back-end stack- and block-affinity values were 0.00 and 
0.17, respectively. 
 Overall:  The dynamic range of affinity can capture both 
high and low values for temporal and spatial localities.  
Front-end stack affinity values tend to reflect the directory 
structure captured by the trace, while the back-end affinity 
values can span the entire dynamic range. 

0
0.2
0.4
0.6
0.8

1

high
temporal
& spatial
localities

high
temporal

& low
spatial

localities

low
temporal

& high
spatial

localities

low
temporal
& spatial
localities

front-end stack affinity
front-end block affinity 
backend stack affinity 
backend block affinity 

 
Figure 5.1. Affinities for combinations of 
temporal and spatial localities, at the front 
end (before file system cache) and backend 
(before disk) of a storage data path. 

 
6. Web workloads 
 
 Understanding how affinity metrics behave under 
extreme localities enables us to better interpret the numbers 
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under the FSU and UCLA Web workloads.  Figure 6.1 
shows affinity values over time.  The affinity values within 
each time interval are averaged because our notion of 
locality is inversely correlated with the average orders of 
magnitude changes in stack and block distances.  The front-
end affinity values are in the mid-range, with high back-end 
block affinity and low back-end stack affinity.  In reference 
to Figure 5.1, the Web workload displays the case of low 
temporal and high spatial localities.  The back-end stack 
affinity increases over time as compulsory misses taper, but 
its growth appears to be asymptotic.  We confirmed that the 
compulsory misses within Web traces are more uniformly 
scattered throughout the trace.   
 Figure 6.2 shows affinities for the UCLA trace.  The 
front-end stack affinity was 0.74, which is higher than the 
FSU case, with a lower variance due to a higher number of 
references per interval.  The front-end block affinity was 
only 0.28, which is lower than the FSU case, also with a 
lower variance. 
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Figure 6.1. Affinities for the FSU trace. 
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Figure 6.2. Affinities for the UCLA trace. 

 
7. Trace vs. synthetic workloads 
 
 Affinity metrics enable us to verify the fidelity of 
synthetic workloads against trace replays, beyond the front- 
end aggregate statistics.  Figure 7.1 shows affinities over 
time for the low temporal and spatial locality case, based on 
random shuffling of references in the FSU trace.  This 
synthesis technique also preserves many front-end 
aggregate statistics (e.g., file size distribution).   
 Since the frequency of referencing popular files is 
preserved, the synthesized load can preserve front-end stack 
affinity with a lower variance.  However, random shuffling 
of references degrades front-end block affinity significantly.   

The back-end stack affinity values diverge over time as 
the number of back-end references decreases.  Unlike the 
original trace, toward the end of the trace, we saw more 
repeated references to the popular blocks for timestamp 
updates, and fewer compulsory misses (Figure 7.2).   
 The back-end and front-end block affinities shared 
similar initial values, reflecting initial compulsory misses.  
The back-end block affinity then declined asymptotically to 
0.20 as most directory and metadata blocks are cached 60 
hours into the trace.   

In addition, the back-end affinity numbers reveal that the 
front end and the backend of a system reach steady states at 
different times.  Studies conducted without this awareness 
can yield misleading results and system designs. 
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Figure 7.1. Stack and block affinities for the 
case of low temporal and spatial localities. 

0
0.5

1
1.5

2
2.5

3
3.5

1 10 100 1000
log(hours)

log(comp 
misses)

 
Figure 7.2. Compulsory misses over time 
show a log-log-linear relationship in a Web 
trace with randomly shuffled references.   

 
8. Portability of affinities  
 
To show the portability of affinity metrics across 
neighboring generations of hardware, we replayed the FSU 
workload on a similar system setup but with a 160-GB hard 
drive as opposed to a 40-GB one.  Although the range of 
reference data block increased by 4 times, Figure 8.1 shows 
affinity characteristics that are very similar to those in 
Figure 6.1, suggesting our logarithmic transformations in 
the metrics enable us to characterize traces in a way that is 
more resilient to the exponential rate of hardware 
evolutions. 
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Figure 8.1:  Affinities for the FSU trace with 4 
times the disk size. 

 
9. Affinity vs. performance  
 
To demonstrate the relationship between our affinity 
metrics and performance, we measured the locality 
transformation by the default anticipatory disk scheduler 
[Iyer and Druschel 2001] in Linux 2.6.5.  We replayed the 
FSU traced blocks with multiple threads on the server, with 
the O_DIRECT flag to bypass file system caching.  The 
anticipatory scheduler seeks to reduce ‘deceptive idleness’ 
by waiting for additional requests from a process before 
switching to requests from another process. Without this 
style of scheduling the localities inherent in a program 
would be broken up by request switching.  

The baseline comparison is the noop scheduler, which 
sends disk requests in a FIFO order.  To ensure sufficient 
requests for reordering, we replayed the FSU traces with 
zero-think-time delays.  To provide a fuller context, we 
compared these results with the normal FSU replay (Section 
6) with half of the maximum speed-up factor, with both the 
file system cache and the anticipatory scheduler running. 

Figures 9.1, 9.2, and 9.3 show, at a 90% confidence 
interval, that the noop scheduler had the same average 
front-end and back-end affinity values and performance 
numbers, since the scheduler performs no transformations 
on locality.  The anticipatory scheduler improved the stack 
affinity by 10% and block affinity by 54%.  Interestingly, 
although the back-end bandwidth increased by 111%, the 
front-end bandwidth improved by only 18%.  In terms of 
latency, the improvement is by two orders of magnitude, 
reflecting a significant reduction in disk seek overhead due 
to switching requests among processes.  

For the third case, the FSU trace replay was slowed 
down by a factor of two, effectively reducing the number of 
concurrent request streams and the probability of sequential 
requests being fragmented due to request multiplexing.  As 
a result, front-end spatial affinity was 50% better than that 
of the noop scheduler.  Surprisingly, front-end stack affinity 
is less sensitive to the ordering of requests compared to 
block affinity.  As long as the number of unique blocks 
referenced within a time frame is within a similar order of 
magnitude, stack affinity would not change much.  On the 

other hand, minor reordering of requests to distant block 
locations can change block affinity significantly. 

The enabled file system caching absorbed 45% of stack 
affinity from the front, and sequential prefetches improved 
spatial affinity in the backend by another 31%.   
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Figure 9.1:  Affinities for FSU trace replay 
under different configurations. 
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Figure 9.2:  Bandwidth for FSU trace replay 
under different configurations. 
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Figure 9.3:  Latency for FSU trace replay 
under different configurations. 
In terms of performance, caching improved bandwidth 

by 16 times.  The front-end latency of the original FSU 
replay is not directly comparable due to the inclusion of the 
network component.  The significant latency variance can 
be attributed to either the network or the low back-end stack 
affinity.  The lack of opportunities for the anticipatory 
scheduler to reorder requests due to slowed replay allowed 
only 34% latency improvement over the noop case.   

Overall, back-end block affinity correlates with 
improved bandwidth.  While back-end stack affinity does 
not seem to contribute to bandwidth, poor back-end stack 
affinity seems to introduce high variance to latency. 
Intriguingly, front-end and back-end affinities are poorly 
correlated. 
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10. Read & write workloads 
 
 Web traces show how affinity metrics interact with read-
mostly workloads.  The next step is to understand the 
behaviors of affinities with the presence of writes.   

Figures 10.1 and 10.2 show the behavior of affinity 
metrics under software development workloads.  In both 
cases, the front-end affinities were high, which have not 
been observed in the read-mostly workloads.  One 
explanation is that Web accesses mostly read files in their 
entirety.  In the software development environment, writes 
are often made to the same block (e.g., compilation), 
resulting in high block and stack affinities.  
 Interestingly, the back-end stack affinity was relatively 
high in both cases compared to the Web traces, reflecting 
synchronous write-through activities (e.g., updating 
directory blocks).  The correlation coefficients between 
front-end and back-end stack affinities for the OS-class 
trace and the desktop trace were 0.20 and 0.86 respectively.  
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Figure 10.1. Affinities for the desktop trace. 
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Figure 10.2. Affinities for the OS-class trace. 

 
11. Lessons learned 
 
Although temporal and spatial localities are basic concepts 
in the OS arena, our attempt to quantify localities illustrates 
that we do not know locality as well as we think. 
 First, as we re-examined ways to quantify temporal 
localities, cache-hit rates, aggregate statistics, stack 
distance, and our stack affinity actually do not capture the 
notion of time.  Therefore, two consecutive references to 
the same object, spaced one month apart, can still be 
considered to exhibit good temporal locality.  Interestingly, 
this property was not obvious until we replayed traces at 
different speeds.  

Second, ironically, spatial locality is more sensitive to 
replay speeds, not because of the notion of time but, rather, 
the interruption of sequential transfers due to switching 
among concurrent reference streams.  While our initial 
observation is not conclusive, future investigation will help 
us better understand the intricate effects caused by trace 
accelerations. 
 Third, spatial locality defines how well the reference 
stream matches the back-end disk layout.  Therefore, when 
we quantify the spatial locality in a workload, we assume 
disk layout optimizations shared by common file systems.  
 Fourth, in many cases locality transformations are 
relevant only with a sufficient volume of I/O requests.  
Otherwise, optimizations such as disk scheduling cannot 
effectively shape the reference localities. 
 Fifth, we originally thought temporal and spatial 
localities can capture workload characteristics and data path 
optimizations well, but we have just begun to grasp the rich 
behaviors of workloads and data path interactions.  Our 
experience suggests that the element of time is captured by 
neither locality metric, which warrants future investigations.  
Also, optimizations concepts such as data alignment would 
not fit well with our metrics, unless we incorporate the 
notion of distance with the intricate physical timing of 
storage devices. 
 Finally, the community is well aware of the difficulty of 
building per-trace-format scripts and replay mechanisms, 
handling corrupted data entries, analyzing data sets with a 
large number of attributes and possible transformations, and 
extracting meaningful trends with limited help from 
automation.  Still, developing empirical metrics based on 
workloads from diverse environments will remain a difficult 
task for the foreseeable future.  
 
12. Conclusion 
 
 In this paper, we have proposed and demonstrated the 
use of stack and block affinities to quantify temporal and 
spatial localities.  Under normal and extreme workloads, 
our metrics behave well.  Through two Web server 
workloads and two software development workloads, 
affinity metrics behave well, and provided meaningful 
comparisons across diverse workloads and environments.  
Moreover, affinity values can be correlated to performance 
and, thus can reveal how data path components contribute 
to the overall performance gain. 
 We have illustrated how affinity metrics can be used to 
evaluate the fidelity of workload generators beyond the 
front-end aggregate statistics.  We also discovered the 
richness of semantics behind localities and research 
directions to better characterize storage workloads and data 
path transformations.   
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