’ This technical report is an extended version of a paper published in the proceedings of the IEEE IWIA workshop, January 200{1.

Array Data Dependence Testing with the Chains of Recurrences Algebta

Robert A. van Engelen Johnnie Birch Yixin Shou Kyle A. Gallivan
Department of Computer Science and School of Computational Science
Florida State University
FL32306, USA

Abstract

This paper presents a new approach to array-based de-
pendence testing in the presence of nonlinear and non-
closed array index expressions and pointer references. Con-
ventional data dependence testing requires induction vari-
able substitution to replace recurrences with closed forms.
We take a radically different approach to dependence test-
ing by turning the analysis problem up-side-down. We con- closed forms
vert closed forms to recurrences for dependence analy-
sis. Because the set of functions defined by recurrences is
a superset of functions with closed forms, we show that
more dependence problems can be successfully analyzed

by rephrasing the array-based dependence analysis as a

search problem for a solution to a system of recurrences. Figure 1. Recurrence Hierarchy

Conditionally and unconditionally
updated recurrence forms

Unconditionally updated
recurrence forms

Recurrences with

1. Introduction Our approach is radically different compared to conven-
tional induction variable substitution (IVS). Induction vari-
Accurate dependence testing is critical for the effective- gble detection and substitution [2, 23, 26, 40, 52] are com-
ness of restructuring and parallelizing compilers. Several mon methods to replace linear and nonlinear induction vari-
types of loop optimizations for improving program per- aples with closed form expressions to enable array-based
formance rely on exact or inexact array data dependencejependence analysis. In our approach, we turn this prob-
testing [5, 15, 17, 20, 23, 24, 27, 28, 29, 31, 32, 33, 35, |lem up-side-down and convert closed forms to recurrences
38, 41, 44, 45, 53, 58]. Current dependence analyzers argather than deriving closed-form index expressions for the
quite powerful and are able to solve complicated depen-recurrences of induction variables. The recurrence forms are
dence problems, e.g. using the polyhedral model [6, 30]. determined from a loop nest. But in contrast to strength
However, recent work by Psarris et al. [34, 36], Franke and reduction [1] the actual code is not changed. Recurrences
O'Boyle [22], Wu et al. [54], van Engelen et al. [48, 50] and provide greater coverage for analyzing dependence prob-
earlier work by Shen, Li, and Yew [43], Haghighat [26], and |ems compared to conventional methods that require closed
Collard et al. [18] mention the difficulty dependence analyz- forms, becauséhe set of index functions defined by recur-
ers have with nonlinear symbolic expressions, pointer arith- rences is a superset of functions with closed forassde-
metic, and conditional control flow in loop nests. picted in the recurrence hierarchy shown in Figure 1. In
This paper presents a new approach to array-based dethis paper we show that more dependence problems can be
pendence testing on nonlinear array index expressions an@uccessfully analyzed by rephrasing the array-based depen-
pointer references in loops with conditionally updated in- dence test problem into a problem finding a solution to a
duction variables and common forms of pointer arithmetic. system of recurrences [50]. In this paper we also show that
the solution to a recurrence system can be determined us-

% Supported in part by NSF grants CCR-0105422, CCR-0208892, EIA- ing standard dependence test algorithms such as the Baner-
0072043 and DOE grant DEFG02-02ER25543. jee test [5] and range test [14].

ijkl=0 DQ.ntrans=1,2

ij=0 DO i=0,r3-1
DO i=1,m str(ctr)=temp
DO j=1,i ctr=ctr+1
ij=ij+1 ENDDO
ijkl=ijkl+i-5+1
DO k=i+1,m ctr=ctr+1
DO =1,k
ijkI=ijki+1 IF (r3.NE.O) THEN
xijkI[ijkl]=xkI[{] str(ctr)=36
ENDDO ctr=ctr+1
ENDDO ELSE
ijkl=ijkl+ij+left DO i=0,t-1
ENDDO str(ctr)=4
ENDDO ctr=ctr+1
ENDDO
Figure 2. TRFD Benchmark: olda Routine ENDIF
ENDDO

Note that in Figure 1 the set affine formscontains all
integer-valued multivariate linear polynomial index func- Figure 3. QCD Benchmark: qqglps Routine
tions, which includes for example all linear combinations
of the basic induction variables of a loop nest. Most com-
pilers implement dependence tests on affine forms of indexverted to closed form because a system of (coupled) recur-
expressions [5, 15, 17, 20, 23, 24, 27, 28, 29, 31, 32, 33,rences may not have a closed-form solution in general. For
35, 38, 44, 45, 53, 58] possibly in combination with value example, variablg in the recurrenceg = j + k; k = k 4,
range analysis techniques [11, 14, 21] to enable symbolicfor i = 1,...,n with initial valuesj = 0 andk = 1, has
and nonlinear dependence testing (e.g. in the Polaris como closed-form function over indexIts evaluation requires
piler [12]). a sequential tabulation of the values of the recurrence sys-
The set ofrecurrences with closed forntentains affine tem. This class of recurrences is part of the recurrence hi-
and nonlinear functions that can be converted to a multi- erarchy for completeness, but this class is only of academic
variate recurrence form, for example using the chains of re-interest, because these recurrence problems are unlikely to
currences (CR) algebra [3, 47, 48]. This set includes theoccur in real-world programs. Despite of this, our approach
characteristic functions of generalized induction variables handles these cases by applying data dependence testing on
(GIVs) [26, 47] that describe polynomial and geometric the recurrence system. Thysis an admissible variable in
progressions. To determine the closed-form characteristican array index expression in our dependence framework.
function of a GIV, the variable updates in a loop nest must The set of index functions witbonditionally and uncon-
be unconditiondl An example code with unconditionally ditionally updated recurrence fornis the target of our de-
updated nonlinear induction variables is shown in Figure 2. pendence testing approach. Consider for example the QCD
The TRFD code is part of he Perfect Benchmark suite of program from the Perfect Benchmark suite shown in Fig-
programs, which has been extensively studied for perfor-ure 3. Variablectr has no closed form, due to a conditional
mance optimizations and parallelization, see e.g. [13, 26].update. Current restructuring compilers cannot apply de-
Restructuring and parallelizing compilers traditionally rely pendence testing to this code using existing techniques. Our
on the determination of a closed-form characteristic func- approach can handle this code by applying a data depen-
tion for dependence testing and symbolic value range anal-dence test based on the recurrence system defined by vari-
ysis. For example, Polaris [12] is able to determine the ab-ablectr.
sence of an output dependence on the axigyl by ag- Our dependence test is also applicable to pointer refer-
gressively applying induction variable substitution to deter- ences. Because pointers are frequently used in C code to
mine the closed-form characteristic function of ffi¢ in- step through arrays, there is a need to effectively analyze
duction variable, which is a multivariate polynomial over the dependences of pointer references to assess parallelism
the (i, j, k, £) index space. and enable performance-critical optimizations [22, 48]. An
The set of functions defined mnconditionally updated important class of programs are digital signal processor
recurrence formsncludes recurrences that have no closed (DSP) codes for filtering operations. The implementations
forms. This set includes recurrences that cannot be con-of these algorithms exhibit conditionally or unconditionally
updated nonlinear induction variables and pointer updates.
1 In[26]itis shown how semantically equivalent conditional updates in Our pointer reference dependence analysis can handle these
multiple paths can be traced to form a single characteristic function. specialized algorithms, including radix-2 FFTs [48].

comparable to constant folding [1], which is a relatively in-

A= e lEp = o expensive method. In [46] we also proved that the CR alge-
Io+r:(|2: '25I0I ’;::21_; "y bra is complete and closed under the formation of charac-
d=f2 teristic functions of GIVs, which is an important property
for (j=1;j <i; j#+, f——) for the applicability of our recurrence framework to induc-

y i +2=*f([;|2£—)2_*(*|3p)*f[-1]: tion variable recognition and dependence testing.
f=i Isp +=pz’; This paper is an extended version of [49]. In this pa-
1 per (and [49]) we use recurrence forms to determine if ar-

ray and pointer references are free of forward, anti, or out-
put dependences in a loop nest. Our recurrence formulation
increases the accuracy of standard dependence algorithms
such as the extreme value test and value range test by in-
cluding the analysis of nonlinear induction variables, condi-
tionally updated variables, and pointer arithmetic. We will
show how these tests can be directly applied to our recur-
ure 4. The loop nest is triangular and involves a nonlin- rence system. Because trusted dependence algorithms can

ear data-dependent pointer update. Our data dependenc c use_d_i_n our enhfanced analy_sis environment, a high level
test is applicable to the original pointer-based code by treat-O" ftlﬁx'b'“ty é)f the nfntﬁlementauorr]l and grr](_aate(rj assurancg ¢
ing thef andlIsp pointers as induction variables to establish 03 h € soun neis otthe approach are achieved compared to
a recurrence system to determine if the loop nest has for-20-10C approaches.

ward, anti, or output dependences on the arrays accessed € remainder of this paper is organized as follows. In
by thef andlsp pointers. Section 2 we briefly introduce the chains of recurrences

Related to our pointer-based dependence analysis ié‘ormallsm and algebra. The chains of recurrences notation

the array recovery method by Franke and O’Boyle [22]. IS used throughout this paper. Section 3 pres_ents_ and algo-
Their method converts pointer references to array ac-ithm for solving recurrence systems. The objective of the

cesses to enable conventional array-based compiler analy"-j‘E’lor'th”:j'S to find tf(\je recgrrell’nce forms _?;lndluctlpﬂ V%”'
sis on the closed-form affine index expressions. However, 2P'€s an pointer updates in a loop nest. The algorithm does

their work has several assumptions and restrictions. In par-nhOt attlempt ‘9 cohnstrﬁc't cloied forms, butfrathe]:cr cgmpu(;es
ticular, their method is restricted to structured loops with the solutions In the chains of recurrences form for daia de-

constant bounds and all pointer arithmetic must be data in_pendence testing. Our data dependence tests are discussed

dependent. Furthermore, pointer assignments within a Ioop|n Section 4. Finally, Section 5 summarizes our results.
nest are not permitted. In contrast, our method directly ap-

plies dependence testing on pointer references without2, The Chains of Recurrences Formalism
restrictions or code transformations.

Most closely related to our work is the work by Wu et This section briefly introduces the chains of recurrences
al. [54]. They propose an approach for dependence testingormalism. For more details, we refer to [3, 47, 48]. The
without closed form computations. Similar to our method, formalism was originally developed by Zima [55, 56, 57]
the application of induction variable substitution can be de- and later improved by Bachmann, Zima, and Wang [3, 4]
layed until after dependence testing. However, their methodto expedite the evaluation of multivariate functions on reg-
cannot handle dependence problems in which inductionular grids. Our work includes the addition of new CR al-
variable step sizes are relevant, such as in the TRFD andyebra rules [46] and applications of the CR formalism for
MDG programs of the Perfect Benchmark suite. In contrast, the detection and substitution of GIVs [47], for array re-
our method uses the inherent monotonicity information of covery through pointer-to-array conversion [48], and for
the recurrence forms to determine that the loops in thesevalue range analysis [10]. The application to data depen-
benchmarks are dependence free. Their method also doegence testing is the main focus of this paper.
not apply dependence testing to pointer arithmetic. In ad-
dition, our recurrence forms are easily converted to closed
forms for IVS using the inverse CR algebra [47].

In our earlier work on GIV recognition [46, 47] it was
observed that symbolic differencing [26] is unsafe and that
the method by Gerlek et al. [23] requires the application of
several different recurrence solvers. In contrast, the com-
plexity of our GIV recognition is safe and the complexity is ®; = {¢0,O1,01,D2, -, O, i }i

Figure 4. ETSI Codec: Get_Isp _pol Routine

Consider for example the code segment of the
Get Isp _pol routine of the LSP_AZ module of the
GSM Enhanced Full Rate speech codec [19] shown in Fig-

2.1. Basic Formulation

A function or closed-form expression evaluated over a
unit-distant grid with index can be rewritten into a mathe-
matically equivalent CR of the form (see [3]):

where ¢ are coefficients consisting of constants or func-
tions (symbolic expressions) independent,afr nested CR
forms, ando are the operators = + or © = *. The coef-
ficient ¢, may be a function of, i.e. ¢, = fi(4).

2.2. CR Semantics

A CR form &,

{¢07®17¢17®2a R ®ka¢k}i

CR forms is type safe, which ensures that the coefficients of
CR forms of integer-valued polynomial functions and GIVs
are also integer valued.

Consider for example the nonlinear index expression
nxj+i+2x*k+ 1, wherei > 0andj > 0 are in-
dex variables that span a two-dimensional iteration space
with unit distance and is an induction variable with recur-
rencek = k + ¢ with initial valuek = 0. The recurrence of

represents a set of recurrence relations over a gridkin CR formis®(k) = {0,+,0,+, 1};. The CR construc-

1 =0,...,n—1 defined by the loop template

= ¢o
=¢

Cro
Crp

Clg—1 = Pgp—1
fori=0ton—1
val[i] =crg
Cro =Crp
Crp =Crp

®1 Cry
®2 Cr2

Cry—1 =Clp_1 O Pk
endfor

The loop produces the sequened|i] of the CR form. This

tion of the example expression yields:

CR(CR(CR(n * j+i+2 x k+1)))

=CR(CR(n xj+{0,+,1};+2 * k+1)) (replacings)
CR(n*{0,+,1};4+{0,+,1};+2 % k+1) (replacings)
nx{0,+,1};+{0,+,1};+2 % {0,4,0, +, 1};+1 (replacingk)
={{1,+,n};,+,1,+,2}; (normalize)

The multivariate CR form is a normal form [46] for the mul-
tivariate polynomial expression. The example CR form can
be converted to closed form polynomial using the inverse
CR algebra [47] described in the next section.

sequence is one-dimensional. A multidimensional loop nest2.4. Closed Forms

is constructed for multivariate CR forms (CR forms with
nested CR form coefficients), where the indices of the out-
ermost loops are the indices of the innermost CR forms.

2.3. CR Construction

The CR algebra [4, 47, 57] defines a set of term rewrit-
ing rulesCR shown in Figure 5 for the construction of

The inverse mappingR ' shown in Figure 5 converts
CR forms to closed-form functions. Consider for exam-
ple the CR form{{1, +,n};,+,1, +, 2}, from the example
given in the previous section. The closed form multivariate
polynomial characteristic function is+ 42 +nx j. To com-
pute the closed form, we use our extension of the CR alge
bra [47, 48] by applying the inverse rules to convert a CR to

CR forms for closed-form formulae. The application of the a closed-form symbolic expression. In general, multivariate

rewrite rules is straightforward and not computationally in- GIVs, i.e. sums of multivariate polynomials and geometric

tensive. The required symbolic processing is comparable tofunctions, can always be converted to closed form formu-

classical constant-folding [1]. lae using efficient matrix-vector products [51] discussed in
The CR algebra provides an efficient mechanism to con- Section 2.5.

struct CR forms for symbolic expressions evaluated in mul-

tidimensional iteration spaces. The translation of a closed-

form symbolic expressiosn;, . ;. defined over a set of in-
dex variables, ..., 1, to a multivariate nested CR form is
defined by:

CR(eil,---,'in)

CR(eq,)

CR(CR(---CR(eiy)iy -
elij < @(i;)]

= Vin)
where®(i;) is the CR representation of the index variable
i;. When the index variables, . . . , i, span a unit-distance
grid with origin (z1,...,2,), then®(i;) = {x;,+,1};,

for all j 1,...,n. The mapping replaces variablés
with their corresponding CR forms using substitution, de-
noted bye[i; < ®(i;)]. The CR algebra is then applied to
normalize the expression to (nested) CR forms.

We proved that the CR algebra is closed under the forma-

tion of the (multivariate) characteristic function of a GIV.

The set of rewrite rules of the algebra is also complete [46],
which means that CR forms for multivariate GIVs are nor-
mal forms. Another advantage is that the manipulation of

The inverse CR rules are applied component-wise on a
multivariate CR usingR; ' or in all directions at once, de-
noted byCR . For certain recurrence forms a closed form
may not exist. For example, when the last coefficient of a
CR form is not a (symbolic) constant but a function of the
CRindexi, no closed form can be constructed, see also Fig-
ure 1.

2.5. Newton Matrices

Because linear and polynomial induction variables are
more common compared to geometric sequences, it is im-
portant to consider the efficiency of the symbolic manipula-
tion of recurrences for polynomial forms. Addition and sub-
traction of the CR forms of polynomials require ju8tk)
operations using théR rules shown in Figure 5, where
is the order of the polynomials. Bachmann describes an al-
gorithm [3] for polynomial multiplication inO(k?) opera-
tions, while the application @R rule 14 shown in Figure 5

CR

| LHS RHS Condition
1| {¢o0,+,0}; = ¢o
2 | {¢o,* 1} = o
3| {0,%, f1}s = 0
4 | —{¢o,+, f1}: = {—do0,+,—f1}i
5| —{¢0,% fi}i = {=¢0,*% fri}i
6 | {¢0,+ fi}i+ E = {¢oxE,+, fi}i whenE is i-loop invariant
7| {¢o,* i}t E = {0 E,+,¢0* (f1 —1),%, f1}: whenE and f; arei-loop invariant
8 | Ex{¢o,+,f1}: = {Exdo,+ Ex*fr}ki whenE is i-loop invariant
9 | Ex{do,* fr}i = {Ex¢o,* f1}i whenE is i-loop invariant
10 | E/{¢0,+, f1}1 = 1/{¢0/E,+, f1/E}: whenFE # 1 isi-loop invariant
11 | E/{¢0,*, f1}1 = {E/¢o,*,1/f1}i whenF is i-loop invariant
12 | {po,+, fr}i £{vo, +,91}i = {poxo,+ frEtag1}i ' S
13 | {¢o,* fi}i £{vo,+,91}s = {boE£vo,+,{do*(f1 —1),% fi}s £g1}; Wwhenf isi-loop invariant
14 | {0, +, fri}ti ¥ {do, +,01}i = {do*vo,+,{bo,+, fi}i x g1 + {o, +,q1}ix f1r + fix g1}
15 | {0, *, f1}i * {¥o,*, 91} = {po*xo,*, fr*g1}s
16 | {0, *, f1}F = {of,~ Y whenE is i-loop invariant
17 | {0, *, fr} VOO = {0070, %, {po, %, A1}« fLUOTI gy,
18 | El¢o+.f1}s = {E% « EN}, whenE is i-loop invariant
{¢0,+, fr}ix{do,+ f1}] 7" fneZn>1
19 4, f1An = e i
{go,+ f}i {1/{¢0,+,f1}1. ifneZn<0
toots, (TIL oo+ 3+ A%)} (>0
20 | {¢o,+, f1}i! = " 1
{¢o!, (szll{cbo +]',+,f1}i) i iff1<0
21 | {0, +, 1, % fo} = {do,* fo}i whenZt — fo — 1
CR™!
| LHS RHS Condition
1| {¢o,+, fr}i = ¢0+1{0,+, f1i}i whengg # 0
2 | {¢o,* fr}i = ¢o*{L,* fi}: whengo # 1
31 {0,+,~fi}hi = —{0,+ fiki
41 {0, fi+tat = {0,+ fiti+{0, 4,91}
51 {0,+ fixgi}i = fix{0,+, 91} whens does not occur irfy
6| {0,+, fiti = 2:1 wheni does not occur irf; and f; # 1
70+ MY = {0+ e A
8| {0, /7MY = {0+, (ff)M), wheni does not occur iff; andgsy
9| {0,+, f1}i = ixfi wheni does not occur irfy
2 .
10 | {0, +,i}s > 2
. () . .
11 | {0,+,i"}; = Zk:_() 1 B in~k+1 forn € IN, By, is kP Bernoulli number
12 | {1,x,—fi}i = (=DY1,* f1}
13 {17*7 f%}l = {17*7]‘.1};1
14 {L,* fixag}i = A{Lxfitix{l,%xg1}
15 | {1,*, fI*}, = fl’*’gl}’i wheni does not occur irf;
16 | {1,%,97'}: = {Lxgh" when: does not occur irf;
17 | {1,%, f1}s = fi whens does not occur irf;
18 | {1,%,i}; = 0
19 | {1,*,i+ f1}s = % whens does not occur irf; andf; > 1
20 | {1,%, f1 —i}s = (=1) &f}{?:g,' when: does not occur irf; andf; < —1

Figure 5. The CR and CR~! Term Rewriting System Representations of the CR Algebra

Lemma 1 Let N, denote the Newton matrix and Ipt=

-input: p[0: k] -input: [0 : k] .. L
- output: ¢[0 : k] - output: p[0 : k| [po, - - -, px] be the coefficients of a polynomijai) = po +
Local integer array m|[0 : k] || Local rational array m|0 : k] pit+ -+ pkik. Then,
forj=0to k forj=0to k
b5 = 00 pj = 00 ® = N;p
d)o”fg " ponfg o0 are the coefficients of the CRbo, +, - - -, +, ¢ }+ for p(4).
if K < 0then if k < 0then . . Ly
stop stop Proof. First, we rewrite polynomigb in Horner form
$1:=p1 p1i= ¢ p(i) = po +i(p1 +i(p2 + ... +ipx))
my =1 my =1 . i .
fori=2tok fori=2tok Since polynomials are evaluated on a domain
for j :_ﬁ“?*% step ;1) for j :_f‘(o 1 Step(—,ll)* Vi i = 0,...,n — 1 (normalized loop bounds), we can
m; = Jx(mj—1+m; myj = (my—1—(t— mi)/t - .
&, += mjxp; g p; += M, I replacei with the CR formi = {0, +,1};
_1 po + {07 +, 1}Z(p1 + {0> +, 1}1(1)2 +.o+ {07 +, 1}1 pk))
(a) Compute® = Nxp (b) Computep = N, &))]))
To obtain this form, we define the symbolic translation of
Figure 6. Conversion Algorithms p(i)toa CR by
CR(po) = po
, . . . - CR(P) = po+ZCR([p1,--,px]"))
requiresO(k3) operations. Zima describes an efficient algo- Where
rithm for CR division [56].
[] I(¢0) {Oa =+, ¢0}z

We use the Newton matrix [3] to compute the CR form T({do, ++ f1}:)
of a polynomial inO(k?) steps. For example, the Newton
matrix fork = 3 is

{0, +,Z(f1) + {¢o,+, f1}i + f1}s
The recursion in the definition &f is based on
{0, 4+, 1}ix{¢o, +, f1}: = {0, +, {0, +, L}ixfi+{do, +, f1}i+f1}s

1000
N3 = 8 (1) ; é usingCR rule 14 for multiplication with{0,+,1};. The
00 0 6 {}: CR notation is eliminated by representing CRs as vec-

o) tors. To operate on vectors we define new functiéhand
The coefficients of the CR forn®(i) of a polynomial Afor CR andZ, respectively, by

p(i) = po + p1i + - - + pyi* is obtained by the matrix-

vector produciN 5 with Newton matrixIN;, and the vector N(P) = [po,ph -, pi]"
of polynomial coefficienty' = [po, . . ., pi]. where
. ‘lll'he algoritthm t;,hown ff|n Ftig(;ref 6(a2h syrglgol- o = AN ([p1, .., p]T))
ically computes the coefficientsy; for the . B
form ®(i) = {do,+,...,+ ¢r}; of a polynomial with N (po) = po and
p(i) = po + p1i + - + ppi® in O(k?) operations with Ap) = [0,p7,. ..o 1T +p +[p1,- -, 15, 0T
O(k) temporary storage space. The algorithm uses apere
two-term recurrence [3]. " Ap T
The algorithm shown in Figure 6(b) computes the P = AP P
closed-form polynomial of a CR form using the inverse With A(po) = Po- . _
Newton matrixN, !. For example, the inverse Newton tri- The operationsV" and.A can be implemented by matri-
angle matrix fork = 3 is cesN;, andAy, such thatV(p) = Nyp andA(p) = Axp,
as follows
10 0 0
o1 -1 1
N—l _ 2 3
3 oo 1 —1§ No = 1

00 0 %

. 0 Ni = [5 Ak_loNk_l } @)
The vector of polynomial coefficients is computed by the
producti = N, '¢ of a CR form®(i) with coefficients ~ and
¢: [¢07"'7¢k]-

Bachmann [3] proved the correctness of the algorithm Ag = 1

shown in Figure 6(a) using well-known recurrences of the A, = { 8 A;?_l } 1+ Zy @

Sterling numbers. Here we prove the fundamental relation-
ship between the Newton matrix and the CR algebra by de-whereI is the identity matrix of ordek + 1 and Zj, is
riving the Newton matrix using properties of the CR alge- the right-shifted identity matrix. Solving the recursion in
bra directly. (2) gives the coefficients ok, by

=4t fi=jori=75-1
J 0 otherwise

By the recursive formulation (1) the coefficientsN§f, ex-
hibit the two-term recurrence

k .
Mi41,j4+1 = 2521 a; pmy 5 = i(mi,j; +mit1,5)

For loop parallelization it is desirable to eliminate the cross-
iteration dependences induced by the recurrences defined
by induction variable updates. Methods such as IVS intro-
duce closed forms in a loop nest to eliminate such recur-
rences. For the application of IVS we use the inverse map-

pingCR ™! described in the previous section.

The CR algebra rules for CR construction and conver-
sion to closed forms are implemented in our CR library for
SUIF using a representation of CRs based on arrays of sym-
bolic coefficients for efficient manipulation.

which gives the coefficients @\, by

fi=1landj =1
if : > 2andj > 2

1
mi,j = { (i —=1)(mi—1,5-1 +mi ;1)
0 otherwise

foralli=1,...,k+1andj=1,...,k+ 1. O
3. Solving Systems of Recurrences

2.6. Relation to Compiler Analysis
P y Solving the systems of recurrences defined by induction

CR forms are more amenable to symbolic analysis com- variables in a loop nest facilitates CR construction for data

pared to closed forms, because the monotonic properties of €P€ndence testing, general loop analysis, and loop par-
the function and its extreme values can be more accurately?!€lization. CR construction applied to index expressions
determined using CR forms [46], see also Section 3.4 De.and loop bounds containing induction variables requires the
termining the monotonic properties of (compositions) of ar- CR forms of these variables. The CR forms of induction

ray index expressions is important in dependence testing forvalrlable_[_shgre ob'_[alned from a loop nest usmg: a r(fecurrence
loop restructuring and parallelization, which will be further s<|)_ vec;.. dls s.ect|0n.pg|asents a recurreg;ef S0 ve][or gecr;-er-
discussed in Section 4. alized induction variables to compute orms for condi-

The application of CR construction for symbolic manip- tionally updated induction variables and pointers.
ulation in compiler analysis is clear when we first consider
the types of linear and nonlinear index functions and expres-
sions commonly encountered in practice in compiler analy-
sis dealing with array index expressions and generalized in-
duction variables. The next section presents our framework
for the detection of induction variables to compute a recur-
rence system for array-based dependence testing.

3.1. General Recurrence Form of a GIV

Consider the general recurrence form of a generalized in-
duction variable in a loop:

V=W
fori=0ton-1

Affine index expressions are uniquely represented by VEax Vo)
nested CR forms{a,+,s}; of order 1, where a
is the integer-valued initial value or a nested CR
form ands is the integer-valued stride in the direc-
tion of ¢. The formation of nested CR forms for affine
expressions of dimensiahrequires just)(d) steps.

endfor
where« is a numeric constant or adoop invariant sym-
bolic expression, ang is polynomial ini (expressed in
closed form or recurrence). Common recurrence forms
found in benchmark codes have either= 0 (V' is equal
to polynomialp), « = 1 (V is the partial sum of polyno-
mial p, wherep is often a numeric or symbolic constant),
orp(i) = 0 (V is geometric).

Lemma?2 Let U, {o, +, 01,4+, -, +, Vr }4
be the CR form of polynomiap(i). Then, the CR
form of the recurrenceV a x V + p(i) is
(V) = {0, +, 1, +, -+, +, Prr1, *, Pry2}: Where
d0=Vo; ¢;=(a—1)¢j—1+¢j-1;
Proof. The sequence of the recurreride= « x V' + p(i),

Multivariate Polynomial expressions are uniquely repre-
sented by nested CR forms of length wherek is
the maximum order of the polynomial. Afb opera-
tions in the CR form are additions, i.e. = +. A d-
dimensionalk-order polynomial can be translated in
O(d k?) steps to a multivariate CR by a conversion
algorithm based on matrix-vector multiplication with
Newton matrices [3, 51].

Prt2 = @

Geometric expressions:r® are uniquely represented by

the CR form{a, *,r};. with initial value V' = V), for iterations; = 0,...,n — 1is
Characteristic functions of GIVs are uniquely represented

by CR forms (see our proof in [46]). By definition [25], i=0 = W

the characteristic functiog(i) = p(i) + ar’ of a GIV i ; z 322;0 i((;)(o)) (1)

ig the sum of a polynomigh(i) and a geometric se- i=3 = ala(aVo +p(0) +p(1) +p(2)

resar®. Lo

Polynomialp(i) has CR®; = {vg, +, %1, +, -+, +, ¥k }i-
According to the CR semantics, Section 2.2, the sequence
of p(4) calculated by the loop templagéi) = val[i] is

p(0) = o
p(l) = o+
p(2) =

Yo + 21 + 2

Replacing the left-hand sides with the right-hand sides in
the recurrence above yields

=0 = W

i=1 = aVo+1vo

i= = alaVh + o) + o + 1

i1=3 = alalaVh+ o) + o + 1) + o + 21 + P2
o=

The CR form® (V') of V can be determined using the New-
ton series of this progression. The Newton series (the lower
left diagonal of the difference table) of the sequence of the
recurrence is

Therefore, according to Lemma 2 we obtain
@(V) = {V7 +7 ‘Iji7 *, 1}1 = {V7 +7 ‘l/z}z

with ¥; = CR(p(¢)) for any symbolic expression(i)
(not only polynomials).

e Forp(i) = 0 we have
V=axV
Therefore, according to Lemma 2 we obtain
e(V) ={V,xa}i

This equation also holds for any symbolic expression
a (not only constant). Hence, whenhas a CR form
we obtain

(V) = {V, %, W},

In the above, the nested CR formg/,+,%¥;}; and
V,x, U, }; are flattened to a single CR form by replac-

ing ¥, with its constituent coefficients.

z‘f _ }2_ Vo + o 3.3. Coupled Recurrences
¢2 = (a—1)*Vo+(a— 1o+ _
3 = (—1)*Vo+ (@ — 1) + (o — 1)P1 + o The code of a loop body is often structured by a pro-
o= grammer in such a way that the recurrence of a general-
b1 = (a— 1)2*;‘/0 + (= 1):1#? oot e ized induction variable in the loop nest may not exactly
ez = (@— DD+ (@ =D o+ (o= g match the recurrence patteth = « * V + p(i). Multi-

ple updates to a single induction variable may occur in the
The terms continue to expand up to nonzero coefficignt loop nest (e.g. variablgkl in Figure 2), multiple induction
After that, the sequence continues as multiplesxof 1 variables may be coupled (e.g. variabieandijkl in Fig-
times the previous row. Therefore, the remainder of the se-ure 2), and control flow may require intra-procedural anal-
quence is a geometric progression with raticCombining ysis and control path analysis in a loop nest (see e.g. Fig-

these results, we obtain the inductive definitiordgl”). O ure 3), all of which obscures the recurrence pattern. To rec-
ognize recurrence patterns in the presence of coupled in-
3.2. Special Cases duction variables, we use a forward substitution approach

introduced in our earlier work [47] and schematically illus-
We consider several special cases of the general recurirated in Figure 7 (a) and (b). Repeated forward substitution
rence form of a generalized induction variable. yields a set of normalized assignments in which each vari-

e Fora = 0, we have a non-recursive assignment

able is assigned at most once, i.e. similar to single static as-
signment (SSA) forms, which facilitates recurrence pattern

V =p(3) recognition. Nested loops are analyzed from the innermost

Therefore, we compute the CR foriny = CR(p(4))
(V) =10,

to the outermost loop level to compute multivariate recur-
rences [47]. In this paper we apply this technique to condi-
tionally updated induction variables by selectively travers-

In fact, this holds for any symbolic expressipft) ing paths through the loop body to determine sets of recur-
(not only polynomials). However, special care has to rence patterns for induction variables as illustrated in the
be taken to modelrap aroundinduction variables in ~ example shown in Figure 7 (c) and (d) whereand U

loop nests as we showed in [47], where the initial value Poth may have two different recurrence patterns. Because
of V may be unrelated tp. the switching behavior of the flow in the loop is unknown,

the conditional recurrence of variablésand U have no
closed-form equivalents. Further details on the path-based
V =V +p(i) substitution algorithm are presented in Section 3.5.

e Fora = 1 we have a recurrence of the form

fori=atobd fore=atod k=1

f(.)'ri:Oto n—1 fori=0ton-1
V =exprl V =exprl FLGE) <V SU®@G)M Fid1<k<2i%
a[k] = bi]
U = expr2 U =...exprl... expr2... if ... then if ... then
V=axV +p(i) k=k+1
U=..V..U.. endfor else else
V=03V +q(@) k=2xk
endfor endif endif
FLGE4+1) <V <U@G+1)% || endfor
(a) Multiple Updates (b) After Forward Substitution
fori=atod fori=atobd endfor
if . then it . then (a) Bounding Functions (b) Example
V =exprl V =exprl
else else Figure 8. Dynamic L and U Bounds on V
V =expr2 V =expr2
endif endif
U=.. V.. (U= exprl..U=..expr2..} functions of a set of (multivariate) CR forms. The bound-
ing functions are computed in CR form.
endfor endfor o
- o Definition1 Let ®; = {¢0,®1,f1}; and let
(c) Conditional Updates (d) After Forward Substitution U, = {1/)0’ ®1, g1 }l be (multivariate) CR forms over
) o the same index variablg where f; and g, are the nested
Figure 7. Forward Substitution CR “tails” of ®; and ¥; with the remainder of the coeffi-

cients (e.g. using the common nested representation of CR
forms with basic recurrences (BRSs) [3]).

3.4. Bounding Functions Theminimum CR form is inductively defined by

To analyze the range of values of conditionally updated
recurrences we developed an algorithm to comgytemic ~ min({¢o, +, fi}i, {0, +,91}i)

value range boundsonsisting of indexed lower and upper m;({di”f”]%oj@)o’j;’zi}’?)(fl’gl)}i

bound functions on the values_ of a set of condi_tional re- {min(¢o, Po), ¥, min(f1,g1)}i
currences. Because the bounding functions are indexed by ‘ if $o>0 A 9o>0A f1>0A g1>0
points in the iteration space, the dynamic bounds are more {min(¢o,vo), ¥, maz(f1,91)}i

t mpared to static bounds that are independent of — if $0<0 A o<0 A f1>0 A g1>0
accurate comp _ P : {¢o,*, f1}i if p0<0 A 0>0 A f1>0 A g1>0
the iteration space. Static bounds are commonly used in {40, *, g1 }i if $0>0 Ao <O A f1>0 A g1>0
value range analysis [15, 16] for nonlinear dependence test- {=maz(|ol, [ol), *, maz(|f1l, lg1])}s i fr<OV g1<0

ing [11, 14]. Because our value range information is dy- and themaximumCR form is inductively defined by
namic, our nonlinear data dependence testing can be more
accurate [10]. An example application will be discussed in maz({do, -+ f1}i, {0, + 91 }1)

Section 4. = {maz(¢o, o), +,maz(f1,01)}i
maz({¢o, *, f1}i, {¥o,*, g1}:)
3.4.1. Dynamic Value Range BoundsDynamic value {maz(do,¥0), *, maz(f1,91)}i
range bounds are functions over the iteration space that T d0>0AY0>0 A f1>0A g1>0
i s {maz(¢o,0),*, min(f1,g1)}i
bound the possible sequences of a set of (conditional) re- _— if do<0 A bo<0 A f1>0 A g1>0
currences. Figure 8(a) shows théi) andU (i) bounds on {0, %, f1}i if $0>0 A tho<O A f1>0 A g1>0
{¥o,*,91}i if $o<0 Ao>0A f1>0A g1>0

the sequence of induction variablé, whereV is condi- .
tionall;?updated using two different recurrence forms. The . tmaz({4ol, o), maz(| 11| ‘gll)_}i_ TN<0Va1<0 _
L(i) andU (4) bounding functions are indexed by the index The min andmaxoperators are associative for polynomial
space of the (multidimensional) loop nest (only a one di- CR forms. Under certain conditions the operators are also
mensional loop is shown in the figure). Figure 8(b) shows @Ssociative for geometric forms, but not in general.

an actual example. Note that the array access is dependence 1 heminandmaxdynamic bounding functions applied to
free becaus is strictly monotonically increasing. The de- WO CR forms require the CRs to be aligned where the op-

termination of bounding information and monotonicity is ©rators between the CR forms match up.

crucial for accurate dependence testing. Definition 2 Two CR formsb,; and ¥; over the same index
To determine dynamic value range bounds, we devel- variable: are alignedif they have the same lengttand the
oped a new method to computein and max bounding operators®;, j =1, ..., k, form a pairwise match.

For example{1,+, 1, x,1} is aligned with{0, +, 2, , 2},,
but {1, +, 2}, is not aligned with{1, ,2}; and{1, +, 2},
is not aligned with{1, +,2, +,1},.

To align two CR forms of unequal length, the shorter
CR can be lengthened by adding dummy operations with-
out changing the sequence it represents.

Lemma3 Let ®;, = {¢g, ©1,¢1, D2, -+, O, Pi}; be a
CR form, wherep;, is invariant ofi. Then, the following
two identities hold

d;
d;

{¢0,01, 01,02, -+, Ok, r, +, 0}
{00,001, 01,02, -+, Ok, Pk, *, 1}4

Proof. The proof immediately follows as a consequence of

the CR semantics defined in Section 2.2, because the initial

value of the induction variabler; for coefficientg; is set

to ¢, and the value oér;, is unchanged in the loop (either
by adding zero or multiplying by one). O
When the operators of two CR forms do no match, the re-
sults of the following lemma and corollary are used.

Lemma4 Let®; = {a, *,7}; be a geometric CR form with
initial value a and ratior (r is invariant of:). Then,

&, = {a,+,a(r —1),4+,a(r —)2, +,-- -, +,a(r —)™, *,7};
for any positive integem > 0.
Proof. The proof is by induction om.

e For the base case = 1 we show that{a,*,r}; =

{a,+,a(r — 1), *,r}; in two steps.
1. Consider = 1. By the definition of the CR se-

mantics Section 2.2 the sequengéi] for
{1, *,7}; andgli] for {1,+,r—1, %, r}; are com-

puted by
cro=1 cro=1
fori=0ton-1 cry =r-1
fli] =cro fori=0ton-1
Crg =Crg 1 gli] =cro
endfor Crg = Crg +cry

Cry =cry xr
endfor

(a) Foriteration; = 0, we find thatf[0] = ¢[0]
(b) Foriterationg =1,...,n — 1, we find that

o= I
j=0
= 'ri
i—1
glil = 14+ (r—1)
=0
1—1 1—1
- S
=0 =0
i 1—1
S
j=1 =0

10

2. Considera # 1. It follows from the CR alge-
bra Figure 5 thaf{a,*,r}; = a{1,%,r}; and
a{l,+,r=1,%,1}; = {a,+,a(r—1),*,r};, and
therefore that

{a,*,’l“}i a{l,*,’l"}i
CL{L +,7 — 17 *, r}i

{a7 +, a(’r - 1)7 *7T}i

e Suppose the equation holds for= m — 1. We have
q>i = {aa +,a(r - 1)7 +7a(T - 1)27+7 e ,+,CL(7” - 1)k7 *7T}i

Because the “flat” CR forn®; is identical to a nested
CR form [4, 57], we use the base case to rewrite the
tail part of the nested CR form as follows

{a7 +,a(r—1), +, a(r_]')kv *7T}i

= {a7+9a(7‘71)7+9 R {a(rfl)kv *’T}i}’i

= {CL, +, a(?"—l), RERRREE o {a(r—l)k, +, a(r—l)k(v"—l), *, T}Z}Z
= {a7 +, a(r—l), +,0 {a(r—l)k, +, a(T_l)k+17 *, T‘}L}?

= {a7 =+, a(r—l), +,00 a(”"_l)Tn717 +, a(T_l)"Lv *7T}i

Thus, it follows from the induction hypothesis thét =
{a’7 +, a(r—l), +, CL(’I"—].)2, +,000+, a(r—l)m, *, T}i- o

Corollary 1 Let ®; = {do, ©1,"**, Op—1,Pr—1,%, Pk }i

such thatg;, is invariant ofi. Then, any numbem > 0

of + operators can be inserted at thé¢ — 1)*® coefficient
as follows

D = {0,001, , Ok—1, Pr—1,
+, Ok—1(dp—1), +, dp_1(dr—1)% +,

inserted

St o1 (=)™
5 %, ¢k}z

without changing the sequence®f.

Consider for exampl®; = {1, +,1}; and¥,; = {1, , 2},.
The CR forms are aligned using Lemmas 3 and 4

(I:"L = {1’+71}’L

= {1,4,1,%,1};
‘Iji = {17*72}7,

= {1’+)17*72}i

After alignment themin andmaxcan be applied

min({1,+,1,%,1};, {1, 4, 1,%,2};)
= {Lmin({l’*: 1}74'7 {17 *, 2}7«)}1
={1,+,1,%1}

maz({1,+,1,%,1};,{1,+,1,%,2};)
= {1,max({1,*,1}i,{1,*,2}¢)}¢
= {1,—‘,—,1,*,2}1'

The closed forms of thminandmaxCRs areL (i) =i + 1
andU (i) = 2° respectively. These bounds are used in Fig-
ure 8(b). The dynamic bounds of a conditionally updated in-

duction variablel” were calculated by thmin and maxof
the CR forms of the conditional recurrences.

3.4.2. Static Bounds.The determination of the constant

static bounds on the range of possible values of a function

3.5. Algorithm

is necessary for data dependence testing, value range anal- The algorithm presented in this section extends our pre-
ysis, and loop bounds analysis, where (symbolic) constantvious induction variable analysis algorithm by handling

bounds are required.

conditionally updated variables in recurrences, where the

To determine the direction of a recurrence, we define therecurrences may or may not have closed forms. In the new

step function of a CR.

Definition 3 The stepfunction A®; of a CR form®; =
{¢0,®1, b1, D2, ..., Ok, b1} is defined by

A®; ={¢1,02,...,0k, Pk }i

Thedirection-wise stefunctionA ;®; of a multivariate CR
form ®; is the step function with respect to an index vari-
ablej

AD,
AV,

B ifi=j
Aj0i = { otherwise

where he initial value o¥®; of a CR form is the first coef-
ficient, which is the starting value of the CR form evaluated
on a unit grid in thei-direction:

V&, = ¢o

The direction-wise step information indicates the growth
rate of a function on an axis in the iteration space.

Note that<1>1 = {V(I)i, ©1, A(I)L}L

Definition 4 Thelower bound£®; of a multivariate CR
form®; evaluatedon =0,...,n,n >0, is

LVD; if LM®; >0
Ld; =4 LCRN ()i —n] FUMDP; <0
LCR;H(®;) otherwise

and theupper bound/®; of a multivariate CR forn®; is
UVe; if U M®; <0
UB; = L UCRTH(®)[i —n] IfLMD; >0

UCR; (@) otherwise

whereCR; 1(<I>Z-) is the closed form ob; with respect ta
(i.e. nested CR forms are not converted), and whetds
used in tests for monotonicity of a CR form defined by

AD; if ©1 =+
MD; — AP, —1 ifO1 =« ANLVP] >0NLAD; >0
v 1-AP;, fO1=xAUVP <OALAD; >0

undefined otherwise

It is important to point out that th€ andi/ bounds applied

to the recurrence of a monotonic function gives éxact
(symbolic) value range of the function on a discrete domain,
when the function is monotonic on the discrete grid rather
than in the continuous domain. A function that is mono-
tonic on discrete grid points is not necessarily monotonic in
the continuous domain.

The £ andi/ bounds have important applications in our

dependence tests discussed in Sections 3.6 and 4 and sev-

eral examples will be given.

11

algorithm we compute multivariate CR forms for each non-
aliased scalar integer and pointer variable by considering
each path in a loop nest. In this way, a set of CR forms for
a variable is determined, rather than a single CR form as in
our previous work [47]. These CR forms describe sequences
of possible values for the conditionally updated variables in
a loop.

The algorithm is applied recursively from the innermost
loops to the outermost loops in a (not necessarily perfectly
nested) loop nest:

1. Compute the setd of variable assignments us-
ing the induction variable recognition algorithm
FINDRECURRENCESi, a, s, B, A) shown in Fig-
ure 9, where is the name of the loop counter variable,
a is the (symbolic) initial value of, s is the (sym-
bolic) stride, andB is the AST of the loop body. For
non-enumeration controlled loops such as while-loops,
a virtual iteration variable is introduced with ini-
tial valuea = 0 and strides = 1.

. Solve the recurrence systemA by
puting the CR forms using algorithm
SOLVERECURRENCE%i, a,s, A). The < relation
used by this algorithm defines a topological or-
der on the pairs in the set by

com-

(V,X) < (U,Y) if V # U andV occursinY’

The relation ensures that the computation of the CR
forms for all variables can proceed in one sweep, by
first computing the CR forms for variables that do not
depend on any other variables. These CR forms are
then used to compute the CR forms for variables that
depend on the CR forms of other variables.

. For each variabl& collect the CR form®7 (V) from
the pairs(V,®/(V)) € A. When only one CR form
®(V) exists forV, obtain the closed form of the re-
currence fo” given byCR ! (®(V)). When multiple
CR forms exist, compute thein and max bounding
functions over the sef®’(V)} to determine the dy-
namic range of values of the variable through the loop
iteration. The CR form and/or the dynamic range are
used by the data dependence test.

. To facilitate the recognition of induction variables in
outer loops, the sed is used to add (conditional) vari-
able updates at the end of the analyzed loop nest. These
updates are virtual and only used to reveal the induc-
tion variables to the outer loops for further analysis.

Algorithm FINDRECURRENCESi, a, s, B, A)
Constructs the recurrence systehirom the AST of loop bodyB

- input: iteration counter variableéwith initial valuea and strides, and loop bodyB
- output: recurrence systemM consisting of a set ofV, X') € A pairs denoting assignmerits:= X

Let A:=0
FOR each control-flow path p (up to a back edge) in B DO
Let Ay =

FOR each statement Sy, € B from the last (k = | B|) to the first statement (k¥ = 1) on path p DO

IF Sy is an assignment statement V' := X
AND V is an integer or pointer variable
AND X has no function calls and array accesses THEN
UPDATE(V, X, Ap)

Mark (V, X) use-before-def if V' has a use on path p before this assignment

ENDIF
ENDDO
ADDRECURRENCESA, A)
ENDDO

Algorithm UPDATE(V, X, Ap)

Update the recurrence of varialllewith expressionX in the recurrence syster,

-input: variableV’, expressionX, and recurrence syster,
- output: updated recurrence syste,
IFV & Dom(Ap) THEN /*if V' is not defined in A, */
Let Ap:=A, U {(V, X)}
ENDIF
FOR each (U,Y) € A, DO
Replace each use of variable V' in Y with X
ENDDO

Algorithm ADDRECURRENCE$A, Ap)

Add the path-specific recurrencds, to the general recurrence systein
-input: recurrence system4 and A,

- output: updated recurrence systefin

IF A=0THEN
Let A:= A,
ELSE

FOR each (V, X) € A, DO
IF V ¢ Dom(A) THEN
Let A:= AU {(V,V)}
ENDIF
Let A:= AU {(V,X)}
ENDDO
FOR each (V, X) € A DO
IF V & Dom(A,) THEN
Let A:= AU{(V,V)}
ENDIF
ENDDO
ENDIF

Figure 9. Algorithm for Constructing a Recurrence System from a Loop

More specifically, for each variablg a set of condi-
tional assignments are added corresponding to the tu-
ples(V,®/(V)) € A, which is similar to the following
template:
fori=atobsteps
en.c.i'for
i=max(0,|(b—a)/s+1])
case (random(1 to j))
of 1: V=CR™1(®1(V))
of 2: V =CR™L(®2(V))

of V=CR™Y(®I(V))
endcase

A virtual case block is added for each variable. The

12

conditional flow ensures that only one of the updates
is visible on a path through the outer loop body. It is
important to note that the addition of the block is vir-
tual and only used to provide a feed back mechanism
to ensure that the recurrences are analyzed by the ap-
plication of the algorithm to the outer loops.

. As an optional step in the algorithm, IVS is applied

when all variabled’ in the setA have single closed
forms. IVS normalizes the loop and adds initializing
assignments to variableég to the start of the loop
and its body to remove cross-iteration dependences in-
duced by the induction variable updates:

Algorithm SOLVERECURRENCESi, a, s, A)
Computes the CR-form solutions of a set of coupled recurrences over a one-dimensional iteration space
- input: iteration counter variableéwith initial valuea and strides, and the recurrence systefn
consisting of a set ofV, X) € A pairs denoting assignmerits:= X
- output: coupled recurrences iA are converted to uncoupled CR expressions
FOR each (V, X) € A in topological order (<) DO
IF (V, X)) is marked for deletion THEN
Let A := A\{(V, X)}
ELSE
Let X := CR(X) /* CR construction: replace all 7 in X by {a, +, s}; and apply CR algebra rules */
IF X is of the form V + ¥, where ¥, is a constant or closed-form expression over ¢ or a CR form THEN
Let d := {Vo, +, \I’z}z
SuBSTITUTE(V, @, A)
ELSE IF X is of the form V % ¥;, where W, is a constant or closed-form expression over i or a CR form THEN
Let d := {Vo, *, \I/z}z
SuBSTITUTE(V, &, A)
ELSE IF X is of the form ¢« V + W;, where c is a constant or an i-loop invariant expression
and W, is a constant or an i-loop invariant expression or a polynomial CR form THEN
Let @ := {¢o, +,P1,+, -+, +, Py 1, *, Pry2}i, Where
#o = Vo; ¢j = (c—1)pj—1+vj-1; Prt2=c
SuBSTITUTE(V, @, A)
ELSE IF V does not occur in X THEN /* potential wrap-around variable */
Mark V' wrap-around
IF (V, X) is marked as use-before-def THEN
Let ® := {Vo — V(B(X)), *,0}; + B(X)

ELSE
Let A :== A\{(V, X)}
Let® := X

ENDIF

SUBSTITUTE(V, &, A)
ELSE /* cannot solve the recurrence for V' */
SuBSTITUTE(V, L, A)
ENDIF
ENDIF
ENDDO

Algorithm SuBsTITUTE(V, ®, A)
Substitute all occurrences df by ® in the recurrence systerh
-input: variableV, CR form®, and recurrence systerh
- output: updated recurrence systefin
Replace (V, X) in A with (V, ®)
FOR each (U,Y) € A, (V,X) < (U,Y) DO
Mark (U,Y’) € A for deletion
LetY’ := Y[V «— @] /* substitute each use of V with & */
Let A:= AU {(U,Y")}
ENDDO

Figure 10. Algorithm for Solving Recurrence Systems

‘,/0 z V taken for potential wrap-around variables, whose final
fori=0to [(b—a)/s+1] assignments must be guarded by a test on the nonzero
V =CR™ (V) trip property of the loop.
B /_* ﬁormalized loop body */
endfor .
i=max(0,[(b—a)/s+1]) 3.6. Recurrence Patterns Recognized

V=CR Y (®(V))
o In this section we discuss several loops with non-trivial
recurrences patterns defined by induction variable updates.
The loop can be optimized by forward substitution to Our algorithm handles the most complicated classes of
eliminate the assignments in the loop body. The elim- GIVs, such as those found in the TRFD and MDG bench-
ination of the assignments requires the addition of as- marks. The algorithm can handle multiple assignments to
signments in the loop epilogue to adjust the values of induction variables, generalized induction variables in loops
the induction variables after the execution of the loop, with symbolic bounds and strides, symbolic integer divi-
as shown in the code template above. Special care ission, conditional induction expressions, cyclic induction de-

13

fori=0ton-1 || System: fori=0ton-1 kO =k fori=0ton-1
j= 2%k (k, 2k + 1) m0=m a[(k+1)x2-1] = ...
afi+k] = ... (m,m(i+ 1)) a[{ko,+, ko+1,+,ko+1,%,2};]=... || fori=0ton-1 endfor
K = i+ k = (kO+1)*2i—i—1 || i = max(0,n)
m = mx(i+1) || Solution: endfor m = mOxfac(i) k = (k+1)x2—i—1
endfor (k,{ko,+, ko, +, ko+1,*,2};) j=2xk m = mxfac(i)
(m, {mo,*,1,+,1};) afi+k] = ... if (n > 0)
k =i+ j=2xk
m = mx(i+1) endif
endfor
(a) Loop Nest (b) Recurrences (c) CR Index Construction (dyIvs (e) Optimized IVS

Figure 11. Nonlinear Recurrences

fori=0ton-1 || System: fori=0ton-1 j0=j fori=0ton-1
S1: alK = ... (5,5 +2) al{ko, +,jo+1, +,2}:] = .. ko =k afketix(i+)] = ...
k = k+j (kyk+37+1) fori=0ton-1 ... = afjrk+ik(i+j+2)]
j=j+2 - = a[{jo+ko, +, jo+3, 4+, 2}i] k = kO+ix(i+j0) || endfor
S2: ...=alk] Solution: j = jO+2:i i = max(0,n)
k = k+1 (g, {go, +,2}s) endfor alk] = ... k = k+is(i+j)
endfor (k, {ko, +,jo+1,+,2}4) k = k+j j=J¥2x
j=j+2
=alk]
k=k+1
endfor
(a) Loop Nest (b) Recurrences (c) CR Index Construction (d)IvVS (e) Optimized IVS

Figure 12. Coupled Nonlinear Recurrences with Multiple Updates

pendencies, symbolic forward substitution, symbolic loop- The closed forms of the CR forms for variableandm
invariant expressions, and wrap-around variables. are used in the non-optimized IVS converted code shown in
Figure 11(d). The result of conventional restructuring com-
3.6.1. Nonlinear Recurrences.Consider the loop piler optimizations applied to the IVS code is shown in Fig-
nest shown in Figure 11(a). The loop has a potential ure 11(e). The final adjustments ok, and m shown in
wrap-around induction variabl¢ and nonlinear induc- Figure 11(e) are necessary to enable any uses of these vari-
tion variablesk andm. Because there is no use jdfefore ables after the loop. Becaugés a potential wrap-around
the definition ofj in the path through the loop body, the re- variable (detected by @ VERECURRENCES, its final ad-
currence system discards and solves fork and m, justment is conditional on the nonzero trip property of the
as shown in Figure 11(b). The solutions of the recur- loop.
rences ok andm are computed in CR form. Figure 11(c)
depicts the result of CR index construction (see Sec-3.6.2. Coupled Recurrences with Multiple Updates.
tion 2.3), where the array access is determined by the CRConsider the loop nest shown in Figure 12(a) with cou-
form obtained from the solution to the recurrence sys- pled induction variablepandk. The loop contains two up-
tem and by applying CR construction to the index expres- dates ofk. The algorithm computes the recurrences and
sion. their solutions in CR form as shown in Figure 12(b). Fig-
The loop can be parallelized if the induction vari- ure 11(c) depicts the result of CR index construction, where
ables can be eliminated using IVS and if no output the array accesses are determined by the CR form ob-
dependence on the assignmentafp+k] exists. No out- tained from the solution to the recurrence system and
put dependence can exist if the array indevk is by applying CR construction to the index expression (in
strictly monotonically increasing or decreasing. There- which all variables are replaced by their definitions us-
fore, we testCM{kg,+, ko+1,+, ko+1,%,2}; > 0 or ing forward substitution). We test for dependence between
UM{kg, +, ko+1,+, ko+1,%,2}; < 0. The first con- statement§1andS2to verify whether the loop can be par-
straint is met wherky + 1 > 0 and the latter constraint allelized.
is met whenky + 1 < 0. Hence, ifky # —1 no depen- To disprove loop-carried flow dependence between state-
dence can exist and the loop is parallelizable mentsS1and S2 we have to show that there is no use

14

fori=0ton-1 || System: fori=0ton-1 j0=j fori=0ton-1
SL #p=.. (7,5 +2) pl{0, +,jo+1,+,2}s]=... || pO=p plix(i+)] = ...
p =p+ (p,p+7i+1) fori=0ton-1 ... = pli+ix(i+j+2)]
j=j+2 - = pl{Jjo, +, Jo+3, +, 2}:] p = pO+ix(i+j0-1) || endfor
S2: ...=xp Solution: j = jO+2:i i = max(0,n)
p=p+l (4, {Jo, +, 2}4) endfor = p = pix(i+])
endfor (p, {po, +,jo+1,+,2}:) P = ptj j=J+2xi
j=j+2
R o]
p=p+tl
endfor
(a) Loop Nest (b) Recurrences (c) CR Index Construction (d)IvVS (e) Optimized IVS

Figure 13. Coupled Nonlinear Pointer Recurrences with Multiple Updates

S2 after the definitionS1 of a[k] in subsequent itera- Figure 13(e), where the pointer accesses are replaced by ar-
tions. The symbolic non-constant distance between theray accesses. The result is a loop nest that reflects the
use S2 and definitionS2is a function defined by the CR application of array recovery methods.

form {jo+ko, +,50+3,+,2}i — {ko, +,Jo+1,+,2} =

{Jjo,+,2};, which is linear ini, i.e the functionjy + 2. 3.6.4. Multidimensional Loops. Consider the triangular
This means that the distance starts with the initial vglue loop nest shown in Figure 14(a). The sequence of memory
of j and grows by stride two through the iterations. Thus, writes byp is strictly monotonic in the inner and outer loop
no loop-carried flow dependence betweghand S2 ex- nest. Therefore, no loop-carried output dependence can ex-
ists if jo > 0. ist. The algorithm disproves dependence as follows.

We also apply our nonlinear version of the GCD test The algorithms starts with the analysis of the inner loop
for disproving dependence by considering whether the shown in Figure 14(a). The recurrence system of the inner
readsS2and writesS1to arraya are interleaved. This oc- loop and its solution are shown in Figure 14(b). The CR in-
curs when the GCD of the CR coefficients+ 1, jo + 3,2 dex of the pointer access shown in Figure 14(c) is obtained
does not divide j, based on the dependence equa- by CR construction. To analyze the outer loop, the algo-
tion {jo+ko, +, jo+3,+,2}: = {ko, +, jo+1,+,2};. Note rithm virtually adds an update to the pointerat the the

that whenyj, is odd, no dependence can exist. loop exit. The addition of a variable update fiois simi-
Combining these results, the loop can be parallelized lar to the IVS code shown in Figure 14(e).

whenjo, > 0 or whenjy is odd. To further parallelize the Next, the algorithm proceeds with the outer loop (using

loop, IVS is applied as shown in Figures 12(d) and (e). the virtually added pointer update information) shown in

Figure 14(f). The recurrence system of the outer loop and
its solution are shown in Figure 14(g). The CR index of the
ointer access shown in Figure 14(h) is obtained by CR con-
truction using the recurrence solution.
The simplification of {pg, +, max(0,{1,+,1};}; to
{po,+,1,+,1}; in the recurrence solution is accom-
plished by the addition of four new CR algebra rules:

3.6.3. Coupled Pointer Recurrences with Multiple Up-
dates. This example is similar to that of Section 3.6.2, but
differs with respect to the use of pointer references to acces
memory. The loop nest shown in Figure 13(a) has recur-
rences and the solutions in CR form shown in Figure 13(b).
Figure 13(c) depicts the result of CR index construction ap-
plied to the induction variables and pointer arithmetic. As

in Section 3.6.2 we test for dependence between statements max(®;, U;) = &; if L(B; —W;) >0
SlandS2to verify whether the loop can be parallelized. max(®;, W) = Wy ifU(P; — ;) <0
To disprove loop-carried flow dependenpe between state- Eﬁg ij; z i :; %g - g; § (())
mentsS1and S2 we compute the symbolic non-constant
distance {jo, +,jo+3,+,2}; — {0,+,jo+1,+,2}; = These rules may enable the construction of a closed form
{jo,+,2}; between the us&2 and definitionS2in CR for a CR form with min and max terms.
form. No flow dependence betweeil and S2 can ex- To determine if a loop-carried output dependence ex-

ist if jo > 0. In addition, the GCD of the CR coefficients ists, we test whether the sequence of memory location
jo + 1,50 + 3,2 does not dividej, if jo is odd. There- accessed by the writes fwin the loop is strictly mono-
fore, whenj, > 0 or whenj is odd, the loop can be paral- tonic. BecauselA,;{{0,+,1,+,1};,+,1}; = 1 and
lelized. The application of IVS results in the non-optimized £A;{{0,+,1,+,1};,+,1}; = 1, the sequence is strictly
loop nest shown in Figure 13(d). Conventional restructur- monotonic in thej andi directions, respectively. There-
ing compiler optimization leads to the loop nest shown in fore, the loop nest can be parallelized.

15

fori=0ton-1 System: fori=0ton-1 fori=0ton-1 fori=0ton-1
forj=0toi (p,p+1) forj=0toi pO0=p forj=0toi
x*p = ... pl{0,+,1};]1= ... forj=0toi pl] = ...
p =p+l Solution: p = p0+j endfor
endfor (p, {po,+,1};) endfor *p = ... j = max(0,i+1)
endfor endfor p=p+l p=pt
endfor endfor
endfor
(a) Loop Nest (b) Recurrences (c) CR Index Construction (d)IVS (e) Optimized IVS
fori=0ton-1 System: fori=0ton-1 pO=p fori=0ton-1
forj=0toi (p,p+i+1) forj=0toi fori=0ton-1 forj=0toi
pl] = .. PI{{0,+,1,+, 1}, +,1};1= . || p=po+ii+1)/2 plix(i+1)/2+4]] = ...
endfor Solution: endfor forj=0toi endfor
j=max(0,i+1) || (p,{po,+,1,+,1}:) pl] = ... endfor
p =p+j endfor endfor i = max(0,n)
endfor j = max(0,i+1) p = p+ix(i+1)/2
p=pt
endfor
(f) Loop Nest (9) Recurrences (h) CR Index Construction @) IVS (j) Optimized IVS

Figure 14. Recurrences in Multidimensional Non-rectangular Loop Nest

fori=0ton-1 System: fori=0ton-1 fori=0ton-1 fori=0ton-1
for j = 0 to m[i] (k,k + 1) for j = 0 to m[i] kO =k for j = 0 to m[i]
alk] = ... a[{ko,+,1},1=... for j = 0 to mli] afj+k] = ...
k = k+1 Solution: k = kO+j endfor
endfor (k,{ko,+,1};) endfor alk] = .. j = max(0,m[i]+1)
endfor endfor k =k+1 k = j+k
endfor endfor
endfor
(a) Loop Nest (b) Recurrences (c) CR Index Construction (d)IvSs (e) Optimized IVS

fori=0ton-1 System: fori=0ton-1
for j = 0 to m([i] (k, k + max(0, m[i]+1)) for j = 0 to m[i]
afj+k] = ... a[{{ko, +,m[i]+1}s, +,1};]1 = ...
endfor Solution: endfor
j = max(0,m[i]+1) (k, {ko,+, max(0, m[i]+1)};)
k = j+k endfor
endfor

(f) Loop Nest (g) Recurrences (h) CR Index Construction

Figure 15. Recurrences with Irregular Symbolic Strides

Because the CR forms of the recurrences have closedand (c). The analysis of the outer loop requires the aggre-
forms, IVS can be applied resulting in the loop nest shown gation of the updates to the induction variables in the in-
in Figure 14(i) and the optimized code shown in Fig- ner loop. The virtually added update statements to the exit
ure 14()). of the inner loop are similar to the updates shown in Fig-
ure 15(e), wherd& is adjusted for recurrence analysis in the
outer loop. The algorithm produces the recurrence system
and solution shown in Figure 15(g) by analyzing the outer
loop. Note that the solution does not have a closed form,
. . Srgecause of the presence of the non-constant CR coefficient
have no closed forms. Our algorithm can determine a de- ; . .

max(0, m[i] + 1). However, the CR construction of the in-

pendence system for these cases. dex expression of the array accefls] can still proceed. Be-
Consider the loop nest shown in Figure 15(a), where causenli] > 0 in the inner loop nest, the CR form of the

the inner loop nest is bounded by an outer-loop dependent

. .) index expression i${ ko, +, max(0, m[i] + 1)}, +,1};
unknown valuem[i]. The algorithm proceeds by analyzing . 4 4 e 7
the inner loop first. The results are shown in Figures 15(b) {{ko, +,m[i] +1}i, +, 1}; as shown in Figure 15(h). There

3.6.5. Recurrences with Irregular Symbolic Strides.
Induction variables with irregular symbolic strides do not
have closed forms. Current restructuring compilers can-

16

(a) Loop Nest

(b) Recurrences

(c) CR Index Construction

d)Ivs

j=0 System: j=0 fori=0ton-1
fori=0ton-1 A (g +1) fori=0ton-1 ko =k if ... then
if ... then PI7 (ko k + J) if ... then fori=0ton-1 a[k+ix(i2+5)/6] = ...
k = k+j A (4,3 +1) k = kO+ix(ix(i—3)/2+1)/3 endif
afi+k] = ... P27 (k, k+i(i—1)/2) a[{ko,+,1,+,1,4+,1}] = ... j = ix(i-1)/2 endfor
else else if ... then i = max(0,n)
k = k+ix(i-1)/2 || Solution: k =k+j k = k+ix(ix(i-3)/2+1)/3
endif (7,{0,4,0,4,1}:) endif afi+k] = ... j = ix(i-1)/2
j=i# (ky{ko,+,0,+,0,+,1}:)|| - else
endfor endfor k = k+ix(i—-1)/2
endif
j=ji
endfor

(e) Optimized IVS

Figure 16. Conditionally Updated Variables with Single Recurrence Solution

fori=0ton-1 || System: fori=0ton-1
alk] = ..)
if ... then P17k, k+1) if ... then
k=kel 0 f(+2)
else P2 7 (k, k+J) else
k =k+j
j=jt2 Solution: endif
endif {4, go) endfor
endfor (G, 1o, ++ 24)
(k, {ko, +, 1}s)
(K, {ko,+,Jo}s)
<k? {k[)a +,Jo,+, 2}2>
(a) Loop Nest (b) Recurrences

a[{ko, +, min(1, jo) }; to {ko, +, max(1, jo), +,2}:] = ...

(c) CR Index Construction using Dynamic Value Range Bounds

Figure 17. Conditionally Updated Variables with Multiple Recurrence Solutions

is no loop-carried output dependence in thend;j direc-
tions, becaus&€A,{{ko, +,m[i] + 1,+,1};,+,1};, =1
andﬁA]‘{{kQ, +, m[z] -+ 1, =+, 1}“ +, 1}] =1.

3.6.6. Conditionally Updated Variables with Single Re-
currence Solution. Consider the loop nest shown in Fig-

3.6.7. Conditionally Updated Variables with Mul-
tiple Recurrence Solutions.Consider the loop nest
shown in Figure 17(a). The loop exhibits conditional up-
dates of variableg andk. The recurrence system and its
solution are shown in Figure 17(b). In this case, the vari-
ablesj and k do not have a single recurrence solution.
ure 16(a). The loop exhibits conditional updates of variable The set of recurrence solutions is used for the CR con-

k. The recurrence system and its solution are shown in Fig-struction of the array index expression. Timén and max

ure 16(b). The variablegandk both have a single solu-
tion, despite the differences of the recurrences forps
and A, on the two pathg; andp, through the loop body.
This illustrates the importance of the fact that CR forms are {ko, +, max(1, jo), +, 2};, respectively. Because the lower
normal forms for GIVs thereby enabling the detection of se- and upper bound functions on the array index expres-

mantically equivalent recurrences.

sion are both strictly monotonically increasing, the ar-
CR construction applied to the array index expression ray access are strictly monotonically increasing and no

bounding functions are applied to the set of CR forms ob-
tained for the array indek, resulting in the lower and up-
per dynamic value range bound,, +, min(1, jo)}; and

of a results in the description of the array access in CR loop-carried output dependence exists.
form shown in Figure 16(c). There are no loop-carried

output dependences, because the function of the CR formg.7. Non-Enumeration-Controlled Loops
{ko,+,1,4,1,+, 1}, is strictly monotonically increasing.

Closed forms of the recurrences can be computed, be-
cause the variables of the recurrences have single soluenumeration controlled loops such as while-loops. The cal-
tions. The closed forms are used for IVS as shown in Fig- culation of recurrence forms does not require a loop

ures 16(d) and (e).

The

trip count. Thus, the loop exit condition can be arbi-

17

recurrence analysis algorithm handles non-

k=0 j=0 fori=0ton-1 fori=0ton-1
do k=n
alk]=0 while j < k do k = ixk+1 t=..a..
k = 2xk+1 afj] = alk] a=..b..
while f(k) j=j+1 endfor b=.1t.
k =k-1
enddo endfor
(a) Example Do-While Loop| (b) Example While Loop| (a) Unsolvable || (b) Cyclic Recurrence|

Figure 18. Recurrences in Logically Con- Figure 19. Recurrence Patterns not Recog-
trolled Loops nized

3.8. Recurrence Patterns Not Recognized

trary. The loop iteration counter, when provided, is used .)

by the algorithm to convert closed-form index expres- This section presents two recurrence patterns that cannot
sions to recurrences. The absence of a counter does not inf2® Solved by our recurrence analysis algorithm.

hibit the application of the method, since there are no uses

of the counter. Note that the algorithm uses a new (vir- 3.8.1. Unsolvable Recurrence PatternsSome recur-
tual) loop iteration counter to bind the recurrences of rence patterns exist that cannot be solved, such as the
induction variables to the loop (see step 1 of the algo- recurrence shown in Figure 19(a). The recurrence can-
rithm in Section 3.5. Any unique name for the loop counter not be solved by our algorithm because it has neither a CR
suffices to ensure that nested loops in a loop nest are disform nor a closed-form equivalent.

tinguishable to enable the computation of multivariate

recurrences. . . .
3.8.2. Cyclic Recurrence RelationsThese relations can-

Consider the loop shown in Figure 18(a). The algorithm not be analyzed by our algorithm, as shown in Figure 19(b),
selects a unique loop counter to bind the recurrences to théecause the recurrence system constructed from the loop
loop, sayl. The recurrence form d€is {0, +, 1, *,2}; (the nest must have a partial orderon the assignments. Note
algorithm uses Lemma 2). Note that the closed forrk isf that our algorithm can handle coupled recurrences with
2 — 1, wherel is the selected loop counter variable. Be- cyclic dependences, but not cyclic recurrencse. Cyclic re-
cause all writes operations tare strictly monotonic the currence systems require a separate solver for periodic se-
loop has no output dependence. guences, as in [23]. We propose an extension of our algo-

o] rithm using partial loop unrolling to solve periodic recur-

It is important to be able to compute the trip count of & rences. The unroll factor is the LCM of the sizes of the

non-enumeration controlled loop, when possible, in Orderstrongly connected components in the graph spanned be
to use the trip count as a constraint in the dependence SYStedges) on the variables (vertices).

tem. When the exit condition is based on a constraint on
a linear or quadratic recurrence, the trip count can be eas-

ily determined from the recurrence forms in the exit condi- 4. Nonlinear Dependence System Solvers
tion. '

Consider for example the loop shown in Figure 18(b). This section introduces three dependence solvers. The
The recurrence form of is {0,+,1}; and for k is solvers are based on our recurrence solver and do not re-
{n,+,—1};. The exit condition in recurrence form is quire closed-form index expressions. The dependence
{0,+,1}; < {n,+,—1};. After rearranging terms solvers construct dependence systems based on the CR
{0,4+,1}; — {n,+,—1}; < 0, this is simplified to forms of index expressions. The dependence tests can be ap-
{=n,+,2}; < 0. From the closed form-n +2 I < 0 plied to loop nests with conditionally updated induction
of this recurrence constraint it is easy to see that the tripvariables and pointers. The objective of the tests is to com-
count of the loop isI < |[n/2]. With this constraint pute the conditions under which a solution to a dependence
the dependence equatiof0,+,1};« = {n,+,—1}u system exists, rather than just testing for potential depen-
(i.e. I = n — I* in closed form), which has no solu- dence. This allows us to generate multi-version code with
tion when testing for cross-iteration flow dependence parallelized versions of the code fragments when admissi-
(i.e. < dependence direction). ble by the symbolic constraints.

18

4.1. Monotonicity Test

fori=1tont Equation:
{{17+71}id7+7nt}jd

This is a relatively inexpensive test to verify whether ji=i = {{1,+, 1}4u, +,nt}ju
loop-carried output dependences exist for a single array or forvjaf[jﬁ tzovr;‘;[i}“ Constraints:
pointer reference. The test verifies the monotonic property ii=ji+nt 0<id<nt—1
of an array index expression and pointer reference. More endfor 0<i*<nt—1
elaborate dependence testing involving multiple array and | endfor 0<j%<norl—1
pointer accesses is performed with our nonlinear version of 0<j*<norl —1
the extreme value test described in the next section. (a) Loop Nest (b) Dependence System

Consider Figure 2 depicting a segment of the original
TRFD code. The CR forms gkl and! obtained by CR con- Figure 20. A Linear Dependence System
struction are

O (ijkl) = {{{{i Trvft'itJr(m(erlJ)r/lg}/?“*v left+m(m+1)/2+1}; except that CR forms and and{ bounds are used in the
7;71{;7+7T}T+’1}k ! computations.
s+, 14 Consider for example the dependences of the loop nest

shown in Figure 20(a), which is part of the MDG bench-

mark code. The loop nest cannot be analyzed by Polaris, de-
spite the fact that the dependence system is affine (obtained
after IVS). The recurrence pattern also cannot be handled

and®(l) = {1,+,1}; respectively. The CR forn®(ijkl)
has the following four step functions in thgj, k, andi di-
rection, respectively:

Aqi®(ijkl) = {left4-m(m+1)/242, +, left+m(m+1)/2+1}; by the monotonic evolutiortest [54], because a compari-
ﬁ;iggtg i '{eft2+r(ﬂ,+2/f}k son is required between the stride of the inner loop and the
Aoy = 1 outer loop bound. In contrast, our CR-based extreme value

test succeeds in disproving loop-carried flow dependence.
The recurrence solver and CR construction algorithms
e(:ompute the multivariate CR form of thear array index
expression, which i${1,+,1};, +,nt};, to set up the de-
pendence equation system shown in Figure 20(b).
Testing for(=, <) dependence, witf’ = i* andj¢ <
j*, gives the normalized set of bounds fdrand;<:

Note that the step functions in theand! directions are
nonnegative, because the CR coefficients are nonnegativ
Therefore, the growth of thgkl induction variable in the
k,l direction of the index space is nonnegative and the ad-
dressing of theijKl[ijkl] is strictly monotonically increas-
ing in the innerk, [loop nest, allowing the inner two loop
nests to be parallelized.

Also note that the growth dfkl in the entirei, j, k, [in-) i ?‘fi 121},”
dex space is nonnegativeléft > m(m-1)/2, which is in T _ I _
fact the case when considering the larger part of the bench-The simplified dependence equation from Figure 20(b) with
mark code (not shown). i€ =1d"ls

}gjugnorlfl ‘ ogjdg{

{{01 +, nt}ju ,+ _nt}jd =0

4.2. Nonlinear Extreme Value Test When applying direction vector constraints to determine the
dependence hierarchy, terms must cancel when possible to
This nonlinear dependence test is based on the Banerensure accuracy. Therefore, thi¢ variable is selected to

jee bounds test [5], also known as the extreme value testdominate thegj¢ variable in the equation, such that replace-
(EVT). The test computes direction vector hierarchy infor- ment of j¢ by its upper bound constraifit-1, +, 1} ;. will
mation by performing symbolic subscript-by-subscript test- lead to cancellations in the application of the CR algebra
ing for multidimensional loops. The test is inexact. How- simplification rules. The choice of dominating variable de-
ever, the test is efficient to determine direction vector hier- pends on the direction of the dependence test.

archy information. The test builds the direction vector hi- We proceed by computing the lower bound of the equa-
erarchy by solving a set of dependence equations one at &on’s left hand side
tlme ‘C{{07+7nt}j“7+77nt}jd
Our extended EVT subsumes these characteristics by en- = £(({0, +,nt}ju = ntjO[i9 — {1, 4, 1};u]) (e >1)
h . the test t l ind = [,({0, +, nt}ju —nt {—1, +, l}ju) (subst.)
ancing the test to cover common nonlinear array index ex- _ ({0, +.nt};u + {nt, +, —nt},u) (simplify)
pressions and uses of pointer arithmetic without requiring = £(nt) (simplify)
=1 (nt >1)

closed forms. Thus, our nonlinear EVT can determine ab-
sence of dependence for a larger set of dependence probBecause the lower bound of the left-hand side of the equa-
lems compared to the standard EVT. The implementationtion is positive, the/=, <) dependence is disproved (note
of our algorithm is identical to the original EVT method, that for the abovet > 1 holds in the loop nest).

19

q=q+1
endfor

(a) Loop Nest

Equation:

{A7 =+, l}ld = {{A+17 +, 17 =+, 1}iu7 +, 1}]”

Constraints:
0<it<n—-1
0<i¥<n-—1
0<jd<id
0<% <%

(b) Dependence System

Figure 21. A Nonlinear Dependence System

Testing for(<, <) dependence, withf < i* andj? <
j*, gives the normalized set of bounds:

1 .

<
{17+71}id} =!
l} <j%¥<norl—1

{1» +7 1}Jd

U<t —1

The dependence equation is
{{{{0, +, = 1}iu, +,1}ja, +, —nt}ju, +,nt}a =0
The lower bound of the equation’s left hand side is
L{{{0, +, —1}iw, +,1};a, +, —nt}ju, +, nt}a

—0o0

L{{{0,+, =1}4u, +,1}4a, 4, —nt}ju

L{({{0,+, —1}su,+,1};a — nt5¥)[j* < norl—1])
L{{0,+, —1}su,+,1},a — nt(norl—1))
L{{—nt(norl — 1), 4, —1};u,+,1},a
L{—nt(norl—1),+, —1};u
L(—nt (norl—1) — (nt—1))
—U(nt (norl—1)) — U(nt—1)

Osidg{nt72

{-1,+, 1}
norl — 2

-d
0<s%< {{71,+,1}ju

(nt > 1)
(nt > 1)

(subst.)
(simplify)

(subst. + simplify)

Using these constraints, we compute the lower and upper
bounds as follows:

L{{{*l, +, 717 +, 71}1“7 +, 1}1"17 =+, 71}]“
=L(({{-1,+, -1, 4, =1}, +,1};a — J[* — {0,+, 1}iu])

=L({{-1,+, 1,4, —1}u,+,1};a — {0, 4, 1}iu) (subst.)
=L{{-1,+,—2,4+, —1}iu,+,1},a (simplify)
= L{—l, +7 —2, -‘r, —1}17.0
=L((—1 — (3 —(i")?)/2)[i* «— n —1])
= 5((—712—”)/2) (subst.)
= (=U(n?) = U(n))/2
= —00

M{{{717 +, 717 +, 71}1'“’ =+, 1}id7 +, 71}]“
= u{{_17 +,—1,+, _l}i“’v +, 1}2(1
=U({-1,+ —1,+ -1} + D[4 — {—=1,+,1}5])
=U{-1,+, 1,4+, —1}u + {-1,4,1}u) (subst.)
=U (simplify)

{_21 +1 07 +7 _l}i“
2

Because the equation has no solution since zero does not lie
between—oco and—2, our nonlinear extreme value test dis-
proves(<, <) flow dependence.

4.3. Nonlinear Range Test

This dependence test performs pairwise comparisons be-
tween array index expressions to determine the direction of
the dependence. The comparisons are performed on the CR
forms of array index expressions obtained by the recurrence
solver and CR construction algorithm. The difference be-
tween the CR forms of two index expressions is a CR form
that describes the index distance as a function of the itera-
tion space. Therefore, the extreme values of the function in-
dicates the direction of the dependence for the entire loop

This resultis inconclusive. However, the upper bound of the iteration space of the loop nest. This test is suitable to find
equation’s left hand side is negative:

U{{{{0,+, —1}iw, +,1},a, +, —nthju, +,nt}a
= u({{{()) +, 71}1“ »+, 1}id7 +, 7I"It}j’lb +nt {717 +, 1}]“)

U(—nt—1)
—L(nt) — 1

u{{_nt7 +, _1}1“ , +, 1}zd
U{—nt,+, —1}u + {=1,+,1}u)

(simplify)
(subst. + simplify)
(simplify)

(nt > 1)

Therefore, thé <, <) dependence is disproved.
Our nonlinear extreme value test also handles non-test handles this case by deriving the conditions un-
linear recurrences. Consider the example triangular loopder which no loop-carried flow dependence exists. The
nest depicted in Figure 21(a). Note that pointprand
g read and write to the same arrady The recurrence
solver and CR construction algorithms compute the mul- in Figure 22(b). The dependence directien is dis-
tivariate CR forms of thep andq pointer accesses, which proved if
are {{A+1,+,1,+,1},,+,1}; and {A,+,1};, respec-

tively. The dependence system is shown in Figure 21(b).

The normalized dependence equation is
{{{71» +, -1+, 71}1‘“ 1]‘}idv +, *1}j’u =0

Testing flow dependenceé? < i andj? < j“ gives the
normalized set of bounds:

{17 +7 1}zd

{17 +1 1}.7'(1

l}giugnfl

1 ,
} < v <H{0,+, 1}iw

20

the conditions under which loop-carried dependence does
not exist, rather than just testing for the absence of depen-
dence.

Consider for example the loop nest shown in Fig-
ure 22(a). This example is taken from [37], because the
example was used by the authors to demonstrate the im-
possibility by current compilers to analyze the depen-
dences for loop parallelization. In contrast, our dependence

recurrence solver and CR construction algorithms com-
pute the CR forms of the index expressions as shown

That is, to verify that all uses @k in subsequent iterations
do not depend on the definitions Afwe determine that the
lower bound of the distance as a function; @ver the nor-
malized iteration space= 0, ..., M is nonnegative.
L{K+2N, 4+, K+N+2,%,2}; — {N+10,+, N};)
= L{K+N—-10,+, K+2,%,2};
_ {K+N710 if K42>0

undefined otherwise

>0 if K+N > 10andK > —2

for=1to M+1 for:=1to M+1 L1

S1: AllxN+10] = ... A[{N+10,4+,N};] = ... int a; r[101=0
S2: .= AR2«I+K] . = A{K42N, +, K+N+2, %, 2},] inti, n; Fl1i1=A1l_al+1ol_al
K - 2*K+N a= ’ r[12]=HI[_n]+LO[_n]
endfor endfor n=.. _ ¥
. o L2 r[9]=r[10]<<2
(a) Loop Nest (b) CR Index Construction i=0; M[£[9]+2[11]]1]=0
do r[10]=r[10]+1
i i afi++] = 0; r[8]=M[r[12]]
Figure 22. Nonlinear Range Test Example Wh”[e (i]< n): =z [10]7¢ [8]
PC=IC<0,L2
Therefore, no loop-carried flow dependence exist when (a) Original Code (b) CFG with RTL Code
K+N > 10 andK > —2. Since these conditions are eas- System: Equation:
ily checked at runtime, a parallelized loop nest can be gen- gﬁk]r[:[‘iﬂoﬁ21>> {a,+ 1ot = {a,+, 112
erated that is conditionally executed depending on the run- ’ Constraints:
time evaluation of these guards. Solution: 0<L2l<n-1

(r[9], {0, +, 4}B2) 0<L22<n—1
. <r[10]7{07+71}32>
4.4. Dependence Testing on RTL Code

(c) Recurrence Systen| (d) Dependence System

Register transfer list (RTL) notation is a popular inter- _
mediate code representation for low-level instructions used Figure 23. Example RTL Code
by a variety of compilers, such gscandvpo. The RTL no-

tation is uniform and provides an orthogonal instruction set space for the dependence system. If the size of the iteration

based on predicated assignments. Tipe{7]. compiler op- gpace cannot be deduced from the code, an unknown (sym-
timizes code using a control-flow graph (CFG) representa- bolic) bound can be substituted instead.

tion of the program [1]. Each basic block in the CFG con- \ote that the size of the elements of array are
tains a sequence of consecutive register transfer list (RTL),4 bytes. The memory accesd[r[9]+[11]] with
instructions. The RTL notation used lgcc is distinctly r[9]=r[10]<<2 and[11] is the base address af
more Lisp-like compared to thepoRTL. However, thetwo g represented by the pointer access pattgmi, 1},
RTL variants are conceptually the same. Other intermedi-\; hare the second coefficient is adjusted to represent ar-

ate representations used by compilers, such as three-addresgy element accesses instead of bytes. Because the access
code and indirect triples [1] are similar and can be mapped pattern {a,+,1}1» is strictly monotonically increas-

to RTL instructions. _ _ _ _ing, there is no output dependence.

Our recurrence analysis algorithm recovers induction “\ye will also demonstrate the application of EVT to dis-
variables at the three-address code level or RTL level byprove output dependence as follows. To test theutput
extracting the assignments to memory and registers (“Singdependence, the constraints are
ADDRECURRENCESIn Figure 9) to set up the recurrence . L
system and by applying forward substitutiorug&STITUTE 1+, I}Lzl} <L22<n-1 ‘ 0<L2! < {{_LJ“ 1} 102
n F|gure 10) to solve the recurrence system. . Rearranging the terms in the dependence equation we get

Figure 23(a) and (b) depict an example loop and the in-
termediate optimized RTL code generatedvpy, respec- {0, 4 Thio2, 4+, —1}1 =0
tively. The standard notational conventions and semanticsThe equation has no solution, because

of RTL assignments to registers enables the application of LH{{0, +, 1} 152, +, —1}1)
our recurrence analysis algorithm to the integer-valued reg- = L({k,+, 1 02 — {=1,+,1})
isters in the code. Registdil0] forms a recurrence, be- =1>0

causer[10] is updated in block.2 and live at the back To test the> output dependence, the constraints are

edge (determined with data flow analysis [1]). The recur- 1 L) —

rence analysis algorithm applied to the RTL code results {1,+,1}L22} sk2sn-1 ‘ 0sl2®< {{—1,+,1}L21

in the recurrence system shown in Figure 23(c). The out- Rearranging the terms in the dependence equation we get
put dependence equation is shown in Figure 23(d). Because {0, 4,1} o1, 4 —1}p2 = 0

basic induction variables may no longer be associated with
loop structures at the (optimized) RTL code level, the ba-)
sic block numbet_2 is used as a reference to the iteration Selution:

space. In this example, the exit condition can be deduced KS{EO,Z,l}LlQl,Jr,—l}Lfg) X
from the RTL code to determine the size of the iteration 1 (>{ A hat = =1+ D)

No output dependence exists, because the equation has no

21

void preemphasis(short xsignal, short L, short g)

{ short xp1, *p2, i;
pl=signal + L-1;
p2=pl-1;

for (i=0;i<L—2;i++)
*pl-— —= g % *p2——;

-

(a) Original Source code

Solution:

(p1, {signal + L — 1,4+, —1}2)
<p2) {Signal +L-2,+, 71}L2>
<tmp17 {Signal +L- 1,+, _1}L2>
(tmp2, {signal + L — 2,4+, —1}12)
07{074’71}L2>

(b) Recurrence System based on CFG

Equation
{signal + L — 1,4+, =1} 5a
= {signal + L — 2, +, =1} ou

Constraints:
0< 129 <L -2
0<L2*<L—-2

(c) Dependence Equation for the usemp2

and def«xtmp1l in blockL2

Figure 24. ETSI Codec: Source Code and CFG of the

L1

!

L2

a[16]=g[0]-LOC[L]
r[16]=R[a[16]]
r[16]=r[16]{16
r[16]=r[16]}16
a[17]=g[0]-LOC[L]
Wla[17]]=z[16]
a[16]=g[0]-LOC[g]
r[16]=R[a[16]]
r[16]=r[16]{16
r[16]=r[16]1}16
a[171=g[0]-L0C[g]
Wl[a[17]]=z[16]
a[16]1=g[0]-LOC[L]

r[171=1
r[18]=r[16]
r[18]=r[18]{r[17]
a[l7]=g[0]-LOC[signal]
a[18]=R[a[17]]
a[20]=r[18]
a[19]=a[20]+a[18]
r[19]=-2

a[22]=r[19]
a[21]=a[22]+a[19]
a[23]=g[0]-L0C[pl]
R[a[23]]=a[21]
a[16]=g[0]-LOC[pl]
a[l7]=R[a[16]]
r[16]=-2
a[l19]=r[16]
a[l8]=a[l19]+a[17]
a[20]=g[0]-LOC[p2]
R[a[20]]=a[18]
r[16]=0
a[16]1=g[0]-LOC[i]
W[a[16]]=r[16]
PC=L5

L=L<<16>>16

g=g<<16>>16

r[16]=(W[a[16]]1{16)}16

pl =signal + 2*L - 2

a[16]1=g[0]-LOC[p1]
a[17]=R[a[16]]
a[18]=g[0]-LOC[tmp1l]
R[a[18]]=a[17]
a[16]=g[0]-LOC[tmpl]
a[17]=R[a[16]]
r[16]=-2

a[19]=r[16]
a[18]=a[19]+a[17]
a[20]=g[0]-LOC[p1]
R[a[20]]=a[18]
a[16]=g[0]-LOC[p2]
a[17]=R[a[16]]
a[18]=g[0]-LOC[tmp2]
R[a[18]]=a[17]
a[16]=g[0]-LOC[tmp2]
a[171=R[a[16]]
r[16]=-2

a[19]=r[16]
a[18]=a[19]+a[17]
a[20]1=g[0]-L0C[p2]
R[a[20]]=a[18
a[16]1=g[0]-LOC[g]
r[16]=(W[a[16]]{16)}16
a[17]=g[0]-LOC[tmp2]
a[18]=R[a[17]]
r[17]=(W[a[18]]{16)}16
r[18]=SU[r[16],z[17]]
r[18]=US[r[16],r[17],r
r[16]=UU[r[16],z[17]
r[18]=r[18]{16
r[18]=ID[r[16],r[18]]
a[19]=g[0]-LOC[tmp4]
R[a[19]]1=r[18]
a[16]=g[0]-LOC[tmpl]
a[17]=R[a[16]]
r[16]=(W[a[17]]1{16)}16
a[18]=g[0]-LOC[tmp4]
r[17]=R[a[18]]
r[18]=r[16]-r[17]
r[18]=r[18]{16
r[18]=r[18]}16
a[19]=g[0]-LOC[tmpl]
a[20]=R[a[19]]

pl=tmpl-2

p2=tmp2-2

[18]]

tmp4 = g * *tmp2

Wla[20]]=x[18]

L3

Y

a[16]=g[0]-LOC[i]
r[16]=(W[a[16]]{16)}16
r[17]=1
r[18]=r[16]+r[17]
r[18]=r[18]{16
r[18]=r[18]}16
a[l17]=g[0]-LOC[i]
W[a[17]]1=r[18]

Y

L5

a[16]=g[0]-LOC[i]
r[16]=(W[a[16]]{16)}16
a[17]1=g[0]-LOC[L]
r[17]=(W[a[17]]1{16)}16
r[18]=2
r[19]=r[17]-r[18]

preemphasis

IC=r[16]>r[19]

PC=IC'0,L2
Routine

22

A more extensive example taken from the ETSI Speech
codec is illustrated in Figure 24. Figure 24(a) shows the
source code and the CFG generated/pyis shown on the
right. For sake of convenience the CFG is annotated with
the memory stores derived from the RTL assignments. The
stores are calculated by forward substitution of the RTL defs

int copy(int p, int xq, int n)
{ while (n——> 0)

S1: *PH+ = Q-+

int copy(int xrestrict p,
int xrestrict g, int n)

{ while (n—->0)
*PH+ = #Q++

to the uses determined by the data flow analysis. The appli-
cation of the recurrence analysis algorithm produces the re-
currence system shown in Figure 24(b). The coefficients of
the recurrences are adjusted to refer to array elements rather
than bytes by scaling the increments down by a factor of
two, because the pointepel and p2 point to 16 bit inte-
gers.

The dependence equation for the usetnfip2 and def
of «tmpl in block L2 is shown in Figure 24(c) with the
constraints on the loop iteration space. The recurrence sys-

(a) Example Loop Nest (b) Usingrestrict
int copy(int xp, int xq, int n) int copy(int xp, int xq, int n)
{ intj; {inti,k=q-p;

if (p=q+n | g < p+n)
{
#pragma omp for
for (i=0; i< n;i++)
plil = qlil;
else

while (n——> 0)
*pt+ = xQ++;

(c) Dynamic Dependence Test

if(k>0]| k<-n)
#pragma omp for
for (i=0;i < n;i++)
plil = oflil;
else

while (n——> 0)
*pt+ = xQ++;

(d) Dynamic Dependence Tes

5t

tem and equation are determined from the CFG. Note that
none of the high-level source code details are required. The
names of the local variables and function arguments are pro-
vided in the RTL cod& In this case the number of loop
iterationsL — 1 can be determined as a symbolic expres- 4.5, Pointer Aliases and Dynamic Dependence
sion from the RTL code. If this is not possible, because of Testing

the low-level representation, rather than attempting to de-

rive the |00p exit condition an unknown Symbolic value Pointer-based dependence test requires a|iasing ana|y-
can be used to represent the unknown number of loop it-sjs [32] to prevent inaccurate dependence testing in the pres-
erations. This simplification can be made for many types ence of pointers that share the same memory region. Points-
of loop dependence problems without losing accuracy, ex-to analysis [42] constructs a model of pointer based struc-
cept in cases where the number of loop iterations is corre-tyres which could be used to determine aliases. However,
lated with the size of the accessed array regions (e.g. to destatic pointer alias analysis can be very conservative often
tect non-overlapping regions). leading to a conclusion that a large set of pointers can be

To test the< loop carried flow dependence direction, the aliased. In contrast, we propose to use runtime alias analy-
constraints are sis [53] to aggressively apply compiler transformations.

We compare two different approaches to dynamic data
dependence testing.

Figure 25. Dynamic Dependence Testing

1 L—
(ot S20st=2 [osts ({50
e A simple overlap test based on memory interval anal-
ysis [53] can be used. When the intervals of memory
accesses performed by pointers do not overlap, depen-
dence cannot exist, see also [8, 9]. The overlap check
is applicable when pointer (and array) references are
affine. To extend the approach to nonlinear references,
we use the CR range analysis applied to a pointer to de-
termine the interval information.
Consider for example Figure 25(a). The CR form of
p andq are{p,+, 1}; and{q, +, 1} after loop nor-
malization/ = 0,...,n — 1, wherel is a new index
variable created for the while-loop (see Section 3.7)
andn—1 is the bound on the trip count calculated from
the recurrence af (see also Section 3.7). The range of
p is [‘C({p7+7 1}]),“({P7+, 1}])] = [p7 p +n— 1}
and the range af is [q,q + n — 1]. The runtime over-
lap check is shown in Figure 25(c).

After rearranging the terms in the dependence equation we
get

{{_17 =+, _1}L2"‘ , + 1}L2d =0
The equation has no solution, because

M({{71,+771}L2u,+,1}|_2d)
=U{—1,+, —1}2u + {=1,+, 1}10u)
=-2<0

Therefore, the loop has no forward loop-carried dependence
from thextmp1 defs to thextmp2 uses. Likewise, the loop
has no forward loop-carried dependence from ttrapl
uses to thestmpl defs (the dependence equation is simi-
lar and the details are not shown).

2 Even the argument and local names are irrelevant, because arguments

and locals can be renamed. e Apply the (nonlinear) inexact EVT test or use an exact

23

method such as Fourier-Motzkin or Omega test [39, access to a memory region, as shown in Figure 25(b). How-

53] to determine a reduced system of constraints onever, compiler hints likgestrict are fragile because pro-

unknowns to be met for proving that a loop nest is de- grammers are responsible to obey the semantics. The auto-

pendence free at compile time or run time. The pointer matic detection of aliases at compile time or runtime im-

alias analysis is simply integrated into the test as fol- proves the robustness of the dependence test without rely-

lows. Note that the distance between the poinpeaad ing on program annotations.

g can be used as a parameter in the dependence system

by asserting thag = p + k, wherek is an unknown. 5. Conclusions

Because the value df can be determined at runtime,

a dynamic dependence test verifies whether the con- This paper presented a new approach to dependence test-

straints onk are met to conclude that the loop is de- ing in the presence of nonlinear and non-closed array in-

pendence free. dex expressions and pointer references in loop nests. De-
Consider for example the application of EVT on the pendences are analyzed using the chains of recurrences for-

example shown in Figure 25(a) after loop normaliza- malism and algebra for analyzing the recurrence relations of

tion/ =0,...,n— 1. There exists a fixed offset value induction variables and for constructing recurrence forms

k such that; = p+k before the loop nest, so the initial of array index expressions and pointer references without

value ofq is replaced by + & in the recurrence sys- computing closed forms. Our approach to dependence test-

tem for dependence analysis. The CR formp ahdq ing exploits the fact that any affine, polynomial, or geomet-
are{p,+,1}; and{p + k,+, 1}+7, respectively. The ric index expression composed over a set of generalized in-
dependence equation is duction variables forms a recurrence relation. Because the

chains of recurrences algebra is closed under the addition
and multiplication of polynomials and geometric functions,
After rearranging the terms we have the computation of the recurrence relations of index expres-
sions and pointer references is straightforward. Our nonlin-
ear dependence test uses these recurrence forms to solve a
To test the< dependence direction, the constraints are dependence problem. When closed forms of recurrence re-
lations do not exist, our test can, any many cases, still deter-

{p’+71}[d = {p+ k7+7 1}[“

{{k, +, 1}1u,+, 71}1(1 =0

1 u n—2 . . .
a,+, 1}1d} <It<n-1 ‘ 0<r1i< {{71&7 1 7u mine whether array and pointer accesses are independent.
The equation has no solution if
a References
L({{k,+,1}ru,+,—1}a) >0
L{k,+,1} v —{=1,4+,1}7u) >0 [1] AHO, A., SETHI, R., AND ULLMAN, J. Compilers: Prin-
L(k+1)>0 ciples, Techniques and ToolsAddison-Wesley Publishing
k>-1 Company, Reading MA, 1985.
and the dependence equation has no solution if [2] AMMERGUALLAT, Z., AND HARRISON I, W. Automatic
recognition of induction variables and recurrence relations
Zg}]{ﬂk’j’l]{}’; ’:bfl}f‘l) <0 by abstract interpretation. lproceedings of the ACM SIG-
Uk + n— 11) <0 PLAN Conference on Programming Language Design and
k<l—n Implementation (PLDIYWhite Plains, NY, 1990), pp. 283—
295.

These constraints are sufficient to verify at runtime to [3]
enable dynamic dependence analysis. The transformed
code is shown in Figure 25(d). Note that the unknown

BACHMANN, O. Chains of RecurrencesPhD thesis, Kent
State University, College of Arts and Sciences, 1996.
BACHMANN, O., WANG, P.,AND ZIMA, E. Chains of re-

ks calculated by taking the difference between pointer currences - a method to expedite the evaluation of closed-
locationsp andq, which according to the semantics of form functions. Inproceedings of the International Sympo-
C presents the number of array elements separating sium on Symbolic and Algebraic Computing (ISSAG)-
andq. ford, 1994), ACM, pp. 242—249.

Note that this approach may create a set of con- [5] BANERJEE U. Dependence Analysis for Supercomputing
straints on unknowns, such asthat is infeasible. To Kluwer, Boston, 1988.
eliminate redundant constraints and verify feasibility [6] BAsTouL, C. Code generation in the polyhedral model is
of the solution, Fourier-Motzkin elimination [53] can easier than you think. IRACT’13 IEEE International Con-
be used. ference on Parallel Architecture and Compilation Techniques

(2004). to appear.
Note that theestrict keyword can be used in C/C++ap- [7] BENITEZ, M. E., AND DAVIDSON, J. W. A Portable Global
plication codes to assert that a pointer variable has exclusive ~ Optimizer and Linker. IrProceedings of the SIGPLAN '88

24

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

[22]

Symposium on Programming Language Design and Imple- [23] GERLEK, M., StoLz, E.,AND WOLFE, M. Beyond induc-

mentation(June 1988), pp. 329-338. tion variables: Detecting and classifying sequences using a
Bik, A. The Software Vectorization Handbodktel Press, demand-driven SSA formACM Transactions on Program-
2004, ming Languages and Systems (TOPLAS)11{0an. 1995),

85-122.
[24] GoFF, G., KENNEDY, K., AND TSENG, C.-W. Practical
e . dependence testing. proceedings of the ACM SIGPLAN
tific Computing 72 (1999), 167-184. .)
puting 72 () '91 Conference on Programming Language Design and Im-

BIRCH, J., VAN ENGELEN, R. A., AND GALLIVAN , K. A. plementation (PLDI{Toronto, Ontario, Canada, June 1991),
Value range analysis of conditionally updated variables and vol. 26, pp. 15-29.

pointers. Inproceedings of Compilers for Parallel Comput- [25]
ing (CPC)(2004), pp. 265-276.

BIK, A., GIRKAR, M., AND HAGHIGHAT, M. Incorporat-
ing Intel MMX technology into a Java JIT compile&cien-

HAGHIGHAT, M. R. Symbolic Analysis for Parallelizing
Compilers Kluwer Academic Publishers, 1995.

BLUME, AND EIGENMANN. Nonlinear and symbolic data [26] HAGHIGHAT, M. R., AND POLYCHRONOPOULOS C. D.
dependence testintEEE Transactions on Parallel and Dis- Symbolic analysis for parallelizing compiler&CM Trans-
tributed Systems,ELZ (December 1998), 1180-1194. actions on Programming Languages and Sys’[emg Lﬂiiiy
BLUME, W., DoALLO, R., EGENMANN, R., GRouT, J., 1996), 477-518.
HOEFLINGER, J., LAWRENCE, T., LEE, J., RDUA, D., [27] HAvLAK , P. Interprocedural Symbolic AnalysiPhD the-
PAEK, Y., POTTENGER B., RAUCHWERGER L., AND TuU, sis, Dept. of Computer Science, Rice University, 1994.
P. Advanced program restructuring for high-performance [28] HavLAK, P.,AND KENNEDY, K. Experience with interpro-
computers with Polaris, 1996. cedural analysis of array side effects. pp. 952-961.
BLUME, W., AND EIGENMANN, R. Performance analysisof ~ [29] Kuck, D. The Structure of Computers and Computations
parallelizing compilers on the perfect benchmark programs. vol. 1. John Wiley and Sons, New York, 1987.
IEEE Transactions on Parallel and Distributed Systemé 3~ [30] L1, W., AND PINGALI, K. A singular loop transformation
(Nov. 1992), 643-656. framework based on non-singular matriceBarallel Pro-
BLUME, W., AND EIGENMANN, R. The range test: a de- gramming 222 (1994), 183-205.
pendence test for symbolic non-linear expressionsprtn (31] M'_A‘YDAN’ D. E., HENNESSY J. L.,AND LAM_’ M. S. Ef-
ceedings of Supercomputift994), pp. 528-537. iICIent and exact data dependence analysis. pmn:eed-.

) ings of the ACM SIGPLAN Conference on Programming
BLUME, W., AND EIGENMANN, R. Demand-driven, sym-

Language Design and Implementation (PLQIP91), ACM
Press, pp. 1-14.

MucHNICK, S. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, San Fransisco, CA, 1997.

bolic range propagation. Iproceedings of th&'" Interna-
tional workshop on Languages and Compilers for Parallel 132]
Computing(Columbus, Ohio, USA, Aug. 1995), pp. 141-

160. [33] PoLycHRONOPOULOS C. Parallel Programming and Com-
BLUME, W., AND EIGENMANN, R. Symbolic range propa- pilers. Kluwer, Boston, 1988.

gation. InProceedings of the 9th International Parallel Pro- [34] PsARRIS, K. Program analysis techniques for transform-
cessing Symposiu(pril 1995), pp. 357-363. ing programs for parallel systemBarallel Computing 283
BURKE, M., AND CYTRON, R. Interprocedural dependence (2003), 455-469.

analysis and parallelization. lproceedings of the Sympo- [35] PsARRIS, K., AND KYRIAKOPOULOS, K. Measuring the
sium on Compiler Constructiof1986), pp. 162—-175. accuracy and efficiency of the data dependence tests. In
COLLARD, J.-F., BARTHOU, D., AND FEAUTRIER, P. proceedings of the International Conference on Parallel and
Fuzzy array dataflow analysis. proceedings of the fifth Distributed Computing Syster(@001).

ACM SIGPLAN Symposium on Principles and Practice of [36] PSARRIS, K., AND KYRIAKOPOULOS, K. The impact of
Parallel Programming(1995), pp. 92—101. data dependence analysis on compilation and program paral-

lelization. Inproceedings of the ACM International Confer-

ence on Supercomputing (IC&P03).

for the GSM enhanced full rate (EFR) speech codec. Avail- [37] PsARRIS, K., AND KYRIAKOPOULOS, K. An experi-

able fromhttp:/Awww.etsi.org mental evaluation of data dependence analysis techniques.
- . . . IEEE Transactions on Parallel and Distributed Systems 15

FAHRINGER, T. Efficient symbolic analysis for parallelizing 3 (March 2004), 196-213.

compilers and performance estimato8ipercomputing 12 38]

3 (May 1998), 227-252.

EUROPEAN TELECOMMUNICATION STANDARD (ETSI).
Digital cellular telecommunications system: ANSI-C code

PUGH, W. Counting solutions to Presburger formulas: How
and why. Inproceedings of the ACM SIGPLAN Confer-

FAHRINGER, T., AND STOLZ, B. A unified SymbO"C evalu- ence on Programming Language Design and |mp|ementa_
ation framework for parallelizing compileréEEE Transac- tion (PLDI) (Orlando, FL, June 1994), pp. 121-134.

tions on Parallel and Distributed Systems 11 (Nov. 2000). [39] PUGH, W., AND WONNACOTT, D. Eliminating false data
FRANKE, B., AND O’BOYLE, M. Compiler transformation dependences using the Omega test.pioceedings of the

of pointers to explicit array accesses in DSP applications. ACM SIGPLAN Conference on Programming Language De-
In proceedings of the ETAPS Conference on Compiler Con- sign and Implementation (PLD[San Fransisco, CA, June
struction 2001, LNCS 2022001), pp. 69-85. 1992), pp. 140-151.

25

[40]

[41]

[42]

(43]

(44]

(45]

[46]

[47]

(48]

[49]

[50]

(51]

REDON, X., AND FEAUTRIER, P. Detection of recurrences
in sequential programs with loops. " International Par-
allel Architectures and Languages Eurof#993), pp. 132—
145.

RUGINA, R., AND RINARD, M. Symbolic bounds analy-
sis of array indices, and accessed memory regiongrdn
ceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLVancouver,
British Columbia, Canada, June 2000), pp. 182-195.

RUGINA, R.,AND RINARD, M. C. Pointer analysis for mul-
tithreaded programs. Iproceedings of the ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation(1999), pp. 77-90.

SHEN, Z., LI, Z., AND YEW, P.-C. An empirical study on
array subscripts and data dependenciesprateedings of
the International Conference on Parallel Process{i§89),
vol. 2, pp. 145-152.

Su, E., LAIN, A., RAMASWAMY, S., RALERMO, D.,
HODGES E., AND BANERJEE P. Advanced compila-
tion techniques in the PARADIGM compiler for distributed-
memory multicomputers. Inproceedings of theg™®
ACM International Conference on Supercomputing (ICS)
(Barcelona, Spain, July 1995), ACM Press, pp. 424—-433.

Tu, P.,AND PADUA, D. Gated SSA-based demand-driven
symbolic analysis for parallelizing compilers. pmoceed-
ings of thed*™™ ACM International Conference on Supercom-
puting (ICS)(New York, July 1995), ACM Press, pp. 414—
423.

VAN ENGELEN, R. Symbolic evaluation of chains of recur-
rences for loop optimization. Tech. rep., TR-000102, Com-
puter Science Dept., Florida State University, 2000.

VAN ENGELEN, R. Efficient symbolic analysis for optimiz-
ing compilers. Inproceedings of the ETAPS Conference on
Compiler Construction 2001, LNCS 2022001), pp. 118-
132.

VAN ENGELEN, R., AND GALLIVAN , K. An efficient al-
gorithm for pointer-to-array access conversion for compil-
ing and optimizing DSP applications. frroceedings of the
International Workshop on Innovative Architectures for Fu-
ture Generation High-Performance Processors and Systems
(IWIA) 2001(Maui, Hawaii, 2001), pp. 80-89.

VAN ENGELEN, R. A., BIRCH, J.,AND GALLIVAN , K. A.
Array data dependence testing with the chains of recur-
rences algebra. Iproceedings of the IEEE International
Workshop on Innovative Architectures for Future Generation
High-Performance Processors and Systems (IWJahuary
2004), pp. 70-81.

VAN ENGELEN, R. A., BIRCH, J., $HouU, Y., WALSH, B.,
AND GALLIVAN , K. A. A unified framework for nonlinear
dependence testing and symbolic analysigrbteedings of
the ACM International Conference on Supercomputing (ICS)
(2004), pp. 106-115.

VAN ENGELEN, R. A., GALLIVAN, K. A., AND WALSH,

B. Tight timing estimation with the Newton-Gregory formu-
lae. Inproceedings of CPC 200&\msterdam, Netherlands,
January 2003), pp. 321-330.

26

(52]

(53]

[54]

(58]

[56]

[57]

(58]

WoLFE, M. Beyond induction variables. 1ACM SIG-
PLAN'92 Conf. on Programming Language Design and Im-
plementatior(San Fransisco, CA, 1992), pp. 162-174.
WOoLFE, M. High Performance Compilers for Parallel Com-
puters Addison-Wesley, Redwood City, CA, 1996.

Wu, P., QOHEN, A., HOEFLINGER, J., AND PaDuA, D.
Monotonic evolution: An alternative to induction variable
substitution for dependence analysis. proceedings of
the ACM International Conference on Supercomputing (ICS)
(2001), pp. 78-91.

ZIMA, E. Recurrent relations and speed-up of computa-
tions using computer algebra systems. phoceedings of
DISC0’'92(1992), LNCS 721, pp. 152-161.

ZIMA, E. Simplification and optimization transformations
of chains of recurrences. proceedings of the International
Symposium on Symbolic and Algebraic Computilipn-
treal, Canada, 1995), ACM.

ZIMA, E. V. Automatic construction of systems of re-
currence relationsUSSR Computational Mathematics and
Mathematical Physics 24.1-12 (1986), 193-197.

ZIMA, H., AND CHAPMAN, B. Supercompilers for Parallel
and Vector ComputersACM Press, New York, 1990.

