
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

EXTENDING THE CORONER’S TOOLKIT VIA

AGGREGATE DATABASE

By

JaRay Jasper

A Master Project submitted to the
Department of Computer Science

In partial fulfillment of the
Degree of Master of Science

Degree Awarded:
Spring Semester, 2004

The members of the Committee approve the master project of student 's
name defended on date defended.

 Dr. Lois Hawkes
 Major Professor

 Dr. Mike Burmester
 Committee Member

 Jeffrey Bauer
 Committee Member

 ii

DEDICATION

I dedicate this to God and my Family. I’m calling out names because I can. I did
this for me, but without the support of Moms, Pops, Big Sis, Baby Bro and my
two favorite type little nieces I would never have come to college much less any
University in the first place. Also, for raising me in a fashion so when I did come
here I didn’t freak out and act a fool like most kids seem to do when they first get
to school.

Other members of my family include, my homeboy since the 3rd grade Steve
Lewis, my homegirl Ana Clemente and the homies Donald Baker and Vince
Bruington. You people have given me nothing but love since we were all
youngsters hanging out in California and are still here for me.

I also dedicate this to the Rodriguez Family, especially Shandy and Millie. Ever
since I’ve been stuck out here in Florida, you have always treated me like family
and looked out for me and fed me.

This goes out to Karen Cahill too. You made sure I didn’t get into any trouble
when I moved out there to Texas and had to finish high school and have been a
true to me ever since.

To the Maintenance Team led by Jackie, to Sam, to Khandys and to the FGAMP
program because you all helped me to get through grad school.

I like to say thanks and much love to all of you for your parts in making me who I
am and helping me survive for this long.

Last, but never the least I dedicate this to Elisa Jonte. If I had never met you I’m
pretty sure I would have never made it out of undergrad. I don’t think you know
how many times I was ready to call it quits, but seeing and talking with you all the
time is what helped me to walk on through. You’ve played the biggest part in
making me a man since I left my home eight years ago. You will always have my
love and respect. Thank you.

 i

ACKNOWLEDGEMENTS

I’d like to acknowledge Dr. Lois Hawkes. She was my major professor and kept
on me, ensuring me I would finish this project, this semester! Also, I’d like to
acknowledge Dr. Mike Burmester and Jeff Bauer as my committee members and
for providing me the skills needed to execute this project as I am a newbie to
computer related security and Unix based systems. Finally, I’d like to
acknowledge the Department of Defense Information Assurance Scholarship
Program for providing me with funding this past year.

 ii

Table of Contents

Table of Figures... i
Table of Tables ... iii
Abstract ..iv

1.0 Introduction ... 1

1.1 Plan of Investigation ..2
1.2 TCT Background ...3

1.2.1 Grave-Robber ...3
1.2.2 The C Tools ..4
1.2.3 Unrm and Lazarus ..5
1.2.4 Mactime ..5
1.2.5 TCT Run Times and Results...5

1.3 Project Purpose...6
1.4 The Architecture ..7
1.5 Section Overview ..10

2.0 Attack Scenario.. 10
2.0.1 Scenario Explained...11
2.0.2 Project Assumptions ...11

2.1 GRcompare Script...12
2.1.1 Demonstration of GRcompare ..12

2.2 DELread Script ..19
2.3 MACread script..23
2.4 UNRMread script...26
2.5 Simple-MySQL ..34

2.5.1 Running Simple-MySQL ...35
2.5.2 Creating a Database...37
2.5.3 Creating the Database Tables ..38
2.5.4 Showing Tables ..39
2.5.5 Showing Columns...40
2.5.6 Inserting a Record ..41
2.5.7 Showing Records..43
2.5.8 Exiting Simple-MySQL..44

3.0 Project Scripts’ Run Times & Results................................ 44
4.0 Conclusion .. 46
REFERENCES ... 48
APPENDIX A - Full procedure .. 49
APPENDIX B - Examining DELread’s results 54
APPENDIX C - Examining MACread’s results.............................. 69

APPENDIX D - Examining UNRMread’s results 76
APPENDIX E - MySQLcc reinforcement....................................... 80
APPENDIX F - Project Scripts .. 84

 ii

Table of Figures

Figure 1: Overall data flow... 8
Figure 2: Data filtration steps.. 9
Figure 3: Database data... 10
Figure 4: Initial image of root’s home directory................................ 13
Figure 5: Grave-robber results ... 13
Figure 6: Running GRcompare... 14
Figure 7: GRcompare directory .. 15
Figure 8: GRcompare results .. 16
Figure 9: Missing.txt format .. 17
Figure 10: Missing .shosts file .. 18
Figure 11: Example ssh-knownhosts file .. 18
Figure 12: Running DELread.. 20
Figure 13: DELread results... 21
Figure 14: Example _keyword.txt file.. 22
Figure 15: Example inode.txt file .. 22
Figure 16: Running MACread... 24
Figure 17: Results from MACread .. 25
Figure 19: Example keyword.txt files created by MACread.............. 26
Figure 20: Running UNRMread.. 28
Figure 21: Results from running UNRMread on single unrm file 28
Figure 22: Results from running UNRMread on lazarus files 29
Figure 23: example result from keyword ‘bob’ on single file............. 30
Figure 24: example result from keyword ‘bob’ on lazarus files......... 30
Figure 25: Example result from keyword ‘Feb’ on single file 31
Figure 26: Example result from keyword ‘Feb’ on lazarus files 31
Figure 27: Example result from keyword ‘user=’ on single file 32
Figure 28: Example result from keyword ‘user=’ on lazurus files 32
Figure 29: Example result from keyword ‘nc-1.10’ on single file 33
Figure 30: Example result from keyword ‘nc-1.10’ on lazurus files . 33
Figure 31: User kills ssh after being compromised........................... 34
Figure 32: Running Simple-MySQL.. 36
Figure 33: Creating a database.. 37
Figure 34: Creating the Tables ... 38
Figure 35: Showing tables .. 39
Figure 36: Column descriptions of a table .. 40
Figure 37: Example record file (form) ... 41
Figure 38: Inserting a record .. 42
Figure 39: Showing records.. 43

Figure 40: Exiting Simple-MySQL .. 44
Figure 41: DEL-keyword.txt file used for DELread 54
Figure 42: COMMAND= keyword.txt file... 55
Figure 43: Hostbased keyword.txt file .. 56
Figure 44: Hostbased keyword.txt file part 2 57
Figure 45: Inode.txt file for the hostbased keyword.......................... 57
Figure 46: Password keyword.txt file part 1...................................... 58
Figure 47: Password keyword.txt file part 2...................................... 59
Figure 48: rhost= keyword.txt file .. 59
Figure 49: uid= keyord.txt file part 1 ... 60
Figure 50: uid= keyord.txt file part 2 ... 61
Figure 52: RH-DELETED contents part 2... 63
Figure 53: RH-DELETED contents part 3... 64
Figure 54: RH-DELETED contents part 4... 65
Figure 55: RH-DELETED contents part 5... 66
Figure 56: RH-DELETED contents part 6... 67
Figure 57: RH-DELETED contents part 7... 68
Figure 58: MAC-keyword.txt file used with MACread 69
Figure 59: Bash keyword results .. 69
Figure 60: ..c keyword results.. 70
Figure 61: Mail keyword results.. 71
Figure 62: m.c keyword results part 1 .. 72
Figure 63: m.c keyword results part 2 .. 73
Figure 64: m.c keyword results part 3 .. 74
Figure 65: sbin keyword results.. 75
Figure 66: DEL-keyword.txt used with UNRMread........................... 76
Figure 67: example result from keyword ‘bob’ on lazarus files part 277
Figure 68: example result from keyword ‘bob’ on lazarus files part 377
Figure 69: Example result from keyword ‘COMMAND=’ on lazarus
files ... 78
Figure 70: Example result from keyword ‘Feb’ on single unrm file ... 78
Figure 71: Example result from keyword ‘Feb’ on lazarus files 79
Figure 72: Setup before Simple-MySQL is executed 80
Figure 73: Creating a database – MySQLcc view 81
Figure 74: Showing tables – MySQLcc view 81
Figure 75: Column descriptions of a table – MySQLcc view 82
Figure 76: Inserting a record – MySQL view 83
Figure 77: Viewing records – MySQL view....................................... 83

 ii

Table of Tables

Table 1: dd image sizes and creation times 5
Table 2: Data size returned by tool... 6
Table 3: TCT run times... 6
Table 4: Run time for project scripts... 44
Table 5: File reduction analysis .. 45
Table 6: Data size reduction analysis... 46

 iii

Abstract

The main focus of this project was to provide tools to assist home users
and small company system administrators with an inexpensive way to do basic
analysis and storage of computer forensics data gathered via The Coroner’s
Toolkit. Not in any way did this project attempt to provide methods of data
gathering and/or analysis aimed towards gathering ‘legal’ evidence that could be
presented in a court of law. Most home users and small companies don’t have
the time or finances to raise lawsuit wars on anybody, but do need to find out
what has been done on their network.

Four of the five shell scripts produced from this project serve as the main
information filtering tools. They are GRcompare, DELread, MACread and
UNRMread and are written to specifically filter through the raw data collected by
The Coroner’s Toolkit. The fifth script Simple-MySQL provides a simple interface
that connects to a MySQL database and allows for the creation of databases,
tables and other functions.
All project scripts are written to utilize the Bourne shell, are modifiable and can
be run on any Unix based system (this statement assumes the user has the
basic shell commands in their path i.e. ls, grep, diff…).

 iv

 1.0 Introduction

 In today’s technological society, it is not unusual for home based
networks, small office networks much less huge corporation and university
networks to be attacked by someone trying to gain access or control of their
system. Sure Intrusion Detection Systems (IDS) and firewalls can detect/prevent
many attempts of system or network infiltration, but once one’s system or
network is compromised there is not much an IDS or firewall can do. So what can
be done?

Unlike the big corporations or universities, most home users and small
office “mom and pop” companies do not have the financial clout to hire a
professional or computer forensic specialist to analyze their computers once
compromised much less take legal action against the culprit who compromised
them. However, there are open source and free forensics toolkits that can be
utilized by the home user and the system administrator of these small companies
for the purpose of collecting any possible evidence left by the attacker, computer
by computer. Major benefits of using one of these toolkits are: becoming more
aware of your network/system and being able to prevent future attempts of
similar compromises.
 One such toolkit is The Coroner’s Toolkit (TCT). “TCT is a collection of
programs by Dan Farmer and Wietse Venema for a post-mortem analysis of a
UNIX system after break-in.”(1) The tools that come in TCT are used for the
purpose of collecting data not for doing any analysis on the data once gathered.
Any analytical methods or techniques used on the data provided by TCT are
strictly up to the person(s) doing the analysis. Therefore, the methods used
during the process of this project may or may not be used by someone else, but
are offered as a starting point for information filtering.
 There are four sets of tools that are packaged in TCT:(2)

• grave-robber
• the C tools (pcat, ils, icat, file)
• unrm and lazarus
• mactime

The grave-robber tool captures various types of data quickly via order of
volatility (this order is given in the Section 1.2.1 Grave-Robber) and creates MD5
hashes of the evidence to preserve its integrity. The optimum way to run grave-
robber is to collect the volatile data on a live system, shut down the system,
image the drive, and then use grave-robber's -f option against a copy of the file
systems. However, due to time constraints on this project grave-robber will only
be run on an image of the compromised drives as discussed in Section 1.1 Plan
of Investigation.
 The C tools set of tools record and analyze processes and inode data.
They are run by grave-robber for most circumstances, but can be run manually
and individually if there is a need to. Running some of these tools (i.e. pcat)

 1

requires grave-robber to be run on a live system, while other tools (i.e. ils and
icat) can be run on the drive image.
 The unrm and lazarus set of tools recover and analyze the unallocated
disk blocks on a file system. Unrm collects information in unallocated portions of
the file system. Lazarus analyzes raw data from unrm and attempts to classify
what type of data it contains.
 The mactime tool helps create a chronological timeline of when files have
been Modified, Accessed, or Created (MAC) for each inode, along with their
associated filenames.
 It is the purpose of this project to create an aggregate database used for
the storage of critical data gathered by TCT from multiple compromised
computers. Therefore, this paper will present a method for collecting data via
TCT, filtering critical data via shell scripts (we have written and provide for public
use) and long-term storage of that data, which can be applied by the home user
or system administrator.

1.1 Plan of Investigation

In this project, the two compromised computers’ images were first stored on
the Intermediate Storage Box (ISB). This was accomplished by first, using the
unix ‘dd’ command to take a bit by bit image of each computer’s hard-drive. The
images were directly exported from the computers to the ISB via a USB
connection. TCT’s tools were then run on each of the individual images. The
data was arranged using the default scheme TCT uses to organize data. Various
analytical methods were used to compare each computer’s data to a baseline
computer configuration as a first step towards erroneous information filtering.
Data that could not be directly compared to the baseline went through a pseudo-
manual information filtering process using our shell scripts to further separate
non-useful data from critical data whose results could further be used to reduce
the gross amount of critical data to be analyzed and sent to the Database Box
(DBB).

Once the critical data was filtered from each computer’s set of data, it was
exported from the ISB to the DBB via a USB connection. The critical data was
then stored into a single database. The data was further organized into a series
of incident specific tables (i.e. backdoors, altered files, etc.).

The independent variables for this project were the analysis techniques used
to filter data, the construction methodology of the database and the export
method used to transfer data between storage locations.

The dependent variables for this project were the critical data stored in the
DBB, the amount of data that can be stored in the ISB and DBB and the number
of compromised computers that can be analyzed at one time.

 2

1.2 TCT Background

 The Coroner’s Toolkit is free for use by the public and runs on Unix based
systems. It is a collection of tools written in the C and perl programming
languages. These tools are used primarily for the purpose of data gathering not
for doing data analysis. As the authors Dan Farmer and Wietse Venema state
when describing the tools, “If there was a theme it'd be an effort towards the
reconstruction of the past - determining as much as possible what happened with
a static snapshot of a system.”(3)

There are four sets of tools that are package in TCT:(2)

• grave-robber
• the C tools (pcat, ils, icat, file)
• unrm and lazarus
• mactime

Each tool will be discussed separately in the following sections. The discussions
will consist of a description of each tool, what sort of data each tool collects and
how that tool organizes the data it collects (if available). It will not discuss how
each tool is run or the options that could be run with them.

1.2.1 Grave-Robber

The grave-robber tool is the main tool in the TCT. However, it is not really
a tool itself. It’s more tool-caller so to speak. It can run the set of C tools and
given a command line option it runs the mactime tool amongst the other tools it
runs by default. Its main function is to collect as much information on the system
as it can. It collects data by Order of Volatility, in order: (4)

• Memory
• Unallocated file system
• netstat, route, arp, etc.
• ps/ lsof, capture all process data
• stat & MD5 on all files, strings on directories
• Config, log, interesting files (cron, at, etc.)

Grave-robber generates two log files, coroner.log and error.log. All the

commands executed by grave-robber and when they were executed are stored in
the coroner log. All the output going to stderr is stored in the error log.

All captured data is saved in the data subdirectory. To be precise it is actually
kept in a subdirectory of the data subdirectory, the name of the subdirectory
corresponding to the name of the system and the time that the grave-robber
tool has been run. The grave-robber also creates a symbolic link -

 3

"data/hostname" - to the actual data dir. In the hostname subdirectory
there are several files and subdirectories of interest. The follow list identifies the
specific files and subdirectories grave-robber will create: (5)

• command_out
• strings_log
• body
• body.S
• coroner.log
• error.log
• deleted_files
• pcat
• conf_vault

The description of each can also be found in reference five. Finally, grave-robber
creates MD5 signatures for all of the data it collects.

1.2.2 The C Tools

Not in any order, the first C tool is pcat. Pcat copies process memory from
a live system. It hooks onto the process specified with process_id and copies the
contents of its memory to standard output. By default, pcat skips over holes in
the process address space. Consequently, absolute location information is
lost.(8)

The second C tool is ils. ils lists inode information. ils opens the named
device and lists inode information. By default, ils lists only the inodes of removed
files.(9) Icat is C tool number three and copies files by inode number. Icat opens
the named device and copies the files with the specified inode numbers to
standard output.(10) Rounding out the C tools is the file tool.
 File classifies files into various types. It tests each argument in an attempt
to classify it. There are three sets of tests, performed in this order:

First, are the file system tests. The file system tests are based on
examining the return from a stat system call. The program checks to see if the
file is empty, or if it's some sort of special file. Second, are the magic number
tests. The magic number tests are used to check for files with data in particular
fixed formats. These files have a `magic number' stored in a particular place
near the beginning of the file that tells the operating system that the file is a
binary executable, and which of several types it is. Finally, are the language
tests. The language tests look for particular strings that can appear anywhere in
the first few blocks of a file.(11)

 4

1.2.3 Unrm and Lazarus

 The tool set of unrm and lazarus are used for “bringing the dead to life” so
to speak. Unrm is a tool that collects all the unallocated space in a file system. It
basically gathers information on anything that has had space allocated to it and
then had that space freed some time in the past. Also, unrm will return the same
amount of data as the file system had unallocated space. Therefore, if a file
system has 10 gigabytes worth of unallocated space, unrm will return 10
gigabytes worth of data. The data collected by unrm is then used by lazarus to
try and restore some sensibility or recognition of the data.
 Lazarus attempts to analyze the data it receives from unrm. It can also be
run on other sources of data such as system memory and swap. Lazarus takes
the following steps when analyzing data:
 First, it reads in a chunk of data. Then it tries to determine if the data is
text or binary. If the data is text, it checks it against a set of regular expressions
in an attempt to determine what it is. If the data is binary, the file command is run
over the chunk of data. Now, if the block of data is successfully recognized it is
marked as a data or binary block and if the block immediately recognized before
it has the same mark the two blocks are concatenated. If the block is not
recognized it is only concatenated to the previous block if that block was
recognized. Finally, lazarus outputs the data blocks to a directory called “blocks”
and it creates a corresponding map to the blocks.

1.2.4 Mactime

The mactime tool is used to search through a file system or database in
order to display every file’s modified, accessed and created times (MAC times).
The tool itself does not create any directories or files to save its output, so it is
usually run on a database created by the grave-robber tool. Given a command
line option grave-robber can be made to collect all the MAC times for the file
system. It then creates and stores this data into a database. The mactime tool
can then be used to query the database for a specific time period and output any
file whose MAC times fit the search criteria.

1.2.5 TCT Run Times and Results

dd Image Sizes
Operating System Image Size (GB) Creation Time

RedHat 22 2-3 days
Mandrake 3.7 10 hours

Table 1: dd image sizes and creation times

 5

The image sizes are the same for both the baseline and compromised images.
TCT was run on these images and as shown in the following tables the results
and run times are dependent on the size of image.

TCT Results
 RedHat Mandrake

unrm 19 GB 2.5 GB
ils & icat 107 MB 0 (got corrupted)
mactime 21 MB 16 MB

Table 2: Data size returned by tool

The size of grave-robber’s result is not displayed because it is dependent on how
grave-robber is configured. The mactime results are actually the size of the
databases created by grave-robber.

TCT Run Times
 RedHat (days) Mandrake (days)

Grave-robber 1.5 5 (hrs)
ils & icat 1.5 ----

unrm + lazarus 3 + Stopped after 3 days .33 + 3 = 3.33

Table 3: TCT run times

The mactime run times are not presented because the mactime database was
actually created during the execution of grave-robber as stated above. Due to
time constraints lazarus was not run on the unrm file for the RedHat box.

1.3 Project Purpose

 Other forensic toolkits besides TCT are available for doing data collection
and analysis. One such toolkit is the Sleuth Kit(7), which is also free and can be
used for gathering forensics data on Unix based systems. The Sleuth Kit was
based somewhat on TCT using some of its code and design. Another tool,
Encase made available by Guidance SoftWare(6) supports Windows operating
systems as well as Unix based. However, with a price tag around $2000 this tool
can be too expensive for the general public. There are many more forensics
tools and toolkits available, but for purposes of originality and cost, this project
utilizes TCT.
 After surfing the web and reading various documents, articles and
presentations on the steps to follow when attempting to do computer forensics, it

 6

was found that not one really mentioned any methods for information filtering or
long-term storage of data for future and/or further analysis or for simple
reference. Also, these documents did not make any reference to how someone
who owns more than one computer could set up a system that would allow him
or her to not only do forensics analysis on more than one computer, but also be
able to trace and store evidence from the multiple computers in an organized
fashion. It was felt that providing home users, possibly system administrators
and other users who are not professional or computer forensic specialists with a
system that would allow for both long-term storage and cross comparability
options would be very useful.

This project studied the feasibility of a collecting and storing data from a
distributed network (computers with different operating systems) gathered by The
Coroner’s Toolkit into a single aggregate database for future analysis or
reference. The Coroner’s Toolkit was used to gather data from the ‘dd’ images of
two compromised computers. A 250GB external hard drive was used as the
Intermediate Storage Box in order to store the ‘dd’ images of the compromised
computers along with an image of the baseline configuration of a the computers
before compromise. Another 250GB external hard drive was used as the
Database Box to hold a database for which all critical data exported from
Intermediate Storage Box would be stored.

This project produced four shell scripts GRcompare, DELread, MACread
and UNRMread that served as the main information filtering tools. This project
also produced the Simple-MySQL shell script that functioned as an interactive
menu that allowed for database and table creation, record insertion and other
functions. These scripts are discussed in Section 2 - Attack Scenario. The first
four shell scripts were written to filter the information collected by one of the TCT
tools and can be modified by the user if desired. The last shell script was written
to organize and place the information returned from the other four scripts into a
MySQL database and can also be modified by the user.
 This project had four objectives:

• To collect data from multiple compromised computers and store it
directly on the ISB.

• To apply information filtering techniques to determine what critical
data needed to be exported to the DBB.

• To store the critical data from each computer into a single database
for possible future analysis or reference.

• To determine that evidence of the compromise could be traced to the
DBB.

1.4 The Architecture

 The minimum requirements for this project are listed as:

 7

• 2 computers or dd images of 2 computers before and after being
compromised

• 1 Intermediate Storage Box (ISB) used to store the data gathered
from TCT

• 1 Main Database Box (DBB) used to store only the critical data
extracted from the main ISB

• The Coroner’s Toolkit

Figure 1: Overall data flow

The overall data flow figure above depicts the path the data gathered from the
compromised computers (also called compromised boxes, hence CB) will take in
order to be stored in the database located in the DBB.

Where:

 Step 1 Represents the use of the Unix dd command to image the hard-

drives or individual file systems from each of the CBs where these
images will be sent directly to the ISB via a USB link and analyzed.

 Step 2 Shows that only the critical data filtered out of the total data
collected from the CBs will be sent to the DBB for storage in the
database, also via a USB link.

 8

 Figure 2 below shows a general idea of the steps taken to filter out the
critical data from the masses. Data recognition and correspondence would first
be done in the ISB in order to find any differences between the results of the
Toolkit and the baseline.

Figure 2: Data filtration steps

Where:

Step 1 Represents all the data being stored in the ISB after TCT has been
run on the dd images.

Step 2 Indicates that a baseline of the original system configuration is also
stored on the ISB. The baseline was gathered from running TCT
(except for the urnm and lazarus tool) on a computer “out of the
box”.

Step 3 Implies that information filtering techniques will be applied
inside the ISB. The techniques used to filter the critical data can be
as simple as using the Unix command ‘diff’ or as complicated as
doing manual filtering.

Step 4 Finally presents the critical data collected from the filtration process
being sent from the ISB to the DBB for storage in the database.

 Instead of using multiple databases for storing the data gathered by each
tool individually, it was felt that using one database to store all the data would
further simplify the entire process for the user. By using multiple tables, the
retrieving performance of the database should not be hampered too much. Also,
for data that inherently cannot be placed in a database, the database will hold the

 9

location value for that data instead. Figure 3 shows the general type of data that
will be stored in the database.

Figure 3: Database data

1.5 Section Overview

 This paper consists of five sections. The first section has just been
presented and consisted of an introduction, plan of investigation, some
background information, project purpose and the general architecture this project
will utilize. Section 2 – Attack Scenario, will present the attack scenario that lead
to the network compromise, project assumptions and a discussion of each script
specifically written to aid in the information filtering process or database setup.
Section 3 – Project Scripts’ Run Times & Results, will display tables that hold
information pertaining to the time it took to run the Project Scripts, the sizes of
the initial raw data collected by TCT and the size of data produced by the Project
Scripts for analysis. Section 4 –Conclusion, will deliver measurable results from
the Project Scripts, closing remarks with a brief restatement of the results of the
project. Section 5 – Appendix, will hold all everything from the Procedure to the
Project Scripts intermediate results to example keyword files.

2.0 Attack Scenario

 In order to test and demonstrate the shell scripts written for purposes of
filtering the information collected by TCT an attack scenario was implanted. Due
to time and policy constraints placed on this project an actual hack into the
network was not performed. Instead ideas from some attacks described in some
web-based documents were performed in a simplified manner. The scenario
with assumptions is discussed below. Also, the most readily available operating
systems for this project were RedHat 9 Linux and Mandrake 9.2 Linux and
therefore were the only ones tested on.

 10

2.0.1 Scenario Explained

Attacker gains access to the RedHat 9 Linux box by some unknown method.
The Redhat box is the only box on the local network that has an internet
connection. The Redhat box’s specifications are as follows:

• Network name little.box.com
• 22 Gigabyte hard drive
• Kernel 2.4.20-8
• 2.66 GHz processor
• Pentium 4
• 1 Gigabyte physical memory
• eth0 address 192.xxx.xxx.xxx connected to internet
• eth1 address 192.168.123.3 connected to local Mandrake Linux box

Attacker compromises Mandrake 9.2 Linux box via RedHat box local network
connection. Specifications for the Mandrake box are:

• Network name boss.box.com
• 3.7 Gigabyte hard drive
• Kernel 2.4.22-10mdk
• 400 MHz processor
• Pentium 2
• 128 Megabytes physical memory
• eth0 address 192.168.123.2 connected to local RedHat Linux box

Attacker presence was determined due to the user opening a SSH session on
the Mandrake box where information was displayed informing the user that the
last login time for that user was just over a minute prior to this session. At this
point the user killed the SSH daemon and disconnected the local network from
the internet and the investigation began.

2.0.2 Project Assumptions

• User has some ideas of how the network was compromised due to the
SSH session that lead to the acknowledgement of a compromise

• User has taken baseline image of all computers on the network (not
required for all information filtering scripts, but helpful)

• Due to sudden discovery the attacker was unable to touch the mactimes
for any or all of the files and/or directories back to original times and dates

• TCT is used as data collection method as the filtering scripts were written
in general to read the format of its output.

 11

• Attacker has not written over all data to make evidence gathering
impossible

2.1 GRcompare Script

 The intent of the GRcompare script is to recursively search and compare
two directories that hold the results from running the grave-robber tool. In
essence, due to the way the script is written a comparison can be made on any
two directories. For instance, if you have the before and after compromised
images, after mounting both images as loopbacks this script can be run on the
filesystems contained within images themselves. This is useful as it is possible
to walk through the entire system finding new files, new hidden files and files that
have been deleted or renamed. So what is the point of running the grave-robber
tool?
 If the above option is implemented there is a possibility that a plethora of
information will be returned. This result can be caused by comparing two
different partitions (i.e. Image1/etc and Image2/opt) or if an authorized user has
modified many of the files after the base image was taken, this could basically
defeat the purpose of the script. Grave-robber will return only the information it is
configured to return by the user, which can be a lot or a little. Regardless when
the GRcompare script is run on the returned data it keeps the user from having to
look at every single piece of information gathered.

It searches through the main directories for files with the same name and
recursively searches any ‘same name’ subdirectories and so on. Any file or
directory that appears in one directory, but not the other will have its name
placed in a ‘missing.txt’ file as seen in Figure 9. Therefore, if this file is empty
both main directories contain all files and subdirectories with the same name.
However, this does not mean that the contents of file A in directory 1 are the
same as file A in directory 2.

When GRcompare comes across two files with the same name it does a
comparison with the ‘cmp’ command. If the comparison fails a file ending with
‘diff_file.txt’ will be made using the actual files name as the prefix that contains
the complete contents of both files and where they differ as captured with a ‘diff’
command as seen in Figure 8.

2.1.1 Demonstration of GRcompare

Figure 4 below is of the directory where the result of running GRcompare
will be stored. This location can be manually changed inside the script if the user
wants to store results somewhere else.

 12

Figure 4: Initial image of root’s home directory.

 In the figure above there is a directory named “RH-GRdata”. This
directory contains the results from running grave-robber on the base and
compromised images of the RedHat box as seen in Figure 5.

Figure 5: Grave-robber results

 The titles “base” and “hacked” were appended to the front of
“little.box.com” as a way to be able to identify which run is which. The grave-

 13

robber tool was run with the same options on both images and therefore created
storage locations with the same name for each image.
 GRcompare is run on the command line and requires as arguments: two
directories and the name of the operating system the image was taken from.
This is shown in Figure 6 below.

Figure 6: Running GRcompare

 As seen in the figure above, the third argument “REDHAT” is the name of
the operating system the data being compared belongs to. In actuality this third
argument could be anything and is not case sensitive. It is merely used as a way
to identify the results made from this particular run and therefore and text type
here will be accepted. Also, the output “not looking in body” and “not looking in
body.S” appear. As seen in Figure 6 these are files created by grave-robber, but
they are ignored by GRcompare.
 The reason the aforementioned files are not looked at is they are actually
Mactime databases. As stated previously in this document grave-robber can be
used to collect and store the mactimes from the images. These files contain any
newly created, accessed or modified file’s and/or executable’s name and
therefore would contain dramatically different results. Recognizing this, a
different approach is used to examine their contents and will be discussed in
Section 2.3 MACread script.
 After executing GRcompare a new directory is created. This is shown in
Figure 7.

 14

Figure 7: GRcompare directory

The new directory is named “REDHAT_GRcompare_file_dump”.
“REDHAT” is taken from the third argument of the command line execution of the
script and the “GRcompare” tells the user that this directory contains the results
from the GRcompare script. Viewing the contents of the new directory shows
various files, all of which contain the discrepancies found between the two
images as displayed in Figure 8.

 15

Figure 8: GRcompare results

The main files of interest here are the “REDHAT-missing.txt” and the
“REDHAT-root__root_RH-img__root_.ssh_known_hosts_diff_file.txt”. The other
files may contain evidence of the compromise and is up to the user to further
investigate. Also, depending on how the user configures the grave-robber tool
before running it, more or less files may be collected which contain different
evidence.
 Either way the missing.txt file should be examined first as it contains
missing file information. This means someone (probably the attacker) may have
added new files or removed previously existing ones. The format of the
missing.txt file is displayed in Figure 9.

 16

Figure 9: Missing.txt format

The missing.txt file contains the date the information was gathered on. This
allows for the GRcompare script to be executed numerous times as any new
entries will simply be appended to the bottom of this file using the date a
separator.
 The file is read as: First everything before the ‘//’ list the directory entered
as one of the command line arguments. Everything following the ‘//’ list the path
to the file that does not exist in the directory. In other words, taking the second to
last entry in the file for example. It is reporting that the file
‘/user_vault/root__root_RH-img_root_.shosts’ does not exist in the directory
/root/RH/Grdata/base_little.box.com’. This means this particular file only exists in
a subdirectory of hacked_little.box.com. This also happens to be a very
important piece of information because it means this ‘hidden’ file did not originally
exist when the user set up the initial network. The contents of this can be seen in
Figure 10.

 17

Figure 10: Missing .shosts file

 In this file we see an entry for “shady.user.org”. This entry allows any
member from shady.user.org to open an SSH session with root access to the
local user’s RedHat box. Not only does the attacker have root access to the
user’s RedHat box, but also the attacker does not need to use a password to
open an ssh session. This provides the user with key information that can be
used in some of the scripts discussed in the following sections to help further
filter out critical information.
 Looking back at Figure 10 this new information gives the user some
insight to what the “REDHAT-root__root_RH-
img__root_.ssh_known_hosts_diff_file.txt” may contain. This information is
presented in Figure 11.

Figure 11: Example ssh-knownhosts file

 The format of the diff_file.txt files is shown in the figure above. Once
again the date is the first entry in the file, followed by a statement that can be
simplified to “directory1/fileA -- is different from -- directory2/fileA”. The two files
appear side by side and the ‘>’ character is used to point out where the two files
differ. Collecting the information in this manner saves the user from have to view

 18

each file separately and having to collect and rename multiple files when moving
them for permanent storage in the DBB.

2.2 DELread Script

The DELread script is used to search the output created from the ils and
icat tools. The deleted files are recovered and written to the “RH-DELETED”
directory using the following code provided by Thomas Roessler:(2)

./ils -rf ext2fs /image/dev_hda1.img | awk -F '|' '($2=="f") {print $1}'
| while read i; do /usr/local/tct-1.07/bin/icat /image/dev_hda1.img $i
> /tmp/deleted/$i; done

This code is entered on the command line and the path to ‘icat’ is dependent on
where the user installs The Coroner’s Toolkit. Also, the ‘/tmp/deleted/’ directory
has to be created before this code is executed and can be called whatever the
user wants to call it. As stated previously, for this project deleted files were
recovered and stored to in a directory named “RH-DELETED”.
 The recovered files can be in any format such as: English text, ASCII text,
data, ELF, pictures, gz, etc. and are giving numbers as file names (see Appendix
B). Recognizing this and meeting the requirement to filter extraneous
information, DELread is written to only read the ‘text’ files, data files and ELF
files. Applying the search to only these file formats combined with the use of
keywords decreased the total amount of information the user had to look through
from 3360 files to 210 files (the user doesn’t actually have to look through 210
files either, only the keyword files created from the 210 files that contained
matches) and from 102MB to 3MB (actually less than 3Mb because much of the
information is redundant based on the keywords used) for this project. The user
can also choose whether or not to view the other information.

DELread basically is a keyword search script. It requires as arguments:
the directory that contains the recovered files, a keyword file named “DEL-
keyword.txt” and the name of the operating system as shown in Figure 12. The
DEL-keyword.txt file used for DELread can be found in Appendix B as Figure 41.
As with GRcompare a new directory is created taking the name of the operating
system and the script as identifiers. The DEL-keyword file is the where the user
places the keywords used to extract information from the recovered files.

 19

Figure 12: Running DELread

 The ‘@’ character is used as the comment character in the DEL-keyword
file. The user can add new entries to this file with the restriction that only one
keyword be placed on each line. The user can delete entries from the file or as
just stated place the ‘@’ character immediately in front of a keyword (i.e. @ssh)
so when DELread comes across this entry it will be ignored and not used as a
search keyword. Due to the way the script is written the user can repeatedly
search the recovered files for new information based on information gathered
from previous searches.
 The contents of the “REDHAT_DELread_file_dump” directory are listed in
Figure 13 below.

 20

Figure 13: DELread results

As DELread walks through the RH-DELETED directory whose complete contents
can be viewed in Appendix B, it takes a keyword from DEL-read.txt and if and
searches a file for matches. If the keyword is not found within the file then the
next keyword in the DEL-read file is used to check for matches in the file. If none
of the keywords happen to be found in the file then no information for that file is
written to the new directory and the next file is searched for all the keywords and
so on. This feature automatically filters out any file that does not contain
information the user is looking for.
 When a keyword is matched in a file, the file is copied to the new directory
and the operating system’s name is appended to the front of the file number (i.e.
REDHAT-1007645). Also, two files are created using the operating system’s
name and the matched keyword as file identifiers. The files made for the
matched keyword end with extensions ‘_keyword.txt’ and ‘_inode.txt’ whose
formats appear in Figures 14 and 15. In addition, if the same keyword is found in
multiple files, the new files are copied over and the matching lines are appended
to the already existing keyword’s keyword.txt file while the new files number is
added to the keyword’s inode.txt file.

 21

Figure 14: Example _keyword.txt file

This example file shows that the keyword being search for was “USER=”
and it was matched in three separate files. The matching lines of all files were
copied to a central file for the user’s benefit. Also, this example figure just
happens to present new evidence of the compromise and presents possible new
keywords such as sudo, bossy and rpg that can be used in future searches as
the owner of this network did not originally have such users or use the sudo
command.
 Accompanying the keyword.txt file is the inode.txt file that lists the files in
which the keywords found matches.

Figure 15: Example inode.txt file

The inode.txt example file above simply list the files that the contain entries in the
keyword.txt file. This file is important because the keyword.txt file can become
very large depending on the keyword being searched for, resulting in difficulties

 22

for the user in identifying which of the recovered files contain information on a
particular keyword. Also, this listing enables the user to have the option of
viewing the entire contents of a matched file giving the user some insight on what
the file contains instead of blindly searching all the copied over files.

2.3 MACread script

The MACread script is written to search through a single file created by
redirecting the output from the mactime tool. For the purposes of this project the
command line argument for creating this file was:

./mactime –b <location of the ‘body’ file created by Grave-
Robber> [start date]-[end date] >> < filename.txt>

The ‘body’ file created by the grave-robber tool is a database file that uses the ‘|’
character as field separators which makes this file hard to read. Also, this file
contains any modified, accessed or created file time dating back to when the
system was first made operational. The body file for the RedHat box in this
project was 21Mb in size. By using the mactime tool and specifying specific start
and stop dates, a file of 64Kb in size was created and examined. Using
MACread on this file along with another keyword search file, the total amount of
information made available to the user was 16Kb.
 The MACread script takes as arguments: the name of the file the user
wants to search, the “MAC-keyword.txt” file which contains the keywords used to
search the file and the name of the operating system. The MAC-keyword.txt file
can be viewed in Appendix C as Figure 58. As the previous scripts do, MACread
also creates its own directory for result storage using the operating system and
script name arguments as identifiers. Both of these features can be seen in the
following Figure 16.

 23

 Figure 16: Running MACread

 The MAC-keyword.txt file follows the same guidelines as the DEL-
keyword.txt file. The reason the DEL-keyword.txt file is not allowed to be used as
the keyword file for MACread is because the format of the file to be searched is
different from the files DELread searches through. Keywords such as ‘m.c’ or
‘..c’ are used to find occurrences of files that have been ‘modified and created’ or
just ‘modified or created’. That does not mean that many of the keywords used
for DELread cannot be used for MACread. For instance, the user could place
‘ssh’ and ‘Feb’ in either keyword file, but would not place USER=, COMMAND=
or hostbased keyword in the MAC-keyword file as these words more then likely
will not have occurrences in the file containing mactimes. Therefore, the use of
two uniquely named files saves the user from having to continuously comment
out, delete and read all the keywords that would not be suitable for searches in
one instance, but valid for another. With this pointed out, the contents stored in
the MACread file dump directory can be seen in Figure 17.

 24

Figure 17: Results from MACread

 Many of the keyword.txt files created contain redundant information, this is
unavoidable because the information gathered depends on the keywords used.
Therefore a file named “REDHAT-UNIQ_MAC_ENTRIES.txt” is created to hold
all the unique information collected from all the keyword.txt files created by
MACread. This gives the user the option to search a given keyword’s file for
clues or search all the results at once for evidence. It’s important to understand
that these results can only tell the user that something has been modified,
accessed or created. The results will not show how something was modified,
what was being done while being accessed or the contents of the creation. The
format of the keyword file is displayed in Figure 19.

 25

Figure 19: Example keyword.txt files created by MACread

 The above figure actually presents information from three different
keyword.txt files created by MACread. The first of these example files inform the
user that the sshd_config file has not only been modified, accessed and created,
but its ownership has been shared between user root and user bossy. The
second file informs the user that new users are present in bossy, bob and rpg
and also possible modifications have been made to the /etc/profile file and root’s
.bash_profile file. The third file shows the backups left from the creation of a
.shosts file in root’s home directory. Further findings made by MACread can be
found in Appendix C.

2.4 UNRMread script

The UNRMread script is used to search either the single file created as
output from the unrm tool or however many files are created when the lazarus
tool is run on the output from unrm. The unrm tool is the most time-consuming
tool in The Coroner’s Toolkit. As explained earlier, the size of unrm’s output is

 26

dependent on the amount of unallocated space left on the user’s hard drive,
which can easily result in gigabytes of data being returned. Given this fact, it can
take lazarus hours, days or weeks to completely run on unrm’s output. If lazarus
can be run on the data in a reasonable time frame as decided by the user it
creates a directory where it stores its recovered files.

Understanding this UNRMread is written to be able to accept as
arguments: either a directory or a single file to search through the “DEL-
keyword.txt” file and the name of the operating system. The DEL-keyword.txt file
can be found in Appendix D as Figure 66. The reason the DEL-keyword.txt file
can be used with UNRMread as well as DELread is because the format of the
output created by unrm is simply one huge data file that contains a variety of
formats including text. Running lazarus on unrm’s output clears up much of the
garbage and creates a directory similar to that of the “RH-DELETED”. If
UNRMread is run on the unrm file, the resulting keyword files will contain much
garbage caused by the matching of contents in executable, sound and archive
files. This is unavoidable if the user cannot afford the time it takes to run lazarus
on the unrm data file. Either way all the files can be forced read as text files and
searched for any keywords.

In this project the unrm result was a 2.5 Gigabyte (GB) data file for the
Mandrake box. Running UNRMread on this file decreased the total amount of
information the user would have to search through to 38 Megabytes (MB).
Lazarus was also run on the unrm data file and it created a total of 95364
individual files that also totaled 2.5 GB of data. Because lazarus already sorts
and classifies the information it produces, UNRMread is able to filter out the
majority of files that cause garbage to appear in the files the user searches
through. Running UNRMread on the lazarus files decreased the amount of files
considered to contain valuable information to 2847 and the total amount of data
the user would have to search through to 8.5 MB.

 Again, UNRMread also creates its own directory for result storage using
the operating system and script name arguments as identifiers. These features
can be seen in the following Figure 20. The following discussion of UNRMread
will not discuss the file format of its results because the format is the same as for
DELread. The discussion will focus more on showing that whichever method
UNRMread is run under the same results will be found. The DEL-keyword
search file this time included a few more keywords based on the results found
from running the previous scripts on the RedHat box. This file can be seen in
Appendix D.

 27

Figure 20: Running UNRMread

Figures 21 and 22 show the contents stored in the file dump directories for
both execution methods of UNRMread.

Figure 21: Results from running UNRMread on single unrm file

The only results from executing UNRMread on entire unrm data file are

the keyword files created from being matched somewhere in the data file. No
other information is needed since al the results come from the same file and
being that the file will be gigabytes in size, copying the original file to another
location serves no purpose.

 28

Figure 22: Results from running UNRMread on lazarus files

 Unlike running UNRMread on a single file as done above, if the option to
run it on the results of lazarus is chosen the contents of the directory will look like
that of the DELread file dump directory (Since many more files are copied over to
the UNRMread file dump directory the figure above only contains the keyword
and block list files created by unrm). Even though it may look like the results
from the lazarus run contains much more information, the actual size of the
keyword files for this run totals 8.5 MB as compared to the 38 MB created from
keyword files from the single unrm file. This means that approximately 30 MB of
garbage is contained in the keyword files from the single unrm file. Even so, the
same information can be found all the examples below will show.

 29

Figure 23: example result from keyword ‘bob’ on single file

Figure 24: example result from keyword ‘bob’ on lazarus files

The above figures came from the keyword bob. Figure 23 shows new
groups named kop and gog being created and also shows that bob’s group
identification (GID) was temporarily changed to that of the root group before the
user was removed.

Figure 24 taken from the lazarus file run also reports the new group kop
being created. As for the other group gog and the changing of bob’s GID, these
results can be found in Appendix D in Figures 67 and 68. This information was

 30

actually stored in different files and was not actually stored next to each other as
it appears in the figure given for the single file results.

Figure 25: Example result from keyword ‘Feb’ on single file

Figure 26: Example result from keyword ‘Feb’ on lazarus files

 Some of the garbage in Figure 25 can be seen on the right border of the
terminal window. However, this figure shows attempts to log into SSH on the
Mandrake box from user rpg from ‘little.box.com’, which happens to be the

 31

RedHat box. This same information is found in Figure 26 from the lazarus run
and there is no garbage for the user to read through.

Figure 27: Example result from keyword ‘user=’ on single file

Figure 28: Example result from keyword ‘user=’ on lazurus files

These figures not only report a successful nfs mount request from
little.box.com to mount the root ‘/’ partition of the Mandrake box, they go further
to show the netcat rpm ‘nc-1.10-18’ being installed. Also, notice in Figure 27 all
the information displayed appears to be clumped together. However, Figure 28
actually shows the sections starting with “(if (not….))” and “[--with…]” are found
in different files.

 32

Figure 29: Example result from keyword ‘nc-1.10’ on single file

Figure 30: Example result from keyword ‘nc-1.10’ on lazurus files

Just like previous two figures, Figures 29 and 30 show the successful nfs
mount request from little.box.com to mount the root ‘/’ partition of the Mandrake
box and the successful installation of netcat on Mandrake. However, these two
figures also show the point at which the user killed all SSH sessions feeling the
network had been compromised. The figure below actually displays the
infiltrator’s and user’s interaction with ssh.

 33

Figure 31: User kills ssh after being compromised

The highlighted section in the above figure shows the user logging into SSH.
Upon logging into ssh the message informing the user of the last time SSH was
log into with the root account was display, which happened to be approximately
one minute before the user actually logged in. At this point the user kills the ssh
daemon and begins the forensics analysis.

2.5 Simple-MySQL

The Simple-MySQL script is an interactive menu that allows the users
automatically to connect to their MySQL database and create a database to store
the evidence of the compromised network in an organized manner. The keyword
files, block files and diff files created by the previous scripts are very specific and
due to the naming structure the information contained in each file is self-evident.
However, if there is no method by which the user can quickly look up information
pertaining to a particular part of the compromise (i.e. which users were added?)
the user will continually have to open and search through each file to find the
information. Also, some of the evidence may not be found because it did not
match the exact keyword being searched (i.e. opencat was found in the mactime
database in the file REDHAT-created_MAC_keyword.txt file where the search
keyword was ‘..c’ see APPENDIX C Figure 60).

Recognizing this, the decision was made to place the evidence into a
database. A database allows for fast retrieval and allows the user to store
evidence such as illegally added new users. Thereby saving the time it would
take to search through all the files the next time the user can’t remember where
exactly that information is available.

 34

It provides the user with the options to show databases, records of a table,
create a database, create four prespecified tables, to insert records into the four
tables via a text file (form) and show the column descriptions for each table. It
requires as arguments, the name and password of the user who is allowed to
access the MySQL databases. The options to delete/update records, tables and
databases were intentionally excluded. With this sort of interface a user could
accidentally delete valued information, therefore it was decided that the user
should perform these actions via direct interaction with the database.
 These actions can be easily performed with another tool made available
by MySQL AB known as ‘MySQL Control Center’ (MySQLcc). MySQLcc is a
Graphical User Interface (GUI) that allows the user to perform all the
administrative actions on a MySQL database. So, why go through the trouble of
writing a script that only performs some predefined actions and only creates
predefined tables? For one, many, many people have trouble getting the
precompiled version of MySQLcc to work. I spent over three hours alone trying
to get it to run without it continuously given segmentation faults and closing
whenever I entered the password to login. Also, the source version takes a while
to compile and all its dependencies need to be installed first. Because the
MySQL database was installed on an external hard drive some of the
dependencies (i.e. Qt) would not compile correctly, which did not allow for the
complete installation of the source MySQLcc. Finally, the time constraint only
allowed for so much time to be spent on these issues.
 Since command line is always the way to go in these instances a script
that saves the user much time in database setup seemed natural. Eventually, I
did get MySQLcc running therefore the explanation and walkthrough of Simple-
MySQL will only deliver screen captures from the script, while screen captures
from MySQLcc will be offered in Appendix E as a visual reinforcement for the
script.

2.5.1 Running Simple-MySQL

 Simple-MySQL is run from the command line and requires the username
and password of the user allowed to connect to the database. The password
entered on the command line is the password created specifically for that user to
access MySQL. It is not the password that user uses to log onto the computer!!
Once executed the initial menu is displayed as shown in Figure 32.

 35

 Figure 32: Running Simple-MySQL

 Along with the ‘DATABASE MENU’ the above figure shows the first option
of the menu being executed. The option to show all current databases is chosen
and it shows a database named ‘mysql’ already exists. This database was
actually created during the installation of the MySQL database. With this option
completed the user presses the enter key and is allowed to chose another option.

 36

2.5.2 Creating a Database

Figure 33: Creating a database

 To create a database the user simply selects option four and presses
enter. A prompt pops up asking the user to enter the name for the new
database. After entering ‘Compromises’ as the database’s name and pressing
enter the updated list of current databases is displayed and the user presses
enter to continue on.

 37

2.5.3 Creating the Database Tables

Figure 34: Creating the Tables

 Option five at the database menu is chosen to create a new table. The
user is prompted for the database in which the table will be created. This simple
feature is set just in case the user decides to use multiple databases to store
evidence. After the database name is entered the user presses enter and the
‘TABLE MENU’ is displayed. The table menu list the four predefined tables
created as minimum storage options. The user can modify the script to add more
table structures and will simply have to add those options to the table menu.

 38

2.5.4 Showing Tables

Figure 35: Showing tables

 After the user has created all the tables deemed necessary, by selecting
the second option as shown in Figure 35 the user can see at any time what
tables are in what database. Notice here the user is also prompted for the name
of the database to display the tables for.

 39

2.5.5 Showing Columns

Figure 36: Column descriptions of a table

 By selecting option seven, the user can obtain a column description of any
table that has been created. This feature is more of a precautionary measure.
Just in case the user doesn’t look at script to see how the tables are constructed
and doesn’t look at the example record file as displayed Figure 36 in the
following section, the user will at least know what kind of information can be
entered into each table.

 40

2.5.6 Inserting a Record

Entering records into any of the tables requires the user to make a form. This
form can take the form of a simple text file with field contents being placed on
different lines.

Figure 37: Example record file (form)

 What makes the use of a file created in a text editor such as ‘emacs’ easy
for the user to utilize is its speediness and simplicity. Users can enter in field
contents line by line just as fast as they would in a GUI, but without the hassle of
dealing with the error pop-ups from entering the wrong data format. If the wrong
data format is entered into the form then the contents won’t be inserted into the
table. The user simply goes back to the form, which can be left open through the
duration of the Simple-MySQL session, makes the changes, resaves the file and
steps through the process to insert a record again.
 The file can also be reused, thereby saving the user from have to create a
new file. This also allows the user to use the same file path and do a simple
copy and paste when ask for the record’s location.
 The ‘@’ character is used as a null character and placeholder for the form.
It can only be used for the last seven lines of file as these lines correlate with the
‘Keyword_File_#’ fields of each table. The keyword file fields are the only fields
allowed to contain ‘NULL’ values and the ‘@’ character must be present for the

 41

lines where the user does not want information entered into the keyword file
fields.

Figure 38: Inserting a record

 Option six allows the user to enter a record into a table. After entering the
name of the database and choosing a table from the menu, the user is prompted
to enter the full path of the file that contains the information to be entered into the
table. The file can be named whatever the user wants to name it and if the
option to reuse the same file is taken then the user can copy the path and just
paste it every time the choose to insert a record. If the ‘Press Enter to choose
again’ line appears then the record was entered successfully.

 42

2.5.7 Showing Records

Figure 39: Showing records

 When the user wants to view the records contained in any table then
option three is chosen. As seen in the figure above two records are currently in
the BACKDOORS table (one of them being the contents found in the record file
in Figure 37). Due to the way MySQL displays its information, I had to split up its
output into three printouts. I chose to use the Computer_Name and File_Name
fields as constants so the user could still tell what information belongs to what
record entry. Users should also be aware that even though each field can
contain up to 64 characters, when the information is displayed the column titles
tend not be located directly above its contents. Therefore users should try to use
as few characters as necessary to still allow them to understand their entries.

 43

2.5.8 Exiting Simple-MySQL

Figure 40: Exiting Simple-MySQL

 To exit the Simple-MySQL script the user simply needs to choose the ‘0’
option and hit enter. The user is then returned to the command line. Also any
errors the MySQL database comes across when the user attempts one of the
options will be displayed on the screen for the user.

3.0 Project Scripts’ Run Times & Results

Project Scripts’ Run Times
 RedHat (mins) Mandrake (days)
GRcompare 3 3 (min)
DELread 10 Data was corrupted
MACread 3 ----
UNRMread
(unrm.results)

---- 1.5

UNRMread (block files) ---- 1

Table 4: Run time for project scripts

Due to time constraints UNRMread was not run on the RedHat data. To
be more specific it was stopped after three days of running. Lazarus was
stopped from running on the results of RedHat’s unrm after three days also. All
times are dependent on the amount of data presented in Table 5: below.

 44

File Reduction
 Number of

files before
filtering

with scripts
(A)

Number of
files after
filtering

with scripts
(B)

Number of files
created by

scripts for user
analysis

(C)

Percent
decrease in
number of

files
 (D)

GRcompare >2 >2 2 --
DELread
(RH)

3359 210 13 99.61

MACread (RH) 1 -- 10 --
UNRMread
(MAN unrm
single file)

1 -- 10 --

UNRMread
(MAN lazarus
blocks)

95364 2847 10 99.99

 Table 5: File reduction analysis

 Column A in the table above refers to the total amount of files created by
TCT. Since the inode files were corrupted for the Mandrake (MAN) box DELread
was not executed on this result. Column B shows the number of original files
that contained matches to the keywords. Column C delivers the actual number
of files the user has to analyze for evidence. Column D reports the percent
decrease in number of files the user has to analyze.

Where
• D = 100 - 100(C/A)

Data Reduction
 Amount of

total data
before script
filtration (MB)

(A)

Amount of
total data after
script filtration

(MB)
(B)

Amount of
actual data

for user
analysis (MB)

(C)

Percent
decrease
in data

size
(D)

GRcompare -- -- -- --
DELread (RH) 102 29 3.2 96.86
MACread (RH) 64KB 16KB 16KB 75.00

UNRMread
(MAN single

file)

2500 38 38 98.48

UNRMread
(MAN lazarus

blocks)

2500 138 8.5 99.66

 45

Table 6: Data size reduction analysis

The data reduction table holds the same description as that for the file reduction
table.

4.0 Conclusion

Anyone who attempts to do computer forensics analysis can expect to spend
a considerable amount of time just gathering the raw data needed for analysis.
Even after the data has been collected, if the persons attempting to analyze the
data do not have a method for which to do analysis they can waste many hours,
days or even weeks trying to come up with a way to find the information they are
searching for. Also, if they just plan to create random files containing the
information they searched for (which can get very unorganized, very fast) a
substantial loss of valuable time can occur due to the researching of all those
files to find some specific incident. This project had four objectives to assist this
process.
 The first objective was to collect data from multiple compromised
computers and store it directly on the Intermediate Storage Box. This objective
was successfully completed via the USB connections. The dd images were
transferred to the ISB without any need to store the images temporarily on the
computers that were compromised.
 The second objective was to apply information filtering techniques to
determine what critical data needed to be exported to the DBB. This objective
was also achieved completely. Deciding to write scripts that could take to output
from The Coroner’s Toolkit and thoroughly search it for user defined keyword
proved extremely critical for filtering out the critical data.

• DELread reduced the amount of important files from 3359 to 13 (99.61%
reduction) and the amount of data for analysis from 102 to 3.2 Megabytes
(96.86% reduction)

• UNRMread when used on lazarus output reduced the amount of
important files from 95364 to 10 (99.99% reduction) and the amount of
data for analysis from 2500 to 8.5 Megabytes (99.66% reduction)

• UNRMread when used on unrm output reduced the amount of data for
analysis from 2500 to 38 Megabytes (98.48% reduction)

• MACread reduced the amount of data for analysis from 64 to 16 Kilobytes
(75% reduction)

The third objective was to store the critical data from each computer into a

single database for possible future analysis or reference. Again, successfully
completed. Simple-MySQL allowed for the creation of a database and tables for
the storage of user specified evidence.

 46

 The ability to store user specific evidence satisfies the forth objective of
tracing evidence of the compromises to the DBB. Thus bringing a successful end
to this project.

 47

REFERENCES

1) http://www.porcupine.org/forensics/tct.html
2) http://www.securityfocus.com/infocus/1503
3) TCT README.FIRST
4) http://www.fish.com/forensics/freezing.pdf
5) Italics from graver-robber.README
6) http://www.guidancesoftware.com/products/EnCaseForensic/index.shtm
7) http://www.sleuthkit.org/sleuthkit/download.php
8)pcat man page
9) Ils man page
10) Icat man page
11) file man page

 48

http://www.porcupine.org/forensics/tct.html
http://www.securityfocus.com/infocus/1503
http://www.fish.com/forensics/freezing.pdf
http://www.guidancesoftware.com/products/EnCaseForensic/index.shtm
http://www.sleuthkit.org/sleuthkit/download.php

APPENDIX A - Full procedure

This appendix provides the full procedure used to set up and execute this project
(except for the parts demonstrated in the paper i.e. Simple-MySQL)

ISB – Intermediate Storage Box
DBB – Database Box
RH – RedHat
MAN – Mandrake
TCT – The Coroner’s Toolkit
OS – operating system
All the instructions containing the ‘mount and umount’ commands assume the
user is in the parent directory of the directory being mounted and unmounted.

Setting up the external hard drives ISB & DBB

1. Connect the USB jacks into the USB ports on the Linux box
2. Connections were recognized as /dev/sda and /dev/sdb on my box
3. Enter ‘fdisk /dev/sda’ on the command line
4. At the prompt enter ‘m’ to view the list of options
5. At the prompt enter ‘n’ to add a new partition
6. At the prompt enter ‘p’ to make a primary partition
7. At the ‘First cylinder’ prompt press enter to accept the default start point
8. At the ‘Last cylinder’ prompt enter ‘+155000M’ (155GB)
9. Back at the main prompt enter ‘t’ to change the system partition system id
10. At the ‘partition number’ prompt enter ‘1’
11. At the ‘Hex code’ prompt enter ‘83’ for a general ‘ext2’ Linux id
12. Repeat steps 5-11 for however many partitions are to be created.

Remember to change the cylinder sizes, partition numbers, and system id
numbers to fit the sizes and operating systems are being worked with.

13. Once satisfied with all the partitions to be created enter ‘w’ at the main
prompt to write the table to the disk and exit fdisk.

14. On the command line enter ‘mkfs.ext2 /dev/sda#’ for each # partition (or
whatever make filesystem type fits the partitions created by the user)

Creating mount and storage directories

-- On the Linux box make the mount directories
1. On the command line enter ‘mkdir RH’
2. On the command line enter ‘mkdir RH-img’
3. On the command line enter ‘mkdir MAN’
4. On the command line enter ‘mkdir MAN-img’
5. On the command line enter ‘mkdir MYSQL’

Users can name these directories anything and make them wherever they
choose, but at a minimum they will need five directories to mount everything

 49

(these five are only if two computers are being analyzed, increase as the
number of computers increases).

6. Enter ‘mount /dev/sda1 /RH/’ (if this is your Redhat partition) on the

command line
7. Enter ‘mkdir RH_DD_images’ on the command line
8. Enter ‘mkdir RH_DD_hacked_images’ on the command line
9. Enter ‘mkdir RH_base_deleted’ on the command line
10. Enter ‘mkdir RH_hacked_deleted’ on the command line
11. Enter ‘mkdir RH_base_unrm’ on the command line
12. Enter ‘mkdir RH_hacked_unrm’ on the command line

The RH_base_deleted and mkdir RH_base_unrm are not really necessary
unless you want to gather this information just to have.

13. Enter ‘mount /dev/sda2 /MAN/’ (if this is your MANDRAKE partition) on

the command line
14. Repeat steps 7-12 replacing ‘RH’ with ‘MAN’
15. Enter ‘umount RH/’ on the command line
16. Enter ‘umount MAN/’ on the command line

Taking dd images

1. Connect the ISB to the RH box via the USB connector
2. On the command line enter ‘mount /dev/sda1 RH/’
3. On the command line enter ‘dd if=/dev/hda5

of=/root/RH/RH_DD_images/RH_root_image.img’ (Replace the ‘5’ in hda5
with the number of the device the root partition is assigned to)

4. On the command line enter ‘umount RH/’
5. Disconnect the USB connector from the RH box
6. Repeat steps 1-5 for the MAN box

If the ‘fdisk’ steps were performed on the RH box the user may have to enter
the fdisk program after connecting the ISB to the MAN box and write the table
to the MAN system by entering ‘w’ and pressing enter.

Installing TCT

Downloaded TCT from the official site at
http://www.porcupine.org/forensics/tct.html

1. Connect the ISB to the RH box via the USB connector
2. On the command line enter ‘mount /dev/sda1 RH/’
3. Download and store the ‘tct-1.14.tar.gz’ in the RH directory
4. Enter ‘gunzip RH/tct-1.14.tar.gz’ on the command line
5. Enter ‘tar -xvf RH/tct-1.14.tar’ on the command line

 50

http://www.porcupine.org/forensics/tct.html

6. Enter ‘cd RH/tct-1.14’ on the command line
7. Enter ‘make’ on the command line
8. Repeat steps 1-7 for the MAN box

When TCT is installed it stores the absolute paths to its scripts. This means if
the user uses a different directory to mount the ISB to, the programs won’t
work. Therefore it is just easier to install TCT on all partitions.

Running TCT

The steps used to run TCT for this project are the same as found in reference
__. Since this project did not run TCT on a live system I will extract only the
instructions used to run it on a dead system (a.k.a. an imaged drive).

1. # mount /dev/sda1 RH/ (if not already mounted)
2. # mount -o ro,loop,nodev,noexec,nosuid,noatime

RH/RH_DD_hacked_images/ RH_hacked_root_image.img RH-img/
3. # cd /RH/tct-1.14/bin
4. # ./grave-robber -c /root/RH-img -o LINUX2 –MivVt (only use LINUX2 if

working on a Linux box other OS types are available read the man pages)
5. # ./ils -rf ext2fs

/root/RH/RH_DD_hacked_images/RH_hacked_root_image.img | awk -F '|'
'($2=="f") {print $1}' |while read i; do /root/RH/tct-1.14/bin/icat
/root/RH/RH_DD_hacked_images/RH_hacked_root_image.img $i >
/root/RH/RH_hacked_deleted/$i; done

6. # ./unrm /root/RH/RH_DD_hacked_images/RH_hacked_root_image.img
> /root/RH/RH_hacked_unrm/RH_hacked_root_unrm.results

7. # ./lazarus -h /root/RH/RH_hacked_unrm/RH_hacked_root_unrm.results
8. # ./mactime –b /<path to the>/<mactime database>/body 2/03/2004-

2/06/2004 >> RH-MACS_FEB03-FEB06.txt

These steps are performed for both the baseline and compromised images
from the RH and MAN boxes with the exceptions of steps 5-7. These steps do
not have to be performed on the baseline images unless the user just wants
this information for some reason. Also, since the mactime database was
created when grave-robber was run in our case. The step 8 shows how to
create a single file with specific start and stop dates to be used by the MACread
script.

After running grave-robber on the baseline and compromised images the words
‘base’ and ‘hacked’ were appended to the otherwise both runs would create
directories with the same name but different time stamps.

For Example:
Running grave-robber on the baseline image then on the compromised image
would create-

 51

localhost.localdomain…12\:40
localhost.localdomain…16\:40

So to make this less confusing add base and hack to the directory names-

base_localhost.localdomain…12\:40
hacked_localhost.localdomain…16\:40

Now each can be identified easily.

Running the Project Scripts

Change to whatever directory is holding the scripts

1. # ./GRcompare /<path to>/base_localhost.localdomain…12\:40 /<path
to>/hacked_localhost.localdomain…16\:40 RH

2. # ./DELread /root/RH/RH_hacked_deleted/ DEL-keyword.txt RH
3. # ./MACread /<path to the file>/<created in step 8 of Running TCT>/ RH-

MACS_FEB03-FEB06.txt MAC-keyword.txt RH

UNRMread can be run in two different manners depending on the data
available. If the user only has the unrm.results file created in step 6 of Running
TCT then this command is issued

4. # ./UNRMread /root/MAN/MAN_hacked_unrm/ \

MAN_hacked_unrm/MAN_hacked_root_unrm.results DEL-keyword.txt
MAN-unrmfile

If the user was able to run and complete step 7 of Running TCT then a
directory containing a mass number of text file will be created by lazarus and
the user can run UNRMread in this fashion

4. # ./UNRMread /root/<path to directory created by lazarus>/ DEL-

keyword.txt MAN-block

Installing MySQL

Download made from www.mysql.com

1. Connect the DBB to the Linux box via the USB connector
2. On the command line enter ‘mount /dev/sda1 MYSQL/’
3. Download and store the ‘mysql-standard-4.0.18-pc-linux-i686.tar.gz’ in the

MYSQL directory

 52

http://www.mysql.com/

4. Download and store the ‘mysqlcc-0.9.3-linux-glib23.tar.gz’ in ‘/usr/local/’
5. Enter ‘gunzip MYSQL/mysql-standard-4.0.18-pc-linux-i686.tar.gz’ on the

command line
6. Enter ‘tar -xvf MYSQL/mysql-standard-4.0.18-pc-linux-i686.tar’ on the

command line
7. Enter ‘cd MYSQL’ on the command line
8. Enter ‘ln –s mysql-standard-4.0.18-pc-linux-i686 mysql’ on the command

line
9. Enter ‘cd mysql/’ on the command line
10. Follow the installation directions found in the ‘INSTALL-BINARY’ file
11. Enter ‘cd /usr/local’ on the command line
12. Enter ‘gunzip mysqlcc-0.9.3-linux-glib23.tar.gz’ on the command line
13. Enter ‘tar -xvf mysqlcc-0.9.3-linux-glib23.tar’ on the command line
14. Enter ‘ln –s mysqlcc-0.9.3-linux-glib23.tar mysqlcc’ on the command line
15. Enter ‘./mysqlcc/mysqlcc’ on the command line to start MySQLcc

 53

APPENDIX B - Examining DELread’s results

This appendix provides more evidence of the compromise gathered from the
keyword files created by DELread. It also shows the original amount of data
returned by the ils and icat tools run on the RedHat box that DELread had to filter
through.

Figure 41: DEL-keyword.txt file used for DELread

 54

Figure 42: COMMAND= keyword.txt file

Shows new users being added: rpg, bossy
Shows ssh and sudo interactions from user rpg
Shows possible editing of /etc/profile file
Shows hostbased authentication used for ssh

 55

Figure 43: Hostbased keyword.txt file

Shows hostbased authentication used with ssh
Shows new user being added: bob

 56

Figure 44: Hostbased keyword.txt file part 2

Shows hostbased authentication on ssh from IP 254.64.135.115
Shows root access from shady.user.org

Figure 45: Inode.txt file for the hostbased keyword

Shows which copied inode files contain information regarding the ‘hostbased’
keyword.

 57

Figure 46: Password keyword.txt file part 1

Shows user rpg being added and logging into local ssh.
Shows foreign IP address logging into ssh

 58

Figure 47: Password keyword.txt file part 2

Shows root user from shady.user.org logging into local box
Shows user rpg logging into local box from foreign IP

Figure 48: rhost= keyword.txt file

Shows failed attempts by new user rpg and root to log into ssh

 59

Figure 49: uid= keyord.txt file part 1

Shows new users being added: bob, rpg, bossy

 60

Figure 50: uid= keyord.txt file part 2

Same as above.

Complete contents of RH-DELETED directory used by the DELread script. This
directory contains approximately 3360 files recovered by icat and ils. Totaling
102Mb of information to be filtered through manually without the aid of DELread.

Figures 51 through 57 show the original inode files recovered by ils and icat.

 61

Figure 51: RH-DELETED contents part 1

 62

Figure 52: RH-DELETED contents part 2

 63

Figure 53: RH-DELETED contents part 3

 64

Figure 54: RH-DELETED contents part 4

 65

Figure 55: RH-DELETED contents part 5

 66

Figure 56: RH-DELETED contents part 6

 67

Figure 57: RH-DELETED contents part 7

 68

APPENDIX C - Examining MACread’s results

This appendix provides more evidence of the compromise gathered from the
keyword files created by MACread.

Figure 58: MAC-keyword.txt file used with MACread

Figure 59: Bash keyword results

 69

Shows creations of .bash_profile and .bashrc files for new users rpg, bob, and
bossy.

Figure 60: ..c keyword results

Shows creation of public key for ssh
 shady.user.org.ssh-rsa.pub
Shows creation of documents for netcat
 /usr/share/doc/nc-1.10
Shows creation of executable file netcat renamed
 /usr/bin/opencat

 70

Figure 61: Mail keyword results

Shows new mail accounts being created for users:
 bob, rpg, sdsd, bossy

 71

Figure 62: m.c keyword results part 1

Shows mail accounts being made for users:
 bob, rpg ,bossy
Shows .shosts~ and /etc/sshd_config files modification and creation
Shows rpm usage
Shows modification and creation of /etc/sudoers file

 72

Figure 63: m.c keyword results part 2

Shows modification and creation in the /usr/bin directory :
 Directory where netcat was stored

 73

Figure 64: m.c keyword results part 3

Shows modification and creation in /etc/passwd file and /etc/group
Shows modification and creation in /var/run/sudo/rpg directory

 74

Figure 65: sbin keyword results

Shows following commands /usr/sbin being accessed
 adduser
 usermod
 visudo
 showmount
 checkconfig
 service
 userdel
 groupdel
 useradd

 75

APPENDIX D - Examining UNRMread’s results

This appendix provides more evidence of the compromise gathered from the
keyword files created by UNRMread. These results are gathered from the
Mandrake box.

Figure 66: DEL-keyword.txt used with UNRMread

Some new keywords found from analyzing the files from the RedHat box were
added to the keyword file used with UNRMread.

 76

Figure 67: example result from keyword ‘bob’ on lazarus files part 2

Shows user bob’s GID being change from 503 to 0 that of the root’s group.

Figure 68: example result from keyword ‘bob’ on lazarus files part 3

Shows new user gog being added

 77

Figure 69: Example result from keyword ‘COMMAND=’ on lazarus files

Shows new user gog failing to be added via sudo

Figure 70: Example result from keyword ‘Feb’ on single unrm file

Shows nfs being restarted
Shows successful ‘/’ directory mount request from little.box.com
Shows netcat rpm installation
Shows the time at which the user killed all SSH sessions after suspecting being
compromised

 78

Figure 71: Example result from keyword ‘Feb’ on lazarus files

Shows nfs being restarted
Shows successful ‘/’ directory mount request from little.box.com
Shows netcat rpm installation
Shows the time at which the user killed all SSH sessions after suspecting being
compromised

 79

APPENDIX E - MySQLcc reinforcement

This appendix provides screen shots gathered from MySQLcc after the options
presented in Sections 2.5 – Simple-MySQL script were performed. They are
offered as visual reinforcement to the correctness of Simple-MySQL since I was
finally able to get it to work.

Figure 72: Setup before Simple-MySQL is executed

 Presents the initial database setup. The highlighted row in the left-side
panel is the account that is currently connected. As presented it should be noted
that a database named ‘mysql’ already exists. This database was actually
created during the installation of the MySQL database. The right-side panel
gives some specifications of the current connection.

 80

Figure 73: Creating a database – MySQLcc view

 As made apparent in the above figure the ‘Compromise’ database was
created and added to the database list for the user. Next the user has to create
the tables to store the evidence.

Figure 74: Showing tables – MySQLcc view

Shows that all four tables were created in the Compromises database by
the Simple-MySQL script and the MySQLcc display is a little more descriptive.

 81

Figure 75: Column descriptions of a table – MySQLcc view

 Shows the tables were constructed correctly with all predefined field
present.

 82

Figure 76: Inserting a record – MySQL view

Shows that a record was successfully entered into the BACKDOORS table.

Figure 77: Viewing records – MySQL view

Shows all fields contain the correct contents from the form read in by Simple-
MySQL.

 83

APPENDIX F - Project Scripts

This appendix provides the five project scripts GRcompare, DELread, MACread,
UNRMread and Simple-MySQL.

GRrcompare

#!/bin/sh

#This script uses code written by Ives Aerts for the purpose of doing a
#regressive directory comparison. It is used to to compare the results obtained
#from the Graver-Robber tool from the before and after images. As written this
#script will compare any two directories for files and links with the same name.
Files found in one directory, but not the other will be placed in a file
#called 'os-missing.txt', where 'os' is the operating system. Files found in
#both directories are compared using the
'diff' command and the results are written to a file consisting of the file's
#basename folled by '_diff_file.txt'.
#Author: JaRay Jasper with code from Ives Aerts

#***NOTE***

#All files are written to a directory assigned to the varible $FILE_DUMP
#located near the bottom of this script. This location can be changed by
#entering another path assignment for this varible.

Determine parameter type
function gettype () {
 if [-L $1]; then
 echo "softlink"
 elif [-f $1]; then
 echo "file"
 elif [-d $1]; then
 echo "directory"
 else
 echo "unknown"
 fi
}

Check for parameter existence and write name of arguement that does not
exist in both directories to 'os-missing.txt'
function exists () {
 if [-e $1 -o -L $1]; then
 return 0;

 84

 else
 echo "$1 does not exist " >> $FILE_DUMP/"$os"-missing.txt
 echo " " >> $FILE_DUMP/"$os"-missing.txt
 return 1;
 fi
}

Compare two files for similar content. If files differ write difference to a
difference file. I.e. if the files being compared had the name 'profile' the
file created for this would be 'os-profile_diff_file.txt'
function comparefile () {
 cmp -s $1 $2
 if [$? -gt 0]; then
 fn=$(basename "$1")
 echo "-----------------`date`---------------" >>$FILE_DUMP/"$os"-
"$fn"_diff_file.txt
 echo "$1 ---different from--- $2" >> $FILE_DUMP/"$os"-"$fn"_diff_file.txt
 diff -y $1 $2 >> $FILE_DUMP/"$os"-"$fn"_diff_file.txt
 fi

 return
}

Compare two directories for similar content, except for the MACTIME
databases
body and body.S.
function comparedirectory () {
 local result=0
 for i in `(ls -A $1 && ls -A $2) | sort | uniq`; do
 if ["$i" = "body"] || ["$i" = "body.S"]; then
 echo "not looking in $i"
 else
 if [-f "$i"]; then
 if [-e "$1/$i" && -e "$2/$i"]; then
 comparefile $1/$i $2/$i
 fi
 fi
 compare $1/$i $2/$i || result=1
 fi
 done
 return $result
}

Compare softlinks for the same pointer destination. Write differening pointers
to the file 'os-SOFTLINK_diff.txt'.

 85

function comparesoftlink () {
 local dest1=`ls -l $1 | awk '{ print $11 }'`
 local dest2=`ls -l $2 | awk '{ print $11 }'`

 if [$dest1 = $dest2]; then
 return 0
 else
 echo "different link targets $1 -> $dest1 ------- $2 -> $dest2" >>
$FILE_DUMP/"$os"-SOFTLINK_diff.txt
 return 1
 fi
}

compare a file, directory, or softlink
function compare () {
 (exists $1 && exists $2) || return 1;

 local type1=$(gettype $1)
 local type2=$(gettype $2)

 if [$type1 = $type2]; then
 case $type1 in
 file)
 comparefile $1 $2
 ;;
 directory)
 comparedirectory $1 $2
 ;;
 softlink)
 comparesoftlink $1 $2
 ;;
 *)
 echo "$1 of unknown type"
 false
 ;;
 esac
 else
 echo "type mismatch: $type1 ($1) and $type2 ($2)."
 false
 fi

 return
}

Check incoming parameters

 86

if [3 -ne $#]; then
 cat << EOU
Usage: $0 Dir1 Dir2 Operating-System
Compare directory trees:
 files are binary compared (cmp) and differences collected (diff)
 directories are checked for identical content
 soft links are checked for identical targets
Operating-System: i.e. REDHAT, Debian, etc.
EOU
 exit 10
fi

Get the name of the script being ran
if ["$0" = "./GRcompare"]; then
 sn=GRcompare
else
 sn=$(basename "$0")
fi

#Store the OS in a varible
os="$3"

Assign and Check/Create default file dumping directory
FILE_DUMP=/root/MYSQL/"$os"_"$sn"_file_dump

if [! -e $FILE_DUMP]; then
 mkdir $FILE_DUMP
fi

echo "-----------------`date`---------------" >> $FILE_DUMP/"$os"-missing.txt
compare $1 $2

Remove any 'diff.txt' files that deal with the md5's created by Grave-Robber
rm $FILE_DUMP/*md5*
rm $FILE_DUMP/*MD5*

exit $?

 87

DELread

#!/bin/sh

#This script can be used to read the output from the ils and icat
#tools. Requires a directory as the first argument and the location of the
#keyword file. As written this script will execpt any directory and only a
#keyword file named 'DEL-keyword.txt'. You can generate your own keyword list
#or make additions or comment out entries in the file 'DEL-keyword.txt'. To
#comment out lines in the keyword file, place an '@' symbol without the quotes
#as the first character on the line. Use only one keyword per line in the file.
#Author: JaRay Jasper with code from Ives Aerts

#***NOTE***

#All files are written to a directory assigned to the varible $FILE_DUMP
#located near the bottom of this script. This location can be changed by
#entering another path assignment for this varible.

Check to see if arguments passed to the directorysearch exist
function exists () {
 if [-e $1 -o -L $1]; then
 return 0;
 else
echo "$1 doesn't exist"
 return 1;
 fi
}

Recursive directory search for files (just in case)
File produced will contain the name of the keyword used. i.e. if the search
word was 'USER' the file created for this would be 'os-USER_keyword.txt'
function filesearch () {
 for i in `(ls -A $1)`; do
 if [-f $i]; then
 fn=$(basename "$i")
 while read line; do
 if (file $i | grep -qia ELF); then
 if (readelf -a $i | grep -qa $line); then
 echo "------entries found in file $i---------" >> $FILE_DUMP/"$os"-
"$line"_keyword.txt
 # echo "in ELF $i"
 `(readelf -a $i | grep -a $line) >> $FILE_DUMP/"$os"-
"$line"_keyword.txt`
 cp "$i" $FILE_DUMP/"$os"-"$fn"

 88

 echo "$fn" >> $FILE_DUMP/"$os"-"$line"_inode_list.txt
 fi

 elif (file $i | grep -qia data); then
 if (od -s $i | grep -qa $line); then
 echo "------entries found in file $i---------" >> $FILE_DUMP/"$os"-
"$line"_keyword.txt
 #echo "in DATA $i"
 `(od -s $i | grep -a $line) >> $FILE_DUMP/"$os"-
"$line"_keyword.txt`
 cp "$i" $FILE_DUMP/"$os"-"$fn"
 echo "$fn" >> $FILE_DUMP/"$os"-"$line"_inode_list.txt
 fi

 elif (cat $i | grep -qa $line); then
 echo "------entries found in file $i---------" >> $FILE_DUMP/"$os"-
"$line"_keyword.txt
 #echo "in TEXT $i"
 `(cat $i | grep -a -C 1 $line) >> $FILE_DUMP/"$os"-
"$line"_keyword.txt`
 cp "$i" $FILE_DUMP/"$os"-"$fn"
 echo "$fn" >> $FILE_DUMP/"$os"-"$line"_inode_list.txt
 fi
 done < $FILE_DUMP/temp_search_list.txt
 fi
 directorysearch $1/$i
 done
 return

}

Search through directories if needed for all files
function directorysearch () {
(exists $1) || return 1;
filesearch $1
return
}

Check incoming parameters
if [$# -ne 3]; then
 cat << EOU
Usage: $0 Directory Keyword-file Operating-System
Search through deleted inodes recovered by ils&icat for keywords:
 Keyword file must be named: DEL-keyword.txt
 Operating-System: i.e. REDHAT, Debian, etc.

 89

EOU
 exit 10
fi

Make sure first argument is a directory
if [! -d $1]; then
 echo "$1 is not a directory!" 1>&2
 exit 1
fi

Make sure second argument is a keyword file named 'DEL-keyword.txt'
kw=$(basename "$2")
if ["$kw" = "DEL-keyword.txt"]; then
 if [! -f $2]; then
 echo "$2 is not a file" 1>&2
 exit 1
 fi
else
 echo "$2 has the wrong file name" 1>&2
 exit 1
fi

Get the name of the script being ran
if ["$0" = "./DELread"]; then
 sn=DELread
else
 sn=$(basename "$0")
fi

#Store the OS name to a varible
os="$3"

Check for existing file dump directory and make one if it doesn't exist
FILE_DUMP=/root/MYSQL/"$os"_"$sn"_file_dump

if [! -e $FILE_DUMP]; then
 mkdir $FILE_DUMP
fi

Filter keyword file for comments, make a temporary file containing all the
search words.
cat $2 | grep -v @ >> $FILE_DUMP/temp_search_list.txt

directorysearch $1

 90

Remove the temporary search list created to exclude commented entries
in the keyword file.
rm $FILE_DUMP/temp_search_list.txt

exit $?

 91

MACread

#!/bin/sh

#This script can be used to search a file that contains the redirected
#output from the mactime tool. Requires as arguments the user created
#mactime file and the location of the keyword file. As written this script will
#execpt any file as the first arguement and only a file named 'MAC-keyword.txt'
#as the second argument. You can generate your own keyword list
#or make additions or comment out entries in the file 'MAC-keyword.txt'. To
#comment out lines in the keyword file, place an '@' symbol without the quotes
#as the first character on the line. Use only one keyword per line in the file.
#Author: JaRay Jasper

#***NOTE***

#All files are written to a directory assigned to the varible $FILE_DUMP
#located near the bottom of this script. This location can be changed by
#entering another path assignment for this varible.

Parameter checking
if [$# -ne 3]; then
 cat << EOU
Usage: $0 MACfile MAC_keyword_file Operating-System
Search through mactime file made by running mactime with output redirection
 MACfile: file that has redirected output from running mactime
 MAC_keyword_file must be named: MAC-keyword.txt
 Operating-System: i.e. REDHAT, Debian, etc.
EOU
 exit 10
fi

Make sure first argument is a file
if [! -f $1]; then
 echo "$1 is not a file!" 1>&2
 exit 1
fi

Make sure second argument is named 'MAC-keyword.txt'
kw=$(basename "$2")
if ["$kw" = "MAC-keyword.txt"]; then
 if [! -f $2]; then
 echo "$2 is not a file" 1>&2
 exit 1
 fi
else

 92

 echo "$2 has the wrong file name" 1>&2
 exit 1
fi

Get the name of the script being ran
if ["$0" = "./MACread"]; then
 sn=MACread
else
 sn=$(basename "$0")
fi

#Store OS name in a varible
os="$3"

Check for existing file dump directory and make one if it doesn't exist
FILE_DUMP=/root/MYSQL/"$os"_"$sn"_file_dump

if [! -e $FILE_DUMP]; then
 mkdir $FILE_DUMP
fi

Filter keyword file for comments, make a temporary file containing all the
search words, then delete the temporary file
cat $2 | grep -v @ >> $FILE_DUMP/temp_search_list.txt

File produced will contain the name of the keyword used. i.e. if the search
word was 'USER' the file created for this would be 'USER_keyword.txt'
while read line; do
#find all files that modified and created, by default includes files that have
#been accessed also.
 if ["$line" = "m.c"]; then
 if (cat $1 | grep -qaw $line); then
 echo "------entries found in file $1---------" >> $FILE_DUMP/"$os"-
"$line"_MAC_keyword.txt

 `(cat $1 | grep -aw $line) >> $FILE_DUMP/"$os"-
"$line"_MAC_keyword.txt`
 fi
 elif ["$line" = "..c"]; then
#find all files that have only been created (not modified) and remove files
#that have only been accessed
 if (cat $1 | grep -qaw $line); then

 93

 echo "------entries found in file $1---------" >> $FILE_DUMP/"$os"-
created_MAC_keyword.txt

 `(cat $1 | grep -vaw m.c) >> $FILE_DUMP/temp_MAC_keyword.txt`
 `(cat $FILE_DUMP/temp_MAC_keyword.txt | grep -vaw ".a.") >>
$FILE_DUMP/"$os"-created_MAC_keyword.txt`
 rm $FILE_DUMP/temp_MAC_keyword.txt
 fi
 elif (cat $1 | grep -qa $line); then
#Uses the rest of the searchword found in the MAC_keyword file
 echo "------entries found in file $1---------" >> $FILE_DUMP/"$os"-
"$line"_MAC_keyword.txt

 `(cat $1 | grep -a $line) >> $FILE_DUMP/"$os"-"$line"_MAC_keyword.txt`
 fi
done < $FILE_DUMP/temp_search_list.txt

#Create one big file that has only the uniqe entries from the other files
#Many of the other files will have repetitive entries.
cat $FILE_DUMP/*MAC* | sort | uniq >> $FILE_DUMP/"$os"-
UNIQ_MAC_ENTRIES.txt

Remove the temporary search list created to exclude commented entries
in the keyword file.
rm $FILE_DUMP/temp_search_list.txt

exit $?

 94

UNRMread

#!/bin/sh

#This script can be used to read the output from unrm and lazarus tools.
#Requires a directory or file as the first argument and the location of the
#keyword file. As written this script will execpt any directory/file and only a
#keyword file named 'DEL-keyword.txt'. You can generate your own keyword list
#or make additions or comment out entries in the file 'DEL-keyword.txt'. To
#comment out lines in the keyword file, place an '@' symbol without the quotes
#as the first character on the line. Use only one keyword per line in the file.
#Author: JaRay Jasper with code from Ives Aerts

#***NOTE***

#All files are written to a directory assigned to the varible $FILE_DUMP
#located near the bottom of this script. This location can be changed by
#entering another path assignment for this varible.

Check to see if arguments passed to the directorysearch exist
function exists () {
 if [-e $1 -o -L $1]; then
 return 0;
 else
echo "$1 doesn't exist"
 return 1;
 fi
}

Search a single file only. This would be the entire unrm data file. It's forced to
be searched as a text file so garbage may recovered also.
function searchfile () {
 while read line; do
 if (cat $1 | grep -qa $line); then
 echo "------entries found in file $1---------" >> $FILE_DUMP/"$os"-
"$line"_keyword.txt
 `(cat $1 | grep -a -C 1 $line) >> $FILE_DUMP/"$os"-"$line"_keyword.txt`
 fi
 done < $FILE_DUMP/temp_search_list.txt
 return
}

#Searched block directory created by lazarus for specified keywords
function filesearch () {
 for i in `(ls -A $1)`; do
 if [-f $i]; then

 95

 fn=$(basename "$i")
 if (ls $i | grep -q '!.txt') || (ls $i | grep -q 'x.txt') || (ls $i | grep -q 'a.txt'); then
 :
 else
 while read line; do
 if (cat $i | grep -qa $line); then
 echo "------entries found in file $i---------" >> $FILE_DUMP/"$os"-
"$line"_keyword.txt
 # echo "in TEXT $i"
 `(cat $i | grep -a -C 1 $line) >> $FILE_DUMP/"$os"-
"$line"_keyword.txt`
 cp "$i" $FILE_DUMP/"$os"-"$fn"
 echo "$fn" >> $FILE_DUMP/"$os"-"$line"_block_list.txt
 fi
 done < $FILE_DUMP/temp_search_list.txt
 fi
 fi
 directorysearch $1/$i
 done
 return
}

Search through directories if needed for all files
function directorysearch () {
 (exists $1) || return 1;
 filesearch $1
 return
}

Check incoming parameters
if [$# -ne 3]; then
 cat << EOU
Usage: $0 Directory/file Keyword-file Operating-System
Search through unrm file or lazarus blocks directory for keywords:
 Keyword file must be named: DEL-keyword.txt
 Operating-System: i.e. REDHAT, Debian, etc.
EOU
 exit 10
fi

if [-d $1] || [-f $1]; then
Make sure second argument is a keyword file named 'DEL-keyword.txt'
 kw=$(basename "$2")
 if ["$kw" = "DEL-keyword.txt"]; then
 if [! -f $2]; then

 96

 echo "$2 is not a file" 1>&2
 exit 1
 fi
 else
 echo "$2 has the wrong file name" 1>&2
 exit 1
 fi

Get the name of the script being ran
 if ["$0" = "./UNRMread"]; then
 sn=UNRMread
 else
 sn=$(basename "$0")
 fi

#Store the OS name to a varible
 os="$3"

Check for existing file dump directory and make one if it doesn't exist
 FILE_DUMP=/root/MYSQL/"$os"_"$sn"_file_dump

 if [! -e $FILE_DUMP]; then
 mkdir $FILE_DUMP
 fi

Filter keyword file for comments, make a temporary file containing all the
search words.
 cat $2 | grep -v @ >> $FILE_DUMP/temp_search_list.txt
else
 echo "$1 is not a directory or file"
 exit 1
fi

if [-d $1]; then
 directorysearch $1
elif [-f $1]; then
 searchfile $1
fi

Remove the temporary search list created to exclude commented entries
in the keyword file.
rm $FILE_DUMP/temp_search_list.txt

exit $?

 97

Simple-MySQL

#!/bin/sh
#This script provides an interface for automatically connecting to your MySQL
#database. It provides the user with the abilities to show databases, tables
#contents of one table, create a database, create 4 prespecied tables and to
#insert records into one of the four tables via a text file. It requires the
name and password of the user who is allowed to access MySQL.

#The format of the text file to be used for record insertion is the same for
#the ALTERED_FILES, NEW_FILES and BACKDOORS. This is an example of
the file
#format.

Redhat
passwd
/etc (for the NEW_USERS table this the uid field and requires an integer)
root (for the NEW_USERS table this the gid field and requires an integer)
new users bob and jim were added
Redhat/Redhat-user=_keyword.txt
@
@
@
@
@
@
@

#The record file the user has to create can only be 12 lines long and the
#after a table is created the describe option can be used to see what fields
#each table holds for better reference. The '@' is used as a null character
#the keyword_file fields only and as place holders, therefore are required
#to avoid possible troubles.
#Author JaRay Jasper

#***NOTE***
#The mysql_path varible contains the path to the mysql executable and
#should be changed to the location the mysql excutable on the user's
#computer. It's located near the bottom of this script.

Shows the list of current databases for the user's account. Can be used
anytime during the running of the script.
function show_db () {
 echo -n "List of current databases"
 echo ""
 echo ""

 98

 $mysql_path -u $1 --password=$2 << EOF
show databases;
EOF
}

Creates a new databases using whatever name the user enters. It then
shows the updated database list.
function create_db () {
 $mysql_path -u $1 --password=$2 << EOF
CREATE DATABASE $db;
EOF

 echo ""
 echo -n "List of current databases"
 echo ""
 echo ""

 $mysql_path -u $1 --password=$2 << EOF
show databases;
EOF
}

Creates either the ALTERED_FILES, NEW_FILES or BACKDOORS table. It
then
then shows the updated list of tables in that database.
function create_table () {
 $mysql_path -u $1 --password=$2 << EOF

USE $db
CREATE TABLE $table_name(Computer_Name VARCHAR(64) NOT NULL,
File_Name VARCHAR(64) NOT NULL,
File_Location VARCHAR(64) NOT NULL,
File_Owner VARCHAR(64) NOT NULL,
Description VARCHAR(64) NOT NULL,
Keyword_File_1 VARCHAR(64),
Keyword_File_2 VARCHAR(64),
Keyword_File_3 VARCHAR(64),
Keyword_File_4 VARCHAR(64),
Keyword_File_5 VARCHAR(64),
Keyword_File_6 VARCHAR(64),
Keyword_File_7 VARCHAR(64),
PRIMARY KEY (Computer_Name, File_Location));

show tables;
EOF

 99

}

Creates the NEW_USERS table. It then
then shows the updated list of tables in that database.
function create_table_newuser () {
 $mysql_path -u $1 --password=$2 << EOF

USE $db
CREATE TABLE $table_name(Computer_Name VARCHAR(64) NOT NULL,
User_Name VARCHAR(64) NOT NULL,
UID INTEGER NOT NULL,
GID INTEGER NOT NULL,
Description VARCHAR(64) NOT NULL,
Keyword_File_1 VARCHAR(64),
Keyword_File_2 VARCHAR(64),
Keyword_File_3 VARCHAR(64),
Keyword_File_4 VARCHAR(64),
Keyword_File_5 VARCHAR(64),
Keyword_File_6 VARCHAR(64),
Keyword_File_7 VARCHAR(64),
PRIMARY KEY (Computer_Name, User_Name));

show tables;
EOF
}

Shows the list of tables found in a specified database.
function show_tables() {
 echo ""

 $mysql_path -u $1 --password=$2 << EOF

USE $db
show tables;
EOF
}

Shows the column desriptions of a table found in a specified database.
function show_columns() {
 echo ""

 $mysql_path -u $1 --password=$2 << EOF

USE $db
show columns from $table_name;
EOF

 100

}

Used to keep the script running until the user enters '0' to exit the
script. Keeps the user from having to continuosly log in and out (running
the script over and over). My prefrence is not to clear the screen after
an input because I like to be able to scroll up and see what I was doing.
You can enter the 'clear' command below the 'read' command and it will
clear the screen for you after every time enter is hit.
function enter () {
 echo ""
 echo -n "Press Enter to choose again"
 read

}

Reads the text file the user provides line by line and stores the lines in
a varible for insertion into the table chosen by the user.
function insert () {
 if [-f $file]; then
 count=0
 while read line; do
 case "$count" in
 0)
 comp_name="$line" ;;
 1)
 if ["$flag" = "1"]; then
 user_name="$line"
 else
 file_name="$line"
 fi
 ;;
 2)
 if ["$flag" = "1"]; then
 uid="$line"
 else
 file_loc="$line"
 fi
 ;;
 3)
 if ["$flag" = "1"]; then
 gid="$line"
 else
 file_own="$line"
 fi
 ;;

 101

 4)
 descp="$line" ;;
 5)
 if ["$line" = "@"]; then
 key1=""
 else
 key1="$line"
 fi
 ;;
 6)
 if ["$line" = "@"]; then
 key2=""
 else
 key2="$line"
 fi
 ;;
 7)
 if ["$line" = "@"]; then
 key3=""
 else
 key3="$line"
 fi
 ;;
 8)
 if ["$line" = "@"]; then
 key4=""
 else
 key4="$line"
 fi
 ;;
 9)
 if ["$line" = "@"]; then
 key5=""
 else
 key5="$line"
 fi
 ;;
 10)
 if ["$line" = "@"]; then
 key6=""
 else
 key6="$line"
 fi
 ;;
 11)
 if ["$line" = "@"]; then

 102

 key7=""
 else
 key7="$line"
 fi
 ;;
 esac
 count=$((count+1))
 done < $file

 if ["$flag" = "0"]; then
 $mysql_path -u $1 --password=$2 << EOF
USE $db
INSERT INTO $table_name
VALUES('$comp_name','$file_name','$file_loc','$file_own','$descp','$key1','$key2
','$key3','$key4','$key5','$key6','$key7');
EOF
 else
 $mysql_path -u $1 --password=$2 << EOF
USE $db
INSERT INTO $table_name
VALUES('$comp_name','$user_name',$uid,$gid,'$descp','$key1','$key2','$key3','
$key4','$key5','$key6','$key7');
EOF
 fi
 else
 echo "This file doesn't exist!!"
 fi
}

List the available tables the user can choose to create, show or insert
records into.
function table_menu () {
 echo ""
 echo "TABLE MENU"
 echo "1 - Altered files TABLE"
 echo "2 - New files TABLE"
 echo "3 - New users TABLE"
 echo "4 - Backdoors TABLE"
 echo ""
 echo "0 - EXIT AND DO NOTHING"
 echo -n "Enter choice: "
 read table
 return $table
}

Shows the entire contents of one table. Because of the way MySQL outputs

 103

data this can get a bit messy. I tried to separate the information so
it's displayed in a more readable fashion. Your best bet is not to use long
path names and descriptions for entry into the table. While you are alotted
up to 64 characters per line in the record text file, you may only want
to use between 20 and 30.
function show_records () {
if ["$table" = "3"]; then
 $mysql_path -u $1 --password=$2 << EOF
USE $db
SELECT Computer_Name, User_Name, UID, GID FROM $table_name ;
EOF
else
 $mysql_path -u $1 --password=$2 << EOF
USE $db
SELECT Computer_Name, File_Name, File_Location, File_Owner, Description
FROM $table_name
EOF
fi

echo ""

if ["$table" = "3"]; then
 $mysql_path -u $1 --password=$2 << EOF
USE $db
SELECT Computer_Name, User_Name, Keyword_File_1, Keyword_File_2,
Keyword_File_3, Keyword_File_4 FROM $table_name ;
EOF
else
 $mysql_path -u $1 --password=$2 << EOF
USE $db
SELECT Computer_Name, File_Name, Keyword_File_1, Keyword_File_2,
Keyword_File_3, Keyword_File_4 FROM $table_name
EOF
fi

echo ""

if ["$table" = "3"]; then
 $mysql_path -u $1 --password=$2 << EOF
USE $db
SELECT Computer_Name, User_Name, Keyword_File_5, Keyword_File_6,
Keyword_File_7 FROM $table_name ;
EOF
else
 $mysql_path -u $1 --password=$2 << EOF
USE $db

 104

SELECT Computer_Name, File_Name, Keyword_File_5, Keyword_File_6,
Keyword_File_7 FROM $table_name
EOF
fi

}

Because of the various uses of the table menu. I decided to a function that
always calls the table menu function and based on the return this functions
does different things. One of which is calling the insert function which is
used to insert a record into a table as explained above.
function table_case () {
 table_menu
 case $table in
 1)
 table_name=ALTERED_FILES
 if ["$choice" = "7"]; then
 show_columns $1 $2 $db $table_name
 elif ["$choice" = "5"]; then
 create_table $1 $2 $db $table_name
 elif ["$choice" = "6"]; then
 flag=0
 else
 show_records $1 $2 $db $table_name
 fi
 ;;
 2)
 table_name=NEW_FILES
 if ["$choice" = "7"]; then
 show_columns $1 $2 $db $table_name
 elif ["$choice" = "5"]; then
 create_table $1 $2 $db $table_name
 elif ["$choice" = "6"]; then
 flag=0
 else
 show_records $1 $2 $db $table_name
 fi
 ;;
 3)
 table_name=NEW_USERS
 if ["$choice" = "7"]; then
 show_columns $1 $2 $db $table_name
 elif ["$choice" = "5"]; then
 create_table_newuser $1 $2 $db $table_name
 elif ["$choice" = "6"]; then
 flag=1

 105

 else
 show_records $1 $2 $db $table_name $table
 fi
 ;;
 4)
 table_name=BACKDOORS
 if ["$choice" = "7"]; then
 show_columns $1 $2 $db $table_name
 elif ["$choice" = "5"]; then
 create_table $1 $2 $db $table_name
 elif ["$choice" = "6"]; then
 flag=0
 else
 show_records $1 $2 $db $table_name
 fi
 ;;
 0) ;;
 *) echo "Please enter 1, 2, 3, 4 or 0"; enter
 esac

 if ["$choice" = "6"]; then
 if ["$table" != "0"]; then
 echo "Enter full path to file (just to be safe (;p))"
 read file
 insert $1 $2 $db $table_name $file $flag
 fi
 fi

}

Only checks the number incoming parameters. If the wrong combination of
username and password is entered the script won't run.
if [2 -ne $#]; then
 cat << EOU
Usage: $0 mysql_user mysql_passwd
EOU
 exit 10
fi

Path to the MySQL executable
mysql_path=/root/MYSQL/mysql/bin/mysql

The interactive menu loop. Continously runs and allows the user to do
differents tasks and type in things like the path to the record file
until the option number '0' is chosen which will cause the script to end.
choice=

 106

until ["$choice" = "0"]; do
 echo ""
 echo "DATABASE MENU"
 echo "1 - Show databases"
 echo "2 - Show tables"
 echo "3 - Show all records from 1 table"
 echo "4 - Create new database"
 echo "5 - Create new table"
 echo "6 - Insert record into table"
 echo "7 - Show the column description of a table"
 echo ""
 echo "0 - exit program"
 echo ""
 echo -n "Enter choice: "
 read choice
 echo ""
 case $choice in
 1)
 show_db $1 $2
 enter ;;
 2)
 echo "Enter database name that holds the tables"
 read db
 show_tables $1 $2 $db
 enter ;;
 3)
 echo "Enter database name that holds the table"
 read db
 table_case $1 $2 $db $choice
 enter ;;
 4)
 echo "Enter name for new database"
 read db
 create_db $1 $2 $db
 enter ;;
 5)
 echo "Enter database name to create table in"
 read db
 table_case $1 $2 $db $choice
 enter ;;
 6)
 echo "Enter database name"
 read db
 table_case $1 $2 $db $choice
 enter ;;
 7)

 107

 echo "Enter database name that holds the table"
 read db
 table_case $1 $2 $db $choice
 enter ;;
 0) exit ;;
 *) echo "Please enter 1, 2, 3 or 0"; enter
 esac
done

 108

	Table of Figures
	Table of Tables
	Abstract
	1.0 Introduction
	1.1 Plan of Investigation
	1.2 TCT Background
	1.2.1 Grave-Robber
	1.2.2 The C Tools
	1.2.3 Unrm and Lazarus
	1.2.4 Mactime
	1.2.5 TCT Run Times and Results

	Table 1: dd image sizes and creation times
	Table 2: Data size returned by tool
	Table 3: TCT run times
	1.3 Project Purpose
	1.4 The Architecture

	Figure 1: Overall data flow
	Figure 2: Data filtration steps
	Figure 3: Database data
	1.5 Section Overview

	2.0 Attack Scenario
	
	2.0.1 Scenario Explained
	2.0.2 Project Assumptions

	2.1 GRcompare Script
	2.1.1 Demonstration of GRcompare

	Figure 4: Initial image of root’s home directory
	Figure 5: Grave-robber results
	Figure 6: Running GRcompare
	Figure 7: GRcompare directory
	Figure 8: GRcompare results
	Figure 9: Missing.txt format
	Figure 10: Missing .shosts file
	Figure 11: Example ssh-knownhosts file
	2.2 DELread Script

	Figure 12: Running DELread
	Figure 13: DELread results
	Figure 14: Example _keyword.txt file
	Figure 15: Example inode.txt file
	2.3 MACread script

	Figure 16: Running MACread
	Figure 17: Results from MACread
	Figure 19: Example keyword.txt files created by MACread
	2.4 UNRMread script

	Figure 20: Running UNRMread
	Figure 21: Results from running UNRMread on single unrm file
	Figure 22: Results from running UNRMread on lazarus files
	Figure 23: example result from keyword ‘bob’ on s
	Figure 24: example result from keyword ‘bob’ on l
	Figure 25: Example result from keyword ‘Feb’ on s
	Figure 26: Example result from keyword ‘Feb’ on l
	Figure 27: Example result from keyword ‘user=’ on
	Figure 28: Example result from keyword ‘user=’ on
	Figure 29: Example result from keyword ‘nc-1.10’
	Figure 30: Example result from keyword ‘nc-1.10’
	Figure 31: User kills ssh after being compromised
	2.5 Simple-MySQL
	2.5.1 Running Simple-MySQL

	Figure 32: Running Simple-MySQL
	
	2.5.2 Creating a Database

	Figure 33: Creating a database
	
	2.5.3 Creating the Database Tables

	Figure 34: Creating the Tables
	
	2.5.4 Showing Tables

	Figure 35: Showing tables
	
	2.5.5 Showing Columns

	Figure 36: Column descriptions of a table
	
	2.5.6 Inserting a Record

	Figure 37: Example record file (form)
	Figure 38: Inserting a record
	
	2.5.7 Showing Records

	Figure 39: Showing records
	
	2.5.8 Exiting Simple-MySQL

	Figure 40: Exiting Simple-MySQL
	3.0 Project Scripts’ Run Times & Results
	
	
	
	
	
	Project Scripts’ Run Times

	Table 4: Run time for project scripts
	
	
	
	
	
	File Reduction
	GRcompare

	Table 5: File reduction analysis
	
	
	
	
	
	Data Reduction
	GRcompare

	Table 6: Data size reduction analysis
	4.0 Conclusion
	REFERENCES
	APPENDIX A - Full procedure
	
	
	
	
	Setting up the external hard drives ISB & DBB
	Creating mount and storage directories
	Taking dd images
	Installing TCT
	Running TCT
	Running the Project Scripts

	APPENDIX B - Examining DELread’s results
	Figure 41: DEL-keyword.txt file used for DELread
	Figure 42: COMMAND= keyword.txt file
	Figure 43: Hostbased keyword.txt file
	Figure 44: Hostbased keyword.txt file part 2
	Figure 45: Inode.txt file for the hostbased keyword
	Figure 46: Password keyword.txt file part 1
	Figure 47: Password keyword.txt file part 2
	Figure 48: rhost= keyword.txt file
	Figure 49: uid= keyord.txt file part 1
	Figure 50: uid= keyord.txt file part 2
	Figure 52: RH-DELETED contents part 2
	Figure 53: RH-DELETED contents part 3
	Figure 54: RH-DELETED contents part 4
	Figure 55: RH-DELETED contents part 5
	Figure 56: RH-DELETED contents part 6
	Figure 57: RH-DELETED contents part 7
	APPENDIX C - Examining MACread’s results
	Figure 58: MAC-keyword.txt file used with MACread
	Figure 59: Bash keyword results
	Figure 60: ..c keyword results
	Figure 61: Mail keyword results
	Figure 62: m.c keyword results part 1
	Figure 63: m.c keyword results part 2
	Figure 64: m.c keyword results part 3
	Figure 65: sbin keyword results
	APPENDIX D - Examining UNRMread’s results
	Figure 66: DEL-keyword.txt used with UNRMread
	Figure 67: example result from keyword ‘bob’ on l
	Figure 68: example result from keyword ‘bob’ on l
	Figure 69: Example result from keyword ‘COMMAND=’
	Figure 70: Example result from keyword ‘Feb’ on s
	Figure 71: Example result from keyword ‘Feb’ on l
	APPENDIX E - MySQLcc reinforcement
	Figure 72: Setup before Simple-MySQL is executed
	Figure 73: Creating a database – MySQLcc view
	Figure 74: Showing tables – MySQLcc view
	Figure 75: Column descriptions of a table – MySQL
	Figure 76: Inserting a record – MySQL view
	Figure 77: Viewing records – MySQL view
	APPENDIX F - Project Scripts
	
	
	
	
	GRrcompare

