
 1

Trust in Mobile Agent Systems

J. Todd McDonald1, Alec Yasinsac1

1 Florida State University, Department of Computer Science, Tallahassee, FL 32306-4530
{mcdonald, yasinsac}@cs.fsu.edu @cs.fsu.edu

Abstract. The protection of mobile agent systems continues to be an active area
of research that will enable future applications to utilize this paradigm of
computing. Agent systems and mobile applications must balance security
requirements with available security mechanisms in order to meet application
level security goals. We pose models for viewing security in application
contexts that aid the mobile agent system design process. Our models relate
security attributes for principals in mobile architecture to support reasoning
about applicable security requirements, trust expression among principals, and
mechanisms for protection.

1 Introduction
Mobile agents are autonomous programs with the capability of changing their
location execution through a series of migrations and corresponding state updates.
Applications based on the mobile paradigm must be able to specify and enforce
security requirements given the unique interactions among hosts, static agent
components, and dynamic agent components. Traditionally, mobile agent security has
focused on protection mechanisms that keep malicious parties from altering the agent
and on protection mechanisms that keep malicious agents from harming other parties.
Several surveys have been written to categorize and describe the taxonomy of attacks
against agent systems and the mechanisms that are available to combat those attacks
[16]. Little has been done in research to bridge the gap between requirements, trust
expression, and protection mechanisms at an application-centric level.
 Mobile agents, despite many challenging security issues, are seen as a key concept
to support future distributed applications based on roaming entities in large network
infrastructures [18]. They are ideal as a programming paradigm to conceptualize
operations in pervasive computing scenarios, but they still require a great deal of
maturity in the area of security before being successful as an application development
approach. In order to realize the vision for “anytime-anywhere computing” [20] or
“sea-of-data” applications [29], the foundations for modeling secure mobile agent
operations need to be established first. These foundations include models that express
agent interactions, security requirements, and application trust properties in mobile
contexts.
 When dealing with application development, trust is used frequently to understand
and define security requirements. Trust formulation has been given considerable
thought both in the world of distributed networking applications [711] and mobile
agents [1, 1221, 2529, 3133, 35]. Mobility as an application feature complicates
trust because a host receiving a mobile agent for execution must make distributed
trust decisions in the face of little or no prior knowledge. Likewise, agents that act on
behalf of users must evaluate trust relationships with agent execution environments

 2

and support a wide range of possible trust scenarios. Applications based upon mobile
agents must blend the security requirements of a user with the trust expectations of
the environment where agents execute.
 The contributions of the paper include initial development of a trust model for
mobile agents with novel features: linkage of application security requirements with
mechanisms based on trust, reasoning about trust properties for generic security
mechanisms and generic trusted servers, incorporation of trust attributes from mobile
ad-hoc networks, and consideration of human agents on trust levels. Our application
models provide a transition between application level security goals, trust expression,
and security mechanisms which are currently available for mobile agent systems. We
propose different models that can initialize a set of trust relationships among
principals in the mobile agent system.
 The remainder of the paper is organized in the following manner. Section 2
discusses related works concerning trust and security requirements in the mobile
agent paradigm. Section 3 presents our framework for expressing trust and security in
mobile agent systems. Section 4 expounds three different application-level security
models: the military model, the trade model, and the neutral services model. Section
5 concludes with a discussion and summary.

2 Related Works
Before describing our notion of trust and security at an application-level context for
mobile agents, we first review foundational concepts appropriate to this realm.
Defining trust is as precarious as defining the term agent—and though researchers do
not agree on either term they do discern the importance of both concepts in framing
research. We define trust loosely in a previous work [10] as the expectation of
behavior among parties and classify several different infrastructures for trust in
dynamic networks. Gambetta [22] defines trust as a subjective probability that is non-
reflexive, changing, and context driven. We note also that trust is not necessarily
Boolean, does not necessarily have to capture human intuition, and can involve third
parties to facilitate certain issues. Trust can be transitive and therefore delegated [16]
or can be acquired by direct observation.
 The trust management problem, as defined in [8], seeks to formulate a coherent
framework for defining policies, actions, relationships, and credentials in terms of
trust. Trust management systems such as [7, 8, 18, 19, 20] are designed to support
specification, acquisition, revocation, degradation, and evolution of trust according to
some model. As we point out in [10], challenges in these systems revolve around
observing trust-related actions and then translating those observations into a decision.
In both mobile agents systems and dynamic networks, trust decisions have to be made
before trust relationships are ever built. The overlap of trust models with the
development and implementation of mobile agent security frameworks is a key to
future support of pervasive computing scenarios. We consider next the adaptation of
trust mechanisms specifically to the mobile agent paradigm.

2.1 Security and Trust Expression for Mobile Agents

Mobile agent applications and the idealized vision of a global computing scenario
share many common characteristics with distributed trust models for dynamic
networks: a large number of autonomous parties, principles can have no prior

 3

relationship, a trusted or centralized computing base may not exist, virtual anonymity
of principles may exist, different administration domains, and hosts have different
capabilities for transmission, mobility, and computational power.
 Grandison and Sloman in [9] point out that trust cannot be hard-coded in
applications that require decentralized control in large scale heterogeneous networks.
Mobile agents particularly need to separate the application purpose from the trust
management framework if they are to scale well in such environments. Because there
is a large commonality between dynamic networks and mobile agent applications,
many proposals for defining trust infrastructures in ad hoc networks can be readily
applied to mobile agents. Kagal et al. [31] suggested the addition of trust to enhance
security for mobile computing scenarios and defined trust management activities as
those defined by [8]: developing security policies, assigning credentials, checking
credentials against policy requirements, and delegating trust to other parties.
 Cahil et al. in [18] expound the research goals of Secure Environments for
Collaboration among Ubiquitous Roaming Entities (SECURE)—a project focused
primarily on building trust infrastructures for large ad hoc wireless networks.
SECURE utilizes the use of both risk and trust to determine whether interaction can
occur in a scenario where billions of possible collaborators may exist. In their
authorization framework, a principle uses trust to decide an interaction based on the
risk involved. Carbone et al. expound the trust model for SECURE in [19] and
provide a formal way to reason about the trust relationship among principles. Of
interest to us is their use of a trust interval from 0 to 1 which can be thought of as a
measure of uncertainty. The trust level in SECURE is thus a range with some upper
bound—which sets the maximum amount of trust within some factor of unknowing
involved.
 As Cahil and his colleagues also point out, traditional trust management systems
delegate permissions using certificates (credentials) that reduce to very static
decisions that do not scale well or allow change over time. They also point out as we
do in [10] that trust decisions in pervasive scenarios should come instead from trust
information based on two sources: personal observations (previous interactions) and
recommendations from other parties we trust (transitive or delegated trust). However,
in [18] there is no link provided between security requirements, trust, and application
goals for mobile agents specifically—a goal we set forth to accomplish in this paper.
 In a similar vein, Capra in [20] defines a formal model for hTrust—a mobile
network trust framework that defines formation, dissemination, and evolution of trust.
Capra reviews several trust management frameworks that have the following
limitations: they are designed for centralized servers, they have too high of a
computational overhead (for mobile devices), they lack dynamic trust evolution, they
lack details about local policy usage, and they lack subjective reasoning capabilities.
hTrust remedies these shortcomings and incorporates a human notion of trust directly
into the framework.
 hTrust models a range of trust values between principles so that a lack of evidence
or knowledge decision can be distinguished from a trust-based decision to specifically
distrust another party. The trust data model also incorporates the notion of time so
that relationships degrade when not kept current. Recommendations are used when a
principle has no past history or to partially rely or trust a third-party assessment. Just
as in human interactions, hTrust captures the notion that we favor recommendations

 4

from people who gave us good recommendations in the past and likewise reject or
downgrade advice from those who have disappointed us in the past. Finally, a key
aspect of this model is its incorporation of both a social context (the environment of
principles arranged in a network by which recommendations can be used) and a
transactional context (the network of services which are supplied by parties in the
system). While hTrust provides a generic framework for mobile application trust
expression, it does not directly deal with mobile agent specific security requirements
or attempt to link mechanisms for security to trust levels or the agent lifecycle.
 There has also been much work specifically focused on security evaluation and
trust expression for mobile agent systems. Karjoth et al. were one of the first to
describe a security model for Aglets—a specific type of mobile agents [12]. The
Aglets model included a set of principles with distinct responsibilities and defined
security policies which defined access to local resources. The notion of a policy
database and user preferences are also included in the model to govern interactions of
aglets that have unspecified or unknown security properties. However, the Aglets
model does not address host-to-agent malicious interactions or incorporate the notion
of trust levels or dynamic trust determination.
 Other security management systems designed specifically for mobile agents suffer
from the same limitations and focus on malicious code protection. Jansen posed a
privilege management system for agents in [2] that uses traditional certificate-based
policy framework. Security in this model was enforced through host-based policy
specification compared to agent-based attribute certificates. When these policies
merged during agent execution, the security context of the agent was determined.
Other works such as [24] describe reconfigurable policy support and surveys such as
[6] provide a good summary of issues and status with policy-based security
implementation issues. Again, such mechanisms tend to not scale well, tend towards
static security interactions, and do not model trust levels for specific security
requirements.
 Antonopoulos and his colleagues in [14] develop a general purpose access control
mechanism that is distributed in nature and specifically focused on mobile agents.
This approach comes closer to expressing trust relationships among principles, but is
fundamentally based on access control lists and preventing malicious code activity.
Kagal et al. extended their delegation trust model to mobile agent scenarios in [32]
and address FIPA-specific weaknesses for securing the agent management system and
directory facilitator services. Although they address how multiple agents can
establish trust when they are previously unknown, their focus is primarily on
authentication and they do not consider mobile-specific security requirements and
trust expression.
 Tan and Moreau [17] develop a more comprehensive model of trust and belief
specifically for mobile agent-based systems based upon the distributed authentication
mechanisms posed by Yahalom et al. [7]. Their trust derivation model is founded on
the similarities between distributed authentication in pubic key infrastructures and
mobile agent trust. The Tan/Moreau framework is limited and simple, however,
because it only incorporates the notion of trust associated with using the extended
execution tracing security mechanism [23] and does not account for generic security
mechanisms or requirements. Their unique contribution in the area is one of the only
works that link security mechanisms with

 5

 Borrell and Robles with several different colleagues have done significant work to
incorporate trust in mobile agent system development [21, 25-30]. In [21], a model is
presented that defines trust relationships expressed in the MARISM-A mobile agent
platform [33]. Although initial work in the area by Robles and his colleagues
assumed a static trust expression among agents [26-28], MARISM-A now uses trust
relationships that are defined among entities and actions in a mobile agent transaction.
We follow similarly with a formal model that defines trust relationships between
entities and associates actions and attributes to each relationship. The MARISM-A
model uses trust relationships to define decisions that permit, obligate, designate, or
prohibit certain actions within a certain scope of a mobile agent program. We take a
similar approach as Robles by associating agent security mechanisms with trust
relationships and by classifying their role as either a deterrent, prevention, or
correction. In addition to certain similarities with the MARISM-A approach, we
expound more fully in our model the relationship between the agent applications,
principles, security mechanisms, trust levels, and trust determination.
 Ametller along with Robles and Ortega-Ruiz take the notion of policy-based
security mechanisms even further in [30]. In this scheme, agents select the
appropriate security mechanism to use by means of a security layer that exists within
the agent itself and that is not tied to the underlying agent execution platform.
Security layers of the agent interact with hosts to determine which mechanism will be
used by an agent based on some predetermined criteria. Assuming a decryption
interface and public key infrastructure are in place, the solution gives a novel security
addition that is implemented in JADE and provides a flexible approach to agent
security. We build also upon this approach by linking in our model and methodology
the notion that security requirements for agent applications are met by security
mechanisms—all of which are tied to the evaluation and evolution of trust
relationships among principles in the mobile agent environment. We discuss next the
specific formulation of security requirements for mobile agent applications that are
referenced in our trust model.

2.2 Security Requirements for Mobile Agents

As much of the literature bears out, meeting security requirements for mobile agents
is not as simple as just applying cryptographic primitives. Agents complicate and
extend normal security requirements for a typical network-based distributed
application. Requirements for security in mobile agent applications derive from the
way in which mobile agents are defined as programs made up of three components:
static program code, a dynamic data state, and a current execution thread. Agents
execute only in context of a migration path (itinerary) among a set of hosts (servers).
 We consider for our purposes observations from [34, 35] that define the agent
computation and its corresponding security properties. In [34], Yee describes the host
as a server Si with a resource Ri. The agent is seen as a program that carries a
collection of data states and a static program. The static code is further subdivided by
Yee into a query function, qi(y), which takes a current state y as input, and a state
update function, fi(x,y), which takes a query result x and current state y as input. The
server resource Ri takes as input the query function and associated state, executes the
query within the host environment, and returns a query result y. The agent’s state is
thus updated along a continuum of interactions between the host, state, and code. We

 6

highlight this model because it was useful in [34] for defining precisely how certain
security mechanisms could prevent state violations based on agent replay attacks.
 Tate and Xu in [35] similarly view the computation as the interaction of three
objectst: agent code, agent state, and host data input. For simplicity, we choose to
analyze security requirements based on these three components as well. The agent
itinerary, its collection of intermediate results, its unique identifier, its security policy,
any activity log or history, and any other protocol specific information can be
considered as part of the overall dynamic data state of the agent, though they might be
referred to separately from a security context. One input to the agent computation at
the current host si is the agent state yi-1 that is carried from the agent’s previous
execution on host si-1. The other input to the agent computation is the consolidated
host data input (Yee’s combination of interactions between host resource Ri and query
function qi).
 In our proposed model, we establish a link between security mechanism and
security requirements for mobile agent applications, using trust relationships as a
basis for evaluation. Tan and Moreau [17] classify agent protection requirements in
their trust model broadly as execution integrity, state/code integrity, state/code
visibility, and resource provision. Here execution integrity includes correct
transformation of current state to a new state (Yee’s [34] state update function f), no
violation of the semantics of the agent’s code, and correct orderly execution of the
agent code. Tate and Xu [35] do not deal with availability (resource provision) or
anonymity but do specify three types of data privacy that apply to the host input,
which we adopt by their definition. State and code visibility refer to the privacy of
sensitive information in
parts of the agent which are
visible to the host. In [35],
the host’s data input might
be considered worthy of
protection as well. Table 1
lists the security
requirements that follow
from the traditional CIA
(confidentiality/integrity/ava
ilability) model of
describing security. We
discuss each requirement
briefly to provide a context
for our application level
security models.
Mobile agent applications
are constructed by using an
underlying architecture that
integrates some form of
agent mobility. Since real-world practical applications drive security requirements, it
is apparent that not all mobile agent applications require the same level of security. In
many cases, the expected environment of a given application sets the tone for which
of security requirements it needs to focus on. These requirements stem from the

Table 1: Mobile agent security requirements
Integrity
Agent state integrity
Agent code integrity
Server integrity

Confidentiality
Agent state privacy
Agent code privacy
Agent anonymity
Limited host data privacy
Verifiable host data
privacy
Complete host data
privacy

Non-repudiation
Agent non-repudiation
Server non-repudiation

Availability
Agent accountability
Agent authorization
Agent code verification
Agent privilege revocation
Host accountability
Host availability

Authentication
Agent code
authenticity
Agent identification
Host authenticity

 7

nature of the application itself and how it will leverage mobility to accomplish its
overall task.
 Confidentiality deals with keeping information private and in the mobile agent
context this involves several issues: keeping server results from observation of other
servers or agents, keeping parts of the agent data state safe from observation, keeping
the algorithm or function of parts of the agent code private, keeping the itinerary
secret (other than possibly the previous or next host), and keeping server data free
from unauthorized agent observation. In certain contexts, the agent or server may
want to keep their identity anonymous.
 Privacy of agent data is difficult when prior execution results are embedded into
the observable agent data state because the agent server must have access to the
agent’s code and state in order to execute it. To disallow sensitive information from
being revealed in plaintext while executing in untrusted environments, computations
that work on encrypted data might be required [37] or specialized encryption of
partial results must be performed independently of the data state computation.
Trusted hardware is a strong contender for protection at this level, but does not
automatically guarantee secure protocols [39]. Secrecy of the code or algorithm is
currently achievable only in very limited contexts using function hiding [40, 38] or
secure multi-party computation techniques [35, 38, 41].
 The requirement for integrity deals with detection or prevention of alterations to
information—whether your own or someone else’s. For mobile agents, an untrusted
server environment can altar the intermediate data results or state of an agent that is
under its execution control. It can also change the static code of an agent or create
clones of agents that can be used for malicious purposes. Agents need to be protected
against these types of attacks and other forms of alteration that change the normal,
intended execution pathway of an agent. The agent itinerary, which can be
considered a subset of the agent’s code and data state, also requires protection from
malicious alteration during the agent’s lifetime. Some work has also been done to
keep the path of an agent private and secure from alteration [42, 43, and 44].
Integrity of intermediate data results has been a widely researched field for mobile
agents [39, 45, and 46], mainly because of its association with e-commerce
applications and many solutions have been proposed and tested (see [36] for a
thorough review).
 In terms of availability, agents and servers need to be mutually protected from
each other when they attempt to deny or delay service, use resources in an
unauthorized way, or inflict damage via malicious code or services. Denial of service
can be detected and averted in certain time-limited contexts [23] and both agents and
servers must be held accountable for their actions—especially when malicious
behavior is in view. Servers and agents also both need to be able to authenticate who
they are. The authentication of an agent’s code as belonging to a particular owner,
however, does not make any statement about its trustworthiness or safety. The
identification of an agent and the unique binding of an agent’s static code to its
dynamic state has been the topic of previous research as well [39]. Lastly, non-
repudiation can be required so that an agent or server cannot deny transactions or
actions that have been taken on behalf of their owner. Agents should not be able to
wrongly attribute a transaction to a server that did not make it nor should servers be
able to wrongly charge agents for actions they did not intend.

 8

2.3 Security Mechanisms for Mobile Agents

 Security requirements are defined routinely as the desire to guarantee one or more
of the following: privacy, integrity, availability, authentication, and non-repudiation.
Security mechanisms are targeted at enforcing one or more these requirements. In the
mobile agent paradigm, security requirements are linked to an application which is
designed to implement a particular task. The desire to see a set of security objectives
enforced for this task comes not only from the dispatching application owner but also
from the set of hosts that are visited. Requirements are seen as applying to either a
host (where an agent will be executed) or to a mobile agent (which is dispatched to a
set of hosts).
 The code and state of an agent are distinguished when defining security
requirements due to the intricacies of the mobile agent computation. On the side of
the agent, an application can require code integrity, code privacy, state integrity, state
privacy, agent authenticity, agent availability, agent anonymity, and agent non-
repudiation. Code privacy refers to whether the algorithm is public or private while
state integrity refers to the correct and unaltered execution of the agent. State
integrity also includes the full range of partial result protection and the guarantee
against insertion, deletion, or alteration of results from prior hosts. Code integrity
provides assurances against alteration of the static code and authenticity guarantees
the identity of an application owner or agent code developer can be verified. In some
cases, an application may demand that agents act anonymously [42].
 On the host side, an application can require host privacy, host availability, host
integrity, host authenticity, and host non-repudiation. Host privacy can range from
limited, verifiable, or complete [35], depending on the amount of information a host is
willing to reveal regarding its data input. Host privacy can also refer to the protection
of non-agent-application specific resources part of the local host platform. The other
requirements follow those of traditional execution environments where integrity of
the execution environment and resources needs to be preserved and the identity and
actions of a server need to be verified.
 A number of works in the literature define agent security requirements and
categorize agent security mechanisms in different taxonomies [16, 17, 34, 56]. A
voluminous number of works abound that detail specific proposed security
mechanisms—whether host-based or agent-based. Host-based mechanisms protect a
host from possibly malicious agents. A few mentioned in [2, 36] include sandboxing,
safe interpreters, code signatures, state appraisal, path histories, and policy
management. Agent-based mechanisms protect the agent from malicious activity
outside of itself and are too numerous to name all proposed to date. Several
commonly referenced mechanisms include function hiding [37, 38, 40], secure multi-
party computation techniques [35, 41], intermediate data result protection [39, 45,
46], execution tracing [23], and tamper-proof hardware [44].
 Several works have attempted to meld mechanisms and requirements at an
application level already. Claessens et al. [38], for example, formulated an
implementation-detailed study of security mechanisms that were appropriate for
secure electronic transactions. Singelee and Preneel [47] went further by posing an
actual security level solution for e-commerce using mobile agents. In their approach a
mobile agent system in e-commerce settings could be secured using hash-chaining
data integrity protocol for data collection [45], threshold undetachable signature

 9

scheme for payment protection [48], and environmental key generation for agent data
privacy [49].
 As many authors have pointed out, no one security mechanism can address every
security requirement. The use of security mechanisms in fact may establish a certain
level of trust (or lack thereof) in the face of certain environmental assumptions about
malicious parties. An application level view of security that we propose would bring
together a process for selecting a combination of techniques to achieve certain trust
levels within a mobile agent system. Even when using mechanisms that establish
pure trust (such as tamper proof hardware), other assumptions must be taken into
account to make sure security is guaranteed. Trusted hardware or multi-agent secure
cryptographic protocols may be warranted or even feasible given certain application
environment factors. When such mechanisms are not available, lower trust levels
can be demanded and a more policy-driven approach can be required to make
dynamic decisions about agent execution.
 Models are used in many cases to help describe in more precise terms a particular
set of relationships. Models in the security sense do several things such as: help test a
particular security policy in terms of completeness or consistency, help document
security policies, help conceptualize or design an implantation, or verify that an
implementation fulfills a set of requirements [50]. We now present our trust
framework for considering mobile agent applications and describe a model for
viewing principles, actions, and trust relations in the mobile agent environment.
 Our initial model for trust expression in mobile agent environments incorporates
three separate notions: security requirements, security mechanisms, and trust in a
mobile application setting. In the following sections, we briefly highlight references
which expound each of these security facets.

3. Trust Framework
As Cahill describes in [18], we use trust normally in distributed applications to
determine such things as whether to download a file, which service provider to chose,
which access rights to give, and which information do we deem reliable. Tan and
Moreau postulate in [17] that trust in mobile agent applications can enable further
security-related objectives: choosing which set of code security mechanisms to use,
choosing how to punish violators of security, scaling agent applications when large
sets of unknown hosts may be visited. Capra points out further in [20] that traditional
distributed trust systems are centralized with clearly defined administrative
boundaries—with limited mobility of entities and high likelihood of trusted third
parties that are available to help secure applications. To know an entity, in this
respect, was to trust an entity. However, the mobile agent paradigm does not have
such luxury: even knowing an entity (either a priori or through real time directives)
does not automatically mean trusting an entity.
 Mobile agent systems must deal with environments where partial knowledge and
blind trust are common. Subjective determinations in many cases might need to be
made and in some cases delegation of the trust decision may not be possible because
of the network environment. The complexity of trust is compounded by the fact that
every principal in an agent application can have varying levels of one-way trust for
different security requirements and in different contexts between each other. To
formally describe our framework for trust in the mobile agent environment we first

 10

define the principals that can be assigned trust properties in our model, define next the
nature of trust relationships between principals, and then formulate what trust
relationships can be used to accomplish in mobile applications settings.

3.1 Defining Principals

There are three distinct groups from which principals can be derived in mobile agent
systems: agents, hosts, and entities. The set of principals is now summarized as the
collection of agents, hosts, and humans involved in a mobile agent applications.

PRINCIPALS = { agent+ ∪ host+ ∪ entities+ }

We agree with the notion in [17] that agents will ultimately one day be composed of
reusable components and that each component will have its own associated dynamic
state and trust level. For simplification we define an agent as a composition of a
(single) static code and a set of dynamic states that represent the migratory results of
the agent. We further delineate the path of an agent as its itinerary, a unique identifier
of the agent instance, a generic log of agent or host activity, and an agent security
policy that includes any historical trust information for other principals in the agent
application.

AGENT = (code , state* , itinerary , id , log , policy)

The “id” of an agent encompasses more than one identity as well. We use the notion
of the agent kernel from Roth in [39], which in essence uniquely binds a given
instance of a mobile agent’s dynamic state to its static code. This identification
eliminates the possibility for cut/paste and oracle-style attacks that several security
mechanisms were vulnerable to. The static code, the owner of the application, and
the developer of the code all have unique identities as well—which are captured in the
id component of the agent.
 Hosts are defined as the execution environment which agents operate in. They are
seen abstractly as encompassing the underlying physical hardware, runtime services,
and agent-related middleware necessary to accomplish agent migration and execution.
Hosts can be seen as a collection of resources or services that interact with a mobile
agent. Host resources can fall into several categories: computational,
communicational, informational, management, and security. Resources conceptualize
the notion of services provided by local (non-itinerant) agents, host based software
processes, host based physical resources such as memory and processor, and any
information necessary for the accomplishment of the agent task. Hosts likewise have
policy that support the trust formation and decision process while interacting with
mobile agents that it executes.

HOST = (resource*, id, log, policy)

There are at least three types of hosts which can be distinguished in mobile agent
applications. The dispatching host (DH) is the launching point for a mobile agent
application—it is considered the owner of one or more agents that are acting on its
behalf and ultimately partially responsible for the actions of agents under its control.
For simplicity, we assume that an agent application will have only one dispatching
host. The executing host (EH) is a server which is part of the itinerary of a mobile
agent and upon which an agent executes and updates its state. The third type of host

 11

is the trusted host (TH): it conceptualizes servers that provide security benefit for
agents during their lifetime. They play the role of trusted third parties in many
different security mechanisms—such as extended execution tracing or multi-agent
secure computation schemes.

HOSTS = { DH ∪ { EH* } ∪ { TH* } }

In terms of humans involved in mobile agent applications, we identify three that play
security roles in the mobile agent interaction. First, agent code derives from a
specific source—humans that program them. We refer to the creator of the agent as
the code developer (CD). The person that actually uses mobile agent code to
accomplish a task on their behalf is termed the application owner (AO). In many
instances, the code developer and application owner are the same person. Hosts also
do not run without human influence and design. The owner of a computer (the
company you work for), the manager of a computer (a company employee such as a
system administrator), and the user of a computer (a company employee that works in
payroll) are normally separate individuals. We assume for simplicity that the human
owner/manager/user of a host are synonymous and use the term host manager (HM)
for this human role.

HUMAN = { CD | AO | HM }

In terms of trust, humans trust machines (hosts) and software (agents) because they
trust the source or manager of these principals. To simplify trust relationships we
will assume that all hosts have equivalent trust to their corresponding host manager
and only refer to hosts in discussion of principals. The interesting case is the fact that
the host manager for the dispatching host, the code developer, and the application
owner can all be different individuals or could be the same person. For
simplification, we will equate the trust in the agent code as the trust we place in the
code developer and we will equate the trust we have in the application owner as the
trust we have in the dispatching host.

A ≈ CD
DH ≈ (D)HM
EH ≈ (E)HM
TH ≈ (T)HM
DH ≈ AO

As a final definition, we consider the concept of an application. Since applications
are where security requirements of a user merge with the actual use of mobile agent
code, we define an application as the collection of all possible hosts that will be
involved in the agent task and the set of uniquely identifiable agents that implement a
user function. This intuition captures the notion of multiple agents that can interact
to accomplish an application function: multiple agents with the same static code and
different itineraries, multiple agents with different static code, or a single agent.

APPLICATION = (host*, agent*, trust*)

Applications, not agents, therefore become the focal point for trust determination,
security requirements, and security mechanisms. We now define our notion of trust
relationships that are shared among principals in our model.

 12

3.2 Defining Trust Relationships

One task of security is to rightfully attribute observed actions within the system to a
given party. This task is complex in the mobile agent environment because the current
data state and code of a mobile agent is influenced by many different parties: the code
developer, the dispatching host, all executing hosts the agent has visited, and all
trusted hosts the agent has visited. When considering the agent life cycle and the
binding of trust at various stages we formulate the following connections: creation
and development of code bind trust to a code developer, ownership of an agent binds
trust to an application owner, dispatching an agent binds trust to a dispatching host,
execution of an agent binds trust to all prior hosts an agent has visited plus its
dispatcher, migration binds trust to the next host in the agent itinerary, and
termination binds trust of the entire application to the entire set of execution hosts and
the network environment.
 The mobile agent trust problem can be likened to a person walking up to you in
your office and handing you a floppy disk. They say to you, “I have heard that you
like sharing security research information with others. Please run the file on this disk
called ‘virus.exe’ on your computer for me and then I’ll walk it to the next security
researcher on my list of contacts when you are done. Don’t worry about the output—
the program keeps its state every time it executes.” You, acting as the host, must ask
a few probing questions of course. Before considering whether to run the file or not,
the mental process begins first by considering the trust you have in the person who
brought the file. This represents the application owner in the mobile agent
environment. Do you know them personally? If not, do you know other people who
know them? If not, how will you assess their trustworthiness? Will you ask them for
a resume or a list of references first?
 If the person is unknown to you personally you may want to see their credentials
so that when you ask for references you are sure you are talking about the right
person. In the mobile agent context, the application owner determines the agent
signature: the binding between the dispatcher (sender) of the agent program and the
identity of that particular instance of the agent code execution. When parties are
completely unknown, you may determine trust based on some type of testing suite
you require them to accomplish first. If you know them to be untrustworthy or
assume that anyone asking to run files on your computer from a floppy is
untrustworthy by default, then the emphatic answer will be “No, I will not run that
program.”
 If the person is known to you or has a history of dealings with you, you may (after
verifying they do not have an evil twin) entertain the idea of running ‘virus.exe’ on
your computer. Assuming you pass this first hurdle, the next mental process turns to
the question of the code itself. Where did ‘virus.exe’ come from? Who authored it?
Have they authored other programs that have proven trustworthy? Are they identified
with hacker groups or malware? In the mobile agent paradigm, there are limited ways
to ascertain such trust relationships. If the person indicates there is a software
clearing house that has reviewed and tested his code for safety and malicious
behavior, passing with flying colors, some of your fears may be allayed. This is
equivalent to using a trusted third party to assess trustfulness of the agent code or the
code developer a priori. A code signature links the developer with the code itself
(even though many application owners may use that code in multiple ways and

 13

instances over time). However, some other method of proving or verifying safety of
code must still be used if those requirements are important.
 If you know the person carrying the disk (let’s say they are a good friend) AND
you know they authored the software AND you trust them enough to execute the file,
the remaining questions might focus on the nature and purpose of ‘virus.exe’. What
does ‘virus.exe’ do? If the algorithm is private, the person may say “I can’t tell you,
you just have to trust me”—which at that point you determine that you still won’t run
the program even for a good friend. If the algorithm is public, then you may be
relieved to find out that ‘virus.exe’ is a statistical data gathering program that queries
your anti-virus software to see when the last time you updated your virus protection
was and how many viruses have been detected in the last month.
 The agent dispatcher also may have questions for you as the host to answer. How
will they know whether or not you have modified their program? How will they
know whether or not you have spied on results from other security researchers? How
will they know you don’t have a vendetta against other researchers and want to skew
their results? How will they know whether or not you will just destroy their floppy or
just not run the program like you said you would? If you are known to the person or
have a history of dealing with you, they may not worry with certain detection
mechanisms for security violations—maybe they trust you with those. Even if you
are known, maybe it’s the nature of the beast that they would still protect certain
information associated with the program.
 These trust questions are exactly the same as those which must be modeled in
mobile agent systems—except there is no luxury of face-to-face interaction and in
many cases no possibility for human response when the decision needs to be made.
Trust models must be able to handle environments that have different overall
characteristics among participants as well. Agents and hosts can have varying degrees
of trust that include highly trusted, trusted, unknown, untrusted, or highly untrusted
[10]. Whether trust can be increased is an application-specific question that a trust
management system should be able to handle. Rules for promotion of trust in mobile
agent systems can be based upon the security mechanisms that are used in the
application environment and the observed behavior of both agents and hosts in the
environment.

TRUST = (foreknowledge, level, timeliness, security*)

We represent the trust relationship among principals as a 4-tuple of properties:
foreknowledge, trust level, timeliness, and security. For each principal, there can be a
prior knowledge of the entities or no prior relationships whatsoever. For agents that
travel in a dynamic free-roaming itinerary, it is very possible to encounter a host that
is completely unknown. Likewise, hosts have a high likelihood of encountering
agents with no prior history or experience. Foreknowledge in this regard is well
known, known, or unknown. Well known corresponds to principals that have well
established histories with a high level of trust basis.
 Trust levels are deemed to be a range from totally untrusted to totally trusted.
Timeliness is a degree of relevance of the trust level based on time that is represented
as expired, stale, or fresh—incorporating such notions as recent or frequent
interactions based on historical timestamps of interactions. Trust level,

 14

foreknowledge, and timeliness only bind principals to a certain context of security—a
requirement.
 Security requirements dictate what an application owner feels is necessary for their
task to be accomplished successfully and securely. They also describe the level of
security a prospective host would like to have concerning agents that they execute.
This element captures the intuition that two principals can have different trust levels
concerning different security aspects—i.e., Alice can trust Bob in regards executing
her agent with code privacy but cannot trust Bob in regard to state privacy.

foreknowledge = { well known | known | unknown }

level = { highly untrusted
 | untrusted
 | non-determined trust
 | trusted
 | highly trusted }

timeliness = { expired | stale | fresh }

security = (principal type, objective)

principal type = { host | agent }

objective = { state privacy

| code privacy
| anonymity
| …. }

In a similar manner as [18, 19, and 20], we define a trust relationship as a mapping δ
between two principals (P) with an associated 4-tuple trust relationship (T).

δ: P → P → T

Principals are drawn from the set of all possible parties of concern in the mobile agent
application. Based on our simplifying assumptions, this reduces to the following four
principal sets: dispatching host/application owner (DH/AO), all execution hosts
(EH), all trusted hosts (TH), all agents/code developers (A/CD). If a more precise
trust relationship needs to be expressed for human principals, code developers and
application owners can be treated separately—though it adds complexity to the trust
matrix. Given an application G with associated set of hosts Hx, a set of uniquely
identifiable agents Ay, and a set of trust relationships Ti,j, we now formulate the trust
actions and decisions that can be based upon trust relationships among all principals
within the application space.

3.3 Defining Trust Actions and Decisions

In our trust framework for mobile agent applications, actions build relationships and
relationships determine decisions or mechanisms that need to be used to achieve the
level of security desired by the application owner. Trust in the mobile agent
environment can ultimately affect allowed security mechanisms, itinerary of agents,
policy decisions, and code distribution.
 Our model describes actions that mobile agents and hosts do which can altar trust
levels. Trust can be earned or degraded in this regard based on actions observed over

 15

time. Decisions about trust come from a set of trust based on the following
collection: an initial set of trust relationships, recommended trust from others, and our
observations of trust related actions over time. Given a set of trust relationships that
exist between all principals, a principal can make a trust decision: which security
mechanism do I use, do I migrate to this host, do I execute all of my code, do I share
my policy information or trust recommendations, do I access your policy information,
and so forth.
 The hTrust system proposed in [20] establishes a comprehensive method for trust
dissemination, formation, and evaluation. Our model presupposes a similar
underlying structure that provides functionality to 1) evaluate recommended trust
from social interactions; 2) disseminate trust information to prospective principals in
future mobile agent applications; 3) weigh relevance of social recommendations to
prevent malicious hearsay. We assume that a pre-existing structure exists in both
hosts and agents that store historical trust information which can be used in the
decision making process for future applications and current execution decisions. We
focus in our model more particularly on the relationship between trust expression,
security requirements of the application, and the appropriate security mechanisms that
are used.
 The ultimate goal of our trust framework is that given initial trust relationships we
can derive new ones or modify existing ones according to rules. In a previous work
discussing trust in ad-hoc networks [10], four different categories of trust acquisition
are formulated which we use in the mobile application context as well: trust-earning
actions over time, trust-earning actions by count, trust-earning actions by magnitude,
and trust-defeating actions.
 To measure trust actions over time, timestamps from the first interaction to the
current time can be used, with longer histories of interaction being considered more
favorable. The longer we know someone and more extensive their good track record
is with us, the more trust we have in them. Of course the volume and frequency of
interactions will flavor this as well: 500 interactions in the last year provide a better
basis for trust than only 1 interaction in the last 5 years. Given the same volume of
interaction, trust certainly is higher when the interaction period is longer. When the
elapsed time since the last interaction is short, we also have higher confidence in the
freshness of the trust level.
 Trust-earning actions by count in the mobile environment can be based upon the
number of times interaction has taken place with principal without any detection of
malicious behavior. If the average time between interactions is small, this assumes
more interactions and more opportunity for dishonest behavior to manifest. Trust can
also be influenced by working cooperatively and non-maliciously in the past on
actions that are great in magnitude. This can involve a number of transactions that
have a certain dollar amount or involve significant trust such as an EEPORM
hardware upgrade. Trust defeating actions are similar to the notion of a bankruptcy
on a credit report that negatively affects the trust of a lender towards a borrower.
Once trust defeating actions have been entertained, policy can dictate that the agent or
host never regain a trusted status. Trust might be regained only after a (long) time
period of demonstrated, small trust gaining actions have been observed. It is also
important to distinguish between first-hand violations of trust and recommendations
of trust that are negative toward a party.

 16

 As we describe in our toy example, trust in a person executing a program is not the
same as trust or assurance of the program itself. In mobile agent paradigms, the
identity of the application owner, the identity of the code developer, and the identity
of the instance of that particular agent run all need to be authenticated. Integrity of
the agent can be accomplished on two specific components: the static code can be
verified to make sure it has not been altered and the initial state of the agent when it
was dispatched can be verified that it was not altered. Detecting other state
alterations requires other mechanisms to give assurance that an agent’s state has not
been unduly altered by other executing hosts in the itinerary. The safety of the agent
code or the assurance that it meets a predefined security policy can be accomplished
by methods such as proof carrying code [51].
 Other means for establishing trust—of either the current agent state or the code
itself—must be used in this case and several methods have been proposed which are
reviewed in [36]: holographic proofs, state appraisal, proof-carrying code, path
histories, detection objects, oblivious hashing, protective assertions, state transition
verification, reference states, execution tracing, and sliding encryption.
 Roth was one of the first to point out [39] that mobile agent protocols (even those
that involve trusted hardware) are vulnerable to cut and paste attacks. By interleaving
mobile agent sessions and using honest hosts as oracles to decrypt parts of the agent
data state that are part of ongoing agent sessions, a malicious adversary can foil many
attempts at data protection. To avoid this problem, Roth points out that the data state
of the agent needs to be bound to the static code of the agent. In order to accomplish
this, an agent’s static code or program can be tied to a random number or nonce and
encrypted with a signature key. The hash of this signed pair (referred to as the kernel
by Roth) can be the basis for the agent’s identity. By associating a unique identity
with the execution run of a mobile agent, the problem of cut and paste attacks can be
avoided. This property distinguishes among multiple runs of the same static agent
code and introduces the finest level of trust relationship among principals in the agent
environment.

3.4 Defining Trusted Hosts

A unique concept in our trust model is the generalization of the notion of trusted
hosts. These hosts conceptualize properties normally associated with trusted third
parties in various security mechanisms and protocols. Trusted hosts first have
specialized, static, and pre-determined trust relationships with principals. What makes
them special is that trust levels do not change with agents or hosts that they interact
with. If a trusted host is only partially trusted in a give environment, then we
represent that host as an execution host with certain trust relationships just like any
other host.
 Trusted hosts are distinguished from dispatching or executing hosts in an agent
application. Execution hosts that are trusted (termed trusted nodes by some) can be
used to provide some level of detection ability for malicious behavior as long as it is
part of the agent’s normal execution and itinerary traversal. A trusted host provides a
third-party service such as information lookup, mediation, brokering, communication
service, or middle-agent hosting. Whether an agents communicates statically or
dynamically migrates to the trusted host is not considered important in our model.
The primary intuition that is captured by their presence in the model is that they

 17

provide a means for either increasing or decreasing trust levels of other principals,
and we trust them to do so.
 For example, in the Tan/Moreau model, the trusted server is used to provide a
verification service for hosts that have just executed an agent. They also provide a
migration service and in essence are the only means by which agents can move from
one executing host to another. When a host has been found to violate the integrity of
the agent, the trust level of that host is automatically communicated via the trust
framework to other agents and hosts in the system.
 What normally produces high trust levels in mobile applications include the
presence or use of trusted or tamper-proof hardware, reputation, being under the same
management domain, and having an established history of trusted/non-malicious
interaction. Executing hosts can have a trust level based on one or more of these
factors—i.e., an application owner trusts greatly a host in its own management
domain that has tamper-proof hardware (TPH) installed. TPH can be used to offset
trust levels when hosts are unknown and untrusted as well—i.e., if a host will install
TPH to support agent execution, application owners may assign them a trusted status.
 In our model the trusted host can influence several factors: they can increase trust
or decrease trust among one or more principals, they can make hosts trust agents more
or less based on their services, they can make agents trust hosts more or less based on
their services, and they can make hosts trust other hosts more or less based on their
services. Trusted hosts can also be the implementer of a particular security
mechanism, as in extended execution tracing [23] and multi-agent secure computation
[41].
 When the interaction mode with an agent is via migration, trusted hosts can inspect
the agent, run tests, or other interact with the agent as any other host. Agents can then
proceed to their next destination in the itinerary. When the interaction mode is via
static communication, agents can pass on to the trusted host information for data
logging, result protection, integrity checks, or to phone home information in lieu of
the dispatching host. The net effet of trusted hosts in our model are as principals with
authority based on their particular service to increase or decrease trust level among
other principals. Whether this effect is realized by communication or migration of
agents (which can be seen as a specialized form of communication) is not critical.
 Trusted hosts may also be used to enforce a particular security requirement in a
mobile agent context. When all agents and hosts interact with a trusted host that
offers a particular service then a trust relationship can be formed in which that
particular requirement is given a certain trust level between principals. They can also
have a net result on the system by altering an agent’s state, an agent’s itinerary, or an
agent’s security policy. For example, an agent may use a trusted host to determine
the next host to visit, thereby altering its itinerary based on this interaction. The
notional assumption is that trusted hosts act in the best interest of the security
requirements of both agents and hosts—which define an agent application.

3.5 Defining the Trust Algorithm

Given the definitions for principals and trust relationships for mobile agents, we
summarize the following constructs of a mobile agent application:

G Application G implementing owner’s task or function
 (H, A, n)

 18

DH Application owner’s dispatching host
EH Set of all executing hosts
TH Set of all trusted hosts
H Set of all hosts

hx: h is a possible target of migration for application G
H = { DH ∪ EH ∪ TH }

A Set of all agents
ay: a is a unique agent implementing functionality of
application G

P Set of all principals
P = A ∪ H

n Set of all 4-tuple trust relationship mappings between
principals in the system:
δ (pi, pj) → (f, l, t, s)

f = foreknowledge (WK, K, UK)
l = level (HT, T, ND, U, HU)
t = timeliness (E, S, F)
s = security (H/A, R)

Trust relationships are linked to one or more security mechanisms (s) in our model.
As part of the trust evaluation process, our model supports three different notions of
trust acquisition: initial trust, first-hand trust, and recommended trust. Initial trust is
the set of relationships which an agent or host has to begin with—before a history of
interactions takes place over time. We argue that such a set of initial relationships can
be generalized based on the application environment of the mobile agent and present
three such models in section 4. Next, first-hand trust is that which is gathered over
time through specific interactions between principals. Recommended trust comes
when we accept or rely on trust levels offered by other principals.

General Trust Notion: Mobile agent applications use stronger security mechanisms for principals
with less trust/knowledge and use weaker mechanisms for principals with greater trust/knowledge

Corollary: The application environment determines trust levels which in turn dictate the initial set of
requirements for security.

We now discuss the notion of an application level security model for mobile agents.

4. Application Level Security Models
Even when using mechanisms that establish pure trust (such as tamper proof
hardware), other assumptions must be taken into account to make sure security is
guaranteed. Trusted hardware or multi-agent secure cryptographic protocols may be
warranted or even feasible given certain application environment factors. When such
mechanisms are not available, lower trust levels can be demanded and a more policy-
driven approach can be required to make dynamic decisions about agent execution.
 Models are used in many cases to help describe in more precise terms a particular
set of relationships. Models in the security sense do several things such as: help test a
particular security policy in terms of completeness or consistency, help document
security policies, help conceptualize or design an implantation, or verify that an
implementation fulfills a set of requirements [50]. We now present our trust
framework for considering mobile agent applications and describe a model for
viewing principles, actions, and trust relations in the mobile agent environment.

 19

 Almost a decade ago, Chess and his colleagues discussed three models of
applications that itinerant mobile agents would be useful for [53]: information
dispersal/retrieval, collaboration, and procurement. Poslad et al. in [54] proposed a
series of application models for multi-agent interactions such as publisher directory,
courier/broker, task allocation, multi-services domain, personalization, and mobile
tasks. [54] also links security issues such as authentication, authorization, denial of
service (DoS), and privacy with such application scenarios.
 There are many other examples of mobile agent architectures (too numerous to
name) that set forth and support specific application security goals. Fischmeister
[55], for example, presents an analysis of the supervisor-worker framework as
implemented via mobile agents and discusses the responsibilities and security aspects
of the various principals in the system (agents, regions, places, agent systems, owners,
and developers). We expound on these general ideas for describing agent-based
applications and define the term application model. These describe interactions that
can generalize security requirements for mobile agent applications. We introduce
three such models which include the following: the military model, the trade model,
and the neutral services model.

Application Model: a set of rules that govern characteristics of principals in an application
and a common set of initial trust relationships for a given set of security objectives

There are three ways in which trust is formed in the mobile agent environment: initial
trust, acquired trust, and recommended trust. We define an application model as a set
of initial trust relationships that can be assumed for a given mobile agent application.
It is obvious that applications have their own unique requirements, but many
applications have a common purpose and environment which can be used to reason
about trust relationships. An application model also has implicit understanding of how
principals act towards one another and how principals are derived. We use
application models to set boundaries on whether trust can be acquired over time—
whether we can promote entities from unknown to known or whether we can ever
promote entities from untrusted to unknown or trusted. We pose three such models
next and expound how they can be used to initialize a trust management framework
for mobile applications.

4.1 The Military Model

The military model is based upon the notion that a wall exists between friendly and
adversarial entities. In this particular paradigm, a logical “Maginot Line” separates
friendly and adversarial parties distinctly. Within the borders of the line, entities are
essentially known to each other as authenticated, highly trusted principals. Much like
the “Identification Friend or Foe” (IFF) signal that can be used to distinguish friendly
and hostile parties in military scenarios, the military model presupposes that
principals are accounted for and controlled within a single domain of control.
 At some point, however, a given principal may be taken captive by an adversary.
This captured entity could continue to function passively as a normal principal for the
purpose of discovering information or leaking secrets. Captured entities can also
become overtly malicious by delaying and denying service, corrupting friendly
communications, and attacking privacy and integrity of group operations. Malicious

 20

adversaries may also infiltrate and assume the role of an “insider” in this model and
work either passively or aggressively to compromise security. In both cases, whether
outsiders successfully infiltrate or insiders are successfully captured, groups of
malicious parties could be interacting.
 The military model (like other application sets we describe) assumes that
applications have certain common characteristics among principals that are mapped to
a given set of security requirements. First of all, hosts may arrange themselves in ad-
hoc or mobile configurations, but they must come from a pool of systems that are
verified by a managerial or supervisory entity within the environment. In other
words, principals are managed, configured, tracked, and deployed in such a way that
trust relationships are implicit as long as the identity of the principal can be verified.
Unlike e-commerce trade models, principals are not necessarily complete strangers.
 The military model fits requirements and trust relationships where the use of
trusted third parties, trusted hardware, group security operations, multiple security
levels, multiple trust levels, and distinct organizational structures exist. This
environment is found in many corporate infrastructures (as well as the military itself)
where a trusted computing based is not only possible monetarily but is mandated
because of high concern for maintaining secrecy and integrity of information.
Because of the implicit trust relationship among principals in this environment, hosts
can also work in cooperation with agents to provide mutual prevention and detection
services.
 The military model also suggests a common set of agent characteristics. Agents in
this case are designed, developed, and deployed by a centralized authority of some
kind. In the corporate world, this could reduce to an outsourced development team on
contract or an IT department with in-house programmers. This model represents
programming environments where only approved or authorized mobile agent
applications would be used to start with—and only those that have been certified or
tested by an internal organization responsible for configuration management and
software development. In other models, agents can take on adversarial roles with one
another; in this model, however, agents are all considered as peers in terms of agency.
Of course even departments within a corporation have proprietary or sensitive
information that should be protected by confidentiality and integrity.
 Agents in this regard still have security requirements, but in general, their identity,
safety, authorization, and authentication can be verified within the circle of trust. The
military model also places less emphasis on distinction between hosts which execute
agents and hosts which dispatch agents. In this type of environment, agent servers are
used interchangeably in some cases as the dispatcher and in other cases as the
execution host for other agents. Military models represent many real world paradigms
of computing where group collaboration, systems management, and information
gathering are accomplished through agent-based applications. The key feature is that
a centralized management domain exists. Typically, the military model also involves
applications that have static (whether ordered or unordered) itineraries. Figure 1
summarizes the initial trust relationships that are associated with a military model
security context.

 21

Figure 1: Military Model Trust Relation Matrix

Based on this initial trust relationship set, the trust algorithm can make dynamic
determination concerning acquired trust or recommend trust over time in the model.
It will primarily be through acquired trust mechanisms (the acquisition of negative
trust) that infiltrators will eventually be discovered. These relationships also
determine the security mechanisms required by host or agent. To describe the essence
of the military model in the formal sense, we have the following bounds for initial
trust relationships:

DH ⊆ EH
TH ≠ ∅
∀ pi,pj ∈ P: i ≠ j and ∀ δ (pi,pj) ∈ n:

δ(pi,pj) → f = ‘known’ or f = ‘well known’

There are two primary security-related tasks that consume the majority of time in the
military model: 1) protecting insiders from outsiders and 2) detecting whether or not
an agent, host, or trusted-third party has been compromised or captured. We assume
that trusted third parties will not be compromised. The underlying assumption of the
military model is that some agents or agent platforms will fall under “enemy control”
or be subverted for use by “insiders” at some point in time. It’s not a matter of “if”
but rather “when” in this particular application scenario. As in any development
organization, the possibility exists that an insider programmer can create and use
malicious agents for their own benefit.
 The question of security then becomes related to detection of anomalous or
malicious behavior and removal of malicious parties from the circle of trust once they
are detected. This scenario best represents application environments where there is a
peer (non-adversarial) relationship within the community of trust of the mobile agent
application—and applies to both agents and hosts. The role of trusted third-parties
and trusted hardware, as well as coalition security mechanisms, becomes focused on
identifying those principals that have violated the circle of trust or are attempting to
gain access to the circle of trust (either through denial of service, falsification of
authentication, etc.). We also distinguish a strong military model where all executing
hosts are equipped with tamper-proof hardware and thereby have equivalent trust
levels and behavior as that of trusted hosts.

4.2 The Trade Model

The trade model is designed to capture the intuition of a competitive interaction
among actors that are all bargaining for resources. This concept could be termed an

 22

economic model, a buy/sell model, or a supply/demand model where economic
benefits are in view. This environment is indicative of the Internet model of
computing where mobile agent applications might be deployed. It is the application
environment where disjoint communities of mobile agent dispatchers want to use
services or obtain goods from a set of host commodity or service providers. Agent
literature routinely represents such a model as an agent dispatched to find an airline
ticket among a group of airline reservation servers—accomplishing the transaction
autonomously while finding the best price within the predefined constraints of the
user.
 As figure 2 illustrates the initial trust relationships for security requirements in the
trade model and depicts the adversarial relationship among principals: buyers do not
trust sellers to deal honestly with them, sellers do not trust other sellers to work for
their best interest, buyers do not trust sellers to act non-maliciously, and buyers are in
competitive relationships with other buyers for the same goods and services. The
largest number of perceived mobile agent application possibilities typically fall into
the trade model in terms of security requirements. The loosely formal rules in this
model are expressed as follows:

DH ∩ EH = ∅
TH = ∅
∀ pi,pj ∈ P: i ≠ j and ∀ δ (pi,pj) ∈ n:

δ(pi,pj) → f >= ‘unknown’

In this view, principals are not necessarily known before interaction takes place.
Whether we are referring to agents or hosts, there is in most cases no trust or
foreknowledge between users that want to execute agents and servers that would like
to execute agents. It is also a model which mirrors security concerns on both sides.
For instance, agent hosts that are considered “sellers” are as equally distrusting of
agents originating from dispatching hosts of “buyers” or from other executing hosts
that are sellers. Buyers see commercial hosts as untrusted in the sense that there is
economic benefit to gain by altering the execution integrity of their agents.

Figure 2: Trade Model Trust Relation Matrix

4.3 The Neutral Services Model

As a third notion to capture application level security requirements, we define the
neutral services model with the intuition that a service (or set of information) is
acquired by one or more agents. Providers of services do not themselves have an
adversarial relationship, but they may be viewed as having disjoint communities of

 23

trust. The primary difference in the neutral services model and the trade model is that
communities of hosts exist with no adversarial relationship among themselves. These
communities are essentially neutral in terms of their commitments to each other—
neither friendly nor hostile.
 This model describes well application environments that are designed around
information or database services. In this regard, providers of information typically
have no economic gain from altering the results or influencing the itinerary of agents
that they service. Hosts provide services honestly in the sense that they would not
alter the path or intermediate data results of an agent. Service providers can and in
most cases do charge a small fee for the use of their service, however. What might be
of interest to a dispatching application owner in this model is whether or not its agent
is billed correctly for services that are used. In this respect, if information providers
charge for their service it is to their benefit to alter the execution integrity of an agent
so that the agent is charged for more than was legitimately received.
 Figure 3 illustrates the initial trust relationships that are derived in this particular
model. Adversarial relationships exist between agents from the “client” community
and hosts in the “server” community, but there is not necessarily a trust or distrust of
hosts within a given community. Neutral hosts see no benefit from altering an agent
that might be carrying results from other hosts or from preventing them from visiting
other hosts. Hosts in this realm are in essence a “one-of-many” provider of
information.

Figure 3: Neutral Services Model Trust Relation Matrix

This paradigm may not fit a search engine model where a mobile agent visits and
collates search results from let’s say Google, Yahoo, and Alta Vista. In that case, it
may be of interest to one of these engines (who get benefit from every agent hit since
advertisers might pay more for a more frequently visited search engine) to alter the
itinerary or search results of other hosts. It might also benefit a search engine in this
example to maliciously alter search results of other engines carried by the agent to be
“less useful” so that their results look better to the end user. In that instance, the trade
model would fit better in terms of security requirements.
 The type of protection that is needed in the neutral services model revolves
primarily around the execution integrity of the agent. To that effect, hosts that bill
customers for usage might be tempted to cheat and wrongly charge agents for
resources they did not use. Likewise, agents may want to falsely convince a host that
no service or information was gathered, when in fact it was. Trusted relationships
between neutral third parties are also more conducive in this environment and trusted
third parties may interact with various communities of service providers themselves

 24

on behalf of other users. The essence of the neutral services model in loosely formal
terms is as follows:

DH ∩ EH = ∅
TH ≠ ∅ or TH = ∅
∀ pi,pj ∈ P: i ≠ j and ∀ δ (pi,pj) ∈ n:

δ(pi,pj) → f >= ‘unknown’

5.0 Discussion
When application development is in view, it is often helpful to have methods which
help transform requirements into implementation. We present initial work on a trust
model to support development of mobile agent applications that links trust
relationships and expression with both security requirements and mechanisms. We
further define a set of initial trust relationships and generalize rules for principals that
fit three different models of application security requirements. The usefulness of such
models is that both developers and researchers can reason about security requirements
and mechanisms from an application level perspective.
 We believe this paper presents the foundation for more precise elaboration of trust
models for mobile agents and helps tie the view of the application owner with the
underlying mobile agent architecture. Future work will involve the exact
specification of the trust algorithm in mathematical terms with analysis of security
properties for specific types of security mechanisms and their effect on trust.

References

[1] D.M. Chess. Security Issues in Mobile Code Systems. In G. Vigna, editor, Mobile Agents and

Security, LNCS 1419, pp. 1-14. Springer-Verlag, June 1998.
[2] W. Jansen and T. Karygiannis. National Institute of Standards and Technology, Special Publication

800-19-Mobile Agent Security, August 1999.
[3] E. Bierman and E. Cloete. Classification of malicious host threats in mobile agent computing. In

Proceedings of 2002 Annual Research Conf. of the South African Institute of Computer Scientists,
Port Elizabeth, South Africa, pp. 141 - 148, 2002, ISBN:1-58113-596-3.

[4] C.F. Cubillos and F. Guidi-Polanco. Security Issues on Agent-Based Technologies In VIP Scientific
Forum of the International IPSI-2003 CONFERENCE, 2003.

[5] J. Zachary. Protecting Mobile Code in the Wild. IEEE Internet Computing, pp. 2-6, March/April
2003.

[6] P. Bellavista, A. Corradi, C. Federici, R. Montanari, D. Tibaldi. Security for Mobile Agents: Issues
and Challenges. Chapter in the Book "Handbook of Mobile Computing", to appear, 2004.

[7] R. Yahalom, B. Klein, and T. Beth. Trust relationships in secure systems-A distributed
authentication perspective. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pp. 150-164, 1993.

[8] M. Blaze, J. Feigenbaum, J. Lacy. Decentralized Trust Management. In Proceedings IEEE
Conference on Security and Privacy, Oakland, CA, May 1996.

[9] T. Grandison and M. Sloman. A Survey of Trust in Internet Applications. IEEE Communications
Surveys, 4th Quarter, 2000.

[10] M. Burmester and A. Yasinsac. Trust Infrastructures for Wireless, Mobile Networks. WSEAS
Transactions on Telecommunications, Vol. 3, #1, January 2004, pp. 377-82

[11] L. Rasmusson and S. Janson. Simulated social control for secure internet commerce. In New Security
Paradigms Workshop, Lake Arrowhead, CA, Sept. 1996. ACM Press, pp. 18-26.

[12] D. Karjoth, D. B. Lange, and M. Oshima. A security model for Aglets. IEEE Internet Computing,
1(4):68–77, July-August 1997.

 25

[13] L. Kassab and J. Voas. Agent Trustworthiness. In ECOOP Workshop on Distributed Object Security
and 4th Workshop on Mobile Object Systems Secure Internet Mobile Computations, Brussels, July
20-21, 1998.

[14] N. Antonopoulos, K. Koukoumpetsos and K. Ahmad. A Distributed Access Control Architecture for
Mobile Agents. In Proceedings of the International Network Conference 2000, Plymouth, UK, July
2000.

[15] W. Jansen. A Privilege Management Scheme for Mobile Agent Systems. In Proceedings of the
International Conference on Autonomous Agents, Montreal, Canada, May 2001.

[16] L. Kagal, T. Finin, and Y. Peng. A delegation based model for distributed trust. In Proceedings of
IJCAI-01 Workshop on Autonomy, Delegation, and Control, August 01, 2001.

[17] H. K. Tan, L. Moreau. Trust Relationships in a Mobile Agent System. In G. Picco, editor, Fifth IEEE
International Conference on Mobile Agents, LNCS 2240, pp. 15-30, Atlanta, Georgia, Springer-
Verlag, December 2001.

[18] V. Cahill, et al. Using trust for secure collaboration in uncertain environments. In Pervasive
Computing Mobile And Ubiquitous Computing, 2(3):52-61, July-September, IEEE, 2003.

[19] M. Carbone, M. Nielsen, V. Sassone. A Formal Model for Trust in Dynamic Networks. In Proc. of
1st International Conference on Software Engineering and Formal Methods (SEFM’03), Sept. 2003,
pp. 54–63, Brisbane, Australia.

[20] L. Capra. Engineering Human Trust in Mobile System Collaborations. In Proc. of the 12th
International Symposium on the Foundations of Software Engineering (SIGSOFT 2004/FSE-12).
November 2004, Newport Beach, CA.

[21] S. Robles and J. Borrell. Trust in Mobile Agent Environments. In Proc. of the 7th Spanish Meeting
about Cryptology and Information Security, Oviedo, 2002.

[22] D. Gambetta. Can We Trust Trust? In D. Gambetta, editor, Trust: Making and Breaking Cooperative
Relations. Basil Blackwell, Oxford, 1990, pp. 213-237.

[23] H. K. Tan and L. Moreau. Extending execution tracing for mobile code security. In Fischer, K. and
Hutter, D., Eds. Proc. of 2nd Intl Workshop on Security of Mobile MultiAgent Systems
(SEMAS'2002), pp. 51-59, Bologna, Italy, July 2002.

[24] B. Hashii, S. Malabarba, R. Pandey, and M. Bishop. Supporting reconfigurable security policies for
mobile programs. In 9th International World Wide Web Conference (WWW9), Amsterdam,
Netherlands, May 15-19, 2000.

[25] J. Borrell, S. Robles, J. Serra, and A. Riera. Security the itinerary of mobile agents through a non-
repudiation protocol. In IEEE International Carnahan Conference on Security Technology, pp. 461-
464, 1999.

[26] S. Robles, J. Borrell, J. Bigham, L. Tokarchuk, and L. Cuthbert. Design of a Trust Model for a
Secure Multi-Agent Marketplace. In 5th International Conference on Autonomous Agents, Montreal,
May 2001, pp. 77-78. ACM Press.

[27] S. Robles, S. Poslad, J. Borrell, and J. Bigham. A practical trust model for agent-oriented business
applications. In 4th International Conference on Electronic Commerce Research, 2:397-406, Dallas,
USA, November 2001.

[28] S. Robles, S. Poslad, J. Borrell, and J. Bigham. Adding security and privacy to agents acting in a
marketplace: a trust model. In 35th Annual IEEE International Carnahan Conference on Security
Technology, London, October 2001, pp 235-239. IEEE Press.

[29] G. Navarro, S. Robles and J. Borrell. An Access Control Method for Mobile Agents in Sea-of-Data
Applications. Upgrade. III (December 2002), 47-51.

[30] J. Ametller, S. Robles and J.A. Ortega-Ruiz. Self-Protected Mobile Agents. In 3rd International
Conference on Autonomous Agents and Multi Agents Systems. ACM Press, 2004.

[31] L. Kagal, T. Finin, and A. Joshi. Moving from security to distributed trust in ubiquitous computing
environments. IEEE Computer, December 2001.

[32] L. Kagal, T. Finin, A. Joshi. Developing secure agent systems using delegation based trust
management. In In Fischer, K. and Hutter, D., Eds. Proc. of 2nd Intl Workshop on Security of Mobile
MultiAgent Systems (SEMAS'2002), Bologna, Italy, July 2002.

[33] S. Robles, J. Mir, and J. Borrell. MARISMA-A: An architecture for mobile agents with recursive
itinerary and secure migration. In 2nd Information Workshop on Security of Mobile Multiagent
Systems, Bologna, July 2002.

[34] B. Yee. Monotonicity and Partial Results Protection for Mobile Agents. In Proceedings of 23rd
International Conference on Distributed Computing Systems, Providence, Rhode Island, May, 2003.

 26

[35] S.R. Tate and K. Xu. Mobile Agent Security Through Multi-Agent Cryptographic Protocols. In
Proceedings of the 4th International Conference on Internet Computing (IC 2003), pp. 462-468,
2003.

[36] J. McDonald, A. Yasinsac, W. Thompson. Taxonomy for defining mobile agent security. Technical
report. Dept. of Computer Science, Florida State University. Available,
http://ww2.cs.fsu.edu/~mcdonald/pubs/MYT04-acmSurveys.pdf, Dec. 2004.

[37] K. Cartrysse and J.C.A. van der Lubbe. Secrecy in Mobile Code. In 25th Symposium on Information
Theory in the Benelux, Rolduc, Kerkrade, The Netherlands, June 2004.

[38] J. Claessens, B. Preneel and J. Vandewalle. (How) can mobile agents do secure electronic
transactions on untrusted hosts? – A survey of the security issues and the current solutions. ACM
Transactions on Internet Technology. February 2003.

[39] V. Roth. Empowering mobile software agents. In Proc. 6th IEEE Mobile Agents Conference, LNCS
Volume 2535, pages 47–63. Spinger Verlag, 2002.

[40] T. Sander and C.F. Tschudin. Protecting mobile agents against malicious hosts. In G. Vigna, editor,
Mobile Agents and Security, LNCS 1419, pp. 44-61, Springer-Verlag, 1998.

[41] J. Algesheimer, C. Cachin, J. Camenisch, and G. Karjoth. Cryptographic Security for Mobile Code.
In Proc. IEEE Symposium on Security and Privacy (S&P 2001), pp. 2-11, May 2001.

[42] M. Reed, P. Syverson, and D. Goldshlag. Anonymous connections and Onion Routing. IEEE
Journal on Selected Areas in Communication, Special Issue on Copyright and Privacy Protection,
1998.

[43] D. Westhoff, M. Schneider, C. Unger, and F. Kaderali. Protecting a Mobile Agent's Route against
Collusions. LNCS 1758, Springer, 1999.

[44] G. Knoll, N. Suri and J. M. Bradshaw. Path-Based Security for Mobile Agents. Electronic Notes in
Theoretical Computer Science, Vol. 58, No. 2, 2002.

[45] G. Karjoth, N. Asokan and C. Gulcu. Protecting the computation results of freeroaming agents. In
Kurt Rothermel and Fritz Hohl, editors, Proc. of the Second International Workshop, Mobile Agents
98, LNCS 1477, Springer-Verlag, pp. 195-207, 1998.

[46] P. Maggi and R. Sisto. A Configurable Mobile Agent Data Protection Protocol. AAMAS’03,
Melbourne, Australia. July 14–18, 2003.

[47] D. Singelee and B. Preneel. Secure e-commerce using mobile agents on untrusted hosts. Computer
Security and Industrial Cryptography (COSIC) Internal Report, May 2004.

[48] N. Borselius, C.J. Mitchell and A. Wilson. Undetachable Threshold Signatures. In Cryptography
and Coding - Proceedings of the 8th IMA International Conference, Cirencester, UK. LNCS 2260,
pp. 239-244. Springer-Verlag, 2001.

[49] J. Riordan and B. Schneier. Environmental key generation towards clueless agents. In G. Vigna,
editor, Mobile Agents and Security, LNCS 1419, Springer-Verlag, 1998, pp.15–24

[50] Pfleeger, C. and Pfleeger, S.L. Security in Computing. Third Edition. Prentice Hall, Upper Saddle
River, NJ, 2003. ISBN 0-13-035548-8.

[51] G.C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 106-119, Paris, France, January 1997.

[52] P. Lincoln and C. Talcott. Towards a semantic framework for secure agents. High Confidence
Software and Sytems (HCSS 2003). SRI International. March 16, 2003. Available http://www-
formal.stanford.edu/MT/03secagent.pdf.

[53] D.M. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik. Itinerant Agents for
Mobile Computing. Journal IEEE Personal Communications, 2(5):34-49, Oct. 1995.

[54] S. Poslad, M. Calisti, P. Charlton. Specifying Standard Security Mechanisms in Multi-Agent
Systems. AAMAS 2002 workshop on Deception, Fraud And Trust, Bologna, Italy.

[55] S. Fischmeister. Building Secure Mobile Agents: The Supervisor-Worker Framework. Diploma
Thesis, Technical University of Vienna, p. 6-12, Feb. 2000.

[56] K. Schelderup and J. Olnes. Mobile agent security – issues and direction. In H. Zuidweg et al.
(editors), IS&N ’99, LNCS 1597, pp. 155-167, 1999. Springer-Verlag Berlin Heidelberg, 1999.

