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Abstract

This paper presents a new approach to array-based de-
pendence testing in the presence of nonlinear and non-
closed array index expressions and pointer references. Con-
ventional data dependence testing requires induction vari-
able substitution to replace recurrences with closed forms.
We take a radically different approach to dependence test-
ing by turning the analysis problem up-side-down. We con-
vert closed forms to recurrences for dependence analy-
sis. Because the set of functions defined by recurrences is
a superset of functions with closed forms, we show that
more dependence problems can be successfully analyzed
by rephrasing the array-based dependence analysis as a
search problem for a solution to a system of recurrences.

1. Introduction

Accurate dependence testing is critical for the effective-
ness of restructuring and parallelizing compilers. Several
types of loop optimizations for improving program per-
formance rely on exact or inexact array data dependence
testing [5, 15, 17, 20, 23, 24, 27, 28, 29, 31, 32, 33, 35,
38, 41, 44, 45, 53, 58]. Current dependence analyzers are
quite powerful and are able to solve complicated depen-
dence problems, e.g. using the polyhedral model [6, 30].
However, recent work by Psarris et al. [34, 36], Franke and
O’Boyle [22], Wu et al. [54], van Engelen et al. [48, 50] and
earlier work by Shen, Li, and Yew [43], Haghighat [26], and
Collard et al. [18] mention the difficulty dependence analyz-
ers have with nonlinear symbolic expressions, pointer arith-
metic, and conditional control flow in loop nests.

This paper presents a new approach to array-based de-
pendence testing on nonlinear array index expressions and
pointer references in loops with conditionally updated in-
duction variables and common forms of pointer arithmetic.

∗ Supported in part by NSF grants CCR-0105422, CCR-0208892, EIA-
0072043 and DOE grant DEFG02-02ER25543.
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Figure 1. Recurrence Hierarchy

Our approach is radically different compared to conven-
tional induction variable substitution (IVS). Induction vari-
able detection and substitution [2, 23, 26, 40, 52] are com-
mon methods to replace linear and nonlinear induction vari-
ables with closed form expressions to enable array-based
dependence analysis. In our approach, we turn this prob-
lem up-side-down and convert closed forms to recurrences
rather than deriving closed-form index expressions for the
recurrences of induction variables. The recurrence forms are
determined from a loop nest. But in contrast to strength
reduction [1] the actual code is not changed. Recurrences
provide greater coverage for analyzing dependence prob-
lems compared to conventional methods that require closed
forms, becausethe set of index functions defined by recur-
rences is a superset of functions with closed forms, as de-
picted in the recurrence hierarchy shown in Figure 1. In
this paper we show that more dependence problems can be
successfully analyzed by rephrasing the array-based depen-
dence test problem into a problem finding a solution to a
system of recurrences [50]. In this paper we also show that
the solution to a recurrence system can be determined us-
ing standard dependence test algorithms such as the Baner-
jee test [5] and range test [14].
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ijkl=0
ij=0
DO i=1,m

DO j=1,i
ij=ij+1
ijkl=ijkl+i-j+1
DO k=i+1,m

DO l=1,k
ijkl=ijkl+1
xijkl[ijkl]=xkl[l]

ENDDO
ENDDO
ijkl=ijkl+ij+left

ENDDO
ENDDO

Figure 2. TRFD Benchmark: olda Routine

Note that in Figure 1 the set ofaffine formscontains all
integer-valued multivariate linear polynomial index func-
tions, which includes for example all linear combinations
of the basic induction variables of a loop nest. Most com-
pilers implement dependence tests on affine forms of index
expressions [5, 15, 17, 20, 23, 24, 27, 28, 29, 31, 32, 33,
35, 38, 44, 45, 53, 58] possibly in combination with value
range analysis techniques [11, 14, 21] to enable symbolic
and nonlinear dependence testing (e.g. in the Polaris com-
piler [12]).

The set ofrecurrences with closed formscontains affine
and nonlinear functions that can be converted to a multi-
variate recurrence form, for example using the chains of re-
currences (CR) algebra [3, 47, 48]. This set includes the
characteristic functions of generalized induction variables
(GIVs) [26, 47] that describe polynomial and geometric
progressions. To determine the closed-form characteristic
function of a GIV, the variable updates in a loop nest must
be unconditional1. An example code with unconditionally
updated nonlinear induction variables is shown in Figure 2.
The TRFD code is part of he Perfect Benchmark suite of
programs, which has been extensively studied for perfor-
mance optimizations and parallelization, see e.g. [13, 26].
Restructuring and parallelizing compilers traditionally rely
on the determination of a closed-form characteristic func-
tion for dependence testing and symbolic value range anal-
ysis. For example, Polaris [12] is able to determine the ab-
sence of an output dependence on the arrayxijkl by ag-
gressively applying induction variable substitution to deter-
mine the closed-form characteristic function of theijkl in-
duction variable, which is a multivariate polynomial over
the〈i, j, k, `〉 index space.

The set of functions defined byunconditionally updated
recurrence formsincludes recurrences that have no closed
forms. This set includes recurrences that cannot be con-

1 In [26] it is shown how semantically equivalent conditional updates in
multiple paths can be traced to form a single characteristic function.

DO ntrans=1,2...
DO i=0,r3–1

str(ctr)=temp
ctr=ctr+1

ENDDO
...
ctr=ctr+1
...
IF (r3.NE.0) THEN

str(ctr)=36
ctr=ctr+1

ELSE
DO i=0,t–1

str(ctr)=4
ctr=ctr+1

ENDDO
...

ENDIF
...

ENDDO

Figure 3. QCD Benchmark: qqqlps Routine

verted to closed form because a system of (coupled) recur-
rences may not have a closed-form solution in general. For
example, variablej in the recurrencesj = j + k; k = k ∗ i,
for i = 1, . . . , n with initial valuesj = 0 andk = 1, has
no closed-form function over indexi. Its evaluation requires
a sequential tabulation of the values of the recurrence sys-
tem. This class of recurrences is part of the recurrence hi-
erarchy for completeness, but this class is only of academic
interest, because these recurrence problems are unlikely to
occur in real-world programs. Despite of this, our approach
handles these cases by applying data dependence testing on
the recurrence system. Thus,j is an admissible variable in
an array index expression in our dependence framework.

The set of index functions withconditionally and uncon-
ditionally updated recurrence formsis the target of our de-
pendence testing approach. Consider for example the QCD
program from the Perfect Benchmark suite shown in Fig-
ure 3. Variablectr has no closed form, due to a conditional
update. Current restructuring compilers cannot apply de-
pendence testing to this code using existing techniques. Our
approach can handle this code by applying a data depen-
dence test based on the recurrence system defined by vari-
ablectr.

Our dependence test is also applicable to pointer refer-
ences. Because pointers are frequently used in C code to
step through arrays, there is a need to effectively analyze
the dependences of pointer references to assess parallelism
and enable performance-critical optimizations [22, 48]. An
important class of programs are digital signal processor
(DSP) codes for filtering operations. The implementations
of these algorithms exhibit conditionally or unconditionally
updated nonlinear induction variables and pointer updates.
Our pointer reference dependence analysis can handle these
specialized algorithms, including radix-2 FFTs [48].
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int ∗f = ..., ∗lsp = ...;
...
f += 2; lsp += 2;
for (i = 2; i <= 5; i++) {
∗f = f[-2];
for (j = 1; j < i; j++, f– –)
∗f += f[-2]–2∗(∗lsp)∗f[-1];
∗f –= 2∗(∗lsp);
f += i; lsp += 2;
}

Figure 4. ETSI Codec: Get lsp pol Routine

Consider for example the code segment of the
Get lsp pol routine of the LSP AZ module of the
GSM Enhanced Full Rate speech codec [19] shown in Fig-
ure 4. The loop nest is triangular and involves a nonlin-
ear data-dependent pointer update. Our data dependence
test is applicable to the original pointer-based code by treat-
ing thef andlsp pointers as induction variables to establish
a recurrence system to determine if the loop nest has for-
ward, anti, or output dependences on the arrays accessed
by thef andlsp pointers.

Related to our pointer-based dependence analysis is
the array recovery method by Franke and O’Boyle [22].
Their method converts pointer references to array ac-
cesses to enable conventional array-based compiler analy-
sis on the closed-form affine index expressions. However,
their work has several assumptions and restrictions. In par-
ticular, their method is restricted to structured loops with
constant bounds and all pointer arithmetic must be data in-
dependent. Furthermore, pointer assignments within a loop
nest are not permitted. In contrast, our method directly ap-
plies dependence testing on pointer references without
restrictions or code transformations.

Most closely related to our work is the work by Wu et
al. [54]. They propose an approach for dependence testing
without closed form computations. Similar to our method,
the application of induction variable substitution can be de-
layed until after dependence testing. However, their method
cannot handle dependence problems in which induction
variable step sizes are relevant, such as in the TRFD and
MDG programs of the Perfect Benchmark suite. In contrast,
our method uses the inherent monotonicity information of
the recurrence forms to determine that the loops in these
benchmarks are dependence free. Their method also does
not apply dependence testing to pointer arithmetic. In ad-
dition, our recurrence forms are easily converted to closed
forms for IVS using the inverse CR algebra [47].

In our earlier work on GIV recognition [46, 47] it was
observed that symbolic differencing [26] is unsafe and that
the method by Gerlek et al. [23] requires the application of
several different recurrence solvers. In contrast, the com-
plexity of our GIV recognition is safe and the complexity is

comparable to constant folding [1], which is a relatively in-
expensive method. In [46] we also proved that the CR alge-
bra is complete and closed under the formation of charac-
teristic functions of GIVs, which is an important property
for the applicability of our recurrence framework to induc-
tion variable recognition and dependence testing.

This paper is an extended version of [49]. In this pa-
per (and [49]) we use recurrence forms to determine if ar-
ray and pointer references are free of forward, anti, or out-
put dependences in a loop nest. Our recurrence formulation
increases the accuracy of standard dependence algorithms
such as the extreme value test and value range test by in-
cluding the analysis of nonlinear induction variables, condi-
tionally updated variables, and pointer arithmetic. We will
show how these tests can be directly applied to our recur-
rence system. Because trusted dependence algorithms can
be used in our enhanced analysis environment, a high level
of flexibility of the implementation and greater assurance
on the soundness of the approach are achieved compared to
ad-hoc approaches.

The remainder of this paper is organized as follows. In
Section 2 we briefly introduce the chains of recurrences
formalism and algebra. The chains of recurrences notation
is used throughout this paper. Section 3 presents and algo-
rithm for solving recurrence systems. The objective of the
algorithm is to find the recurrence forms of induction vari-
ables and pointer updates in a loop nest. The algorithm does
not attempt to construct closed forms, but rather computes
the solutions in the chains of recurrences form for data de-
pendence testing. Our data dependence tests are discussed
in Section 4. Finally, Section 5 summarizes our results.

2. The Chains of Recurrences Formalism

This section briefly introduces the chains of recurrences
formalism. For more details, we refer to [3, 47, 48]. The
formalism was originally developed by Zima [55, 56, 57]
and later improved by Bachmann, Zima, and Wang [3, 4]
to expedite the evaluation of multivariate functions on reg-
ular grids. Our work includes the addition of new CR al-
gebra rules [46] and applications of the CR formalism for
the detection and substitution of GIVs [47], for array re-
covery through pointer-to-array conversion [48], and for
value range analysis [10]. The application to data depen-
dence testing is the main focus of this paper.

2.1. Basic Formulation

A function or closed-form expression evaluated over a
unit-distant grid with indexi can be rewritten into a mathe-
matically equivalent CR of the form (see [3]):

Φi = {φ0,�1, φ1,�2, · · · ,�k, φk}i
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whereφ are coefficients consisting of constants or func-
tions (symbolic expressions) independent ofi, or nested CR
forms, and� are the operators� = + or� = ∗. The coef-
ficientφk may be a function ofi, i.e.φk = fk(i).

2.2. CR Semantics

A CR form Φi = {φ0,�1, φ1,�2, · · · ,�k, φk}i
represents a set of recurrence relations over a grid
i = 0, . . . , n−1 defined by the loop template

cr0 = φ0

cr1 = φ1

: = :
crk−1 = φk−1

for i = 0 to n−1
val[i] = cr0
cr0 = cr0 �1 cr1
cr1 = cr1 �2 cr2
: = : : :

crk−1 = crk−1 �k φk
endfor

The loop produces the sequenceval[i] of the CR form. This
sequence is one-dimensional. A multidimensional loop nest
is constructed for multivariate CR forms (CR forms with
nested CR form coefficients), where the indices of the out-
ermost loops are the indices of the innermost CR forms.

2.3. CR Construction

The CR algebra [4, 47, 57] defines a set of term rewrit-
ing rules CR shown in Figure 5 for the construction of
CR forms for closed-form formulae. The application of the
rewrite rules is straightforward and not computationally in-
tensive. The required symbolic processing is comparable to
classical constant-folding [1].

The CR algebra provides an efficient mechanism to con-
struct CR forms for symbolic expressions evaluated in mul-
tidimensional iteration spaces. The translation of a closed-
form symbolic expressionei1,...,in defined over a set of in-
dex variablesi1, . . . , in to a multivariate nested CR form is
defined by:

CR(ei1,...,in ) = CR(CR(· · · CR(ei1 )i2 · · ·)in )
CR(eij ) = e[ij ← Φ(ij)]

whereΦ(ij) is the CR representation of the index variable
ij . When the index variablesi1, . . . , in span a unit-distance
grid with origin (x1, . . . , xn), thenΦ(ij) = {xj ,+, 1}ij

for all j = 1, . . . , n. The mapping replaces variablesij
with their corresponding CR forms using substitution, de-
noted bye[ij ← Φ(ij)]. The CR algebra is then applied to
normalize the expression to (nested) CR forms.

We proved that the CR algebra is closed under the forma-
tion of the (multivariate) characteristic function of a GIV.
The set of rewrite rules of the algebra is also complete [46],
which means that CR forms for multivariate GIVs are nor-
mal forms. Another advantage is that the manipulation of

CR forms is type safe, which ensures that the coefficients of
CR forms of integer-valued polynomial functions and GIVs
are also integer valued.

Consider for example the nonlinear index expression
n ∗ j + i + 2 ∗ k + 1, wherei ≥ 0 and j ≥ 0 are in-
dex variables that span a two-dimensional iteration space
with unit distance andk is an induction variable with recur-
rencek = k + i with initial valuek = 0. The recurrence of
k in CR form isΦ(k) = {0,+, 0,+, 1}i. The CR construc-
tion of the example expression yields:

CR(CR(CR(n ∗ j+i+2 ∗ k+1)))
= CR(CR(n ∗ j+{0,+, 1}i+2 ∗ k+1)) (replacingi)
= CR(n ∗ {0,+, 1}j+{0,+, 1}i+2 ∗ k+1) (replacingj)
= n ∗ {0,+, 1}j+{0,+, 1}i+2 ∗ {0,+, 0,+, 1}i+1 (replacingk)
= {{1,+, n}j ,+, 1,+, 2}i (normalize)

The multivariate CR form is a normal form [46] for the mul-
tivariate polynomial expression. The example CR form can
be converted to closed form polynomial using the inverse
CR algebra [47] described in the next section.

2.4. Closed Forms

The inverse mappingCR−1 shown in Figure 5 converts
CR forms to closed-form functions. Consider for exam-
ple the CR form{{1,+, n}j ,+, 1,+, 2}i from the example
given in the previous section. The closed form multivariate
polynomial characteristic function is1+ i2 +n∗j. To com-
pute the closed form, we use our extension of the CR alge-
bra [47, 48] by applying the inverse rules to convert a CR to
a closed-form symbolic expression. In general, multivariate
GIVs, i.e. sums of multivariate polynomials and geometric
functions, can always be converted to closed form formu-
lae using efficient matrix-vector products [51] discussed in
Section 2.5.

The inverse CR rules are applied component-wise on a
multivariate CR usingCR−1

i or in all directions at once, de-
noted byCR−1. For certain recurrence forms a closed form
may not exist. For example, when the last coefficient of a
CR form is not a (symbolic) constant but a function of the
CR indexi, no closed form can be constructed, see also Fig-
ure 1.

2.5. Newton Matrices

Because linear and polynomial induction variables are
more common compared to geometric sequences, it is im-
portant to consider the efficiency of the symbolic manipula-
tion of recurrences for polynomial forms. Addition and sub-
traction of the CR forms of polynomials require justO(k)
operations using theCR rules shown in Figure 5, wherek
is the order of the polynomials. Bachmann describes an al-
gorithm [3] for polynomial multiplication inO(k2) opera-
tions, while the application ofCR rule 14 shown in Figure 5
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CR
# LHS RHS Condition
1 {φ0,+, 0}i ⇒ φ0

2 {φ0, ∗, 1}i ⇒ φ0

3 {0, ∗, f1}i ⇒ 0
4 −{φ0,+, f1}i ⇒ {−φ0,+,−f1}i
5 −{φ0, ∗, f1}i ⇒ {−φ0, ∗, f1}i
6 {φ0,+, f1}i ± E ⇒ {φ0 ± E,+, f1}i whenE is i-loop invariant
7 {φ0, ∗, f1}i ± E ⇒ {φ0 ± E,+, φ0 ∗ (f1 − 1), ∗, f1}i whenE andf1 arei-loop invariant
8 E ∗ {φ0,+, f1}i ⇒ {E ∗ φ0,+, E ∗ f1}i whenE is i-loop invariant
9 E ∗ {φ0, ∗, f1}i ⇒ {E ∗ φ0, ∗, f1}i whenE is i-loop invariant

10 E/{φ0,+, f1}1 ⇒ 1/{φ0/E,+, f1/E}i whenE 6= 1 is i-loop invariant
11 E/{φ0, ∗, f1}1 ⇒ {E/φ0, ∗, 1/f1}i whenE is i-loop invariant
12 {φ0,+, f1}i ± {ψ0,+, g1}i ⇒ {φ0 ± ψ0,+, f1 ± g1}i
13 {φ0, ∗, f1}i ± {ψ0,+, g1}i ⇒ {φ0 ± ψ0,+, {φ0 ∗ (f1 − 1), ∗, f1}i ± g1}i whenf1 is i-loop invariant
14 {φ0,+, f1}i ∗ {ψ0,+, g1}i ⇒ {φ0 ∗ ψ0,+, {φ0,+, f1}i ∗ g1 + {ψ0,+, g1}i ∗ f1 + f1 ∗ g1}i
15 {φ0, ∗, f1}i ∗ {ψ0, ∗, g1}i ⇒ {φ0 ∗ ψ0, ∗, f1 ∗ g1}i
16 {φ0, ∗, f1}Ei ⇒ {φE0 , ∗, f

E
1 }i whenE is i-loop invariant

17 {φ0, ∗, f1}{ψ0,+,g1}i
i ⇒ {φ0

ψ0 , ∗, {φ0, ∗, f1}g1i ∗ f
{ψ0,+,g1}i
1 ∗ fg11 }i

18 E{φ0,+,f1}i ⇒ {Eφ0 , ∗, Ef1}i whenE is i-loop invariant

19 {φ0,+, f1}ni ⇒
{
{φ0,+, f1}i ∗ {φ0,+, f1}n−1

i if n ∈ ZZ, n > 1

1/{φ0,+, f1}−ni if n ∈ ZZ, n < 0

20 {φ0,+, f1}i! ⇒

 {φ0!, ∗,
(∏f1

j=1
{φ0 + j,+, f1}i

)
}i if f1 ≥ 0

{φ0!, ∗,
(∏|f1|

j=1
{φ0 + j,+, f1}i

)−1

}i if f1 < 0

21 {φ0,+, φ1, ∗, f2} ⇒ {φ0, ∗, f2}i when φ1
φ0

= f2 − 1

CR−1

# LHS RHS Condition
1 {φ0,+, f1}i ⇒ φ0 + {0,+, f1}i whenφ0 6= 0
2 {φ0, ∗, f1}i ⇒ φ0 ∗ {1, ∗, f1}i whenφ0 6= 1
3 {0,+,−f1}i ⇒ −{0,+, f1}i
4 {0,+, f1 + g1}i ⇒ {0,+, f1}i + {0,+, g1}i
5 {0,+, f1 ∗ g1}i ⇒ f1 ∗ {0,+, g1}i wheni does not occur inf1

6 {0,+, f i1}i ⇒ fi
1−1

f1−1
wheni does not occur inf1 andf1 6= 1

7 {0,+, fg1+h1
1 }i ⇒ {0,+, fg11 ∗ f

h1
1 }i

8 {0,+, fg1∗h1
1 }i ⇒ {0,+, (fg11 )hi}i wheni does not occur inf1 andg1

9 {0,+, f1}i ⇒ i ∗ f1 wheni does not occur inf1
10 {0,+, i}i ⇒ i2−i

2

11 {0,+, in}i ⇒
∑n

k=0

(
n+1

k

)
n+1

Bk i
n−k+1 for n ∈ IN,Bk is kth Bernoulli number

12 {1, ∗,−f1}i ⇒ (−1)i{1, ∗, f1}i
13 {1, ∗, 1

f1
}i ⇒ {1, ∗, f1}−1

i

14 {1, ∗, f1 ∗ g1}i ⇒ {1, ∗, f1}i ∗ {1, ∗, g1}i
15 {1, ∗, fg11 }i ⇒ f

{1,∗,g1}i
1 wheni does not occur inf1

16 {1, ∗, gf11 }i ⇒ {1, ∗, g1}if1 wheni does not occur inf1
17 {1, ∗, f1}i ⇒ f i1 wheni does not occur inf1
18 {1, ∗, i}i ⇒ 0i

19 {1, ∗, i+ f1}i ⇒ (i+f1−1)!
(f1−1)!

wheni does not occur inf1 andf1 ≥ 1

20 {1, ∗, f1 − i}i ⇒ (−1)i ∗ (i−f1−1)!
(−f1−1)!

wheni does not occur inf1 andf1 ≤ −1

Figure 5. The CR and CR−1 Term Rewriting System Representations of the CR Algebra
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- input: p[0 : k]
- output: φ[0 : k]
Local integer array m[0 : k]
for j = 0 to k
φj := 0
mj := 0

φ0 := p0
if k ≤ 0 then

stop
φ1 := p1
m1 := 1
for i = 2 to k

for j = i to 1 step −1
mj := j∗(mj−1+mj)
φj += mj∗pi

- input: φ[0 : k]
- output: p[0 : k]
Local rational array m[0 : k]
for j = 0 to k
pj := 0
mj := 0

p0 := φ0

if k ≤ 0 then
stop

p1 := φ1

m1 := 1
for i = 2 to k

for j = i to 1 step −1
mj := (mj−1−(i−1)∗mj)/i
pj += mj∗φi

(a)ComputeΦ = Nkp (b) Computep = N−1
k

Φ

Figure 6. Conversion Algorithms

requiresO(k3) operations. Zima describes an efficient algo-
rithm for CR division [56].

We use the Newton matrix [3] to compute the CR form
of a polynomial inO(k2) steps. For example, the Newton
matrix fork = 3 is

N3 =

 1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6

 .

The coefficients of the CR formΦ(i) of a polynomial
p(i) = p0 + p1i + · · · + pki

k is obtained by the matrix-
vector productNk~p with Newton matrixNk and the vector
of polynomial coefficients~p = [p0, . . . , pk].

The algorithm shown in Figure 6(a) symbol-
ically computes the coefficientsφj for the CR
form Φ(i) = {φ0,+, . . . ,+, φk}i of a polynomial
p(i) = p0 + p1i + · · · + pki

k in O(k2) operations with
O(k) temporary storage space. The algorithm uses a
two-term recurrence [3].

The algorithm shown in Figure 6(b) computes the
closed-form polynomial of a CR form using the inverse
Newton matrixN−1

k . For example, the inverse Newton tri-
angle matrix fork = 3 is

N−1
3 =

 1 0 0 0
0 1 − 1

2
1
3

0 0 1
2
− 1

2

0 0 0 1
6

 .

The vector of polynomial coefficients is computed by the
product~p = N−1

k
~φ of a CR formΦ(i) with coefficients

~φ = [φ0, . . . , φk].
Bachmann [3] proved the correctness of the algorithm

shown in Figure 6(a) using well-known recurrences of the
Sterling numbers. Here we prove the fundamental relation-
ship between the Newton matrix and the CR algebra by de-
riving the Newton matrix using properties of the CR alge-
bra directly.

Lemma 1 Let Nk denote the Newton matrix and letp =
[p0, . . . , pk] be the coefficients of a polynomialp(i) = p0 +
p1i+ · · ·+ pki

k. Then,

Φ = Nkp

are the coefficients of the CR{φ0,+, · · · ,+, φk}i for p(i).

Proof. First, we rewrite polynomialp in Horner form

p(i) = p0 + i(p1 + i(p2 + . . .+ i pk)) .

Since polynomials are evaluated on a domain
i = 0, . . . , n − 1 (normalized loop bounds), we can
replacei with the CR formi = {0,+, 1}i

p0 + {0,+, 1}i(p1 + {0,+, 1}i(p2 + . . .+ {0,+, 1}i pk)) .

To obtain this form, we define the symbolic translation of
p(i) to a CR by

CR(p0) = p0
CR(p) = p0 + I(CR([p1, . . . , pk]

T))

where
I(φ0) = {0,+, φ0}i

I({φ0,+, f1}i) = {0,+, I(f1) + {φ0,+, f1}i + f1}i
.

The recursion in the definition ofI is based on

{0,+, 1}i∗{φ0,+, f1}i = {0,+, {0,+, 1}i∗f1+{φ0,+, f1}i+f1}i

using CR rule 14 for multiplication with{0,+, 1}i. The
{}i CR notation is eliminated by representing CRs as vec-
tors. To operate on vectors we define new functionsN and
A for CR andI, respectively, by

N (p) = [p0, p′1, . . . , p
′
k]

T

where

p′ = A(N ([p1, . . . , pk]
T))

with N (p0) = p0 and

A(p) = [0, p′′1 , . . . , p
′′
k ]T + p + [p1, . . . , pk, 0]

T

where

p′′ = A([p1, . . . , pk]
T)

with A(p0) = p0.
The operationsN andA can be implemented by matri-

cesNk andAk, such thatN (p) = Nkp andA(p) = Akp,
as follows

N0 = 1

Nk =

[
1 0
0 Ak−1Nk−1

]
(1)

and

A0 = 1

Ak =

[
0 0
0 Ak−1

]
+ Ik + Zk (2)

whereIk is the identity matrix of orderk + 1 andZk is
the right-shifted identity matrix. Solving the recursion in
(2) gives the coefficients ofAk by
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ai,j =

{
i if i = j or i = j − 1
0 otherwise

.

By the recursive formulation (1) the coefficients ofNk ex-
hibit the two-term recurrence

mi+1,j+1 =
∑k

`=1
ai,`m`,j = i(mi,j +mi+1,j)

which gives the coefficients ofNk by

mi,j =

{
1 if i = 1 andj = 1
(i− 1)(mi−1,j−1 +mi,j−1) if i ≥ 2 andj ≥ 2
0 otherwise

for all i = 1, . . . , k + 1 andj = 1, . . . , k + 1. 2

2.6. Relation to Compiler Analysis

CR forms are more amenable to symbolic analysis com-
pared to closed forms, because the monotonic properties of
the function and its extreme values can be more accurately
determined using CR forms [46], see also Section 3.4. De-
termining the monotonic properties of (compositions) of ar-
ray index expressions is important in dependence testing for
loop restructuring and parallelization, which will be further
discussed in Section 4.

The application of CR construction for symbolic manip-
ulation in compiler analysis is clear when we first consider
the types of linear and nonlinear index functions and expres-
sions commonly encountered in practice in compiler analy-
sis dealing with array index expressions and generalized in-
duction variables. The next section presents our framework
for the detection of induction variables to compute a recur-
rence system for array-based dependence testing.

Affine index expressions are uniquely represented by
nested CR forms{a,+, s}i of order 1, where a
is the integer-valued initial value or a nested CR
form ands is the integer-valued stride in the direc-
tion of i. The formation of nested CR forms for affine
expressions of dimensiond requires justO(d) steps.

Multivariate Polynomial expressions are uniquely repre-
sented by nested CR forms of lengthk, wherek is
the maximum order of the polynomial. All� opera-
tions in the CR form are additions, i.e.� = +. A d-
dimensionalk-order polynomial can be translated in
O(d k2) steps to a multivariate CR by a conversion
algorithm based on matrix-vector multiplication with
Newton matrices [3, 51].

Geometric expressionsa ri are uniquely represented by
the CR form{a, ∗, r}i.

Characteristic functions of GIVs are uniquely represented
by CR forms (see our proof in [46]). By definition [25],
the characteristic functionχ(i) = p(i) + a ri of a GIV
is the sum of a polynomialp(i) and a geometric se-
riesa ri.

For loop parallelization it is desirable to eliminate the cross-
iteration dependences induced by the recurrences defined
by induction variable updates. Methods such as IVS intro-
duce closed forms in a loop nest to eliminate such recur-
rences. For the application of IVS we use the inverse map-
pingCR−1 described in the previous section.

The CR algebra rules for CR construction and conver-
sion to closed forms are implemented in our CR library for
SUIF using a representation of CRs based on arrays of sym-
bolic coefficients for efficient manipulation.

3. Solving Systems of Recurrences

Solving the systems of recurrences defined by induction
variables in a loop nest facilitates CR construction for data
dependence testing, general loop analysis, and loop par-
allelization. CR construction applied to index expressions
and loop bounds containing induction variables requires the
CR forms of these variables. The CR forms of induction
variables are obtained from a loop nest using a recurrence
solver. This section presents a recurrence solver for gener-
alized induction variables to compute CR forms for condi-
tionally updated induction variables and pointers.

3.1. General Recurrence Form of a GIV

Consider the general recurrence form of a generalized in-
duction variable in a loop:

V = V0

for i = 0 to n–1
...
V = α ∗ V + p(i)
...

endfor

whereα is a numeric constant or ani-loop invariant sym-
bolic expression, andp is polynomial in i (expressed in
closed form or recurrence). Common recurrence forms
found in benchmark codes have eitherα = 0 (V is equal
to polynomialp), α = 1 (V is the partial sum of polyno-
mial p, wherep is often a numeric or symbolic constant),
or p(i) = 0 (V is geometric).

Lemma 2 Let Ψi = {ψ0,+, ψ1,+, · · · ,+, ψk}i
be the CR form of polynomialp(i). Then, the CR
form of the recurrenceV = α ∗ V + p(i) is
Φ(V ) = {φ0,+, φ1,+, · · · ,+, φk+1, ∗, φk+2}i where

φ0 = V0; φj = (α− 1)φj−1 + ψj−1; φk+2 = α

Proof. The sequence of the recurrenceV = α ∗ V + p(i),
with initial valueV = V0, for iterationsi = 0, . . . , n− 1 is

i = 0 ⇒ V0

i = 1 ⇒ αV0 + p(0)
i = 2 ⇒ α(αV0 + p(0)) + p(1)
i = 3 ⇒ α(α(αV0 + p(0)) + p(1)) + p(2)

: ⇒ :
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Polynomialp(i) has CRΦi = {ψ0,+, ψ1,+, · · · ,+, ψk}i.
According to the CR semantics, Section 2.2, the sequence
of p(i) calculated by the loop templatep(i) = val[i] is

p(0) = ψ0

p(1) = ψ0 + ψ1

p(2) = ψ0 + 2ψ1 + ψ2

: = :

Replacing the left-hand sides with the right-hand sides in
the recurrence above yields

i = 0 ⇒ V0

i = 1 ⇒ αV0 + ψ0

i = 2 ⇒ α(αV0 + ψ0) + ψ0 + ψ1

i = 3 ⇒ α(α(αV0 + ψ0) + ψ0 + ψ1) + ψ0 + 2ψ1 + ψ2

: ⇒ :

The CR formΦ(V ) of V can be determined using the New-
ton series of this progression. The Newton series (the lower
left diagonal of the difference table) of the sequence of the
recurrence is

φ0 = V0

φ1 = (α− 1)V0 + ψ0

φ2 = (α− 1)2V0 + (α− 1)ψ0 + ψ1

φ3 = (α− 1)3V0 + (α− 1)2ψ0 + (α− 1)ψ1 + ψ2

: = :
φk+1 = (α− 1)k+1V0 + (α− 1)kψ0 + · · ·+ ψk
φk+2 = (α− 1)k+2V0 + (α− 1)k+1ψ0 + · · ·+ (α− 1)ψk

: = :

The terms continue to expand up to nonzero coefficientψk.
After that, the sequence continues as multiples ofα − 1
times the previous row. Therefore, the remainder of the se-
quence is a geometric progression with ratioα. Combining
these results, we obtain the inductive definition ofΦ(V ). 2

3.2. Special Cases

We consider several special cases of the general recur-
rence form of a generalized induction variable.

• Forα = 0, we have a non-recursive assignment

V = p(i)

Therefore, we compute the CR formΨi = CR(p(i))
Φ(V ) = Ψi

In fact, this holds for any symbolic expressionp(i)
(not only polynomials). However, special care has to
be taken to modelwrap aroundinduction variables in
loop nests as we showed in [47], where the initial value
of V may be unrelated top.

• Forα = 1 we have a recurrence of the form

V = V + p(i)

Therefore, according to Lemma 2 we obtain

Φ(V ) = {V,+,Ψi, ∗, 1}i = {V,+,Ψi}i

with Ψi = CR(p(i)) for any symbolic expressionp(i)
(not only polynomials).

• Forp(i) = 0 we have

V = α ∗ V

Therefore, according to Lemma 2 we obtain

Φ(V ) = {V, ∗, α}i

This equation also holds for any symbolic expression
α (not only constant). Hence, whenα has a CR form
we obtain

Φ(V ) = {V, ∗,Ψi}i

with Ψi = CR(α).

In the above, the nested CR forms{V,+,Ψi}i and
{V, ∗,Ψi}i are flattened to a single CR form by replac-
ing Ψi with its constituent coefficients.

3.3. Coupled Recurrences

The code of a loop body is often structured by a pro-
grammer in such a way that the recurrence of a general-
ized induction variable in the loop nest may not exactly
match the recurrence patternV = α ∗ V + p(i). Multi-
ple updates to a single induction variable may occur in the
loop nest (e.g. variableijkl in Figure 2), multiple induction
variables may be coupled (e.g. variablesij and ijkl in Fig-
ure 2), and control flow may require intra-procedural anal-
ysis and control path analysis in a loop nest (see e.g. Fig-
ure 3), all of which obscures the recurrence pattern. To rec-
ognize recurrence patterns in the presence of coupled in-
duction variables, we use a forward substitution approach
introduced in our earlier work [47] and schematically illus-
trated in Figure 7 (a) and (b). Repeated forward substitution
yields a set of normalized assignments in which each vari-
able is assigned at most once, i.e. similar to single static as-
signment (SSA) forms, which facilitates recurrence pattern
recognition. Nested loops are analyzed from the innermost
to the outermost loop level to compute multivariate recur-
rences [47]. In this paper we apply this technique to condi-
tionally updated induction variables by selectively travers-
ing paths through the loop body to determine sets of recur-
rence patterns for induction variables as illustrated in the
example shown in Figure 7 (c) and (d) whereV andU
both may have two different recurrence patterns. Because
the switching behavior of the flow in the loop is unknown,
the conditional recurrence of variablesV andU have no
closed-form equivalents. Further details on the path-based
substitution algorithm are presented in Section 3.5.
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for i = a to b
...
V = expr1
...
U = expr2
...
U = ... V ... U ...
...

endfor

for i = a to b
...
V = expr1
...
U = ... expr1... expr2...
...

endfor

(a)Multiple Updates (b) After Forward Substitution

for i = a to b
...
if ... then
V = expr1

else
V = expr2

endif
...
U = ... V ...
...

endfor

for i = a to b
...
if ... then
V = expr1

else
V = expr2

endif
...
{ U = ... expr1..., U = ... expr2... }
...

endfor

(c) Conditional Updates (d) After Forward Substitution

Figure 7. Forward Substitution

3.4. Bounding Functions

To analyze the range of values of conditionally updated
recurrences we developed an algorithm to computedynamic
value range bounds, consisting of indexed lower and upper
bound functions on the values of a set of conditional re-
currences. Because the bounding functions are indexed by
points in the iteration space, the dynamic bounds are more
accurate compared to static bounds that are independent of
the iteration space. Static bounds are commonly used in
value range analysis [15, 16] for nonlinear dependence test-
ing [11, 14]. Because our value range information is dy-
namic, our nonlinear data dependence testing can be more
accurate [10]. An example application will be discussed in
Section 4.

3.4.1. Dynamic Value Range Bounds.Dynamic value
range bounds are functions over the iteration space that
bound the possible sequences of a set of (conditional) re-
currences. Figure 8(a) shows theL(i) andU(i) bounds on
the sequence of induction variableV , whereV is condi-
tionally updated using two different recurrence forms. The
L(i) andU(i) bounding functions are indexed by the index
space of the (multidimensional) loop nest (only a one di-
mensional loop is shown in the figure). Figure 8(b) shows
an actual example. Note that the array access is dependence
free becausek is strictly monotonically increasing. The de-
termination of bounding information and monotonicity is
crucial for accurate dependence testing.

To determine dynamic value range bounds, we devel-
oped a new method to computemin and max bounding

...
for i = 0 to n–1

/* L(i) ≤ V ≤ U(i) */
...
if ... then
V = α ∗ V + p(i)

else
V = β ∗ V + q(i)

endif
/* L(i+ 1) ≤ V ≤ U(i+ 1) */
...

endfor

k = 1
for i = 0 to n–1

/* i+ 1 ≤ k ≤ 2i */
a[k] = b[i]
if ... then

k = k + 1
else

k = 2 ∗ k
endif

endfor

(a)Bounding Functions (b) Example

Figure 8. Dynamic L and U Bounds on V

functions of a set of (multivariate) CR forms. The bound-
ing functions are computed in CR form.

Definition 1 Let Φi = {φ0,�1, f1}i and let
Ψi = {ψ0,�1, g1}i be (multivariate) CR forms over
the same index variablei, wheref1 and g1 are the nested
CR “tails” of Φi and Ψi with the remainder of the coeffi-
cients (e.g. using the common nested representation of CR
forms with basic recurrences (BRs) [3]).

TheminimumCR form is inductively defined by

min({φ0,+, f1}i, {ψ0,+, g1}i)
= {min(φ0, ψ0),+,min(f1, g1)}i

min({φ0, ∗, f1}i, {ψ0, ∗, g1}i)

=


{min(φ0, ψ0), ∗,min(f1, g1)}i

if φ0>0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0
{min(φ0, ψ0), ∗,max(f1, g1)}i

if φ0<0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0
{φ0, ∗, f1}i if φ0<0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0
{ψ0, ∗, g1}i if φ0>0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0
{−max(|φ0|, |ψ0|), ∗,max(|f1|, |g1|)}i if f1<0 ∨ g1<0

and themaximumCR form is inductively defined by

max({φ0,+, f1}i, {ψ0,+, g1}i)
= {max(φ0, ψ0),+,max(f1, g1)}i

max({φ0, ∗, f1}i, {ψ0, ∗, g1}i)

=


{max(φ0, ψ0), ∗,max(f1, g1)}i

if φ0>0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0
{max(φ0, ψ0), ∗,min(f1, g1)}i

if φ0<0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0
{φ0, ∗, f1}i if φ0>0 ∧ ψ0<0 ∧ f1>0 ∧ g1>0
{ψ0, ∗, g1}i if φ0<0 ∧ ψ0>0 ∧ f1>0 ∧ g1>0
{max(|φ0|, |ψ0|), ∗,max(|f1|, |g1|)}i if f1<0 ∨ g1<0

The min andmaxoperators are associative for polynomial
CR forms. Under certain conditions the operators are also
associative for geometric forms, but not in general.

Theminandmaxdynamic bounding functions applied to
two CR forms require the CRs to be aligned where the op-
erators between the CR forms match up.

Definition 2 Two CR formsΦi andΨi over the same index
variablei arealignedif they have the same lengthk and the
operators�j , j = 1, . . . , k, form a pairwise match.
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For example,{1,+, 1, ∗, 1} is aligned with{0,+, 2, ∗, 2}i,
but {1,+, 2}i is not aligned with{1, ∗, 2}i and{1,+, 2}i
is not aligned with{1,+, 2,+, 1}i.

To align two CR forms of unequal length, the shorter
CR can be lengthened by adding dummy operations with-
out changing the sequence it represents.

Lemma 3 Let Φi = {φ0,�1, φ1,�2, · · · ,�k, φk}i be a
CR form, whereφk is invariant of i. Then, the following
two identities hold

Φi = {φ0,�1, φ1,�2, · · · ,�k, φk,+, 0}i
Φi = {φ0,�1, φ1,�2, · · · ,�k, φk, ∗, 1}i

Proof. The proof immediately follows as a consequence of
the CR semantics defined in Section 2.2, because the initial
value of the induction variablecrk for coefficientφk is set
to φk and the value ofcrk is unchanged in the loop (either
by adding zero or multiplying by one). 2

When the operators of two CR forms do no match, the re-
sults of the following lemma and corollary are used.

Lemma 4 LetΦi = {a, ∗, r}i be a geometric CR form with
initial valuea and ratior (r is invariant ofi). Then,

Φi = {a,+, a(r − 1),+, a(r − 1)2,+, · · · ,+, a(r − 1)m, ∗, r}i

for any positive integerm > 0.

Proof. The proof is by induction onm.

• For the base casem = 1 we show that{a, ∗, r}i =
{a,+, a(r − 1), ∗, r}i in two steps.

1. Considera = 1. By the definition of the CR se-
mantics Section 2.2 the sequencef [i] for
{1, ∗, r}i andg[i] for {1,+, r−1, ∗, r}i are com-
puted by

cr0 = 1
for i = 0 to n–1
f [i] = cr0
cr0 = cr0 ∗ r

endfor

cr0 = 1
cr1 = r–1
for i = 0 to n–1
g[i] = cr0
cr0 = cr0 + cr1
cr1 = cr1 ∗ r

endfor

(a) For iterationi = 0, we find thatf [0] = g[0]
(b) For iterationsi = 1, . . . , n− 1, we find that

f [i] =

i−1∏
j=0

r

= ri

g[i] = 1 +

i−1∑
j=0

(r − 1)rj

= 1 +

i−1∑
j=0

r rj −
i−1∑
j=0

rj

= 1 +

i∑
j=1

rj −
i−1∑
j=0

rj

= ri

2. Considera 6= 1. It follows from the CR alge-
bra Figure 5 that{a, ∗, r}i = a{1, ∗, r}i and
a{1,+, r−1, ∗, r}i = {a,+, a(r−1), ∗, r}i, and
therefore that

{a, ∗, r}i = a{1, ∗, r}i
= a{1,+, r − 1, ∗, r}i
= {a,+, a(r − 1), ∗, r}i

• Suppose the equation holds fork = m− 1. We have

Φi = {a,+, a(r− 1),+, a(r− 1)2,+, · · · ,+, a(r− 1)k, ∗, r}i

Because the “flat” CR formΦi is identical to a nested
CR form [4, 57], we use the base case to rewrite the
tail part of the nested CR form as follows

{a,+, a(r−1),+, · · · ,+, a(r−1)k, ∗, r}i
= {a,+, a(r−1),+, · · · ,+, {a(r−1)k, ∗, r}i}i
= {a,+, a(r−1),+, · · · ,+, {a(r−1)k,+, a(r−1)k(r−1), ∗, r}i}i
= {a,+, a(r−1),+, · · · ,+, {a(r−1)k,+, a(r−1)k+1, ∗, r}i}i
= {a,+, a(r−1),+, · · · ,+, a(r−1)m−1,+, a(r−1)m, ∗, r}i

Thus, it follows from the induction hypothesis thatΦi =
{a,+, a(r−1),+, a(r−1)2,+, · · · ,+, a(r−1)m, ∗, r}i. 2

Corollary 1 Let Φi = {φ0,�1, · · · ,�k−1, φk−1, ∗, φk}i
such thatφk is invariant of i. Then, any numberm > 0
of + operators can be inserted at the(k − 1)th coefficient
as follows

Φi = {φ0,�1, · · · ,�k−1, φk−1,

+, φk−1(φk−1),+, φk−1(φk−1)2,+, · · · ,+, φk−1(φk−1)m︸ ︷︷ ︸
inserted , ∗, φk}i

without changing the sequence ofΦi.

Consider for exampleΦi = {1,+, 1}i andΨi = {1, ∗, 2}i.
The CR forms are aligned using Lemmas 3 and 4

Φi = {1,+, 1}i
= {1,+, 1, ∗, 1}i

Ψi = {1, ∗, 2}i
= {1,+, 1, ∗, 2}i

After alignment theminandmaxcan be applied

min({1,+, 1, ∗, 1}i, {1,+, 1, ∗, 2}i)
= {1,min({1, ∗, 1}i, {1, ∗, 2}i)}i
= {1,+, 1, ∗, 1}i
max({1,+, 1, ∗, 1}i, {1,+, 1, ∗, 2}i)
= {1,max({1, ∗, 1}i, {1, ∗, 2}i)}i
= {1,+, 1, ∗, 2}i

The closed forms of theminandmaxCRs areL(i) = i+ 1
andU(i) = 2i respectively. These bounds are used in Fig-
ure 8(b). The dynamic bounds of a conditionally updated in-
duction variableV were calculated by themin andmaxof
the CR forms of the conditional recurrences.
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3.4.2. Static Bounds.The determination of the constant
static bounds on the range of possible values of a function
is necessary for data dependence testing, value range anal-
ysis, and loop bounds analysis, where (symbolic) constant
bounds are required.

To determine the direction of a recurrence, we define the
step function of a CR.

Definition 3 The step function ∆Φi of a CR formΦi =
{φ0,�1, φ1,�2, . . . ,�k, φk}i is defined by

∆Φi = {φ1,�2, . . . ,�k, φk}i

Thedirection-wise stepfunction∆jΦi of a multivariate CR
form Φi is the step function with respect to an index vari-
ablej

∆jΦi =

{
∆Φi if i = j
∆jVΦi otherwise

where he initial value ofVΦi of a CR form is the first coef-
ficient, which is the starting value of the CR form evaluated
on a unit grid in thei-direction:

VΦi = φ0

The direction-wise step information indicates the growth
rate of a function on an axis in the iteration space.

Note thatΦi = {VΦi,�1,∆Φi}i.

Definition 4 The lower boundLΦi of a multivariate CR
formΦi evaluated oni = 0, . . . , n, n ≥ 0, is

LΦi =

{LVΦi if LMΦi ≥ 0

LCR−1
i (Φi)[i← n] if UMΦi ≤ 0

LCR−1
i (Φi) otherwise

and theupper boundUΦi of a multivariate CR formΦi is

UΦi =

{U VΦi if UMΦi ≤ 0

U CR−1
i (Φi)[i← n] if LMΦi ≥ 0

U CR−1
i (Φi) otherwise

whereCR−1
i (Φi) is the closed form ofΦi with respect toi

(i.e. nested CR forms are not converted), and whereM is
used in tests for monotonicity of a CR form defined by

MΦi =


∆Φi if �1 = +
∆Φi − 1 if �1 = ∗ ∧ LVΦ1 ≥ 0 ∧ L∆Φi > 0
1−∆Φi if �1 = ∗ ∧ U VΦ1 < 0 ∧ L∆Φi > 0
undefined otherwise

It is important to point out that theL andU bounds applied
to the recurrence of a monotonic function gives theexact
(symbolic) value range of the function on a discrete domain,
when the function is monotonic on the discrete grid rather
than in the continuous domain. A function that is mono-
tonic on discrete grid points is not necessarily monotonic in
the continuous domain.

TheL andU bounds have important applications in our
dependence tests discussed in Sections 3.6 and 4 and sev-
eral examples will be given.

3.5. Algorithm

The algorithm presented in this section extends our pre-
vious induction variable analysis algorithm by handling
conditionally updated variables in recurrences, where the
recurrences may or may not have closed forms. In the new
algorithm we compute multivariate CR forms for each non-
aliased scalar integer and pointer variable by considering
each path in a loop nest. In this way, a set of CR forms for
a variable is determined, rather than a single CR form as in
our previous work [47]. These CR forms describe sequences
of possible values for the conditionally updated variables in
a loop.

The algorithm is applied recursively from the innermost
loops to the outermost loops in a (not necessarily perfectly
nested) loop nest:

1. Compute the setA of variable assignments us-
ing the induction variable recognition algorithm
FINDRECURRENCES(i, a, s, B,A) shown in Fig-
ure 9, wherei is the name of the loop counter variable,
a is the (symbolic) initial value ofi, s is the (sym-
bolic) stride, andB is the AST of the loop body. For
non-enumeration controlled loops such as while-loops,
a virtual iteration variablei is introduced with ini-
tial valuea = 0 and strides = 1.

2. Solve the recurrence systemA by com-
puting the CR forms using algorithm
SOLVERECURRENCES(i, a, s, A). The ≺ relation
used by this algorithm defines a topological or-
der on the pairs in the setA by

〈V,X〉 ≺ 〈U, Y 〉 if V 6= U andV occurs inY

The relation ensures that the computation of the CR
forms for all variables can proceed in one sweep, by
first computing the CR forms for variables that do not
depend on any other variables. These CR forms are
then used to compute the CR forms for variables that
depend on the CR forms of other variables.

3. For each variableV collect the CR formsΦj(V ) from
the pairs〈V,Φj(V )〉 ∈ A. When only one CR form
Φ(V ) exists forV , obtain the closed form of the re-
currence forV given byCR−1(Φ(V )). When multiple
CR forms exist, compute themin andmaxbounding
functions over the set{Φj(V )} to determine the dy-
namic range of values of the variable through the loop
iteration. The CR form and/or the dynamic range are
used by the data dependence test.

4. To facilitate the recognition of induction variables in
outer loops, the setA is used to add (conditional) vari-
able updates at the end of the analyzed loop nest. These
updates are virtual and only used to reveal the induc-
tion variables to the outer loops for further analysis.
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Algorithm FINDRECURRENCES(i, a, s, B,A)
Constructs the recurrence systemA from the AST of loop bodyB
- input: iteration counter variablei with initial valuea and strides, and loop bodyB
- output: recurrence systemA consisting of a set of〈V,X〉 ∈ A pairs denoting assignmentsV := X
Let A := ∅
FOR each control-flow path p (up to a back edge) in B DO

Let Ap := ∅
FOR each statement Sk ∈ B from the last (k = |B|) to the first statement (k = 1) on path p DO

IF Sk is an assignment statement V := X
AND V is an integer or pointer variable
AND X has no function calls and array accesses THEN

UPDATE(V,X,Ap)
Mark 〈V,X〉 use-before-def if V has a use on path p before this assignment

ENDIF
ENDDO
ADDRECURRENCES(A,Ap)

ENDDO

Algorithm UPDATE(V,X,Ap)
Update the recurrence of variableV with expressionX in the recurrence systemAp
- input: variableV , expressionX, and recurrence systemAp
- output: updated recurrence systemAp
IF V 6∈ Dom(Ap) THEN /* if V is not defined in Ap */

Let Ap:=Ap ∪ {〈V,X〉}
ENDIF
FOR each 〈U, Y 〉 ∈ Ap DO

Replace each use of variable V in Y with X
ENDDO

Algorithm ADDRECURRENCES(A,Ap)
Add the path-specific recurrencesAp to the general recurrence systemA
- input: recurrence systemsA andAp
- output: updated recurrence systemA
IF A = ∅ THEN

Let A := Ap
ELSE

FOR each 〈V,X〉 ∈ Ap DO
IF V 6∈ Dom(A) THEN

Let A := A ∪ {〈V, V 〉}
ENDIF
Let A := A ∪ {〈V,X〉}

ENDDO
FOR each 〈V,X〉 ∈ A DO

IF V 6∈ Dom(Ap) THEN
Let A := A ∪ {〈V, V 〉}

ENDIF
ENDDO

ENDIF

Figure 9. Algorithm for Constructing a Recurrence System from a Loop

More specifically, for each variableV a set of condi-
tional assignments are added corresponding to the tu-
ples〈V,Φj(V )〉 ∈ A, which is similar to the following
template:

for i = a to b step s
...

endfor
i = max(0,b(b− a)/s+ 1c)
case (random(1 to j))

of 1: V = CR−1(Φ1(V ))
of 2: V = CR−1(Φ2(V ))
...
of j: V = CR−1(Φj(V ))

endcase

A virtual case block is added for each variable. The

conditional flow ensures that only one of the updates
is visible on a path through the outer loop body. It is
important to note that the addition of the block is vir-
tual and only used to provide a feed back mechanism
to ensure that the recurrences are analyzed by the ap-
plication of the algorithm to the outer loops.

5. As an optional step in the algorithm, IVS is applied
when all variablesV in the setA have single closed
forms. IVS normalizes the loop and adds initializing
assignments to variablesV to the start of the loop
and its body to remove cross-iteration dependences in-
duced by the induction variable updates:

12



Algorithm SOLVERECURRENCES(i, a, s, A)
Computes the CR-form solutions of a set of coupled recurrences over a one-dimensional iteration space
- input: iteration counter variablei with initial valuea and strides, and the recurrence systemA

consisting of a set of〈V,X〉 ∈ A pairs denoting assignmentsV := X
- output: coupled recurrences inA are converted to uncoupled CR expressions
FOR each 〈V,X〉 ∈ A in topological order (≺) DO

IF 〈V,X〉 is marked for deletion THEN
Let A := A\{〈V,X〉}

ELSE
Let X := CR(X) /* CR construction: replace all i in X by {a,+, s}i and apply CR algebra rules */
IF X is of the form V + Ψi, where Ψi is a constant or closed-form expression over i or a CR form THEN

Let Φ := {V0,+,Ψi}i
SUBSTITUTE(V,Φ, A)

ELSE IF X is of the form V ∗Ψi, where Ψi is a constant or closed-form expression over i or a CR form THEN
Let Φ := {V0, ∗,Ψi}i
SUBSTITUTE(V,Φ, A)

ELSE IF X is of the form c ∗ V + Ψi, where c is a constant or an i-loop invariant expression
and Ψi is a constant or an i-loop invariant expression or a polynomial CR form THEN

Let Φ := {φ0,+, φ1,+, · · · ,+, φk+1, ∗, φk+2}i, where
φ0 = V0; φj = (c− 1)φj−1 + ψj−1; φk+2 = c

SUBSTITUTE(V,Φ, A)
ELSE IF V does not occur in X THEN /* potential wrap-around variable */

Mark V wrap-around
IF 〈V,X〉 is marked as use-before-def THEN

Let Φ := {V0 − V(B(X)), ∗, 0}i + B(X)
ELSE

Let A := A\{〈V,X〉}
Let Φ := X

ENDIF
SUBSTITUTE(V,Φ, A)

ELSE /* cannot solve the recurrence for V */
SUBSTITUTE(V,⊥, A)

ENDIF
ENDIF

ENDDO

Algorithm SUBSTITUTE(V,Φ, A)
Substitute all occurrences ofV by Φ in the recurrence systemA
- input: variableV , CR formΦ, and recurrence systemA
- output: updated recurrence systemA
Replace 〈V,X〉 in A with 〈V,Φ〉
FOR each 〈U, Y 〉 ∈ A, 〈V,X〉 ≺ 〈U, Y 〉 DO

Mark 〈U, Y 〉 ∈ A for deletion
Let Y ′ := Y [V ← Φ] /* substitute each use of V with Φ */
Let A := A ∪ {〈U, Y ′〉}

ENDDO

Figure 10. Algorithm for Solving Recurrence Systems

V0 = V
: = :

for i = 0 to b(b− a)/s+ 1c
V = CR−1(Φ(V ))
: = :
B /* normalized loop body */

endfor
i = max(0,b(b− a)/s+ 1c)
V = CR−1(Φ(V ))
: = :

The loop can be optimized by forward substitution to
eliminate the assignments in the loop body. The elim-
ination of the assignments requires the addition of as-
signments in the loop epilogue to adjust the values of
the induction variables after the execution of the loop,
as shown in the code template above. Special care is

taken for potential wrap-around variables, whose final
assignments must be guarded by a test on the nonzero
trip property of the loop.

3.6. Recurrence Patterns Recognized

In this section we discuss several loops with non-trivial
recurrences patterns defined by induction variable updates.
Our algorithm handles the most complicated classes of
GIVs, such as those found in the TRFD and MDG bench-
marks. The algorithm can handle multiple assignments to
induction variables, generalized induction variables in loops
with symbolic bounds and strides, symbolic integer divi-
sion, conditional induction expressions, cyclic induction de-
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for i = 0 to n–1
j = 2∗k
a[i+k] = ...
k = i+j
m = m∗(i+1)

endfor

System:
〈k, 2k + i〉
〈m,m(i+ 1)〉

Solution:
〈k, {k0,+, k0,+, k0+1, ∗, 2}i〉
〈m, {m0, ∗, 1,+, 1}i〉

for i = 0 to n–1
...
a[{k0,+, k0+1,+, k0+1, ∗, 2}i] = ...
...

endfor

k0 = k
m0 = m
for i = 0 to n–1

k = (k0+1)∗2i–i–1
m = m0∗fac(i)
j = 2∗k
a[i+k] = ...
k = i+j
m = m∗(i+1)

endfor

for i = 0 to n–1
a[(k+1)∗2i–1] = ...

endfor
i = max(0,n)
k = (k+1)∗2i–i–1
m = m∗fac(i)
if (n ≥ 0)

j = 2∗k
endif

(a)Loop Nest (b) Recurrences (c) CR Index Construction (d) IVS (e)Optimized IVS

Figure 11. Nonlinear Recurrences

for i = 0 to n–1
S1: a[k] = ...

k = k+j
j = j+2

S2: ... = a[k]
k = k+1

endfor

System:
〈j, j + 2〉
〈k, k + j + 1〉

Solution:
〈j, {j0,+, 2}i〉
〈k, {k0,+, j0+1,+, 2}i〉

for i = 0 to n–1
a[{k0,+, j0+1,+, 2}i] = ...
...
... = a[{j0+k0,+, j0+3,+, 2}i]
...

endfor

j0 = j
k0 = k
for i = 0 to n–1

k = k0+i∗(i+j0)
j = j0+2∗i
a[k] = ...
k = k+j
j = j+2
... = a[k]
k = k+1

endfor

for i = 0 to n–1
a[k+i∗(i+j)] = ...
... = a[j+k+i∗(i+j+2)]

endfor
i = max(0,n)
k = k+i∗(i+j)
j = j+2∗i

(a)Loop Nest (b) Recurrences (c) CR Index Construction (d) IVS (e)Optimized IVS

Figure 12. Coupled Nonlinear Recurrences with Multiple Updates

pendencies, symbolic forward substitution, symbolic loop-
invariant expressions, and wrap-around variables.

3.6.1. Nonlinear Recurrences.Consider the loop
nest shown in Figure 11(a). The loop has a potential
wrap-around induction variablej and nonlinear induc-
tion variablesk andm. Because there is no use ofj before
the definition ofj in the path through the loop body, the re-
currence system discardsj and solves fork and m,
as shown in Figure 11(b). The solutions of the recur-
rences ofk andm are computed in CR form. Figure 11(c)
depicts the result of CR index construction (see Sec-
tion 2.3), where the array access is determined by the CR
form obtained from the solution to the recurrence sys-
tem and by applying CR construction to the index expres-
sion.

The loop can be parallelized if the induction vari-
ables can be eliminated using IVS and if no output
dependence on the assignment toa[i+k] exists. No out-
put dependence can exist if the array indexi+k is
strictly monotonically increasing or decreasing. There-
fore, we testLM{k0,+, k0+1,+, k0+1, ∗, 2}i > 0 or
UM{k0,+, k0+1,+, k0+1, ∗, 2}i < 0. The first con-
straint is met whenk0 + 1 > 0 and the latter constraint
is met whenk0 + 1 < 0. Hence, ifk0 6= −1 no depen-
dence can exist and the loop is parallelizable

The closed forms of the CR forms for variablesk andm
are used in the non-optimized IVS converted code shown in
Figure 11(d). The result of conventional restructuring com-
piler optimizations applied to the IVS code is shown in Fig-
ure 11(e). The final adjustments toj, k, and m shown in
Figure 11(e) are necessary to enable any uses of these vari-
ables after the loop. Becausej is a potential wrap-around
variable (detected by SOLVERECURRENCES), its final ad-
justment is conditional on the nonzero trip property of the
loop.

3.6.2. Coupled Recurrences with Multiple Updates.
Consider the loop nest shown in Figure 12(a) with cou-
pled induction variablesj andk. The loop contains two up-
dates ofk. The algorithm computes the recurrences and
their solutions in CR form as shown in Figure 12(b). Fig-
ure 11(c) depicts the result of CR index construction, where
the array accesses are determined by the CR form ob-
tained from the solution to the recurrence system and
by applying CR construction to the index expression (in
which all variables are replaced by their definitions us-
ing forward substitution). We test for dependence between
statementsS1andS2to verify whether the loop can be par-
allelized.

To disprove loop-carried flow dependence between state-
mentsS1 and S2, we have to show that there is no use
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for i = 0 to n–1
S1: ∗p = ...

p = p+j
j = j+2

S2: ... = ∗p
p = p+1

endfor

System:
〈j, j + 2〉
〈p, p+ j + 1〉

Solution:
〈j, {j0,+, 2}i〉
〈p, {p0,+, j0+1,+, 2}i〉

for i = 0 to n–1
p[{0,+, j0+1,+, 2}i] = ...
...
... = p[{j0,+, j0+3,+, 2}i]
...

endfor

j0 = j
p0 = p
for i = 0 to n–1

p = p0+i∗(i+j0-1)
j = j0+2∗i
∗p = ...
p = p+j
j = j+2
... = ∗p
p = p+1

endfor

for i = 0 to n–1
p[i∗(i+j)] = ...
... = p[j+i∗(i+j+2)]

endfor
i = max(0,n)
p = p+i∗(i+j)
j = j+2∗i

(a)Loop Nest (b) Recurrences (c) CR Index Construction (d) IVS (e)Optimized IVS

Figure 13. Coupled Nonlinear Pointer Recurrences with Multiple Updates

S2 after the definitionS1 of a[k] in subsequent itera-
tions. The symbolic non-constant distance between the
useS2 and definitionS2 is a function defined by the CR
form {j0+k0,+, j0+3,+, 2}i − {k0,+, j0+1,+, 2}i =
{j0,+, 2}i, which is linear ini, i.e the functionj0 + 2i.
This means that the distance starts with the initial valuej0
of j and grows by stride two through the iterations. Thus,
no loop-carried flow dependence betweenS1 and S2 ex-
ists if j0 ≥ 0.

We also apply our nonlinear version of the GCD test
for disproving dependence by considering whether the
readsS2and writesS1 to arraya are interleaved. This oc-
curs when the GCD of the CR coefficientsj0 + 1, j0 + 3, 2
does not divide j0 based on the dependence equa-
tion {j0+k0,+, j0+3,+, 2}i = {k0,+, j0+1,+, 2}i. Note
that whenj0 is odd, no dependence can exist.

Combining these results, the loop can be parallelized
whenj0 ≥ 0 or whenj0 is odd. To further parallelize the
loop, IVS is applied as shown in Figures 12(d) and (e).

3.6.3. Coupled Pointer Recurrences with Multiple Up-
dates. This example is similar to that of Section 3.6.2, but
differs with respect to the use of pointer references to access
memory. The loop nest shown in Figure 13(a) has recur-
rences and the solutions in CR form shown in Figure 13(b).
Figure 13(c) depicts the result of CR index construction ap-
plied to the induction variables and pointer arithmetic. As
in Section 3.6.2 we test for dependence between statements
S1andS2to verify whether the loop can be parallelized.

To disprove loop-carried flow dependence between state-
mentsS1 and S2, we compute the symbolic non-constant
distance {j0,+, j0+3,+, 2}i − {0,+, j0+1,+, 2}i =
{j0,+, 2}i between the useS2 and definitionS2 in CR
form. No flow dependence betweenS1 and S2 can ex-
ist if j0 ≥ 0. In addition, the GCD of the CR coefficients
j0 + 1, j0 + 3, 2 does not dividej0 if j0 is odd. There-
fore, whenj0 ≥ 0 or whenj0 is odd, the loop can be paral-
lelized. The application of IVS results in the non-optimized
loop nest shown in Figure 13(d). Conventional restructur-
ing compiler optimization leads to the loop nest shown in

Figure 13(e), where the pointer accesses are replaced by ar-
ray accesses. The result is a loop nest that reflects the
application of array recovery methods.

3.6.4. Multidimensional Loops. Consider the triangular
loop nest shown in Figure 14(a). The sequence of memory
writes byp is strictly monotonic in the inner and outer loop
nest. Therefore, no loop-carried output dependence can ex-
ist. The algorithm disproves dependence as follows.

The algorithms starts with the analysis of the inner loop
shown in Figure 14(a). The recurrence system of the inner
loop and its solution are shown in Figure 14(b). The CR in-
dex of the pointer access shown in Figure 14(c) is obtained
by CR construction. To analyze the outer loop, the algo-
rithm virtually adds an update to the pointerp at the the
loop exit. The addition of a variable update top is simi-
lar to the IVS code shown in Figure 14(e).

Next, the algorithm proceeds with the outer loop (using
the virtually added pointer update information) shown in
Figure 14(f). The recurrence system of the outer loop and
its solution are shown in Figure 14(g). The CR index of the
pointer access shown in Figure 14(h) is obtained by CR con-
struction using the recurrence solution.

The simplification of {p0,+,max(0, {1,+, 1}i}i to
{p0,+, 1,+, 1}i in the recurrence solution is accom-
plished by the addition of four new CR algebra rules:

max(Φi,Ψi) ⇒ Φi if L(Φi −Ψi) ≥ 0
max(Φi,Ψi) ⇒ Ψi if U(Φi −Ψi) ≤ 0
min(Φi,Ψi) ⇒ Φi if U(Φi −Ψi) ≤ 0
min(Φi,Ψi) ⇒ Ψi if L(Φi −Ψi) ≥ 0

These rules may enable the construction of a closed form
for a CR form with min and max terms.

To determine if a loop-carried output dependence ex-
ists, we test whether the sequence of memory location
accessed by the writes top in the loop is strictly mono-
tonic. BecauseL∆j{{0,+, 1,+, 1}i,+, 1}j = 1 and
L∆i{{0,+, 1,+, 1}i,+, 1}j = 1, the sequence is strictly
monotonic in thej and i directions, respectively. There-
fore, the loop nest can be parallelized.
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for i = 0 to n–1
for j = 0 to i
∗p = ...
p = p+1

endfor
endfor

System:
〈p, p+ 1〉

Solution:
〈p, {p0,+, 1}j〉

for i = 0 to n–1
for j = 0 to i

p[{0,+, 1}j ] = ...
...

endfor
endfor

for i = 0 to n–1
p0 = p
for j = 0 to i

p = p0+j
∗p = ...
p = p+1

endfor
endfor

for i = 0 to n–1
for j = 0 to i

p[j] = ...
endfor
j = max(0,i+1)
p = p+j

endfor

(a)Loop Nest (b) Recurrences (c) CR Index Construction (d) IVS (e)Optimized IVS

for i = 0 to n–1
for j = 0 to i

p[j] = ...
endfor
j = max(0,i+1)
p = p+j

endfor

System:
〈p, p+ i+ 1〉

Solution:
〈p, {p0,+, 1,+, 1}i〉

for i = 0 to n–1
for j = 0 to i

p[{{0,+, 1,+, 1}i,+, 1}j ] = ...
endfor
...

endfor

p0 = p
for i = 0 to n–1

p = p0+i*(i+1)/2
for j = 0 to i

p[j] = ...
endfor
j = max(0,i+1)
p = p+j

endfor

for i = 0 to n–1
for j = 0 to i

p[i∗(i+1)/2+j] = ...
endfor

endfor
i = max(0,n)
p = p+i∗(i+1)/2

(f) Loop Nest (g) Recurrences (h) CR Index Construction (i) IVS (j) Optimized IVS

Figure 14. Recurrences in Multidimensional Non-rectangular Loop Nest

for i = 0 to n–1
for j = 0 to m[i]

a[k] = ...
k = k+1

endfor
endfor

System:
〈k, k + 1〉

Solution:
〈k, {k0,+, 1}j〉

for i = 0 to n–1
for j = 0 to m[i]

a[{k0,+, 1}j ] = ...
...

endfor
endfor

for i = 0 to n–1
k0 = k
for j = 0 to m[i]

k = k0+j
a[k] = ...
k = k+1

endfor
endfor

for i = 0 to n–1
for j = 0 to m[i]

a[j+k] = ...
endfor
j = max(0,m[i]+1)
k = j+k

endfor

(a)Loop Nest (b) Recurrences (c) CR Index Construction (d) IVS (e)Optimized IVS

for i = 0 to n–1
for j = 0 to m[i]

a[j+k] = ...
endfor
j = max(0,m[i]+1)
k = j+k

endfor

System:
〈k, k + max(0,m[i]+1)〉

Solution:
〈k, {k0,+,max(0,m[i]+1)}i〉

for i = 0 to n–1
for j = 0 to m[i]

a[{{k0,+,m[i]+1}i,+, 1}j ] = ...
endfor
...

endfor

(f) Loop Nest (g) Recurrences (h) CR Index Construction

Figure 15. Recurrences with Irregular Symbolic Strides

Because the CR forms of the recurrences have closed
forms, IVS can be applied resulting in the loop nest shown
in Figure 14(i) and the optimized code shown in Fig-
ure 14(j).

3.6.5. Recurrences with Irregular Symbolic Strides.
Induction variables with irregular symbolic strides do not
have closed forms. Current restructuring compilers can-
not test for dependence when the recurrences in a loop nest
have no closed forms. Our algorithm can determine a de-
pendence system for these cases.

Consider the loop nest shown in Figure 15(a), where
the inner loop nest is bounded by an outer-loop dependent
unknown valuem[i]. The algorithm proceeds by analyzing
the inner loop first. The results are shown in Figures 15(b)

and (c). The analysis of the outer loop requires the aggre-
gation of the updates to the induction variables in the in-
ner loop. The virtually added update statements to the exit
of the inner loop are similar to the updates shown in Fig-
ure 15(e), wherek is adjusted for recurrence analysis in the
outer loop. The algorithm produces the recurrence system
and solution shown in Figure 15(g) by analyzing the outer
loop. Note that the solution does not have a closed form,
because of the presence of the non-constant CR coefficient
max(0,m[i] + 1). However, the CR construction of the in-
dex expression of the array accessa[k] can still proceed. Be-
causem[i] ≥ 0 in the inner loop nest, the CR form of the
index expression is{{k0,+,max(0,m[i] + 1)}i,+, 1}j =
{{k0,+,m[i]+1}i,+, 1}j as shown in Figure 15(h). There
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j = 0
for i = 0 to n–1

if ... then
k = k+j
a[i+k] = ...

else
k = k+i∗(i–1)/2

endif
j = j+i

endfor

System:

Ap1=

{
〈j, j + i〉
〈k, k + j〉

Ap2=

{
〈j, j + i〉
〈k, k+i(i−1)/2〉

Solution:
〈j, {0,+, 0,+, 1}i〉
〈k, {k0,+, 0,+, 0,+, 1}i〉

...
for i = 0 to n–1

if ... then
...
a[{k0,+, 1,+, 1,+, 1}i] = ...

else
...

endif
...

endfor

j = 0
k0 = k
for i = 0 to n–1

k = k0+i∗(i∗(i–3)/2+1)/3
j = i∗(i–1)/2
if ... then

k = k+j
a[i+k] = ...

else
k = k+i∗(i–1)/2

endif
j = j+i

endfor

for i = 0 to n–1
if ... then

a[k+i∗(i2+5)/6] = ...
endif

endfor
i = max(0,n)
k = k+i∗(i∗(i–3)/2+1)/3
j = i∗(i–1)/2

(a)Loop Nest (b) Recurrences (c) CR Index Construction (d) IVS (e)Optimized IVS

Figure 16. Conditionally Updated Variables with Single Recurrence Solution

for i = 0 to n–1
a[k] = ...
if ... then

k = k+1
else

k = k+j
j = j+2

endif
endfor

System:

Ap1 =

{
〈j, j〉
〈k, k + 1〉

Ap2 =

{
〈j, j + 2〉
〈k, k + j〉

Solution:
〈j, j0〉
〈j, {j0,+, 2}i〉
〈k, {k0,+, 1}i〉
〈k, {k0,+, j0}i〉
〈k, {k0,+, j0,+, 2}i〉

for i = 0 to n–1
a[{k0,+,min(1, j0)}i to {k0,+,max(1, j0),+, 2}i] = ...
if ... then

...
else

...
endif

endfor

(a)Loop Nest (b) Recurrences (c) CR Index Construction using Dynamic Value Range Bounds

Figure 17. Conditionally Updated Variables with Multiple Recurrence Solutions

is no loop-carried output dependence in thei andj direc-
tions, becauseL∆i{{k0,+,m[i] + 1,+, 1}i,+, 1}j = 1
andL∆j{{k0,+,m[i] + 1,+, 1}i,+, 1}j = 1.

3.6.6. Conditionally Updated Variables with Single Re-
currence Solution. Consider the loop nest shown in Fig-
ure 16(a). The loop exhibits conditional updates of variable
k. The recurrence system and its solution are shown in Fig-
ure 16(b). The variablesj and k both have a single solu-
tion, despite the differences of the recurrences formsAp1

andAp2 on the two pathsp1 andp2 through the loop body.
This illustrates the importance of the fact that CR forms are
normal forms for GIVs thereby enabling the detection of se-
mantically equivalent recurrences.

CR construction applied to the array index expression
of a results in the description of the array access in CR
form shown in Figure 16(c). There are no loop-carried
output dependences, because the function of the CR form
{k0,+, 1,+, 1,+, 1}i is strictly monotonically increasing.

Closed forms of the recurrences can be computed, be-
cause the variables of the recurrences have single solu-
tions. The closed forms are used for IVS as shown in Fig-
ures 16(d) and (e).

3.6.7. Conditionally Updated Variables with Mul-
tiple Recurrence Solutions.Consider the loop nest
shown in Figure 17(a). The loop exhibits conditional up-
dates of variablesj and k. The recurrence system and its
solution are shown in Figure 17(b). In this case, the vari-
ables j and k do not have a single recurrence solution.
The set of recurrence solutions is used for the CR con-
struction of the array index expression. Themin andmax
bounding functions are applied to the set of CR forms ob-
tained for the array indexk, resulting in the lower and up-
per dynamic value range bounds{k0,+,min(1, j0)}i and
{k0,+,max(1, j0),+, 2}i, respectively. Because the lower
and upper bound functions on the array index expres-
sion are both strictly monotonically increasing, the ar-
ray access are strictly monotonically increasing and no
loop-carried output dependence exists.

3.7. Non-Enumeration-Controlled Loops

The recurrence analysis algorithm handles non-
enumeration controlled loops such as while-loops. The cal-
culation of recurrence forms does not require a loop
trip count. Thus, the loop exit condition can be arbi-
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k = 0
do

a[k] = 0
k = 2∗k+1

while f(k)

j = 0
k = n
while j < k do

a[j] = a[k]
j = j+1
k = k–1

enddo

(a)Example Do-While Loop (b) Example While Loop

Figure 18. Recurrences in Logically Con-
trolled Loops

trary. The loop iteration counter, when provided, is used
by the algorithm to convert closed-form index expres-
sions to recurrences. The absence of a counter does not in-
hibit the application of the method, since there are no uses
of the counter. Note that the algorithm uses a new (vir-
tual) loop iteration counter to bind the recurrences of
induction variables to the loop (see step 1 of the algo-
rithm in Section 3.5. Any unique name for the loop counter
suffices to ensure that nested loops in a loop nest are dis-
tinguishable to enable the computation of multivariate
recurrences.

Consider the loop shown in Figure 18(a). The algorithm
selects a unique loop counter to bind the recurrences to the
loop, sayI. The recurrence form ofk is {0,+, 1, ∗, 2}I (the
algorithm uses Lemma 2). Note that the closed form ofk is
2I − 1, whereI is the selected loop counter variable. Be-
cause all writes operations toa are strictly monotonic the
loop has no output dependence.

It is important to be able to compute the trip count of a
non-enumeration controlled loop, when possible, in order
to use the trip count as a constraint in the dependence sys-
tem. When the exit condition is based on a constraint on
a linear or quadratic recurrence, the trip count can be eas-
ily determined from the recurrence forms in the exit condi-
tion.

Consider for example the loop shown in Figure 18(b).
The recurrence form ofj is {0,+, 1}I and for k is
{n,+,−1}I . The exit condition in recurrence form is
{0,+, 1}I < {n,+,−1}I . After rearranging terms
{0,+, 1}I − {n,+,−1}I < 0, this is simplified to
{−n,+, 2}I < 0. From the closed form−n + 2 ∗ I < 0
of this recurrence constraint it is easy to see that the trip
count of the loop isI < bn/2c. With this constraint
the dependence equation{0,+, 1}Id = {n,+,−1}Iu

(i.e. Id = n − Iu in closed form), which has no solu-
tion when testing for cross-iteration flow dependence
(i.e.< dependence direction).

for i = 0 to n–1
...
k = i∗k+1
...

endfor

for i = 0 to n–1
...
t = ...a...
a = ...b...
b = ...t...
...

endfor

(a)Unsolvable (b) Cyclic Recurrence

Figure 19. Recurrence Patterns not Recog-
nized

3.8. Recurrence Patterns Not Recognized

This section presents two recurrence patterns that cannot
be solved by our recurrence analysis algorithm.

3.8.1. Unsolvable Recurrence Patterns.Some recur-
rence patterns exist that cannot be solved, such as the
recurrence shown in Figure 19(a). The recurrence can-
not be solved by our algorithm because it has neither a CR
form nor a closed-form equivalent.

3.8.2. Cyclic Recurrence Relations.These relations can-
not be analyzed by our algorithm, as shown in Figure 19(b),
because the recurrence system constructed from the loop
nest must have a partial order≺ on the assignments. Note
that our algorithm can handle coupled recurrences with
cyclic dependences, but not cyclic recurrencse. Cyclic re-
currence systems require a separate solver for periodic se-
quences, as in [23]. We propose an extension of our algo-
rithm using partial loop unrolling to solve periodic recur-
rences. The unroll factor is the LCM of the sizes of the
strongly connected components in the graph spanned be≺
(edges) on the variables (vertices).

4. Nonlinear Dependence System Solvers

This section introduces three dependence solvers. The
solvers are based on our recurrence solver and do not re-
quire closed-form index expressions. The dependence
solvers construct dependence systems based on the CR
forms of index expressions. The dependence tests can be ap-
plied to loop nests with conditionally updated induction
variables and pointers. The objective of the tests is to com-
pute the conditions under which a solution to a dependence
system exists, rather than just testing for potential depen-
dence. This allows us to generate multi-version code with
parallelized versions of the code fragments when admissi-
ble by the symbolic constraints.
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4.1. Monotonicity Test

This is a relatively inexpensive test to verify whether
loop-carried output dependences exist for a single array or
pointer reference. The test verifies the monotonic property
of an array index expression and pointer reference. More
elaborate dependence testing involving multiple array and
pointer accesses is performed with our nonlinear version of
the extreme value test described in the next section.

Consider Figure 2 depicting a segment of the original
TRFD code. The CR forms ofijkl andl obtained by CR con-
struction are

Φ(ijkl) = {{{{2,+, left+m(m+1)/2+2,+, left+m(m+1)/2+1}i
,+, left+m(m+1)/2}j
,+, {2,+, 1}i,+, 1}k
,+, 1}l

andΦ(l) = {1,+, 1}l respectively. The CR formΦ(ijkl)
has the following four step functions in thei, j, k, andl di-
rection, respectively:

∆iΦ(ijkl) = {left+m(m+1)/2+2,+, left+m(m+1)/2+1}i
∆jΦ(ijkl) = left+m(m+1)/2
∆kΦ(ijkl) = {{2,+, 1}i,+, 1}k
∆lΦ(ijkl) = 1

Note that the step functions in thek and l directions are
nonnegative, because the CR coefficients are nonnegative.
Therefore, the growth of theijkl induction variable in the
k, l direction of the index space is nonnegative and the ad-
dressing of thexijkl[ijkl] is strictly monotonically increas-
ing in the innerk, l loop nest, allowing the inner two loop
nests to be parallelized.

Also note that the growth ofijkl in the entirei, j, k, l in-
dex space is nonnegative ifleft > m(m+1)/2, which is in
fact the case when considering the larger part of the bench-
mark code (not shown).

4.2. Nonlinear Extreme Value Test

This nonlinear dependence test is based on the Baner-
jee bounds test [5], also known as the extreme value test
(EVT). The test computes direction vector hierarchy infor-
mation by performing symbolic subscript-by-subscript test-
ing for multidimensional loops. The test is inexact. How-
ever, the test is efficient to determine direction vector hier-
archy information. The test builds the direction vector hi-
erarchy by solving a set of dependence equations one at a
time.

Our extended EVT subsumes these characteristics by en-
hancing the test to cover common nonlinear array index ex-
pressions and uses of pointer arithmetic without requiring
closed forms. Thus, our nonlinear EVT can determine ab-
sence of dependence for a larger set of dependence prob-
lems compared to the standard EVT. The implementation
of our algorithm is identical to the original EVT method,

for i = 1 to nt
...
jj = i
for j = 1 to nor1

var[jj] = var[jj]+...
jj = jj + nt

endfor
endfor

Equation:
{{1,+, 1}id ,+, nt}jd

= {{1,+, 1}iu ,+, nt}ju

Constraints:
0 ≤ id ≤ nt− 1
0 ≤ iu ≤ nt− 1
0 ≤ jd ≤ nor1− 1
0 ≤ ju ≤ nor1− 1

(a)Loop Nest (b) Dependence System

Figure 20. A Linear Dependence System

except that CR forms andL andU bounds are used in the
computations.

Consider for example the dependences of the loop nest
shown in Figure 20(a), which is part of the MDG bench-
mark code. The loop nest cannot be analyzed by Polaris, de-
spite the fact that the dependence system is affine (obtained
after IVS). The recurrence pattern also cannot be handled
by the monotonic evolutiontest [54], because a compari-
son is required between the stride of the inner loop and the
outer loop bound. In contrast, our CR-based extreme value
test succeeds in disproving loop-carried flow dependence.

The recurrence solver and CR construction algorithms
compute the multivariate CR form of thevar array index
expression, which is{{1,+, 1}i,+, nt}j , to set up the de-
pendence equation system shown in Figure 20(b).

Testing for(=, <) dependence, withid = iu andjd <
ju, gives the normalized set of bounds forju andjd:

1
{1,+, 1}jd

}
≤ ju ≤ nor1− 1 0 ≤ jd ≤

{
nor1− 2
{−1,+, 1}ju

The simplified dependence equation from Figure 20(b) with
id = iu is

{{0,+, nt}ju ,+,−nt}jd = 0

When applying direction vector constraints to determine the
dependence hierarchy, terms must cancel when possible to
ensure accuracy. Therefore, theju variable is selected to
dominate thejd variable in the equation, such that replace-
ment ofjd by its upper bound constraint{−1,+, 1}ju will
lead to cancellations in the application of the CR algebra
simplification rules. The choice of dominating variable de-
pends on the direction of the dependence test.

We proceed by computing the lower bound of the equa-
tion’s left hand side
L{{0,+, nt}ju ,+,−nt}jd

= L(({0,+, nt}ju − nt jd)[jd ← {−1,+, 1}ju ]) (nt ≥ 1)
= L({0,+, nt}ju − nt {−1,+, 1}ju ) (subst.)
= L({0,+, nt}ju + {nt,+,−nt}ju ) (simplify)
= L(nt) (simplify)
= 1 (nt ≥ 1)

Because the lower bound of the left-hand side of the equa-
tion is positive, the(=, <) dependence is disproved (note
that for the abovent ≥ 1 holds in the loop nest).
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p = A
q = A
for i = 0 to n–1

for j = 0 to i
p = p + 1
∗q = ∗p

endfor
q = q + 1

endfor

Equation:
{A,+, 1}id = {{A+1,+, 1,+, 1}iu ,+, 1}ju

Constraints:
0 ≤ id ≤ n− 1
0 ≤ iu ≤ n− 1
0 ≤ jd ≤ id
0 ≤ ju ≤ iu

(a)Loop Nest (b) Dependence System

Figure 21. A Nonlinear Dependence System

Testing for(<,<) dependence, withid < iu andjd <
ju, gives the normalized set of bounds:

1
{1,+, 1}id

}
≤ iu ≤ nt− 1 0 ≤ id ≤

{
nt− 2
{−1,+, 1}iu

1
{1,+, 1}jd

}
≤ ju ≤ nor1− 1 0 ≤ jd ≤

{
nor1− 2
{−1,+, 1}ju

The dependence equation is
{{{{0,+,−1}iu ,+, 1}id ,+,−nt}ju ,+, nt}jd = 0

The lower bound of the equation’s left hand side is
L{{{{0,+,−1}iu ,+, 1}id ,+,−nt}ju ,+, nt}jd

= L{{{0,+,−1}iu ,+, 1}id ,+,−nt}ju (nt ≥ 1)
= L(({{0,+,−1}iu ,+, 1}id − nt ju)[ju ← nor1−1]) (nt ≥ 1)
= L({{0,+,−1}iu ,+, 1}id − nt(nor1−1)) (subst.)
= L{{−nt (nor1− 1),+,−1}iu ,+, 1}id (simplify)
= L{−nt (nor1−1),+,−1}iu
= L(−nt (nor1−1)− (nt−1)) (subst. + simplify)
= −U(nt (nor1−1))− U(nt−1)
= −∞

This result is inconclusive. However, the upper bound of the
equation’s left hand side is negative:
U{{{{0,+,−1}iu ,+, 1}id ,+,−nt}ju ,+, nt}jd

= U({{{0,+,−1}iu ,+, 1}id ,+,−nt}ju + nt {−1,+, 1}ju )
= U{{−nt,+,−1}iu ,+, 1}id (simplify)
= U({−nt,+,−1}iu + {−1,+, 1}iu ) (subst. + simplify)
= U(−nt−1) (simplify)
= −L(nt)− 1
= −2 (nt ≥ 1)

Therefore, the(<,<) dependence is disproved.
Our nonlinear extreme value test also handles non-

linear recurrences. Consider the example triangular loop
nest depicted in Figure 21(a). Note that pointersp and
q read and write to the same arrayA. The recurrence
solver and CR construction algorithms compute the mul-
tivariate CR forms of thep andq pointer accesses, which
are {{A+1,+, 1,+, 1}i,+, 1}j and {A,+, 1}i, respec-
tively. The dependence system is shown in Figure 21(b).
The normalized dependence equation is

{{{−1,+,−1,+,−1}iu ,+, 1}id ,+,−1}ju = 0

Testing flow dependence,id < iu andjd < ju gives the
normalized set of bounds:

1
{1,+, 1}id

}
≤ iu ≤ n− 1 0 ≤ id ≤

{
n− 2
{−1,+, 1}iu

1
{1,+, 1}jd

}
≤ ju ≤ {0,+, 1}iu 0 ≤ jd ≤

{
{−1,+, 1}id
{−1,+, 1}ju

Using these constraints, we compute the lower and upper
bounds as follows:
L{{{−1,+,−1,+,−1}iu ,+, 1}id ,+,−1}ju

= L(({{−1,+,−1,+,−1}iu ,+, 1}id − ju)[ju ← {0,+, 1}iu ])
= L({{−1,+,−1,+,−1}iu ,+, 1}id − {0,+, 1}iu ) (subst.)
= L{{−1,+,−2,+,−1}iu ,+, 1}id (simplify)
= L{−1,+,−2,+,−1}iu
= L((−1− (3iu−(iu)2)/2)[iu ← n− 1])
= L((−n2−n)/2) (subst.)
= (−U(n2)− U(n))/2
= −∞
U{{{−1,+,−1,+,−1}iu ,+, 1}id ,+,−1}ju

= U{{−1,+,−1,+,−1}iu ,+, 1}id
= U(({−1,+,−1,+,−1}iu + id)[id ← {−1,+, 1}iu ])
= U({−1,+,−1,+,−1}iu + {−1,+, 1}iu ) (subst.)
= U{−2,+, 0,+,−1}iu (simplify)
= −2

Because the equation has no solution since zero does not lie
between−∞ and−2, our nonlinear extreme value test dis-
proves(<,<) flow dependence.

4.3. Nonlinear Range Test

This dependence test performs pairwise comparisons be-
tween array index expressions to determine the direction of
the dependence. The comparisons are performed on the CR
forms of array index expressions obtained by the recurrence
solver and CR construction algorithm. The difference be-
tween the CR forms of two index expressions is a CR form
that describes the index distance as a function of the itera-
tion space. Therefore, the extreme values of the function in-
dicates the direction of the dependence for the entire loop
iteration space of the loop nest. This test is suitable to find
the conditions under which loop-carried dependence does
not exist, rather than just testing for the absence of depen-
dence.

Consider for example the loop nest shown in Fig-
ure 22(a). This example is taken from [37], because the
example was used by the authors to demonstrate the im-
possibility by current compilers to analyze the depen-
dences for loop parallelization. In contrast, our dependence
test handles this case by deriving the conditions un-
der which no loop-carried flow dependence exists. The
recurrence solver and CR construction algorithms com-
pute the CR forms of the index expressions as shown
in Figure 22(b). The dependence direction< is dis-
proved if

L({K+2N,+,K+N+2, ∗, 2}i − {N+10,+, N}i) ≥ 0

That is, to verify that all uses ofA in subsequent iterations
do not depend on the definitions ofA we determine that the
lower bound of the distance as a function ofi over the nor-
malized iteration spacei = 0, . . . ,M is nonnegative.

L({K+2N,+,K+N+2, ∗, 2}i − {N+10,+, N}i)
= L{K+N−10,+,K+2, ∗, 2}i
=

{
K+N−10 if K+2 ≥ 0
undefined otherwise

≥ 0 if K+N ≥ 10 andK ≥ −2
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for I = 1 to M+1
S1: A[I∗N+10] = ...
S2: ... = A[2∗I+K]

K = 2∗K+N
endfor

for i = 1 to M+1
A[{N+10,+, N}i] = ...
... = A[{K+2N,+,K+N+2, ∗, 2}i]
...

endfor

(a)Loop Nest (b) CR Index Construction

Figure 22. Nonlinear Range Test Example

Therefore, no loop-carried flow dependence exist when
K+N ≥ 10 andK ≥ −2. Since these conditions are eas-
ily checked at runtime, a parallelized loop nest can be gen-
erated that is conditionally executed depending on the run-
time evaluation of these guards.

4.4. Dependence Testing on RTL Code

Register transfer list (RTL) notation is a popular inter-
mediate code representation for low-level instructions used
by a variety of compilers, such asgccandvpo. The RTL no-
tation is uniform and provides an orthogonal instruction set
based on predicated assignments. Thevpo[7]. compiler op-
timizes code using a control-flow graph (CFG) representa-
tion of the program [1]. Each basic block in the CFG con-
tains a sequence of consecutive register transfer list (RTL)
instructions. The RTL notation used bygcc is distinctly
more Lisp-like compared to thevpoRTL. However, the two
RTL variants are conceptually the same. Other intermedi-
ate representations used by compilers, such as three-address
code and indirect triples [1] are similar and can be mapped
to RTL instructions.

Our recurrence analysis algorithm recovers induction
variables at the three-address code level or RTL level by
extracting the assignments to memory and registers (using
ADDRECURRENCESin Figure 9) to set up the recurrence
system and by applying forward substitution (SUBSTITUTE

in Figure 10) to solve the recurrence system.
Figure 23(a) and (b) depict an example loop and the in-

termediate optimized RTL code generated byvpo, respec-
tively. The standard notational conventions and semantics
of RTL assignments to registers enables the application of
our recurrence analysis algorithm to the integer-valued reg-
isters in the code. Registerr[10] forms a recurrence, be-
causer[10] is updated in blockL2 and live at the back
edge (determined with data flow analysis [1]). The recur-
rence analysis algorithm applied to the RTL code results
in the recurrence system shown in Figure 23(c). The out-
put dependence equation is shown in Figure 23(d). Because
basic induction variables may no longer be associated with
loop structures at the (optimized) RTL code level, the ba-
sic block numberL2 is used as a reference to the iteration
space. In this example, the exit condition can be deduced
from the RTL code to determine the size of the iteration

int ∗a;
int i, n;
a = ...;
n = ...;
...
i = 0;
do

a[i++] = 0;
while (i < n);

r[10]=0
r[11]=HI[_a]+LO[_a]
r[12]=HI[_n]+LO[_n]

r[9]=r[10]<<2
M[r[9]+r[11]]]=0
r[10]=r[10]+1
r[8]=M[r[12]]
IC=r[10]?r[8]
PC=IC<0,L2

L1

L2

(a)Original Code (b) CFG with RTL Code

System:
〈r[9], r[10]� 2〉
〈r[10], r[10] + 1〉

Solution:
〈r[9], {0,+, 4}B2〉
〈r[10], {0,+, 1}B2〉

Equation:
{a,+, 1}L21 = {a,+, 1}L22

Constraints:
0 ≤ L21 ≤ n− 1
0 ≤ L22 ≤ n− 1

(c) Recurrence System (d) Dependence System

Figure 23. Example RTL Code

space for the dependence system. If the size of the iteration
space cannot be deduced from the code, an unknown (sym-
bolic) bound can be substituted instead.

Note that the size of the elements of arraya are
4 bytes. The memory accessM[r[9]+r[11]] with
r[9]=r[10]<<2 and r[11] is the base address ofa
is represented by the pointer access pattern{a,+, 1}L2,
where the second coefficient is adjusted to represent ar-
ray element accesses instead of bytes. Because the access
pattern {a,+, 1}L2 is strictly monotonically increas-
ing, there is no output dependence.

We will also demonstrate the application of EVT to dis-
prove output dependence as follows. To test the< output
dependence, the constraints are

1
{1,+, 1}L21

}
≤ L22 ≤ n− 1 0 ≤ L21 ≤

{
n− 2
{−1,+, 1}L22

Rearranging the terms in the dependence equation we get
{{0,+, 1}L22 ,+,−1}L21 = 0

The equation has no solution, because

L({{0,+, 1}L22 ,+,−1}L21 )
= L({k,+, 1}L22 − {−1,+, 1}L21 )
= 1 > 0

To test the> output dependence, the constraints are

1
{1,+, 1}L22

}
≤ L21 ≤ n− 1 0 ≤ L22 ≤

{
n− 2
{−1,+, 1}L21

Rearranging the terms in the dependence equation we get
{{0,+, 1}L21 ,+,−1}L22 = 0

No output dependence exists, because the equation has no
solution:

L({{0,+, 1}L21 ,+,−1}L22 )
= L({k,+, 1}L21 − {−1,+, 1}L22 )
= 1 > 0
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void preemphasis(short ∗signal, short L, short g)
{ short ∗p1, ∗p2, i;

p1 = signal + L – 1;
p2 = p1 – 1;
...
for (i = 0; i ≤ L – 2; i++)
∗p1– – –= g ∗ ∗p2– –;

...
}

(a)Original Source code

System:
〈p1, p1− 2〉
〈p2, p2− 2〉
〈tmp1, p1〉
〈tmp2, p2〉
〈i, i + 1〉

Solution:
〈p1, {signal + L− 1,+,−1}L2〉
〈p2, {signal + L− 2,+,−1}L2〉
〈tmp1, {signal + L− 1,+,−1}L2〉
〈tmp2, {signal + L− 2,+,−1}L2〉
〈i, {0,+, 1}L2〉

(b) Recurrence System based on CFG

Equation:
{signal + L− 1,+,−1}L2d

= {signal + L− 2,+,−1}L2u

Constraints:
0 ≤ L2d ≤ L− 2
0 ≤ L2u ≤ L− 2

(c) Dependence Equation for the use∗tmp2
and def∗tmp1 in blockL2

a[16]=g[0]-LOC[p1]
a[17]=R[a[16]]
a[18]=g[0]-LOC[tmp1]
R[a[18]]=a[17]
a[16]=g[0]-LOC[tmp1]
a[17]=R[a[16]]
r[16]=-2
a[19]=r[16]
a[18]=a[19]+a[17]
a[20]=g[0]-LOC[p1]
R[a[20]]=a[18]
a[16]=g[0]-LOC[p2]
a[17]=R[a[16]]
a[18]=g[0]-LOC[tmp2]
R[a[18]]=a[17]
a[16]=g[0]-LOC[tmp2]
a[17]=R[a[16]]
r[16]=-2
a[19]=r[16]
a[18]=a[19]+a[17]
a[20]=g[0]-LOC[p2]
R[a[20]]=a[18]
a[16]=g[0]-LOC[g]
r[16]=(W[a[16]]{16)}16
a[17]=g[0]-LOC[tmp2]
a[18]=R[a[17]]
r[17]=(W[a[18]]{16)}16
r[18]=SU[r[16],r[17]]
r[18]=US[r[16],r[17],r[18]]
r[16]=UU[r[16],r[17]]
r[18]=r[18]{16
r[18]=ID[r[16],r[18]]
a[19]=g[0]-LOC[tmp4]
R[a[19]]=r[18]
a[16]=g[0]-LOC[tmp1]
a[17]=R[a[16]]
r[16]=(W[a[17]]{16)}16
a[18]=g[0]-LOC[tmp4]
r[17]=R[a[18]]
r[18]=r[16]-r[17]
r[18]=r[18]{16
r[18]=r[18]}16
a[19]=g[0]-LOC[tmp1]
a[20]=R[a[19]]
W[a[20]]=r[18]

L2

a[16]=g[0]-LOC[i]
r[16]=(W[a[16]]{16)}16
r[17]=1
r[18]=r[16]+r[17]
r[18]=r[18]{16
r[18]=r[18]}16
a[17]=g[0]-LOC[i]
W[a[17]]=r[18]

L3

a[16]=g[0]-LOC[i]
r[16]=(W[a[16]]{16)}16
a[17]=g[0]-LOC[L]
r[17]=(W[a[17]]{16)}16
r[18]=2
r[19]=r[17]-r[18]
IC=r[16]>r[19]
PC=IC!0,L2

L5

a[16]=g[0]-LOC[L]
r[16]=R[a[16]]
r[16]=r[16]{16
r[16]=r[16]}16
a[17]=g[0]-LOC[L]
W[a[17]]=r[16]
a[16]=g[0]-LOC[g]
r[16]=R[a[16]]
r[16]=r[16]{16
r[16]=r[16]}16
a[17]=g[0]-LOC[g]
W[a[17]]=r[16]
a[16]=g[0]-LOC[L]
r[16]=(W[a[16]]{16)}16
r[17]=1
r[18]=r[16]
r[18]=r[18]{r[17]
a[17]=g[0]-LOC[signal]
a[18]=R[a[17]]
a[20]=r[18]
a[19]=a[20]+a[18]
r[19]=-2
a[22]=r[19]
a[21]=a[22]+a[19]
a[23]=g[0]-LOC[p1]
R[a[23]]=a[21]
a[16]=g[0]-LOC[p1]
a[17]=R[a[16]]
r[16]=-2
a[19]=r[16]
a[18]=a[19]+a[17]
a[20]=g[0]-LOC[p2]
R[a[20]]=a[18]
r[16]=0
a[16]=g[0]-LOC[i]
W[a[16]]=r[16]
PC=L5

L1

tmp1 = p1

p1 = tmp1 - 2

tmp2 = p2

tmp4 = g * *tmp2

*tmp1 = *tmp1 - tmp4

p2 = tmp2 - 2

i = i + 1

L = L << 16 >> 16

g = g << 16 >> 16

p1 = signal + 2*L - 2

p2 = p1 - 2

i = 0

Figure 24. ETSI Codec: Source Code and CFG of the preemphasis Routine

22



A more extensive example taken from the ETSI Speech
codec is illustrated in Figure 24. Figure 24(a) shows the
source code and the CFG generated byvpo is shown on the
right. For sake of convenience the CFG is annotated with
the memory stores derived from the RTL assignments. The
stores are calculated by forward substitution of the RTL defs
to the uses determined by the data flow analysis. The appli-
cation of the recurrence analysis algorithm produces the re-
currence system shown in Figure 24(b). The coefficients of
the recurrences are adjusted to refer to array elements rather
than bytes by scaling the increments down by a factor of
two, because the pointersp1 andp2 point to 16 bit inte-
gers.

The dependence equation for the use of∗tmp2 and def
of ∗tmp1 in block L2 is shown in Figure 24(c) with the
constraints on the loop iteration space. The recurrence sys-
tem and equation are determined from the CFG. Note that
none of the high-level source code details are required. The
names of the local variables and function arguments are pro-
vided in the RTL code2. In this case the number of loop
iterationsL − 1 can be determined as a symbolic expres-
sion from the RTL code. If this is not possible, because of
the low-level representation, rather than attempting to de-
rive the loop exit condition an unknown symbolic valuen
can be used to represent the unknown number of loop it-
erations. This simplification can be made for many types
of loop dependence problems without losing accuracy, ex-
cept in cases where the number of loop iterations is corre-
lated with the size of the accessed array regions (e.g. to de-
tect non-overlapping regions).

To test the< loop carried flow dependence direction, the
constraints are

1
{1,+, 1}L2d

}
≤ L2u ≤ L− 2 0 ≤ L2d ≤

{
L− 3
{−1,+, 1}L2u

After rearranging the terms in the dependence equation we
get

{{−1,+,−1}L2u ,+, 1}L2d = 0

The equation has no solution, because

U({{−1,+,−1}L2u ,+, 1}L2d )
= U({−1,+,−1}L2u + {−1,+, 1}L2u )
= −2 < 0

Therefore, the loop has no forward loop-carried dependence
from the∗tmp1 defs to the∗tmp2 uses. Likewise, the loop
has no forward loop-carried dependence from the∗tmp1
uses to the∗tmp1 defs (the dependence equation is simi-
lar and the details are not shown).

2 Even the argument and local names are irrelevant, because arguments
and locals can be renamed.

int copy(int ∗p, int ∗q, int n)
{ while (n– – > 0)

S1: ∗p++ = ∗q++;
}

int copy(int ∗restrict p,
int ∗restrict q, int n)

{ while (n– – > 0)
∗p++ = ∗q++;

}

(a)Example Loop Nest (b) Usingrestrict
int copy(int ∗p, int ∗q, int n)
{ int i;

if (p ≥ q+n || q ≤ p+n)
{

#pragma omp for
for (i = 0; i < n; i++)

p[i] = q[i];
}
else

while (n– – > 0)
∗p++ = ∗q++;

}

int copy(int ∗p, int ∗q, int n)
{ int i, k = q – p;

if (k ≥ 0 || k ≤ –n)
{

#pragma omp for
for (i = 0; i < n; i++)

p[i] = q[i];
}
else

while (n– – > 0)
∗p++ = ∗q++;

}

(c) Dynamic Dependence Test (d) Dynamic Dependence Test

Figure 25. Dynamic Dependence Testing

4.5. Pointer Aliases and Dynamic Dependence
Testing

Pointer-based dependence test requires aliasing analy-
sis [32] to prevent inaccurate dependence testing in the pres-
ence of pointers that share the same memory region. Points-
to analysis [42] constructs a model of pointer based struc-
tures which could be used to determine aliases. However,
static pointer alias analysis can be very conservative often
leading to a conclusion that a large set of pointers can be
aliased. In contrast, we propose to use runtime alias analy-
sis [53] to aggressively apply compiler transformations.

We compare two different approaches to dynamic data
dependence testing.

• A simple overlap test based on memory interval anal-
ysis [53] can be used. When the intervals of memory
accesses performed by pointers do not overlap, depen-
dence cannot exist, see also [8, 9]. The overlap check
is applicable when pointer (and array) references are
affine. To extend the approach to nonlinear references,
we use the CR range analysis applied to a pointer to de-
termine the interval information.

Consider for example Figure 25(a). The CR form of
p andq are{p,+, 1}I and{q,+, 1}I after loop nor-
malizationI = 0, . . . , n − 1, whereI is a new index
variable created for the while-loop (see Section 3.7)
andn−1 is the bound on the trip count calculated from
the recurrence ofn (see also Section 3.7). The range of
p is [L({p,+, 1}I),U({p,+, 1}I)] = [p, p + n − 1]
and the range ofq is [q, q + n− 1]. The runtime over-
lap check is shown in Figure 25(c).

• Apply the (nonlinear) inexact EVT test or use an exact
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method such as Fourier-Motzkin or Omega test [39,
53] to determine a reduced system of constraints on
unknowns to be met for proving that a loop nest is de-
pendence free at compile time or run time. The pointer
alias analysis is simply integrated into the test as fol-
lows. Note that the distance between the pointersp and
q can be used as a parameter in the dependence system
by asserting thatq = p + k, wherek is an unknown.
Because the value ofk can be determined at runtime,
a dynamic dependence test verifies whether the con-
straints onk are met to conclude that the loop is de-
pendence free.

Consider for example the application of EVT on the
example shown in Figure 25(a) after loop normaliza-
tion I = 0, . . . , n− 1. There exists a fixed offset value
k such thatq = p+k before the loop nest, so the initial
value ofq is replaced byp + k in the recurrence sys-
tem for dependence analysis. The CR forms ofp andq
are{p,+, 1}I and{p + k,+, 1}+I , respectively. The
dependence equation is

{p,+, 1}Id = {p + k,+, 1}Iu

After rearranging the terms we have

{{k,+, 1}Iu ,+,−1}Id = 0

To test the< dependence direction, the constraints are

1
{1,+, 1}Id

}
≤ Iu ≤ n− 1 0 ≤ Id ≤

{
n− 2
{−1,+, 1}Iu

The equation has no solution if

L({{k,+, 1}Iu ,+,−1}Id ) > 0
L({k,+, 1}Iu − {−1,+, 1}Iu ) > 0
L(k + 1) > 0
k > −1

and the dependence equation has no solution if

U({{k,+, 1}Iu ,+,−1}Id ) < 0
U({k,+, 1}Iu ) < 0
U(k + n− 1) < 0
k < 1− n

These constraints are sufficient to verify at runtime to
enable dynamic dependence analysis. The transformed
code is shown in Figure 25(d). Note that the unknown
k is calculated by taking the difference between pointer
locationsp andq, which according to the semantics of
C presents the number of array elements separatingp
andq.

Note that this approach may create a set of con-
straints on unknowns, such ask, that is infeasible. To
eliminate redundant constraints and verify feasibility
of the solution, Fourier-Motzkin elimination [53] can
be used.

Note that therestrict keyword can be used in C/C++ ap-
plication codes to assert that a pointer variable has exclusive

access to a memory region, as shown in Figure 25(b). How-
ever, compiler hints likerestrict are fragile because pro-
grammers are responsible to obey the semantics. The auto-
matic detection of aliases at compile time or runtime im-
proves the robustness of the dependence test without rely-
ing on program annotations.

5. Conclusions

This paper presented a new approach to dependence test-
ing in the presence of nonlinear and non-closed array in-
dex expressions and pointer references in loop nests. De-
pendences are analyzed using the chains of recurrences for-
malism and algebra for analyzing the recurrence relations of
induction variables and for constructing recurrence forms
of array index expressions and pointer references without
computing closed forms. Our approach to dependence test-
ing exploits the fact that any affine, polynomial, or geomet-
ric index expression composed over a set of generalized in-
duction variables forms a recurrence relation. Because the
chains of recurrences algebra is closed under the addition
and multiplication of polynomials and geometric functions,
the computation of the recurrence relations of index expres-
sions and pointer references is straightforward. Our nonlin-
ear dependence test uses these recurrence forms to solve a
dependence problem. When closed forms of recurrence re-
lations do not exist, our test can, any many cases, still deter-
mine whether array and pointer accesses are independent.
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