
Message Scheduling for All-to-all Personalized

Communication on Ethernet Switched Clusters

Ahmad Faraj Xin Yuan
Department of Computer Science, Florida State University

Tallahassee, FL 32306

{faraj, xyuan}@cs.fsu.edu

Abstract

We develop a message scheduling scheme that can theoretically achieve maximum

throughput for all–to–all personalized communication (AAPC) on any given Ethernet
switched cluster. Based on the scheduling scheme, we implement an automatic routine
generator that takes the topology information as input and produces a customized
MPI alltoall routine, a routine in the Message Passing Interface (MPI) standard that
realizes AAPC. Experimental results show that the automatically generated routine
consistently out-performs other MPI alltoall algorithms, including those in LAM/MPI
and MPICH, on Ethernet switched clusters with different network topologies when the
message size is sufficiently large. This demonstrates the superiority of the proposed
AAPC algorithm in exploiting network bandwidths.

1 Introduction

All–to–all personalized communication (AAPC) is one of the most common communication
patterns in high performance computing. In AAPC, each node in a system sends a different
message of the same size to every other node. The Message Passing Interface routine that
realizes AAPC is MPI Alltoall [10]. AAPC appears in many high performance applications,
including matrix transpose, multi-dimensional convolution, and data redistribution. Since
AAPC is often used to rearrange the whole global array in an application, the message size
in AAPC is usually large. Thus, it is crucial to have an AAPC implementation that can
fully exploit the network bandwidth in the system.

Switched Ethernet is the most widely used local–area–network (LAN) technology. Many
Ethernet–switched clusters of workstations are used to perform high performance computing.
For such clusters to be effective, communications must be carried out as efficiently as possible.
In this paper, we investigate efficient AAPC on Ethernet switched clusters.

We develop a message scheduling scheme that theoretically achieves the maximum through-
put of AAPC on any given Ethernet switched cluster. Similar to other AAPC scheduling

schemes [4], our scheme partitions AAPC into contention free phases. It achieves the maxi-
mum throughput by fully utilizing the bandwidth in the bottleneck links in all phases. Based
on the scheduling scheme, we develop an automatic routine generator that takes the topol-
ogy information as input and produces an MPI Alltoall routine that is customized for the
specific topology. We compare the automatically generated routine with the original routine
in LAM/MPI [7] and a recently improved MPI Alltoall implementation in MPICH [17]. The
results show that the automatically generated routine consistently out-performs the existing
algorithms when the message size is sufficiently large, which demonstrates the superiority of
the proposed AAPC algorithm in exploiting network bandwidths.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section
3 describes the network model and defines the scheduling problem. Section 4 details the
proposed scheduling scheme. Section 5 discusses implementation issues. Section 6 reports
experimental results. Finally, the conclusions are presented in Section 7.

2 Related Work

AAPC has been extensively studied due to its importance. A large number of optimal
message scheduling algorithms for different network topologies with different network models
were developed. Many of the algorithms were designed for specific network topologies that
are used in the parallel machines, including hypercube [5, 18], mesh [1, 13, 12, 16], torus [4, 8],
k-ary n-cube [18], and fat tree [3, 11]. Heuristic algorithms were developed for AAPC on
irregular topologies [9]. A framework for AAPC that is realized with indirect communications
was reported in [6]. Efficient AAPC scheduling schemes for clusters connected by a single
switch was proposed in [14]. Some of the algorithms in [14] are incorporated in the recent
improvement of MPICH library [17]. We consider Ethernet switched clusters with one or
more switches. AAPC on such clusters is a special communication pattern on a tree topology.
To the best of our knowledge, message scheduling for such cases has not been developed.

3 Network Model and Problem Definition

In an Ethernet switched network, links operates in the duplex mode that supports simultane-
ous communications on both directions of the link with the full bandwidth. Thus, machines
connected to an Ethernet switch can send and receive at the full link speed simultaneously.
The switches may be connected in an arbitrary way. However, a spanning tree algorithm is
used by the switches to determine forwarding paths that follow a tree structure [15]. As a
result, regardless of how the switches are connected, the physical topology of the network is
always a tree with switches being the internal nodes and machines being leaves. There is
always a unique path between any two nodes in the network.

The network can be modeled as a directed graph G = (V, E) with nodes V corresponding
to switches and machines and edges E corresponding to unidirectional channels. Let S be
the set of switches in the network and M be the set of machines in the network. V = S∪M .
Let u, v ∈ V , a directed edge (u, v) ∈ E if and only if there is a link between node u and

2

node v. We will call the physical connection between node u and node v link (u, v). Thus,
link (u, v) corresponds to two directed edges (u, v) and (v, u) in the graph. Since the network
topology is a tree, the graph is also a tree: there is a unique path between any two nodes.
Node u ∈ M can only be a leaf node. Figure 1 shows an example cluster. We assume that
all links have the same bandwidth. In practice, switches may support ports with different
speeds. For example, Dell PowerEdge 2324 provides 24 100Mbps ports and 2 1Gbps ports.
The higher speed ports are usually used to connect switches. In this case, the higher speed
inter-switch link will unlikely be the bottleneck in the communication and thus, two switches
connected by such a link can be considered as a single switch in the model.

switches

machines

n5n0

s0

s2

s1

s3
n1

n2

n3 n4

root

subtree

s0
t

s3t

n5t

Figure 1: An example Ethernet Switched Cluster

The terminologies used in this paper are defined next. A message, u → v, is a communica-
tion transmitted from node u to node v. Since the graph is a tree, the path for a message is
fixed. The notion path(u, v) denotes the set of directed edges in the unique path from node
u to node v. For example, in Figure 1, path(n0, n3) = {(n0, s0), (s0, s1), (s1, s3), (s3, n3)}.
A path may also be represented as a sequence of nodes. For example, path(n0, n3) may be
denoted as n0 → s0 → s1 → s3 → n3. Two messages, u1 → v1 and u2 → v2, are said to
have contention if they share a common edge, that is, there exists an edge (x, y) such that
(x, y) ∈ path(u1, v1) and (x, y) ∈ path(u2, v2). A pattern is a set of messages. The AAPC
pattern on a network G = (S∪M, E) is {u → v|u 6= v ∈ M}. The message size in the AAPC
pattern is denoted as msize. A contention free pattern is a pattern where no two messages
in the pattern have contention. A phase is a contention free pattern. For a given pattern,
the load on an edge is the number of times the edge is used in the pattern. The most loaded
edge is called a bottleneck edge. Since the topology is a tree, edges (u, v) and (v, u) always
have the same load. We will use the terms “the load of an edge (u, v)” and “the load of a
link (u, v)” interchangeably. The load of a pattern is equal to the load of a bottleneck edge.
Since we only consider the AAPC pattern in this paper, a bottleneck edge on a graph refers
to a bottleneck edge when the AAPC pattern is realized. For a set S, |S| denotes the size of
the set. Since scheduling for AAPC when |M | ≤ 2 is trivial, we will assume that |M | ≥ 3.

Let edge (u, v) be one of the bottleneck edges for the AAPC pattern. Assume that remov-
ing link (u, v) (edges (u, v) and (v, u)) partitions graph G = (S ∪M, E) into two sub-graphs,
Gu = (Su ∪Mu, Eu) and Gv = (Sv ∪Mv, Ev). Gu is the connected component including node
u, and Gv is the connected component including node v. AAPC requires |Mu|×|Mv|×msize

3

bytes data to be transferred across the link (u, v) in both directions. Let B be the band-

width on all links. The best case time to complete AAPC is |Mu|×|Mv|×msize

B
. The aggregate

throughput of AAPC is bounded by

Peak aggregate throughput ≤
|M |(|M | − 1)msize

|Mu|×|Mv|×msize

B

=
|M |(|M | − 1)B

Mu × Mv

In general networks, this peak aggregate throughput may not be achieved due to node and
link congestion. However, as will be shown later, for the tree topology, this physical limit
can be approached through message scheduling.

4 AAPC Message Scheduling

In the following, we will present an algorithm that constructs phases for AAPC. The phases
conform to the following constraints, which are sufficient to guarantee optimality: (1) no
contention within each phase; (2) every message in AAPC appears exactly once in the phases;
and (3) the total number of phases is equal to the load of AAPC on a given topology. If
phases that satisfy these constraints can be carried out without inter-phase interferences,
the peak aggregate throughput is achieved.

Our scheduling algorithm has three components. The first component identifies the root
of the system. For a graph G = (S ∪ M, E), the root is a switch that satisfies the following
conditions: (1) it is connected to a bottleneck edge; and (2) the number of machines in each

of the subtrees connecting to the root is less than or equal to |M |
2

, half of all machines in
the system. Once the root is identified, the algorithm schedules messages in two levels: local
messages that are within a subtree, and global messages that are between subtrees. The
second component performs global message scheduling that determines the phases when
messages between two subtrees are carried out. Finally, the third component performs
global and local message assignment, which decides the final scheduling of local and global
messages.

4.1 Identifying the Root

Let the graph be G = (S ∪ M, E). The process to find a root in the network is as follows.
Let link L = (u, v) (edges (u, v) and (v, u)) be one of the bottleneck links. Link L partitions
the graph into two subgraphs, Gu = (Su ∪Mu, Eu) and Gv = (Sv ∪Mv, Ev). The load of link
L is thus, |Mu| × |Mv| = (|M | − Mv) × |Mv|. Assume that |Mu| ≥ |Mv|. If in Gu, node u

has more than one branch containing machines, then node u is the root. Otherwise, node u

should have exactly one branch that contains machines (obviously this branch may also have
switches). Let the branch connect to node u through link (u1, u). Clearly, link (u1, u) is also
a bottleneck link since all machines in Gu are in Gu1

. Thus, we can repeat the process for link
(u1, u). This process can be repeated n times and n bottleneck links (un, un−1), (un−1, un−2),
..., (u1, u), are considered until the node un has more than one branch containing machines
in Gun

. Then, un is the root. Node un should have a nodal degree larger than 2 in G.

4

Lemma 1: Using the above process to find the root, each subtree of the root contains at
most |M |

2
machines.

Proof: Using the above process, we identify a root un and the connected bottleneck link
(un, un−1). Let Gun

= (Sun
∪ Mun

, Eun
) and Gun−1

= (Sun−1
∪ Mun−1

, Eun−1
) be the two

subtrees after link (un, un−1) is removed from G. Follow the root identifying process, we

have |Mun
| ≥ |Mun−1

| and |Mun−1
| ≤ |M |

2
. Since |M | > 2, Gun

contains at least 2 machines
and Gun−1

contains at least 1 machine. The load on the bottle link (un, un−1) is |Mun
||Mun−1

|.
Let node w be a node that connects to node un in Gun

and Gw = (Sw ∪ Mw, Ew) be the

corresponding subtree. We have |M |
2

≥ |Mun−1
| ≥ |Mw| [Note: if |Mun−1

| < |Mw|, the load on
link (un, w), |Mw|×(|M |−|Mw|) > |Mun−1

|×(|M |−|Mun−1
|), is greater than the load on link

(un, un−1), which contradicts to the fact that (un, un−1) is a bottleneck link]. Hence, each

subtree of the root contains at most |M |
2

machines, and subtree tun−1
is one of the subtrees

that have the largest number of machines. 2

In Figure 1, the link connecting s0 to s1 is the bottleneck link. Both nodes s0 and s1 can
be the root. Assume that s1 is selected as the root. It is connected with three subtrees ts0

that contains three machines n0, n1, and n2, ts3 that contains two machines n3 and n4, and
tn5 that contains one machine n5.

4.2 Global Message Scheduling

root

k−1ttt 1
0

������
���
������
���

������
���
������
���

������
���
������
���

���
�

		

���
�

Figure 2: A two level view of the network

Let the root connect to k subtrees, t0, t1, ..., tk−1, with |M0|, |M1|, ..., |Mk−1| machines
respectively. Figure 2 shows the two-level view of the network. Only global messages use
the links between the subtrees and the root. Local messages only use links within a subtree.
Without loss of generality, let us assume that |M0| ≥ |M1| ≥ ... ≥ |Mk−1|. Thus, the load of
AAPC is |M0| ∗ (|M1|+ |M2|+ ...+ |Mk−1|) = |M0|× (|M |−|M0|) and we must schedule both
local and global messages in |M0| × (|M | − |M0|) phases while maintaining contention-free
phases. The scheduling is performed in two steps. First, phases are allocated for global
messages in global message scheduling where messages from one subtree to another subtree
are treated as groups. Second, individual global and local messages are assigned to particular
phases. We will discuss global message scheduling in this subsection and describe global and
local message assignment in the next subsection.

We will use the notation ti → tj to represent either a message from a machine in subtree
ti to a machine in subtree tj or general messages from subtree ti to subtree tj. The global
message scheduling decides phases for messages in ti → tj. Let us first consider a simple
case where |M0| = |M1| = ... = |Mk−1| = 1. In this case, there is |Mi| × |Mj| = 1 message

5

Phase 0 Phase 1 ... Phase k − 3 Phase k − 2
t0 → t1 t0 → t2 ... t0 → tk−2 t0 → tk−1

t1 → t2 t1 → t3 ... t1 → tk−1 t1 → t0
...

tk−2 → tk−1 tk−2 → t0 ... tk−2 → tk−4 tk−2 → tk−3

tk−1 → t0 tk−1 → t1 ... tk−1 → tk−3 tk−1 → tk−2

Table 1: Phases from ring scheduling

in ti → tj. A ring scheduling algorithm [17, 14] can be used to schedule the messages in
1× (k− 1) = k− 1 phases. In ring scheduling, ti → tj is scheduled at phase j − i− 1 if j > i

and phase (k − 1) − (i − j) if i > j. The ring scheduling produces k − 1 phases shown in
Table 1.

When scheduling messages with any number of machines in a subtree, we group all mes-
sages from one subtree to another into consecutive phases. The total number of messages
from ti to tj is |Mi||Mj|. We extend ring scheduling to allocate phases for groups of mes-
sages. In the extended ring scheduling, for subtree ti, the messages to other subtrees follow
the same order as the ring scheduling. For example, for t1, messages in t1 → t2 happen
before messages in t1 → t3, messages in t1 → t3 happen before messages in t1 → t4, and so
on. Specifically, the phases are allocated as follows. Note that messages in ti → tj occupy
|Mi||Mj| consecutive phases.

• When j > i, messages in ti → tj start at phase |Mi| ∗ (|Mi+1|+ |Mi+2|+ ...+ |Mj−1|) =
|Mi| ×

∑j−1
k=i+1 |Mk|. Note that when i + 1 > j − 1,

∑j−1
k=i+1 |Mk| = |Mi+1| + |Mi+2| +

... + |Mj−1| = 0.

• When i > j, messages in ti → tj start at phase |M0| ∗ (|M | − |M0|)− (|Mi|+ |Mi−1|+
... + |Mj+1|) ∗ |Mj| = |M0| ∗ (|M | − |M0|)− (|Mj|

∑i
k=j+1 |Mk|).

Lemma 2: Using the extended ring scheduling described above, the resulting phases have
the following two properties: (1) the number of phases is |M0| ∗ (|M |− |M0|); and (2) in each
phase, global messages do not have contention on links connecting subtrees to the root.
Proof: When j > i, messages in ti → tj start at phase |Mi| ∗ (|Mi+1|+ |Mi+2|+ ... + |Mj−1|)
and end at phase |Mi|∗(|Mi+1|+|Mi+2|+...+|Mj−1|+|Mj|)−1 < |M0|∗(|M1|+...+|Mk−1|) =
|M0| ∗ (|M | − |M0|).

When i > j, messages in ti → tj start at phase |M0| ∗ (|M | − |M0|)− (|Mi|+ |Mi−1|+ ...+
|Mj+1|) ∗ |Mj| and end at phase |M0| ∗ (|M | − |M0|)− (|Mi|+ |Mi−1|+ ... + |Mj+1|) ∗ |Mj|+
|Mi| ∗ |Mj| − 1 < |M0| ∗ (|M | − |M0|). Thus, the number of phases is less than or equal to
|M0| ∗ (|M | − |M0|). Note the phase count starts at phase 0.

Messages in t0 → tk−1 start at phase |M0| ∗ (|M1| + |M2| + ... + |Mk−2|) and end at phase
|M0| ∗ (|M1|+ |M2|+ ... + |Mk−2|) + |M0| ∗ |Mk−1| − 1 = |M0| ∗ (|M | − |M0|) − 1. Thus, the
number of phases is exactly |M0| ∗ (|M | − |M0|).

Examining the starting and ending phases for messages in ti → tj, it can be shown that
phases for ti → tj, j 6= i, do not overlap and that phases for tj → ti, j 6= i, do not overlap.

6

Thus, at each phase, at most one node in a subtree is sending and at most one node in a
subtree is receiving. As a result, the two edges of the link connecting a subtree to the root
will be used at most once in each phase. Hence, in each phase, global messages do not have
contention on links connecting subtrees to the root. 2

2

1 2 1 0

2 0 2 1

t : n0, n1, n2

t : n3, n4

t : n5

0

1

2

0t −> t

t −> t t −> t

Phase 0 1 2 3 4 5 6 7 8

t −> t t −> t

t −> t0 1

Figure 3: Global message scheduling for the example in Figure 1

Figure 3 shows the scheduling of global messages for the example shown in Figure 1. In this
figure, t0 = ts0 contains three machines n0, n1, and n2; t1 = ts3 contains two machines n3 and
n4; and t2 = tn5 contains one machine n5. Thus, |M0| = 3, |M1| = 2, and |M2| = 1. Messages
in t1 → t2 start at |M1| ×

∑1
k=2 |Mk| = 0. Messages in t0 → t2 start at |M0| ×

∑1
k=1 |Mk| =

|M0| × |M1| = 6. Messages in t2 → t0 start at |M0| ∗ (|M | − |M0|) − |M0| ×
∑2

k=1 |Mk| = 0.
The figure also shows that some subtrees are idle at some phases. For example, subtree t1

does not have a sending machine in phase 2.

4.3 Global and Local Message Assignment

Let the root connect to k subtrees, t0, t1, ..., tk−1, with |M0|, |M1|, ..., |Mk−1| machines
respectively. |M0| ≥ |M1| ≥ ... ≥ |Mk−1|. As shown in the previous subsection, global
messages are scheduled in |M0|× (|M |− |M0|) phases. Consider subtree ti, the total number
of local messages in ti is |Mi|×(|Mi|−1), which is less than the total number of phases. Thus,
if in each phase, one local message in each subtree can be scheduled without contention with
the global messages, all messages in AAPC can be scheduled in |M0| × (|M | − |M0|) phases.
The contention free scheduling of global and local messages is based on the following lemma.
Lemma 3: Let G = (S∪M, E) be a tree and x 6= y 6= z ∈ S∪M , path(x, y)∩path(y, z) = φ.
Proof: Assume that path(x, y) ∩ path(y, z) 6= φ. There exists an edge (u, v) that belongs to
both path(x, y) and path(y, z). As a result, the composition of the partial path path(y, u) ⊆
path(y, z) and path(u, y) ⊆ path(x, y) forms a non-trivial loop: edge (u, v) is in the loop
while edge (v, u) is not. This contradicts to the assumption that G is a tree. 2

Lemma 4: Using the global message scheduling scheme, at each phase, the global messages
do not have contention.
Proof: Let root connect to subtrees t0, t1, ..., tk−1 as shown in Figure 2. From Lemma 2,
at each phase, there is no contention in the link connecting a subtree to the root. When
there is only one global message in a subtree in a phase, there will be no contention in that
phase in that subtree. Thus, the only case when global messages may have contention inside
a subtree is when there are two global messages involving nodes in a subtree in a phase.
In this case, one global message is sent to a node in the subtree and the other one is sent

7

from a node in the subtree. Let the two messages be x → o1 and o2 → y, where x ∈ Mi,
y ∈ Mi, and o1 and o2 are in other subtrees. The sub-path for x → o1 inside ti is equal to
path(x, root) and the sub-path for o2 → y is equal to path(root, y). From Lemma 3, these
two paths do not have contention inside ti. 2

The contention free scheduling of local messages is also based on Lemma 3. As discussed
earlier, the total number of local messages in a subtree is less than the total number of phases.
Thus, it is sufficient to schedule one local message in each phase. Let u 6= v ∈ ti. From
Lemma 3, there are three cases when message u → v can be scheduled without contention
(with global messages) in a phase: (1) node v is the sender of a global message and node u is
the receiver of a global message; (2) node v is the sender of a global message and there is no
receiving node of a global message in ti; and (3) node u is the receiver of a global message
is there is no sending node of a global message. The global and local message assignment
algorithm assigns phases to all global messages in such a way that all local messages can be
scheduled without contention. Note that by scheduling at most one local message in each
subtree, our scheduling algorithm does not have to consider the specific topologies of the
subtrees.

Let us now consider how the phases are assigned to global messages. Let us number the
nodes in subtree ti as ti,0, ti,1, ..., ti,(|Mi|−1). To realize inter-subtree communication ti → tj,
0 ≤ i 6= j < k, each message ti,i1 → tj,j1, 0 ≤ i1 < |Mi| and 0 ≤ j1 < |Mj|, must happen
in the |Mi| ∗ |Mj| phases that are allocated to ti → tj. Our assignment algorithm uses two
different methods to realize inter-subtree communications. The first scheme is what we refer
to as a broadcast scheme. In this scheme, the |Mi| ∗ |Mj| phases are partitioned into |Mi|
rounds with each round having |Mj| phases. In each round, a different node in ti sends one
message to each of the nodes in tj. This method has the flexibility in selecting the order of
the senders in ti in each round and the order of the receivers in tj within each round. One
example is to have kth round realize the broadcast from node ti,k to all nodes in tj, which
results in the following pattern:

ti,0 → tj,0, ..., ti,0 → tj,|Mj |−1, ti,1 → tj,0, ..., ti,1 → tj,|Mj |−1, ..., ti,|Mi|−1 → tj,0, ..., ti,|Mi|−1 → tj,|Mj |−1.

The second scheme is what we refer to as a rotate scheme. Let D be the greatest common
divisor of |Mi| and |Mj|. D = gcd(|Mi|, |Mj|) and |Mi| = a×D, |Mj| = b×D. In this scheme,
the pattern for receivers is a repetition of Mi times of a fixed sequence that enumerates all
nodes in tj. One example of the fixed sequence is tj,0, tj,1, ...tj,|Mj |−1, which results in a
receiver pattern of

tj,0, tj,1, ...tj,|Mj |−1, tj,0, tj,1, ...tj,|Mj |−1, ..., tj,0, tj,1, ...tj,|Mj |−1.
Note that the rotate pattern does not restrict the fixed sequence that enumerates all

nodes in tj. Different from the broadcast scheme, in a rotate scheme, the sender pattern
is also an enumeration of all nodes in ti in every |Mi| phases. There is a base sequence for
the senders, which can be an arbitrary sequence that covers all nodes in ti. For example,
the base sequence can be ti,0, ti,1, ...ti,|Mi|−1. In the scheduling, the base sequence and the
“rotated” base sequence are used. Let the base sequence be ti,0, ti,1, ...ti,|Mi|−1. The base
sequence can be rotated 1 time, which produces the sequence ti,1, ...ti,|Mi|−1, ti,0. Sequence
ti,2, ...ti,|Mi|−1, ti,0, ti,1 is the result of rotating the base sequence 2 times. The result from
rotating the base sequence n times can be defined similarly. The senders are scheduled as

8

phase comm. phase comm phase comm phase comm
0 ti,0 → tj,0 6 ti,0 → tj,2 12 ti,1 → tj,0 18 ti,1 → tj,2
1 ti,1 → tj,1 7 ti,1 → tj,3 13 ti,2 → tj,1 19 ti,2 → tj,3
2 ti,2 → tj,2 8 ti,2 → tj,0 14 ti,3 → tj,2 20 ti,3 → tj,0
3 ti,3 → tj,3 9 ti,3 → tj,1 15 ti,4 → tj,3 21 ti,4 → tj,1
4 ti,4 → tj,0 10 ti,4 → tj,2 16 ti,5 → tj,0 22 ti,5 → tj,2
5 ti,5 → tj,1 11 ti,5 → tj,3 17 ti,0 → tj,1 23 ti,0 → tj,3

Table 2: Rotate pattern for realizing ti → tj when |Mi| = 6 and |Mj| = 4

follows. The base sequence is repeated b times for the first a × b × D phases. At phase
a × b × D, the scheme finds the smallest n such that after the base sequence is rotated n

times, the message (sender and receiver pair) at phase a × b × D does not happen before.
The sequence resulting from rotating base sequence n times is then repeated b times. This
process is repeated D times to create the sender pattern for all |Mi||Mj| phases. Basically,
at phases that are multiples of a × b × D phases, rotations are performed to find a new
sequence that is repeated b times. It can be shown that all messages in ti → tj are realized
in the rotate scheme.

Table 2 shows an example when |Mi| = 6 and |Mj| = 4. In this case, a = 3, b = 2, and
D = 2. The receivers repeat the pattern tj,0, tj,1, tj,2, tj,3. The base sequence for the senders
is ti,0, ti,1, ti,2, ti,3, ti,4, ti,5. This sequence is repeated 2 times. At phase 2 ∗ 3 ∗ 2 = 12, the
senders follow a rotated sequence ti,1, ti,2, ti,3, ti,4, ti,5, ti,0 and repeat the pattern 2 times. It
can be verified that all messages in ti → tj are realized.

The following two lemmas illustrate the properties of the broadcast pattern and the rotate
pattern.
Lemma 5: In the broadcast pattern that realizes ti → tj, each sender ti,k occupies |Mj|
continuous phases.
Proof: Straight-forward from the definition of the broadcast pattern. 2.
Lemma 6: In the rotate pattern that realizes ti → tj, counting from the first phase for
messages in ti → tj, each sender in ti happens once in every |Mi| phases and each receiver
in tj happens once in every |Mj| phases.
Proof: Straight-forward from the definition of the rotate pattern. 2.

Either the broadcast pattern or the rotate pattern can be used to realize messages in
ti → tj, 0 ≤ i 6= j < k. The challenge in the scheduling, however, is that we must be able
to embed all local messages in the |M0| ∗ (|M | − |M0|) phases. The scheduling algorithm is
shown in Figure 4. The algorithm consists of six steps. We will explain each step next.

In the first step, the messages from t0 to all other subtrees tj, 1 ≤ j < k are scheduled.
First, the receivers in t0 → tj are assigned such that at phase p, node tj,(p−|M0|(|M |−|M0|)) mod |Mj |

is the receiver. It can be easily verified that in the phases for t0 → tj, a receiver sequence
that covers all nodes in tj is repeated |M0| times, which facilitates the rotate pattern to be
used for all the messages in t0 → tj. The reason that the receivers use that particular pattern
is to align the receivers with the receivers in ti → tj when i > j. As will be shown Step
5, this alignment is needed to correctly schedule local messages. Using the rotate pattern

9

Input: Results from global message scheduling that identify which phases are used to
realize ti → tj for all 0 ≤ i 6= j < k

Output: (1) the phase to realize each global message
ti,i1 → tj,j1, 0 ≤ i1 < |Mi|, 0 ≤ j1 < |Mj |, 0 ≤ i 6= j < k.

(2) the phase to realize each local message ti,i1 → ti,i2 , 0 ≤ i1 6= i2 < |Mi|, 0 ≤ i < k.

Step 1: Assign phases to messages in t0 → tj, 1 ≤ j < k.
1.a: For each t0 → tj, the receivers in tj are assigned as follows:

at phase p in the phases for t0 → tj , machine tj,(p−|M0|(|M |−|M0|)) mod |Mj | is the receiver.

/* it can be verified that a sequence that enumerates the nodes in tj is repeated |M0| times
in phases for t0 → tj. */

1.b: For each t0 → tj , the senders in t0 are assigned according to the rotate pattern with
the base sequence t0,0, t0,1, ..., t0,|M0|−1.

Step 2: Assign phases to messages in ti → t0, 1 ≤ i < k.
2.a: Assign the receivers in ti → t0:

/*Step 1.b organizes the senders in t0 in such a way that every |M0| phases, all nodes in t0
appear as the sender once. We call |M0| phases a round */

The receiver pattern in ti → t0 is computed based on the sender pattern in t0 → tj according
to the mapping shown in Table 3. Round r has the same mapping as round r mod |M0|.
/* the mapping ensures that the local messages in t0 can be scheduled */

2.b: Assign the senders in ti using the broadcast pattern with order ti,0, ti,1, ..., ti,|Mi|−1.

Step 3: Schedule local messages in t0 in phase 0 to phase |M0|(|M0| − 1).
message t0,i → t0,j, 0 ≤ i 6= j < |M0|, is scheduled at the phase where t0,i is the receiver
of a global message and t0,j is the sender of a global message.

Step 4: Assign phases to global messages in ti → tj, i > j and j 6= 0.
Use the broadcast pattern with receivers repeating pattern tj,0, tj,1, ..., tj,|Mj |−1 for each

sender ti,k and senders following the order ti,0, ti,1, ti,k, ..., ti,|Mi|−1.

Step 5: Schedule local messages in ti, 1 ≤ i < k in phases for ti → ti−1.
/* the last phase for ti → ti−1 is the last phase |M0|(|M | − |M0|) − 1.*/
Steps 1 through 4 ensure that for each local message ti,i1 → ti,i2,
there is a phase in the phases for ti → ti−1 such that ti,i2 is the sender
of a global message and either ti,i1 is a receiver of a global message or no node in ti

is receiving a global message. This step schedules ti,i1 → ti,i2 in this phase.

Step 6: Use either the broadcast pattern or the rotate pattern for messages in ti → tj, i < j and i 6= 0.
/* scheduling of these global message would not affect the scheduling of local messages. */

Figure 4: The global and local message assignment algorithm

10

round 0 round 1 ... round |M0| − 2 round |M0| − 1 ...
send recv send recv ... send recv send recv ...
t0,0 t0,1 t0,0 t0,2 ... t0,0 t0,|M0|−1 t0,0 t0,0 ...
t0,1 t0,2 t0,1 t0,3 ... t0,1 t0,0 t0,1 t0,1 ...
...

t0,|M0|−2 t0,|M0|−1 t0,|M0|−2 t0,0 ... t0,|M0|−2 t0,|M0|−3 t0,|M0|−2 t0,|M0|−2 ...
t0,|M0|−1 t0,0 t0,|M0|−1 t0,1 ... t0,|M0|−1 t0,|M0|−2 t0,|M0|−1 t0,|M0|−1 ...

Table 3: Mapping between senders and the receivers in Step 2. Round r has the same
mapping as round r mod |M0|

ensures that each of the nodes in t0 appears once as the sender in every |M0| phases counting
from phase 0.

In the second step, messages in ti → t0 are assigned. In this step, phases are partitioned
into rounds with each round have |M0| phases. The primary objective of this step is to make
sure that all local messages in t0 can be scheduled. The objective is achieved by creating
the pattern shown in Table 3, which is basically a rotate pattern for t0 → t0. Since in step
1, each node in t0 appears as a sender in every |M0| phases, the scheduling of receivers in
ti → t0 can directly follow the mapping in Table 3. Using this mapping, every node in t0
appears as a receiver in every |M0| phases, which facilitates the use of a broadcast pattern
to realize messages in ti → t0, i > 0. After the receiver pattern is decided, the senders of
ti → t0 are determined using the broadcast scheme with the sender order ti,0, ti,1, ..., ti,|Mi|−1.

Step 3 embeds local messages in t0 in the first |M0| ∗ (|M0| − 1) phases. Note that
|M0| ∗ (|M0| − 1) ≤ |M0| ∗ (|M | − |M0|). Since the global messages for nodes in t0 are
scheduled according to Table 3, for each t0,n → t0,m, 0 ≤ n 6= m < |M0|, there exists a phase
in the first |M0|(|M0| − 1) phases such that t0,n is scheduled to receive a global message
while t0,m is scheduled to send a global message. Thus, all local messages in t0, t0,n → t0,m,
0 ≤ n 6= m < |M0|, can be scheduled in the the first |M0|(|M0| − 1) phases.

In Step 4, global messages in ti → tj, i > j and j 6= 0 are assigned. The broadcast pattern
is used to assign global messages with receivers repeating the pattern tj,0, tj,1, ..., tj,|Mj |−1

and senders following the order ti,0, ti,1, ..., ti,|Mi|−1. Hence, messages in ti → tj, i > j and
j 6= 0 are assigned as

ti,0 → tj,0, ..., ti,0 → tj,|Mj |−1, ti,1 → tj,0, ..., ti,1 → tj,|Mj |−1, ti,|Mi|−1 → tj,0, ..., ti,|Mi|−1 → tj,|Mj |−1.

In Step 5, we schedule local messages in subtrees other than t0. Local messages in ti,
1 ≤ i < k, are scheduled in the phases for ti → ti−1. Note that |Mi−1| ≥ |Mi| and there are
|Mi||Mi−1| phases for messages in ti → ti−1, which is more than the |Mi|(|Mi| − 1) phases
needed for local messages in ti. There are some subtle issues in this step. First, all local
messages are scheduled before assigning phases to global messages in ti → tj, 1 ≤ i < j.
The reason that global messages in ti → tj, 1 ≤ i < j, do not affect the local message
scheduling in subtree tn, 1 ≤ n < k, is that all local messages are scheduled in phases after
the first phase for t0 → tn (since |Mn| ∗ |Mn−1| ≤ |M0| ∗ |Mn|) while phases for ti → tj,
1 ≤ i < j, are all before that phase. Second, let us examine how exactly a communication
ti,i2 → ti,i1 is scheduled. From Step 4, the receiver in tj → ti, j > i, is organized such that,

11

at phase p, ti,(p−|M0|(|M |−|M0|)) mod |Mi| is the receiver. From Step 1, receivers in t0 → ti are
also aligned such that at phase p, ti,(p−|M0|(|M |−|M0|)) mod |Mi| is the receiver. Hence, in the
phases for ti → ti−1, either ti,(p−|M0|(|M |−|M0|)) mod |Mi| is a receiver of a global message or no
node in ti is receiving a global message. Thus, at all phases in ti → ti−1, we can assume that
the designated receiver is ti,(p−|M0|(|M |−|M0|)) mod |Mi| at phase p. In other words, at phase p,
ti,(p−|M0|(|M |−|M0|)) mod |Mi| can be scheduled as the sender of a local message. Now, consider
the sender pattern in ti → ti−1. Since ti → ti−1 is scheduled using the broadcast pattern,
each ti,i1 is sending in |Mi−1| continuous phases. Since the receiving pattern covers every
node, ti,i2 ∈ ti, in every |Mi| continuous phases and |Mi−1| ≥ |Mi|, there exists at least one
phase where ti,i1 is sending a global message and ti,i2 is the designated receiver of a global
message. Local message ti,i2 → ti,i1 is scheduled in this phase. Hence, all messages in ti can
be scheduled in phases for ti → ti−1 without contention.

Finally, since all local messages are scheduled, we can use either the broadcast scheme or
rotate scheme to realize messages in ti → tj, i < j and i 6= 0.
Theorem: The global and local message assignment algorithm in Figure 4 produces phases
that satisfy the following conditions: (1) all messages in AAPC are realized in |M0|× (|M |−
|M0|) phases; and (2) there is no contention within each phase.
Proof: From Lemma 2, we see that all global messages are scheduled in |M0| × (|M | −
|M0|) phases. Step 3 in the algorithm indicates that local messages in t0 are scheduled in
|M0| × (|M0| − 1) phases. In Step 5, all local messages in ti are scheduled in the phases
allocated to communications in ti → ti−1. Thus, all messages in AAPC are scheduled in
|M0| × (|M | − |M0|) phases.

Lemma 4 shows that there is no contention among global messages in each phase. Since
local messages in different subtrees cannot have contention and since in one phase, at most
one local message in a subtree is scheduled, the contention can only happen between a global
message and a local message inside a subtree. In the scheduling of local messages in t0 (Step
3), a local message t0,i → t0,j is scheduled in the phase when t0,i is a receiver of a global
message and t0,j is a sender of a global message. From Lemma 3, local message t0,i → t0,j

does not have contention with the two global messages. Local messages in ti, 1 ≤ i < k,
is scheduled in Step 5 in phases allocated to communications in ti → ti−1. A local message
ti,i1 → ti,i2 is scheduled in a phase when ti,i2 is a sender of a global message and either ti,i1 is
a receiver of a global message or no node in ti is scheduled to receive a global message. From
Lemma 3, local message ti,i1 → ti,i2 cannot have contention with global messages. Thus,
there is no contention within a phase. 2

Table 4 shows the result of the global and local message assignment for the example in
Figure 1. In this table, we can assume t0,0 = n0, t0,1 = n1, t0,2 = n2, t1,0 = n3, t1,1 = n4,
and t2,0 = n5. From the algorithm, we first determine the receiver pattern in t0 → t1 and
t0 → t2. For messages in t0 → t1, t1,(p−9) mod 2 is the receiver at phase p, which means the
receiver pattern from phase 0 to phase 5 are t1,1, t1,0, t1,1, t1,0, t1,1, t1,0. After that, the
rotation pattern is used to realize all messages in t0 → t1 and t0 → t2. The results are
shown in the second column in the figure. In the second step, messages in t1 → t0 and
t2 → t0 are assigned. Messages in t2 → t0 occupy the first round (first three phases). Since
the sender pattern in the first round is t0,0, t0,1, and t0,2, according to Table 3, the receiver

12

global messages local messages
phase t0 → {t1, t2} t1 → {t2, t0} t2 → {t0, t1} t0 t1 t2

0 t0,0 → t1,1 t1,0 → t2,0 t2,0 → t0,1 t0,1 → t0,0

1 t0,1 → t1,0 t1,1 → t2,0 t2,0 → t0,2 t0,2 → t0,1

2 t0,2 → t1,1 t2,0 → t0,0 t0,0 → t0,2

3 t0,0 → t1,0 t1,0 → t0,2 t0,2 → t0,0

4 t0,1 → t1,1 t1,0 → t0,0 t0,0 → t0,1 t1,1 → t1,0

5 t0,2 → t1,0 t1,0 → t0,1 t0,1 → t0,2

6 t0,0 → t2,0 t1,1 → t0,0

7 t0,1 → t2,0 t1,1 → t0,1 t2,0 → t1,0 t1,0 → t1,1

8 t0,2 → t2,0 t1,1 → t0,2 t2,0 → t1,1

Table 4: Results of global and local message assignment for the cluster in Figure 1

pattern should be t0,1, t0,2, t0,0 as shown in Table 4. The receivers for t1 → t0 are assigned
in a similar fashion. After that, the broadcast pattern is used to realize both t1 → t0 and
t2 → t0. In Step 3, local messages in t0 are assigned in the first 3×2 = 6 phases according to
the assignment of the sender and receiver of global messages in each phase. For example, in
phase 0, local message t0,1 → t0,0 is scheduled since node t0,0 is a sender of a global message
and t0,1 is a receiver of a global message. Note that the mapping in Table 3 ensures that
all local messages in t0 can be scheduled. In Step 4, t2 → t1 is scheduled with a broadcast
pattern. In Step 5, local messages in t1 and t2 are scheduled. The local messages in t1 are
scheduled in phases for t1 → t0, that is, from phase 3 to phase 8. The alignment of the
receivers in t0 → t1 and t2 → t1 ensures that each machine in t1 appears as the designated
receiver in every |M1| = 2 phases starting from the first phase for t0 → t1. Notice that in
phase 6, no node in t1 is receiving a global message. However, the designated receiver is t1,1

in this phase. In t1 → t0, each node in t1 is the sender for |M0| = 3 consecutive phases and
the receiver pattern in t1 covers every node in every 2 phases. All local messages in t1 can
be scheduled. In this particular example, message t1,0 → t1,1 is scheduled at phase 7 where
t1,0 is a (designated) receiver of a global message and t1,1 is a sender of a global message,
and t1,1 → t1,0 is scheduled at phase 4. Finally, in Step 6, we use the broadcast pattern for
messages in t1 → t2.

5 Implementation Issues

We develop an automatic routine generator that takes the topology information as input and
automatically produces an MPI Alltoall routine that is customized to the specific topology.
The routine is intended to be used when the message size is large. The software and some
automatically generated routines are available at http://www.cs.fsu.edu/∼xyuan/CCMPI.
We plan to make the source code public in the near future. Currently the system works with
LAM/MPI [7] and the generated routine is built on top of MPI point-to-point communication
routines. This section discusses some implementation issues.

To be optimal, the AAPC phases created by the message scheduling scheme must be

13

separated to preserve the contention-free schedule. A simple way to achieve this is to add a
barrier between each phase. Using barriers, however, would incur substantial synchronization
overheads unless special hardware for the barrier operation such as the Purdue PAPERS [2]
is available.

In our implementation, we use a pair-wise synchronization scheme. When two messages
a → b in phase p and c → d in phase q have contention, p < q, the pair-wise synchronization
makes sure that these two messages do not occur at the same time by introducing a synchro-
nization message from node a to node c. The synchronization message is sent after message
a → b. Message c → d is performed after node c receives the synchronization message. Some
synchronization messages may not be necessary as the ordering can be derived from other
synchronization messages. Such synchronizations are referred to as redundant synchroniza-
tions. For example, assume that message m1 must synchronize with message m2 and with
another message m3. If message m2 also needs to synchronize with message m3, then the
synchronization from m1 to m3 can be removed.

Our implementation computes the required synchronizations as follows. For every commu-
nication at a phase, we check if a synchronization is needed for every other communication at
later phases and build a dependence graph. After deciding all synchronizations messages for
all communications, we compute and remove redundant synchronizations in the dependence
graph. In code generation, synchronization messages are added for all the remaining edges in
the dependence graph. This way, the AAPC algorithm maintains a contention-free schedule
while minimizing the number of synchronization messages.

6 Experiments

We evaluate the scheduling scheme by comparing our automatically generated routine with
the original routine in LAM/MPI [7] and a recent improved MPI Alltoall implementation
in MPICH [17]. LAM/MPI implements all-to-all by simply posting all nonblocking receives
and sends and then waiting for all communications to finish. The improved MPICH imple-
mentation uses different techniques and adapts based on the message size and the number
of nodes in the system. For messages larger than 250 Bytes, when the number of nodes is a
power of two, MPICH uses a pairwise algorithm where node n sends and receives from node
n ⊕ i at step i (1 ≤ i < N , N is the number of nodes). When the number of nodes is not a
power of two, a ring algorithm is used. In this case, at step i, node n sends to node n+ i and
receives from node n − i. Both pairwise and ring algorithms finish AAPC in N − 1 steps.

We use LAM/MPI 6.5.9 in the experiments. The MPICH implementation is slightly
modified to work with LAM/MPI. The experiments are performed on a 32-node Ethernet
switched cluster. The nodes of the cluster are Dell Dimension 2400 with a 2.8MHz P4
processor, 128MB of memory, and 40GHz of disk space. All machines run Linux (Fedora)
with 2.6.5-1.358 kernel. The Ethernet card in each machine is Broadcom BCM 5705 with
the driver from Broadcom. These machines are connected to Dell PowerEdge 2224 and Dell
PowerEdge 2324 100Mbps Ethernet switches.

The topologies used in the experiments are shown in Figure 5. Figure 5 (a) is a 24-
node cluster connected by a single 2324 switch. Figure 5 (b) and Figure 5 (c) are two 32

14

n0

S2S1S0 S3

������
������

��
��

��
��

��
��

��
��

��
��

������
������

��
��

	�		�	
	�		�	

�

�

�

�

������
������

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

������
������

������
������

��
��

��
��
n1

(b)

(c)

(a)

n23n1n0

S0

���
�

n31n25n24n23n17n16n15n9n8n7

���
�

�������
�

��
�

!!
!
""
"

#�##�#
#�##�#
#�#

$�$$�$
$�$$�$
$�$

%�%%�%
%�%%�%
%�%

&&
&&
&

'�''�'
'�''�'
'�'

((
((
(

)�))�)
)�))�)
)�)

*�**�*
*�**�*
�

+�++�+
+�++�+
+�+

,,
,,
,

-�--�-
-�--�-
-�-

..
..
.

//
//
/

00
00
0

1�11�1
1�11�1
1�1

2�22�2
2�22�2
2�2

33
33
3

44
44
4

55
5

6�66�67
7

889
9

:�::�:;
;

<<=
=

>>?
?

@@A
A

BBC
C

n31n25n24 n23n17n16

n15n9n8

n7n1n0

S3

S1 S2S0

Figure 5: Topologies used in the experiments

msize LAM MPICH Ours
8KB 29.7ms 30.7ms 56.5ms
16KB 61.4ms 58.1ms 71.4ms
32KB 128.2ms 117.6ms 86.0ms
64KB 468.8ms 309.7ms 217.7ms
128KB 633.7ms 410.0ms 398.0ms
256KB 1157ms 721ms 715ms

(a) Completion time

0

500

1000

1500

2000

2500

8K 32K 64K 128K 256K

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

bp
s)

Message size

Peak
Ours

MPICH
LAM

(b) Aggregate throughput

Figure 6: Results MPI Alltoall on the topology in Figure 5 (a)

node clusters. In both cases, 8 nodes are connected to each of the 2224 switches. The results
reported are the averages of three executions. In each execution, 10 iterations of MPI Alltoall
are measured and the average execution time for each invocation of the routine is recorded.

Figures 6, 7, and 8 show the results for topologies in Figure 5 (a), (b) and (c), respec-
tively. We show the average AAPC completion time and the actual aggregate throughput
of the AAPC. In all network configurations, due to the synchronization overheads, our au-
tomatically generated routine performs worse than LAM and the improved MPICH when
the message size is small. However, when the message size is sufficiently large, our routine
out-performs LAM and the improved MPICH. This demonstrates the superiority of our algo-
rithm in exploiting network bandwidths. The algorithm in LAM/MPI does not perform any
scheduling and results in severe network contention when the message size is large. The im-
proved MPICH all-to-all algorithm performs a limited form of scheduling. It performs AAPC
in phases but does not consider contention in the network links. In addition, the phased
algorithm in MPICH does not have synchronizations between phases which may introduce
a limited form of node contention since different nodes may finish a phase and start a new
phase at different times. The limited form of node contention is shown in the experiment for
the topology in Figure 5 (a) when the message sizes are 32KB and 64KB. Note that the

15

msize LAM MPICH Ours
8KB 199ms 155ms 212ms
16KB 403ms 308ms 341ms
32KB 848ms 613ms 632ms
64KB 1827ms 1374ms 1428ms
128KB 3338ms 2989ms 2595ms
256KB 6550ms 5405ms 4836ms

(a) Completion time

150

200

250

300

350

400

450

500

550

600

8K 32K 64K 128K 256K

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

bp
s)

Message size

Peak
Ours

MPICH
LAM

(b) Aggregate throughput

Figure 7: Results MPI Alltoall on the topology in Figure 5 (b)

msize LAM MPICH Ours
8KB 242ms 238ms 271ms
16KB 495ms 476ms 443ms
32KB 1034ms 958ms 868ms
64KB 2127ms 2061ms 1700ms
128KB 4080ms 4379ms 3372ms
256KB 8375ms 8210ms 6396ms

(a) Completion time

100

150

200

250

300

350

400

8K 32K 64K 128K 256K

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

bp
s)

Message size

Peak
Ours

MPICH
LAM

(b) Aggregate throughput

Figure 8: Results MPI Alltoall on the topology in Figure 5 (c)

AAPC algorithm in the improved MPICH was designed specifically for this type of network
[14]. Since the improved MPICH algorithm does not consider contention in network links, its
performance depends heavily on the network topology when multiple switches are used. As
shown in the results in Figure 8, for the topology in Figure 5 (c), the algorithm has a similar
performance as the simple algorithm in LAM/MPI. Our automatically generated routine
offers consistent better results when the message size is sufficient large on all topologies.

7 Conclusion

In this paper, we introduce a message scheduling algorithm for AAPC on Ethernet switched
clusters. We demonstrate that our AAPC algorithm can utilize network bandwidths more
effectively than existing AAPC implementations in LAM/MPI and MPICH. The proposed
AAPC algorithm can be applied to other networks with a tree topology.

16

References

[1] S. Bokhari, “Multiphase Complete Exchange: a Theoretical Analysis,” IEEE Trans. on
Computers, 45(2), 1996.

[2] H. G. Dietz, T. M. Chung, T. I. Mattox, and T. Muhammad, “Purdue’s Adapter for
Parallel Execution and Rapid Synchronization: The TTL PAPERS Design”, Technical
Report, Purdue University School of Electrical Engineering, January 1995.

[3] V. V. Dimakopoulos and N.J. Dimopoulos, “Communications in Binary Fat Trees,”
ICDCS’95, 1995.

[4] S. Hinrichs, C. Kosak, D.R. O’Hallaron, T. Stricker, and R. Take. An Architecture for
Optimal All–to–All Personalized Communication. In 6th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 310–319, June 1994.

[5] S. L. Johnsson and C. T. Ho, “Optimum Broadcasting and Personalized Communication
in Hypercubes”, IEEE Transactions on Computers, Volumn 38, No. 9, pages 1249-1268,
Sept. 1989.

[6] L. V. Kale, S. Kumar, K. Varadarajan, “A Framework for Collective Personalized Com-
munication,” International Parallel and Distributed Processing Symposium (IPDPS’03),
April, 2003.

[7] LAM/MPI Parallel Computing. http://www.lam-mpi.org/.

[8] C. C. Lam, C. H. Huang, and P. Sadayappan, “Optimal Algorithms for All–to–All
Personalized Communication on Rings and two dimensional Tori,” Journal of Parallel
and Distributed Computing, 43(1):3-13, 1997.

[9] W. Liu, C. Wang, and K. Prasanna, “Portable and Scalable Algorithms for Irregular
All–to–all Communication,” 16th ICDCS, pages 428-435, 1996.

[10] The MPI Forum. The MPI-2: Extensions to the Message Passing Interface, July 1997.
Available at http://www.mpi-forum.org/docs/mpi-20-html/ mpi2-report.html.

[11] R. Ponnusamy, R. Thakur, A. Chourdary, and G. Fox, “Scheduling Regular and Irreg-
ular Communication Patterns on the CM-5,” Supercomputing, pages 394-402, 1992.

[12] N.S. Sundar, D. N. Jayasimha, D. K. Panda, and P. Sadayappan, “Hybrid Algorithms
for Complete Exchange in 2d Meshes,” International Conference on Supercomputing,
pages 181–188, 1996.

[13] D.S. Scott, “Efficient All–to–All Communication Patterns in Hypercube and Mesh
topologies,” the Sixth Distributed Memory Computing Conference, pages 398-403, 1991.

[14] A. Tam and C. Wang, “Efficient Scheduling of Complete Exchange on Clusters,” the
ISCA 13th International Conference on Parallel and Distributed Computing Systems,
August 2000.

17

[15] Andrew Tanenbaum, “Computer Networks”, 4th Edition, 2004.

[16] R. Thakur and A. Choudhary, “All-to-all Communication on Meshes with Wormhole
Routing,” 8th International Parallel Processing Symposium (IPPS), 1994.

[17] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimizing of Collective Communication
Operations in MPICH,” ANL/MCS-P1140-0304, Mathematics and Computer Science
Division, Argonne National Laboratory, March 2004.

[18] E. A. Varvarigos and D. P. Bertsekas, “Communication Algorithms for Isotropic Tasks
in Hypercubes and Wraparound Meshes,” Parallel Computing, Volumn 18, pages 1233-
1257, 1992.

18

