

1

Tracing Faults in MANETs Using Symmetric
Authentication Chains*

Eric Hokanson, Department of Computer Science, Florida State University, Tallahassee, Florida
32306, USA

Abstract—Before Mobile Ad Hoc Networks (MANETs)
become a mainstay in computing applications, many security
issues need to be addressed. One such issue is the insider threat.
How does one find and effectively neutralize a malicious node?
This paper outlines a plan for improving a proposed Byzantine
tracing algorithm by using keyed message authentication codes
(HMACs) in place of digital signatures. An HMAC is
computationally more efficient and therefore less of a strain on a
node’s limited resources. Tracing algorithms allow intermediate
nodes to be more proactive in finding and hopefully neutralizing
malicious nodes.

Index Terms—Ad hoc networks, Byzantine faults, fault-
tracing.

I. INTRODUCTION
echnological advances have brought ad hoc networks
closer to reality and next generation computing
applications are expected to rely heavily on this new type

of network infrastructure. Unfortunately, before ad hoc
networks can be successfully deployed, many security issues
must be addressed. One such issue includes insider threats. A
malicious node on a routing path may try to redirect packets,
perform a denial of service attack by engaging a node in
resource consuming activities such as routing packets in a
loop, or may simply just drop the packet altogether. The
problem: how does one find such malicious faults and then
how does one effectively neutralize them?

Tracing malicious (insider) nodes in ad hoc networks is not
as easy it appears. One such algorithm proposed in [1] is
clever but computationally expensive; finding the fault in
log(n) time. Additionally, the algorithm uses past
performance to find the insider and assumes that nodes do not
conspire. This Bayesian approach will not work with nodes
that exhibit Byzantine behavior. The tracing algorithms in [3],
[4] address the weaknesses of [1] much more efficiently thus
making it hard for a malicious insider to avoid detection by
acting non-maliciously when the insider “knows” it is being
investigated.

The goal of this paper is to improve the performance of the
tracing algorithm presented in [3] by using a keyed message
authentication code (HMAC) instead of a digital signature

scheme. In particular, we wish to emulate asymmetric
authentication in a purely symmetric setting similar in scope
to [11] but at a cheaper cost. Symmetric key authentication is
computationally more efficient than digital signing and
therefore less of a drain on a node’s resources. Some public
key systems may require longer key lengths than symmetric
systems for an equivalent level of security (e.g. see [12])
thereby making the computation expensive by an order of ten
times. Weaker sensor devices that can only use hash
functions but no encryption are not able to take advantage of
the optimal tracing algorithm in [3]. Never the less, we show
that weaker ad hoc devices may still employ a Byzantine
tracing program using symmetric authentication chains.

* This material is based on work partly supported by
the NSF grant DUE 0243117.

II. A PROPOSED FAULT TRACER USING SYMMETRIC
AUTHENTICATION CHAIN

We propose to build on the optimized Byzantine tracing
algorithm outlined in [3] by replacing the digital signatures of
the packets, acks (acknowledgements) and the frpts (fault
reports) with HMACs [2] in the following way: the source
will send a packet (pktsd) authenticated with a keyed message
authentication code, using a shared key between the source
and the destination. It is assumed a routing algorithm such as
[7] or [10] is used, but most routing algorithms used in ad hoc
networking can be extended to use our proposed scheme.
Furthermore, this tracer is used during the communication
phase over an established path (established during the route
discovery phase) such that two honest nodes adjacent to one
another are neighbors. There is no such assumption for
dishonest nodes.

The Destination, when receiving the packet from source s,
constructs an acknowledgement (acksd) also using HMACs.
The acksd contains important information regarding the
transaction between the source and destination including a
session number and the hash of the packet. The destination
then sends acksd to the intermediate nodes for delivery back to
the source.

The intermediate node(s), in addition to forwarding packets
from source to destination, keep a record of the contents of
pktsd and acksd (their hashed values) for future validations in
the event of a fault.

If the source’s timer expires before receiving a valid acksd,
then the source constructs a probe to find the origin of the
fault. This probe is chain authenticated and contains a
payload identifying the correct pktsd and acksd, which the

T

2

intermediate nodes use to compare with their record of the
transaction between the source and destination. The aim of
the probe is to hone in on the guilty party and set off a chain
of events whereby the nodes on the path will issue a fault
report (frpt), which is also chain authenticated in a similar
fashion as the probe, naming the malicious node. How the
probe and the chain authentication scheme works will be
described in the next section.

III. THE OPTIMISTIC SYMMETRIC KEY TRACING
ALGORITHM

In this section we define and discuss more precisely how
the Optimistic Symmetric Key Tracing (O-SKT) algorithm
works. Before doing so, it is important to note that when a
node has been located and reported as malicious by another
node, it is not possible to tell which node is actually faulty. In
our tracer, each time a node is reported as malicious, both the
reporting node and the reported are treated as malicious and
eliminated. In the worst case, two innocent nodes are
sacrificed for every traitor; otherwise one non-faulty node is
forfeit for one faulty node.

The adversary can redirect, drop, corrupt or inject packets
into a MANET sending them to any node in the network G =
(V, E). He may eavesdrop on all communications no matter
the network structure; he may even request any node under his
control to perform any action. The adversary has complete
knowledge of the MANET making her more powerful than
any other adversary models for ad hoc networks, including the
Byzantine adversarial model [8]. The adversarial threats
model assumed in our proposed solution is based on [6]. For
this, the adversary can corrupt any node set belonging to a
set , that is monotonic, i.e., for which, if V2⊆Γ Γ∈X and

 then . Г is called an adversary structure.
This model clearly extends the Byzantine threats model for
which

XX ⊂′ Γ∈′X

}:{ kXVX ≤⊂=Γ .

A. Formal Definition of the O-SKT Protocol
The O-SKT is an optimistic1 malicious node tracing

program based on the work done in [3]. With this algorithm
there is no additional cost when there are no faults. When a
fault occurs, the cost to locate that fault is one tracing round
and two n-chained hash message authentication codes
(HMAC), where n is the number of symmetric keys. This
process resembles onion layered chaining [13], however for
HMACs we have chained authentication.

The same assumptions in [3] and [4] hold for this scheme,
i.e., we assume that all HMACs are unforgeable and the
adversary is polynomial bounded in the security parameter of
the HMACs. We also assume that any security associations
between the nodes have been established using some external
Trusted Third Party (TTP) and that all keys required for our
protocol have been distributed amongst the nodes. The
network is subject to medium constraints such as weak

synchrony (the time for a single transmission to be received is
bounded by a constant) and promiscuity (a packet transmitted
by a node will be received by all its neighbors). Additionally
the source and destination are trusted, and the route generated
by the route discovery phase of the routing protocol, is a
sequence of nodes s = x

1 Optimistic algorithms have optimal performance when there are no faults.

1, x2, …, xn = d for which xi, xi+1 are
neighbors if both are not faulty for i = 0, 1, …, n. There are
no assumptions for pairs xj, xj+1 if one is faulty.

The impossibility of dealing with man-in-the-middle relay
attacks (e.g. see invisible node attack [9]) during the route
discovery phase of any routing algorithm is well known in the
literature. To the best of our knowledge, this attack can only
be addressed with out-of-system mechanisms such as temporal
or location certification [3]. Determining if two adjacent
nodes are real neighbors is not as simple as it appears and to
date, there is no known route discovery algorithm that can
guarantee immediate delivery of a packet in the presence of a
general adversarial model [3].

Our proposed tracing program will only work during
communications over an established route – routes for which
honest nodes are actual neighbors. The following notation
will be used:

pktsd = [s, d, sn, seqs, data [s, d, sn, seqs, data]sd], a packet that
has been authenticated by s with an HMAC [2] using the
shared secret key of s and d. The packet’s payload contains
identifiers s, d, a session number sn for the tracing algorithm
(unique to each session), the sequence number seqs for pktsd.

seqs and timersd are counters for s; timeout depends on the
time taken for a round trip from s to d.

acksd = [s, d, sn, seqs [s, d, sn, seqs]sd], an acknowledgement of
receipt of pktsd authenticated by d with an HMAC whose key
is the shared secret key of s and d.

probes is a chained HMAC probe using the keys x0xi that the
source s (node x0) shares with some ith node (xi) on route s =
x0 → x1 → x2 → ... → xn = d; it is defined recursively as:

Hs(z, 1) = z, h0,n, h0,n-1, …, h0,1 (1)
Hs(z, 2) = z, h0,n, h0,n-1, …, h0,2 (2)

 M
Hs(z, i) = z, h0,n, h0,n-1, …, h0,i (i)

 M
Hs(z, n) = z, h0,n (n)

where z is the payload containing: (s, d, sn, seqs, hash(pktsd),
hash(acksd)), and hash is a cryptographic hash, i.e. MD-5 or
SHA-1 [12]. The probe is created by s, hashed in a chained
manner as follows:

),,,(1,0,0,0 ,0 += inxi hhzhh
i

K , where is an

HMAC with the shared key of x

1,,1 −= ni K ih ,0

0 and xi, and)(,0,0 zhh nn = .

3

 The authentication chain, H0(z, 1), is passed to node x1 who
will verify the probe, strip off tag h0,1 and send the remaining
chain (2) to node x2 where the process repeats until the
destination d = xn gets H0(z, n-1) and strips it off to get H0(z,
n).

frpty is a fault report created by some node y who observes a
fault and is hashed in a similar recursive fashion as the probe:
Hy(Z, t) = Z, h0,y, h1,y, … , ht,y where z is the payload
containing the identifiers: (s, d, y, succ(y), [xi or NULL], sn,
seqs); succ(y) is the successor node blamed for failure by y.
The [xi or NULL] field is used in the event a node creates a
malicious fault report to cause some other node further up
stream to falsely accuse an innocent neighbor. A node who
receives an invalid or corrupt fault report would create a new
fault report naming the creator of the malicious fault report
(xi) in addition to itself and its successor.

timerxy, bound on time taken for a packet going round trip
from node x to y.

B. The O-SKT Protocol Description
In this section, we offer a simple example with several

scenarios to illustrate how the O-SKT algorithm will work in a
mobile ad hoc network and how it adapts to various situations
when an adversary is present. Let source = s, a, b, c, x, y, d =
destination be the path discovered during the route discovery
phase of a routing protocol. Note that all non-faulty nodes in
this path should be neighbors. We acknowledge that not all
adversary nodes may be traceable; however, if the route
discovery phase produces a legitimate route as described in
the previous section, then our tracer will succeed in either
sending a packet to a destination or trace at least one faulty
node.

1) Case 1 -- Everyone follows the rules (The optimistic
round): Source s sends a packet authenticated by using an
HMAC with the symmetric key it shares with the destination d
(pktsd) and sets its timer (timersd). The timer is set to allow for
enough time for a round trip: the number of hops times an
upper bound, τ, on the time allocated for each hop (figure 1).
Each node along the path to d stores a record of the
transaction, i.e. the hash of the contents of pktsd, and forwards

pktsd along to its successor. These nodes only keep the
records for a brief period of time, expunging them when either
the communication phase between the source and destination
have concluded successfully, or after a faulty node has been
traced. When destination d successfully receives pktsd, it
constructs acksd – an acknowledgement to send to s. Each
intermediate node between s and d stores a hash of the acksd
contents before passing acksd to its predecessor. The acksd
makes it back to s before timersd lapses, thus ensuring s its
packet reached d without incident.

2) Case 2 -- Source receives neither a valid ack nor frpt
from destination (The tracing round): source s sends an
authenticated HMAC packet pktsd to destination d but along
the way a malicious node (c) drops pktsd (figure 2) or corrupts
it. The source’s timer will expire since it will not receive a
valid acksd from the destination d. As a result, s constructs
probes (the construction process is explained later in this
section) with the payload [s, d, sn, seqs, hash(pktsd), hash(
acksd)]. Note that the source has all the ingredients necessary
to construct by itself the acknowledgement it should have
received for the dropped packet.

Upon receipt of the probe, each intermediate node validates
and compares the contents of the probe with its own record of
pktsd and acksd. If pktsd matches but the acksd does not, which
is the case in our example because pktsd was sent but no acksd
was received, the intermediate node sets its timer (round-trip
from its position on the route to the destination) and forwards
the probe to its successor who repeats the validation and
examination process. In this protocol the nodes set timers
with decreasing expiration times so that a fault report is only
issued by a non-faulty node when its successor is faulty.

When the probe is forwarded to a node that has no record of
both pktsd and acksd (neither the packet nor the
acknowledgement will match the contents of the

probe), it does not pass the probe on and remains silent (see
figure 2) causing an upstream node’s timer to expire (timerbd
in our example). Upon timeout, node b constructs an frptb
blaming c as the packet dropper and passes the fault report
back to s. On the way to s, each intermediate node validates
the frptb before passing it on to its predecessor. If the frpt is

s a db x y

timersd
expires pktsd pktsd

c

timersd
for probes

probes probes

timerad timerbd

probes

frpt constructed by b when
timerbd timesout

frptb frptb

Fig. 2. A tracing round in which malicious node c drops a packet en route
to d. When the timersd lapses, it constructs a probe to flesh out the faulty
node. Each subsequent node on the path validates and examines the
probe before forwarding it on. The node whose record neither matches
the probe’s packet and acknowledgement, holds the probe and remains
silent. Eventually the timerbd expires and it creates the frptb blaming c for
the fault.

s a db c x y

timersd pktsd pktsd pktsd pktsd pktsd pktsd

acksd acksd acksd acksd acksd acksd

Fig. 1. A round of the Optimistic Symmetric Key Tracing algorithm when
there are no faults. Source s sends a packet to destination d successfully.
On receipt, destination d creates and returns an acknowledgement to s.

4

found to be invalid, then the node who first “notices” the
invalid report constructs an frpt of its own naming its
successor and the creator of the suspect frpt as malicious or
faulty. The next case will demonstrate what happens when a
malicious node attempts to frame an innocent node.

Once the fault report reaches s, the source will know a
problem exists with either node b or c. Both nodes are thrown
out because non-repudiation is not possible with a symmetric
system (b could be lying).

Note that if node c had simply dropped the probe instead of
passing it on, c would have signed its own “death warrant” as
the timer of its predecessor would still elapse causing a frpt to
be constructed and sent back to s. The above example (figure
2) illustrates that even if a malicious node “acts” innocent and
cooperative when it is “aware” of an investigation, it still will
be found out. A similar scenario will play out if node c
corrupted the packet instead of dropping it. In particular,
node x (and every remaining node on the route to d) would not
have the correct record of the packet so it would hold the
probe and remain silent (see table 1).

The authentication chain of the probe is illustrated in figure
3 and is based on the routing example depicted in figure 2.
When s receives no valid ack or frpt, it builds the probe

u
s
r
h
i
k

w
s
s
s
a
l
a
a
o
f

match its record to trace node(s) colluding with a malicious
node and to deal with situations when an acknowledgement is
dropped, corrupted, or forged. Table 1 outlines when a node
forwards or does not forward a probe.

If for some reason, the probe is found invalid by a node (it

has been tampered with), then that node will not forward the
probe. The node upstream of the tampering node will
construct a frpt naming the guilty node once its timer expires.

After a probe stops, the first upstream node whose timer
lapses, constructs the frpt in a similar authentication chain as
the probe was constructed. In our previous example (figure
2), the probe stopped at node x. Since node b did not receive
a valid frpt it constructs its own frptb as shown in figure 4(a):

TABLE 1
POSSIBLE STATES DURING PROBING ROUND

Packet Acknowledgement Action Node Takes
Matches Matches Do not forward;

remain silent
Matches No Match Forward probe to

successor
No Match Match Can not happen
No Match No Match Do not forward;

remain silent
Actions taken when a node receives a probe. The probe is only forwarded
if its packet matches the node’s packet record but the acks do not match.

[sn, b, succ(b) = c, NULL], hsb(1), hab(2)
1

2

[sn, b, succ(b) = c, NULL], hsb(1), hsa(2)
1

2

(a)

(b)
[sn, hash(pktsd), hash(acksd)], hsd(1), hsy(2), hsx(3), hsc(4), hsb(5), hsa(6)
1

2

3

4

5

6

Fig. 3. The authentication chain linking of the probe based on the
example of figure 2. The payload is abbreviated to save space in this
illustration and is authenticated in a chained fashion.

sing successive symmetric key HMACs starting with the
hared key between s and d, and working back by hashing the
esulting payload with node s and y’s shared key, followed by
ashing that result with key sx and so on until the entire probe
s hashed with s’s immediate successor’s shared symmetric
ey (node a in the illustrated example).

Once the probe is constructed, s sends it to its successor (a)
ho takes section 6 (see figure 3) and hashes it with the

hared key (sa). If the result matches a’s tag, hsa(6), node a
trips away its tag and forwards the remaining probe to its
uccessor only when the probe’s contents match pktsd and not
cksd. Each subsequent node will validate and peel away a
ayer of the probe before forwarding it on. As mentioned
bove, the probe stops when both the packet and the
cknowledgement of the probe do not match a node’s record
f the packet and acknowledgement. A node will also not
orward a probe if both the packet and acknowledgement

Once the frpt is constructed, it is then sent back to s.

Continuing with our example, node a receives and
authenticates section 2 of frptb (figure 4(a)). If it matches
hab(2), node a strips off its tag, hashes the remaining fault
report (section 2) using the shared key between a and the
node preceding a (thus committing node a to the validity of
the frpt it received from b as shown in figure 4(b)), and sends
the new tag along with the remaining frpt to its predecessor
who repeats the verification process. It is necessary for each
node to hash the remaining fault report before passing it on to
its predecessor; unless a node authenticates an frpt it can never

Fig. 4. The authentication chain of fault report frptb. The payload is
abbreviated to save space. (a) the fault report created by node b. (b) the
fault report after validated by node a with a’s commitment tag.

5

be certain that the report came from its neighbor downstream
(a malicious node could slip in a bad frpt). Eventually, the frpt
wends its way back to s who will know the faulty node(s).

On the other hand, if a node receives an invalid frpt from its
successor, then that node constructs an frpt of its own naming
its successor and the creator of the received frpt. An frpt is
only forwarded when it is valid; a malicious node would have
to tamper with the frpt then pass it to its predecessor or create
a malicious frpt to induce some node upstream into falsely
accusing another innocent node as explained in the next case.

3) Case 3 – The Rogue Reporter Attack: Suppose malicious
node c creates an frpt in such a way that node a can not
validate it upon receipt. For example, node c can create a fake
tag using the symmetric key between itself and node a (see

figure 5). Node b validates the report, hashes section 2 using
its symmetric key with node a, and passes it along to a, who
will take the contents in section 2 and attempt to validate it
with its HMAC. Since hac(2) ≠ hac(2)′, node a will generate
its own fault report but this fault report will contain an extra
identifier naming the original creator of the malicious frpt (i.e.
s, d, a, succ(a) = b, c, sn, seqs). Figure 6 illustrates the rogue
reporter scenario.

C. Formal O-SKT Algorithm and Proof
In this section we formally demonstrate that the O-SKT

tracing algorithm, illustrated in figure 7, will succeed in either
sending a packet to a destination or trace at least one faulty
node.

Let the routing path from source s to destination d be:
 with the following notations and

definitions:

dxxxxs nn == − ,,,, 110 L

• Let for t
tt

t
kt

t
k

t
k

t
kk hhhhataH ,1,1,1,0 ,,,,,),(−−= L

nkt <<≤1 ,

• and 0)0,(kk aaH =

• .1,,,,,),(,1,1,0 nkhhhakaH k
kk

k
k

k
k

k
kk <≤= −L

• We have:
o is a failreport of node x),(taH k k if

where b is either xbxa k
t
k = k+1 or xk+1xq for

some tq <≤1 .
o is authenticated by node x),(taH k t if:

.)(,1,1,0,1,1
t

kt
t
k

t
k

t
ktt

t
tt hhhahh −−− = L

o is a valid failreport if: it is a
failreport of node x

),(taH k

k with
; otherwise it is

not valid.
)(,2,1,0,1,1

t
kt

t
k

t
k

t
kkt

t
kt hhhahh −−− = L

• is correct if: , where b is either
x

),(kaH k bxa k
t
k =

k+1 or xk+1xq and is valid for all),(taH k kt ,,1K= ;
otherwise it is incorrect.

In the routing protocol’s tracing round:
1. If an intermediate node does not receive an tx

 Source s. Set seqs = 0. While connection to d has not terminated do:

1. Set timers and send pktsd to succ(s).

2. If acksd is received before timeout then set seqs = seqs + 1

3. Otherwise:

a. Set timersd and send probs to succ(s).

b. If a valid frpty is received before timeout then y, succ(y), or creator of a previous bad frptxi, xi,

is malicious.

c. Else succ(s) is malicious.

Intermediate node x. When pktsd is received:

1. Send pktsd to succ(x).

2. If a matching acksd is received then send acksd to prec(x).

3. Else if a valid probs is received then

a. Set timerxd and send probs to succ(x).

b. If a valid frpty is received before timerxd timeout then send frpty to prec(x).

c. Else construct and send frptx to prec(x).

Destination d. When a valid pktsd is received:

1. Construct and send acksd to prec(d).

Fig. 7. The optimistic symmetric key tracing algorithm.

[sn, xi, succ(xi) = xj, NULL], hsc(1), hac(2)′, hbc(3)

1
2

3

Fig. 5. A fault report frpt created by malicious node c that purposely
created a faulty tag, h (2)′ When node a receives the frpt, it will hash the
contents of section 2 with h (2) and see it does not equal the tag received
from c.

c

ac

ac

s a db x y

timersd
expires pktsd pktsd

c

timersd
for probs

probes probes

timerad timerbd

probes probes

a malicious frpt constructed
by c attempting to frame b

frptc

frpta

frptc

a's tag does not match frpt
contents. a creates an frpt
naming b and c

Fig. 6. A case where a malicious node creates a fault report framing an
innocent node.

6

authenticated failreport from 1+t before timeout, then

tx computes and sends to x a correct failreport:

),(tat with 1+= tt
t
t xxa .

rmed tx

x

1−t

2. receives an authenticated

3. If an in iate node

heorem For any Γ-adversary structure, the optimistic O-

roof. It is obvious that when all nodes obey the protocol,

s = x0 has not received a valid

ase A: s does not receive an authenticated failreport from x1

ase B: s did receive an authenticated failreport

Case B1 (taH ith b either xt+1 or

hh t =

ave validate

ase B2: is not valid. If x1 were not faulty, the

. So xt must h

t receive an acknowledgement
e

at O-SKT is not vulnerable to malicious

IV. USING TESLA CHAINS
There are oth n mechanisms

em

NS AND FUTURE WORK
We thm

ba

H
If an inte iate node
and valid failreport)1,(+taH from 1+tx before
timeout, then tx com sends to 1−t the
authenticated failreport:

),(taH k with 1+= t
k

t
k aa and

termed tx receives an authenticated

k

putes and x

1,,0,1
,, −== + tihh t
ki

t
ki K .

failreport)1,(+taH k from 1+tx that is not valid before
timeout, th putes and sends to 1−tx a correct
failreport:),(tH tt with kttt xxxa 1+= .

en tx com

a 2

T
SKT communication routing algorithm succeeds in either
sending packet pktsd to destination d, or tracing at least one
faulty node.

P
destination d will receive pktsd and s will receive acksd.
Secondly, if s gets a valid acksd, then because we assume that
HMACs are unforgeable and because d will only construct a
valid matching acksd if the received pktsd is valid, d must have
received pktsd.

Suppose the source
acknowledgement acksd from x1 before timeout and that s has
sent a probes downstream. We distinguish two cases.

C
by timeout. Then x1 is faulty.

C

1
,0

1)1,(ttt haaH = from x1, for some 1 ≤ t < n.

)1, is valid. Then bxa tt =1 w:

xt+1xq and)(1
,0 at . Now on node (other than x1

,0 t
ly one 0)

that could h d 1
,0

1
tt ha is xt. Therefore one of xt, xt+1,

xq is faulty.

C)1,(taH
failreport it received from x)2,(taH 2 would have been
authenticated and valid (otherwise x1 would have sent a
correct failreport; this is not the case since we are assuming
that)1,(taH is not valid). This means that: bxa tt =2 for some

string d)(1
,0

1
,1

2
,1 tttt hahh = . Now only ld have

validated 1
,0

1
tt ha ave validated a failreport with

an invalid com onent. This means that x

 b an xt cou

2 Justification: If a non-faulty xt+1 did not receive an authenticated
failreport H(ak, t+2) that is valid, then xt+1 would have sent to xt a correct
failreport H(at,t). This is not the case. It follows that either xt+1 is faulty, or
that H(ak, t+2) is valid and that xk validated a failreport with an invalid
component. So either xt+1 is faulty, or xk is faulty.

p t is faulty. Therefore
either x1 is faulty or xt is faulty.

We conclude that if s does no
b fore timeout for a packet pktsd is sent to d, then depending
on the failreport that s has received, either x1 is faulty (Case
A), or one of xt, xt+1, xq is faulty (Case B1), or one of x1, xt is
faulty (Case B2). ⁪

Remark. Observe th
timing attacks under our weak synchrony assumption.
Suppose node xi has set its timer ti but has not received
anything at timeout. Then node xi+1 must have set its timer at
ti-2τ and there are two cases: xi has received something before
timeout. Then xi+1 is faulty. Else xi+1 would have issued a
fault report. Therefore, we conclude that if the timer of xi
timed out without xi having received a fault report then xi+1 is
faulty.

Once again we reiterate that the O-SKT is a tracing
algorithm for communication protocols over an established
path in which honest nodes are actual neighbors. So far there
are no effective mechanisms to trace faulty nodes during a
route discovery phase thereby preventing man-in-the-middle
relay attacks. Only out-of-system mechanisms (temporal,
locational, or a combination of both) can possibly counter this
type of attack.

er symmetric chain authenticatio
ploying one-way hash chains such as TESLA [11] that

could be incorporated into our proposed tracing algorithm.
However, there are no additional savings by doing so.
TESLA suffers from the same non-repudiation issues and, in
the worst case, will still sacrifice up to three nodes for each
malicious attack during the tracing round. The only way to
reduce the number of blamed nodes is to use a public key
tracer such as [3], and then the number of blamed nodes will
be reduced to two.

TESLA was designed for networks that deal with masses of
broadcast data, which MANETs typically do not have. The
fault report, once created by the originator, is passed to its
predecessor who validates and then commits to the validity of
the report before forwarding it on. In fact, it may cost more to
use TESLA due to the multiple recursive hashing mechanisms
necessary to execute the protocol. Additionally, there would
be delays in forwarding the fault reports as each intermediate
node would have to wait for the originator to reveal the key
necessary for validation.

V. CONCLUSIO
propose an optimistic Byzantine tracing algori

sed on an existing and sound protocol. Instead of using
digital signatures, we take advantage of the computational
efficiency of HMACs. This algorithm is appropriate for ad

7

hoc networks that can not employ encryption or public key
mechanisms and uses only hash functions. The algorithm is
guaranteed to successfully deliver packets from source to
destination or, in the event of a problem, trace at least one
faulty or malicious node.

In this work we have made several assumptions: namely,
that some TTP [12] distributes the secret shared keys among
th

n, the adversary will pay for
ea

ource node receives a fault report, it
kn

 once they are fleshed out. Do we neutralize
th

MENT
I would like to thank Dr. Mike Burmester, my major

professor, for pport in this
pr

e nodes in the MANET, and that the participating nodes will
not divulge their secret keys.

How will our proposed tracing algorithm stand up to a
Sybil attack [5]? In our desig

ch successful attack and as long as the adversary is limited
to corrupting no more than k nodes such that k < n, the total
number of nodes in the network, then the MANET should
converge to fault free status. However, if the adversary is able
to recruit another k nodes, then another set and so on, the
adversary will eventually win. More research is needed to see
if our symmetric tracer can effectively deal with such attacks.
Furthermore, our proposed tracer is at the mercy of the route
discovery mechanism employed. There is no such thing as a
secure routing algorithm ensuring a route is free from man-in-
the-middle relay attacks in the general adversary model [3].
Clearly more work needs to be done in this area to prevent
malicious nodes from fabricating their positions to one
another and especially prevent them from being transparent in
a communications route.

In future works trust models must be developed to deal with
fault reports. When the s

ows that up to three nodes may be bad. How, then, does the
source relay to the rest of the network its adverse experience
with these blamed nodes? Do the remaining nodes take the
source’s information at face value or should there be a
mechanism whereby the source must commit to the validity of
its report? How do we prevent an adversary from tampering
with the reports in order to falsely accuse an otherwise
innocent node?

We must also address the issue of what to do with
Byzantine nodes

em? Do we revocate them? If so how? Several ideas
include: cordoning the bad guys into a separate area much like
a “holding cell”; or revealing the malicious node’s secret key
thus marking the node as untrustworthy and essentially
excommunicating it from the network.

VI. ACKNOWLEDGE

his continued guidance and su
oject. Also, I would like to thank Dr. Tri Van Le for his

helpful discussions and consideration. Additionally, I want to
acknowledge my colleagues in the graduate Mobile Ad Hoc
Networks course (Florida State University, spring semester,
2006).

REFERENCES
[1] B. Awerbuch, D. Holmer, C. Nita-Rotaru and H. Rubens. “An On-

Demand Secure Routing Protocol Resilient to Byzantine Failures”, ACM
Workshop on Wireless Security (WiSe ’02), September 2002.

[2] M. Bellare, R. Canetti, H. Krawczyk. “Keying Hash Functions for
Message Authentication,” Advances in Cryptography – Crypto 96
Proceedings, June 1996.

[3] M. Burmester and Tri Van Le. “Security Issues of Mobile Ad Hoc
Networks,” accepted to appear in Network Security, ed. S. Huang, D.
MacCallum and Ding Zhu Du, Springer, 2006.

[4] M. Burmester, Tri Van Le, and M. Weir. “Tracing Byzantine Faults in
Ad Hoc Networks,” Proc. Computer, Network and Information Security
2003, (2003).

[5] J.R. Douceur, “The Sybil Attack,” Proc. 1st International Workshop on
Peer-to-Peer Systems – IPTPS’02, 2002.

[6] M. Hirt and U. Maurer, “Player Simulation and General Adversary
Structure in Perfect Multiparty Computation,” Journal of Cryptology,
Vol 13 No 1, pp. 31-60, 2000.

[7] D. B. Johnson and D. A. Maltz. “Dynamic Source Routing in Ad Hoc
Networks,” Mobile Computing, ed. T. Imielinski and H. Korth, Kluwer
Academic Publisher, pp. 152 – 181, 1996.

[8] L. Lamport, R. Shostac, and M. Pease, “The Byzantine Generals
Problem,” ACM Transactions on Programming Languages and Systems,
Vol 4 No 2, pp. 382-401, 1982.

[9] J. Marshall, V. Thakur and A. Yasinsac, “Identifying Flaws in the
Secure Routing Protocol,” Proc. 22nd International Performance,
Computing, and Communications Conference (IPCCC2003), pp. 167-
174, April 9-11, 2003.

[10] C. E. Perkins and E. M. Royer. “Ad Hoc On-Demand Distance Vector
Routing,” IEEE Workshop on Mobile Computing Systems and
Applications, pp. 90 – 100.

[11] A. Perring, R. Canetti, J.D. Tygar and D. Song. “The TESLA Broadcast
Authentication Protocol,” Cryptobytes, Volume 5, No. 2 (RSA
Laboratories, Summer/Fall 2002), pp. 2-13, 2002.

[12] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source
Code in C, 2nd Ed., John Wiley & Sons, New York, 1996.

[13] P. F. Syverson, D. M. Goldschlag and M. G. Reed. “Anonymous
Connections and Onion Routing,” IEEE Symposium on Security and
Privacy, 1997

