Throttling On-Disk Schedulers to Meet Soft-Real-Time Requirements *

Mark J. Stanovich, Theodore P. Baker, An-I Andy Wang
Department of Computer Science
Florida State University
Tallahassee, FL 32306-4530
e-mail: [stanovic, baker, awang]@Qcs.fsu.edu

Abstract

To achieve better throughput, many hard drive man-
ufacturers use internal queues and scheduling to take
advantage of vendor-specific characteristics and knowl-
edge. While this trend seems promising, the control of
service time from the view of the operating system is
weakened, posing challenges for scheduling requests that
have real-time requirements. Also, the diversity of disk
drives makes extracting detailed timing characteristics
and its generalization for all hard drives very difficult.
This paper demonstrates three techniques we developed
under Linux to bound real-time request response times
for disks with internal queues and schedulers. One is
to use the disk’s built-in starvation prevention scheme.
The second is to prevent requests from being sent to the
disk when real-time requests are waiting to be served.
The third, limits the length of the on-disk queue in ad-
dition to the second technique. Our results show the
ability to guarantee a wide range of desired response
times while still allowing the disk to perform schedul-
ing oplimizations.

1 Introduction

The request service time of a mechanical disk drive
is many orders of magnitude slower when compared
to the majority of other electronic components of a
computer. To minimize the mechanical movements of
the disk and subsequently improve its performance, one

*Based upon work supported in part by the National Science
Foundation under Grant No. 0509131, and a DURIP equipment
grant from the Army Research Office.

common optimization is to reorder requests. For many
years, the I/O scheduler component of an operating
system has been responsible for providing request re-
ordering to achieve high throughput and a low average
response time while avoiding starved requests.

Typical operating systems have a general notion of
the disk’s hardware characteristics and interact with
disks through a rigid interface; however, the detailed
data layout and capabilities of the disk are generally
hidden. For instance, it may be believed that the disk’s
logical block addresses (LBA) start from the outside
perimeter of the disk and progress inwards, but [12]
has observed that LBA 0 on some Maxtor disk drives
actually starts on track 31. Another example is the
common perception that issuing requests with consec-
utive addresses will give the best performance. Again,
some disks support zero-latency access, which permits
the tail end of a request to be accessed before the be-
ginning, so that the disk head can start transferring
data as soon as a part of the request is under the disk
head, not necessarily at the beginning. This out-of-
order data access scheme reduces the rotational delay
to wait for the beginning of the data request to be po-
sitioned under the disk head before the data transfer
starts [16].

Given that the operating system has limited knowl-
edge of the layout, capabilities, timing characteristics
and real-time state of individual disk drives, disk manu-
facturers provide tailored optimizations such as built-in
schedulers to better exploit vendor-specific knowledge.
To schedule requests on-disk, a drive needs to provide
an internal queue that can take multiple requests from
an operating system and further reorder requests spe-
cific to a particular disk drive. Figure 1 illustrates the

(1/0 Scheduler \ (1/0 Scheduler \

Hardware

AJ

N~

Disk with internal queue Disk without internal queue

Figure 1. Alternative disk-request queuing schemes.

key difference between disks with and those without
an internal queue/scheduler. Instead of maintaining
all requests in the I/O scheduler framework, disks with
a built-in queue allow multiple requests to be issued to
the disk without waiting for the completion of a pre-
vious request. This permits multiple requests to be
pending at the operating system level as well as the
hardware level. Both locations allow reordering of re-
quests; however, once requests have been sent to the
disk drive, control over their service order shifts from
the operating system to the built-in disk scheduler.

Although on-disk schedulers have shown promise,
they introduce concerns for real-time systems. Since
the disk can change the ordering of requests, the indi-
vidual request service times can be difficult to control
and predict from the viewpoint of an operating system.
Instead of having to determine the completion time one
request at a time, an operating system needs to predict
the order the disk will serve multiple requests in order
to provide response time guarantees. Further, worst-
case service times of requests sent to the disk can be
increased to many times that of a disk that does not
contain an internal queue. To use these disks to serve
real-time requests, we need to address all these con-
cerns.

2 Motivation

Certain characteristics of disk drives make it difficult
to predict I/O response times accurately. One is the
variability of service times due to the state of the disk
caused by a prior request. With disks that allow one
outstanding request at a time, a new request to disk
from a device driver must wait until the completion
of the previous request. Only then can a new request
be issued from a device driver to disk. Next, based
on the location of the previous request, the disk must
reposition the head to a new location. Given these
factors, the variability of timings can be on the order
of tens of milliseconds.

Many disks now also contain an extra state param-
eter in the form of an internal queue. This is available
on the majority of SCSI and most new SATA drives.
Command queuing is the protocol used to send mul-
tiple requests to the hard drive, with three common
policy variants: simple, ordered, and head of queue
[1]. When a new request is sent to the disk, one of
the policies must be specified with a tag. The simple
tag indicates that the request may be reordered with
other requests marked as simple. The ordered tag spec-
ifies that all older requests must be completed before
the ordered request begins its operation. The ordered
requests will then be served followed by any remain-
ing ordered or simple tagged commands. Lastly, the
head-of-the-queue tag specifies that the request should
be the next command to be served after the current
command (if it exists).

With an internal queue, the variability in request
service time is significantly larger. Once a request is
released to the disk for service, the time-till-completion
will depend on the service order of the queued requests
established by the disk’s internal scheduler and the
given insertion policy. Now, instead of having to wait
tens of milliseconds for a particular request to return,
the maximum service time can be increased to several
seconds.

2.1 Observed vs. Theoretical Bounds

To demonstrate and quantify problems of real-
time disk I/Os resulting from drives with internal
queues/schedulers, we conducted some simple exper-

Hardware/software Configurations

Processor Pentium D 830, 3GHz,
2x16KB L1 cache,
2x1MB L2 cache

Memory 1.5GB

Hard disk controller ~ Adaptec 4805SAS

Hard disks Maxtor ATLAS 10K V,

73GB, 10,000 RPM,
8MB on-disk cache,
SAS (3Gbps) [11]

Fujitsu MAX3036RC,
36.7GB, 15,000 RPM,
16MB on-disk cache,
SAS (3Gbps) [9]

IBM 40K1044,
146.8GB, 15,000 RPM,
8MB on-disk cache,
SAS (3Gbps) [7]

Operating system Linux 2.6.21-RT PREEMPT

Table 1. Hardware and software experimental
specifications.

iments. These tests were run on the RT Preempt ver-
sion of Linux [2], which is standard Linux patched to
provide better support for real-time applications. The
hardware and software details are summarized in Ta-
ble 1.

To estimate service times for a particular request
by a real-time application, one could make simple ex-
trapolations based on the datasheets for a particu-
lar drive. Considering disk reads, a naive worst-case
bound could be the sum of the maximum seek time,
rotational latency, and data access time. According to
the datasheet for the Fujitsu drive [9] the maximum
seek time and rotational latency are 9 and 4 millisec-
onds respectively. Assuming that the disk head can
read as fast as the data rotates underneath the head,
the data transfer time would then be the time spent
rotating the disk while reading the data, which is a
function of the request size. For our experiments, we
chose a 256 KB request size. Since modern drives store
more information on outer tracks than inner tracks,
this chosen access granularity corresponds to half to
sometimes more than one track on various disks. This
means that potentially, a request could take another ro-
tation to access the data, which adds an extra 4 msec,
resulting in a worst-case bound of 17 msec. Clearly,
this estimation is crude and overlooks factors such as

settling time, thermal recalibration, read errors, bad
sectors, etc. However, the aim is to develop a back-of-
the-envelope intuition on the range of expected service
times.

4500

4000 | i b B
3500 |- L R
3000 | I 4

2500 4

count

2000 | 4

1500 |- 4

1000 | 4

500 |- 4

0

" "
0 2 4 6 8 10 12 14 16 18 20
response time (milliseconds)

Figure 2. Observed disk completion times with no
interference.

To validate these coarse estimated service times em-
pirically, we created a task that makes 256-KB disk
requests at uniformly distributed random locations.
Each request’s completion time was calculated and
plotted as shown in Figure 2. The first observation
is that almost all requests were completed within the
predicted 17 msec time frame. However, a few re-
quests exceeded the maximum expected completion
time, the latest being 19 msec. These outliers could be
attributable to any of the above mentioned causes that
were not included in our coarse estimation method. Us-
ing the observed maximum completion time of 19 msec,
it appears that using disks for soft-real-time applica-
tions is quite plausible.

2.2 Handling Background Requests

The above bound, however, does not consider the
common environment with mixed workloads, where
real-time requests and best-effort requests coexist.
This mixture increases the worst-case service comple-
tion time of the disk. On a disk that can accept one
request at a time, this worst-case completion time for a
request could be estimated at twice the maximum com-
pletion time for one request, that is: one time period for
a request being served, which cannot be preempted; an-
other time period to serve the request. However, disks
with internal queues show a very different picture.

Internal queues allow for multiple requests to be sent
to the disk from the device driver without having to
wait for previous requests to be completed. Given sev-
eral requests, the disk’s built-in scheduler is then able
to create a service order to maximize the efficiency of
the disk. This, however, poses a problem with requests
that possess timing constraints, since meeting timing
constraints can be at odds with servicing the given re-
quests efficiently.

Take a scenario with both real-time and best-effort
requests. For real-time requests, the I/O scheduler at
the device driver level should also support real-time
capabilities. That is, real-time requests should be sent
to the disk before any best-effort requests. Without
real-time capabilities, a backlog of best-effort requests
could easily accumulate, resulting in high I/O laten-
cies. While Linux does have an interface to set the I/O
priorities, only the complete fairness queueing (CFQ)
scheduler applies any meaning to the value of these pri-
orities. Using the CFQ scheduler is an option; however,
it incurs additional complexity that further hinders the
understanding of disk drive service times.

2.3 Prioritized Real-Time I/Os are not
Enough

To investigate the latencies associated with using
disk drives, we implemented a basic real-time 1/0O
(RTIO) scheduler in Linux. This scheduler respects
the priorities set by the individual applications. RTTO
performs no request merging. Also, the requests within
individual priority levels are issued in a first-come-first-
All disk-location-based sorting and
merging are handled internally by the disk’s built-in
scheduler.

served fashion.

With RTIO, we designed an experiment to measure
real-time request latencies where two processes gen-
erated 256-KB read requests to random locations on
disk. One is a real-time task that repetitively performs
a read and waits for its completion. The second pro-
cess is a best-effort process that generates up to 450
asynchronous read requests at a time. The idea is to
generate significant interference for the real-time task.
The results for the completion times of the real-time
requests are graphed in Figure 3, using a Fujitsu drive.
The reordering of requests by the disk can cause un-

1200

1000 B

count
2
2
3
L

200 -

0 L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

response time (milliseconds)

Figure 3. Completion times for real-time requests in
the presence of background activity using the RTIO
scheduler.

expectedly long response times. The largest observed
latency was around 1.9 seconds. The throughput, how-
ever, was respectable, at 39.9 MB/sec!. This tradeoff
seems to be favored by the on-disk internal scheduler.
Although ideally one would like high throughput and
low average response time, these two goals are often in
conflict with each other.

Disks with an internal scheduler/queue can signif-
icantly increase the variance of I/O completion times
and reduce their predictability than without. However,
the internal queue does provide some benefits. Not only
does it provide good throughput, but it also allows the
disk to remain busy while waiting for requests to ar-
rive from the device driver queue. Particularly, in the
case of real-time systems, the code for the hard disk
data path might have a lower priority than other tasks
on the system, causing delays in sending requests from
the device driver to the disk, to keep the disk busy.
Without an internal queue, a disk will become idle, im-
pacting on both throughput and response times of disk
requests. The severity depends on the blocking time of
the data path. Even with an internal queue, the prob-
lem of reducing and guaranteeing disk response time
remains. Without addressing these issues it is unlikely

1The maximum observed throughput of the disk on other
experiments in which we fully loaded the disk with sequen-
tial read requests ranged from 94.7 to 73.0 MB/sec, depend-
ing on the cylinder. Clearly, that level of throughput is not
possible for random read requests. A rough upper bound on
random-access throughput can be estimated by taking the re-
quest size and dividing it by average transfer time, seek time
for 20 requests, and rotational delay. For our experiment this is
256 K B/(3msec+ .55msec + 2msec) giving a throughput of 46.1
MB/sec. This is not far from the 40 MB/sec achieved in our
experiments.

anyone would choose to use a disk in the critical path
of real-time applications.

3 Bounding Completion Times

This section describes the various ways in which we
explored bounding the completion times of real-time
requests that were sent to the hard disk. These include
using the built-in starvation prevention algorithm on
the disk, limiting the maximum number of outstanding
requests on the disk, and preventing requests being sent
from the device driver to the disk when completion time
guarantees are in jeopardy of being violated.

3.1 Using the Disk’s Built-in Starvation
Prevention Schemes

Figure 3 shows that certain requests can take a long
time to complete. There is, however, a maximum ob-
served completion time at around two seconds. This
may reflect that the disk is aware a request is being
starved, and it forces the request to be served even
though it is not the most efficient request to serve next.
To test this hypothesis, we created a test scenario that
would starve one request for a potentially unbounded
period of time. That is, one requested disk address
would be significantly far away from the others, and
servicing the outlier request would cause performance
degradation. Better performance would result if the
outlier request were never served. The point at which
the outlier request returns would be the maximum time
a request could be queued on a disk without being
served.

180

160 -

140 |-

120 |

100 -

count

0 L L L A
0 500 1000 1500 2000 2500

response time (milliseconds)

Figure 4. Disk’s observed starvation prevention.

To create this scenario, we designed an experiment
where best-effort requests were randomly issued to only
the lower 20 percent of the disk’s LBAs. At the same
time, one real-time request would be issued to the
disk’s upper 20 percent address space. A maximum of
twenty best-effort requests, and one real-time request,
were permitted to be queued on the disk at one time.
The idea was that the disk would prefer to serve the
best-effort requests, since the access locations are closer
to one another and would yield the best performance.
Figure 4 shows the results of this experiment on a Fu-
jitsu drive. The spike, at just over 2 seconds, appears
to be the maximum request time able to be generated
by the disk. Given this information, real-time applica-
tions that require a completion time greater than 2.03
seconds need nothing special to be done. The on-disk
scheduling will provide 40 MB/sec, while preventing
starved requests. Intriguingly, the spike is cleanly de-
fined, and suggests that the disk has a strong notion
and control of completion times, rather than counting
requests before forcing a starved request to be served.

Should a real-time application require lower com-
pletion time than the disk-provided guaranteed com-
pletion time, additional mechanisms are needed.

3.2 “Draining” the On-Disk Queue

Reordering of the requests currently on the disk’s
queue is not the only source of problems that cause ex-
tended completion times in Figure 3. As on-disk queue
slots becomes available, newly arrived requests can po-
tentially be served before the previously sent requests,
which explains why the completion times are greater
than that of just servicing the number of possible re-
quests permitted to be queued on a disk.

To determine the extent of starvation due to contin-
uous arrivals of new requests, we first flooded the on-
disk queue with 20 best-effort requests, then measured
the time it takes for a real-time request to complete
without sending further requests to the disk. As antic-
ipated, Figure 5 shows that the completion times are
significantly shorter. Contrary to our intuition, more
real-time requests are served with a shorter completion
time, while it seemed the real-time request should have
had an equal chance of being chosen to be the next re-
quest to be served, among all the requests. With an in-

800

700 |

600 [

500

400 |

count

L L L
0 100 200 300 400 500

response time (milliseconds)

Figure 5. Effect of draining requests on the Fujitsu
hard disk.

800

700 |

600 |

500

count

400 |

300

200 -

100 |

.
0 100 200 300 400 500
response time (milliseconds)

Figure 6. Effect of draining requests on the Maxtor
hard disk.

house simulated disk, we realized that with command
queuing, the completion time reflects both the proba-
bility of the real-time request being chosen as the nth
request to be served, as well as the probability of vari-
ous requests being coalesced in ways to be served with

800

700 -

600 [

500

400 |

count

300

200 -

100 H

0

. . .
0 100 200 300 400 500
response time (milliseconds)

Figure 7. Effect of draining requests on the IBM
hard disk.

fewer rotations. In this case, the probability of serving
a real-time request as the last request while taking all
twenty rotations is rather unlikely.

Applying the “draining” mechanism used for this
experiment, we have a new means to bound comple-
tion times. Draining gives the disk fewer and more
bounded choices to make when deciding the next re-
quest to serve. As each best-effort request returns, the
likelihood for the disk to serve the real-time request
increases. In the worst-case, the real-time request will
be served last.

Using the worst-case drain time for a permitted on-
disk queue length, we can bound the completion time
for a real-time request. Note that draining may not
be required, if the deadline is not jeopardized. Also,
once the real-time request is served, the device driver
can continue to send new requests to disk without com-
pletely draining the queue.

While draining can prevent completion time con-
straints from being violated, it relies on knowing the
worst-case drain time for a given number of outstand-
ing requests on disk. Predicting this time can be diffi-
cult. One approach is to deduce the maximum possible
seek and rotation latencies, based on possible service
orderings for a given number of requests. However, the
built-in disk scheduler comes preloaded in the firmware,
with undisclosed scheduling algorithms. Also, our ob-
servations show that on-disk scheduling exhibits a mix-
ture of heuristics to prevent starvations. To illustrate,
Figures 5, 6, and 7 used the same draining experimen-
tal framework on disks from different vendors. From
the diversity of completion-time distributions, the dif-
ficulty of determining the scheduling algorithm is evi-
dent. Further, even if one drive’s scheduling algorithm
is discovered and modeled, this does not generalize well
with the diversity and rapid evolution of hard drives.

Given these issues, simple and general analytical
prediction of the drain time may not be realistic. How-
ever, the maximum drain time can be determined em-
pirically with a relatively high confidence level. To ob-
tain the drain time for a given number of requests x,
an experiment can be performed by sending x random
requests to the disk with a uniform distribution across
the entire disk. The time for all requests to return
is then logged. The graph of the experiment for the
drain time of 20 requests on the Fujitsu drive is shown

350

300 [

250

200 -

count

150

100

0 L L L L L
0 20 40 60 80 100 120 140 160

response time (milliseconds)

Figure 8. Empirically determining the drain time for
20 outstanding disk requests on the Fujitsu drive.

in Figure 8, which will allow us to bound the comple-
tion time for a real-time request with the presence of
19 outstanding best-effort requests.

3.3 Experimental Verification

count

0 20 40 60 80 100 120 140 160
response time (milliseconds)

Figure 9. Draining the queue to preserve completion
times of 160 msec.

To implement the proposed draining policy, our
RTIO scheduler was modified to stop requests being
issued from the device driver to the disk once a real-
time request has been issued from a device driver. If
no real-time requests are present, the scheduler limits
the maximum number of on-disk best-effort requests
to 19. For the experiment, we created two processes.
One process was a periodic real-time task that read
256 KB from a random disk location every 160 msec,
which was also the deadline. The deadline was based on
maximum drain time in Figure 8. The other process
is a best-effort task that continuously issues 256-KB

asynchronous read requests with a maximum of 450
outstanding requests. Figure 9 shows that no comple-
tion times exceeded 160 msec, and no deadlines were
missed. The throughput remained at 40 MB/sec, sug-
gesting that draining the entire queue occurred rather
infrequently.

3.4 Limiting the Effective Queue Depth

While draining helps meet one specific completion
time constraint (e.g., 160 msec), configuring draining
to meet arbitrary completion times (e.g., shorter dead-
lines) requires additional mechanisms. One possibility
is to further limit the number of outstanding requests
on disk. This effectively limits the queue depth of the
disk, thereby reducing maximum drain times. By de-
termining and tabulating the drain time for various
queue lengths (Figure 8), we can then meet arbitrary
completion time constraints (of course subject to the
timing limitations of physical disks).

160 :

140 [,,/
ool / 7

100 [,,,/]

80 |- B

60 |- B

40 4

maximum response time(milliseconds)

20 —

0 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

on-disk queue depth

Figure 10. Maximum observed drain times for on-
disk queue depths.

For instance, to meet the response time constraint
of 75 msec, Figure 10 shows that using a queue depth
of less than or equal to 7 would suffice. We would
like to use the largest possible queue depth while still
maintaining the desired completion time for real-time
I/0 requests. A larger queue length allows the disk to
have more requests to choose from and as a result make
better scheduling decisions. Therefore, in this case, we
would choose a queue depth of 7. The best-effort tasks
must be limited to a queue depth of 6 and one slot will
be reserved for the real-time request.

To verify our tabulated queue length, a similar ex-

count
N
3

o

o

H\Hm
10 20 30 40

0 50 60 70
response time (milliseconds)

Figure 11. Limiting and draining the queue to pre-
serve completion times of 75 msec.

periment was performed as before, with 75 msec as
the period and deadline. While Figure 11 shows that
all deadlines are met as expected, we noticed that the
throughput (not shown) for the best-effort requests
dropped to 34 MB/sec. Interestingly, a 70% drop in
queue length translates into only a 15% drop in band-
width, demonstrating the effectiveness of on-disk queu-
ing even with a relatively short queue.

4 Comparisons

To show the benefits of our approach to bound
I/O completion times, we compared RTIO with the
CFQ I/O scheduler, the default I/O scheduler for
Linux. CFQ was chosen since it is the only standard
Linux scheduler that uses I/O priorities when making
scheduling decisions. Without this support, it is easy to
see situations where a backlog of best-effort requests at
the device driver level may prevent a real-time request
from reaching disks until they are served, in addition to
the requests queued on disk. Given that the combined
queue depth can be quite large, potentially a real-time
request may be forced to wait for hundreds of other
requests to complete.

To get an idea of the worst-case completion times
of real-time requests sent to the disk using the CFQ
scheduler, we repeated similar experiments as in Fig-
ure 3. These experiments provided a continuous back-
log of 450 asynchronous best-effort requests to random
locations on disk, in addition to one real-time request
sent periodically. The request size was again limited
to 256KB. The only difference was to use CFQ rather

count
5
8
T
L

0 L L L L
0 500 1000 1500 2000 2500

response time (milliseconds)

Figure 12. Completion times for real-time requests
using the Linux CFQ I/O scheduler.

than RTIO. Figure 12 shows that real-time completion
times can exceed 2 seconds. Without the limit im-
posed by the disk’s starvation control algorithm, the
real-time response might have been even worse. The
poor real-time performance is because CFQ continu-
ously sends best-effort requests to the disk, even though
there may be real-time requests waiting to be served on
the disk. Since the disk does not discern real-time and
best-effort requests once they are in the on-disk queue,
many best-effort requests can be served before serving
the real-time request. At first it may seem peculiar that
the majority of requests are over 2 seconds, consider-
ing the requests are randomly distributed across the
entire disk. This problem occurs because CFQ sorts
the random collection of best-effort requests, result-
ing in requests being sent to the disk which are likely
to be closer to each other than to the real-time re-
quest. This results in the disk servicing the best-effort
requests prior to the real-time request to obtain the
most efficient order.

Surprisingly, the longer completion times do not
translate into better throughput. We observed 27.3
MB/sec under CFQ, which is 20% to 30% lower than
This may be attributable to
poor interactions between the CFQ scheduler and the
on-disk scheduler.

previous experiments.

5 Related Work

Many researchers have investigated scheduling real-
time and best-effort hard disk requests. Some exam-
ples include Shenoy and Vin [15], Bosch, Mullender and

Jansen [5], and Bosch and Mullender [4]. However, the
majority of such studies do not consider the reorder-
ing effect of the internal disk scheduler. Also, many
— for example, see Reddy and Wyllie [13] and Cheng
and Gillies [6] — require detailed knowledge of the disk’s
internal state, as well as its layout and timing charac-
teristics. Such information is becoming more and more
difficult to obtain with the rapid growth in complexity
and evolution of disk drives.

Reuther and Pohlack [14] and Lumb, Schindler and
Ganger [10]. They have been able to extract disk char-
acteristics and perform fine-grained external schedul-
ing. They show that they can out-perform the on-disk
scheduler in some cases. However, determining such
timing information from disks can be very challenging
and time-consuming, and can be expected to become
more so as disk drives become more sophisticated.

Fine-grained CPU-based disk scheduling algorithms
require that the disk device driver keep accurate track
of the disk’s state. In a real-time system, device drivers
compete for CPU time with hard-real-time application
tasks [18, 3]. Therefore, it may be necessary to schedule
the processing of disk I/O requests by the device driver
at a lower priority than some other tasks on the system,
Interference by such tasks may prevent a CPU-based
disk scheduling algorithm from keeping accurate track
of the disk’s state in real time, even if the layout and
timing characteristics of the disk are known. Also, if
the on-disk queue is not used, there is risk of idling
the disk while it waits for the next request from the
CPU. This may affect the utilization of the disk with
a severity proportional to the amount of time that the
device driver is blocked from executing.

Internal disk scheduling algorithms do not have
these problems, since they are executed by a dedicated
processor inside the disk, with immediate access to the
disk’s internal state and timing characteristics. Even
if the device driver is run at maximum priority, an off-
disk scheduler will have less complete and less timely
information, and less precise control, due to the lim-
ited information provided by the disk I/O interface,
and contention and transmission delays through the
intervening layers of bus and controller.

The need to consider the internal scheduler of disks
has been discussed in [8], which uses a round-based
scheduler to issue requests to the disk. This allows real-

time requests to be sent to the disk at the beginning of
each round. The SCSI ordered tag is then used to force
an ordering on the real-time requests. This approach
prevents interference of requests sent after the real-time
requests. However, it forces all real-time requests to be
present at the beginning of the round. If the arrival of
the real-time requests just misses the beginning of the
round, the worst-case response times can be just under
two rounds. Further, using the ordered tag may impose
a first-come-first-served policy on the disk even when
missed deadlines are not in jeopardy, which reduces the
flexibility of the disk to make scheduling decisions and
decreases the performance.

Another thread of research on real-time disk
scheduling is represented by Wu and Brandt [17]. Not-
ing the increasing intelligence of disk drives, they
have taken a feedback approach to scheduling disk re-
quests. When a real-time application misses it’s dead-
line, the rate of issuing the best-effort requests is re-
duced. While their work provides a way to dynami-
cally manage the rate of missed deadlines, they do not
provide precise a priori response time guarantees.

6 Conclusion

In this paper, we discussed how to use the hard
disk’s internal queue and scheduler without jeopardiz-
ing response time constraints for real-time requests.
While this goal may also be achieved by the operating
system, allowing the disk to make request scheduling
decisions alleviates the burden off the device-driver-
level I/0 scheduling and permits some optimizations
that cannot be achieved in the operating system. Our
explored approaches allow a disk to perform the work
with its intimate knowledge of low-level hardware and
physical constraints. Therefore, the disk can have a
more informed access to its near-future request infor-
mation while reordering requests to realize efficient use
of the disk’s resource. Further, the disk can achieve a
higher level of concurrency with CPU processing, ser-
vicing on-disk requests without immediate attention
from the operating system. This allows high-priority
real-time processes to use the CPU with little impact
on disk performance.

References

(1]
2]

[10]

[11]

[12]

Scsi architecture model - 3 (SAM-3). http://www.
t10.org/ftp/t10/drafts/sam3/sam3r14.pdf, 2004.

RT PREEMPT. http://wuw.kernel.org/pub/
linux/kernel/projects/rt/, 2007. [Online; accessed
04-October-2007].

T. P. Baker, A.-I. A. Wang, and M. J. Stanovich. Fit-
ting linux device drivers into an analyzable scheduling
framework. In Proceedings of the 3rd Workshop on
Operating Systems Platforms for Embedded Real-Time
Applications, July 2007.

P. Bosch and S. J. Mullender. Real-time disk schedul-
ing in a mixed-media file system. In RTAS ’00:
Proceedings of the Sizth IEEE Real Time Technology
and Applications Symposium (RTAS 2000), page 23,
Washington, DC, USA, 2000. IEEE Computer Society.

P. Bosch, S. J. Mullender, and P. G. Jansen. Clock-
A mixed-media file system. In ICMCS ’99:
Proceedings of the IEEE International Conference
on Multimedia Computing and Systems Volume II-
Volume 2, page 277, Washington, DC, USA, 1999.
IEEE Computer Society.

R. M. K. Cheng and D. W. Gillies. Disk manage-
ment for a hard real-time file system. In 8th Furomicro
Workshop on Real-Time Systems, page 0255, 1996.

IBM. 146gb 15k 3.5” hot-swap SAS.
http://www-132.ibm.com/webapp/wcs/
stores/servlet/ProductDisplay?catalogld=
-840&storeld=1&langld=-1&dualCurrIld=
73&categoryld=4611686018425093834&productId=
4611686018425132252, 2007. [Online; accessed
04-October-2007].

K. H. Kim, J. Y. Hwang, S. H. Lim, J. W. Cho, and
K. H. Park. A real-time disk scheduler for multimedia
integrated server considering the disk internal sched-
uler. In IPDPS ’03: Proceedings of the 17th Inter-
national Symposium on Parallel and Distributed Pro-
cessing, pages 124-130, Washington, DC, USA, 2003.
IEEE Computer Society.

F. Limited. MAX3147RC MAX3073RC MAX3036RC
hard disk drives product/maintenance manual.
http://193.128.183.41/home/v3__ftrack.asp?mtr=
/support/disk/manuals/c141-e237-01len.pdf, 2005.

C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock
scheduling outside of disk firmware. In Proceedings
of the Conference on File and Storage Technologies
(FAST), Monterey, CA, Jan. 2002. USENIX.

Maxtor. Atlas 10K V. http://www.darklab.rutgers.
edu/MERCURY/t15/disk/pdf, 2004.

J. Qian and A. I. A. Wang. A behind-the-scene
story on applying cross-layer coordination to disks
and raids. Technical Report TR-071015, Florida State

wise:

10

(13]

[14]

(15]

[16]

(17]

(18]

University Department of Computer Science, Florida,
Oct. 2007.

A. L. N. Reddy and J. Wyllie. Disk scheduling in
a multimedia 1/O system. In MULTIMEDIA ’93:
Proceedings of the first ACM international conference
on Multimedia, pages 225-233, New York, NY, USA,
1993. ACM Press.

L. Reuther and M. Pohlack. Rotational-position-aware
real-time disk scheduling using a dynamic active sub-
set (DAS). In RTSS ’08: Proceedings of the 24th
IEEE International Real-Time Systems Symposium,
page 374, Washington, DC, USA, 2003. IEEE Com-
puter Society.

P. J. Shenoy and H. M. Vin. Cello: a disk scheduling
framework for next generation operating systems. In
SIGMETRICS '98/PERFORMANCE ’98: Proceed-
ings of the 1998 ACM SIGMETRICS joint interna-
tional conference on Measurement and modeling of
computer systems, pages 44-55, New York, NY, USA,
1998. ACM Press.

B. L. Worthington, G. R. Ganger, Y. N. Patt, and
J. Wilkes. On-line extraction of SCSI disk drive pa-
rameters. In SIGMETRICS ’95/PERFORMANCE
’95: Proceedings of the 1995 ACM SIGMETRICS
joint international conference on Measurement and
modeling of computer systems, pages 146156, New
York, NY, USA, 1995. ACM Press.

J. C. Wu and S. A. Brandt. Storage access support
for soft real-time applications. In RTAS ’04: Pro-
ceedings of the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’04),
page 164, Washington, DC, USA, 2004. IEEE Com-
puter Society.

Y. Zhang and R. West. Process-aware interrupt
scheduling and accounting. In Proc. 27th Real Time
Systems Symposium, Rio de Janeiro, Brazil, Dec. 2006.

