A MetaData Architecture for Case-Based Reasoning

*

Sara Stoecklin, Daniel G. Schwartz, Erbil Yilmaz, Mahesh Patel
Department of Computer Science
Florida State University
Tallahassee, FL. 32306, U.S.A.
{stoeckli, schwartz, yilmaz, mahpatel }@cs.fsu.edu

Abstract: Software design architectures created
to meet generic requirements with specific re-
quirements expressed in metadata are referred to
as metadata architectures. In this paper we dis-
cuss a metadata architecture for a case-based rea-
soner using a reflective mechanism for implemen-
tation. The important aspect of this paper is that
the it defines a reasoning system that is indepen-
dent of the specific application domain, but which
can be instantiated to create a reasoner for some
given domain via specification of metadata ap-
propriate for that domain. Thus the system can
be used for many different types of domains. To
date, it has been used to create case-based rea-
soners for (1) detecting possible intrusion pack-
ets in a network using past packet cases and their
possible threats, (2) matching of a face in a fa-
cial case base using Eigenvalue features, and (3)
solving network failure problems based on previ-
ous failure cases and their solutions.

Keywords: Case-Based Reasoning, Metadata Architec-
ture, Reflection

1 Introduction

The expectations for today’s software make it in-
creasingly difficult to design custom software for all
applications. However, efforts to build generic sys-
tems to meet all user domains across various busi-
nesses are often not easily adaptable nor reusable.
Some generic applications such as payroll, bank-
ing, and inventory have been successfully marketed.

*This work was supported by the US Army Research Of-
fice, grant number DAAD19-01-1-0502.

More recently some of the resource planning soft-
ware has been successful. However, many appli-
cations do not yield themselves to generic solu-
tions, so customized software is built. Many ven-
dors do specialize in specific domains but their
domain knowledge is the main component of the
reusable software; little actual software components
are reused.

With object-oriented programming concepts in-
troduced in the 80’s, polymorphism and inheritance
began to be used to solve software problems. The
introduction of new metadata programming that
enables the user to change the behavior of the pro-
gram without changing its code [1, 2, 5, 10] in the
90’s allowed us to define systems using metadata.
The use of reflection to implement these meta-
data programs using object-oriented languages al-
lows major changes in software development prac-
tices. This article defines a system that exploits
these changes.

2 MetaData Architectures

Metadata architectures are a recent innovation.
They are defined as architectures that use meta-
data to adapt generalized systems at run-time. In
our case the system is adapted to a new specific
domain for reasoning. In the architecture, the ap-
plication, in our case the reaonser, is developed in
the form of underlying knowledge-level structural
classes, constraints, and rules, rather than classes
as in object-oriented programming [5]. This flexi-
bility requires different levels of abstraction when
developing the software. This level of abstraction
makes the software more complex, but the flexibil-



ity and reusability are especially high. Addition-
ally, the amount of actual code required for the
program decreases dramatically.

These architectures rely heavily on dynamic pro-
gramming languages. Static languages, like C, re-
quire the programmer to establish the structure of
the program in terms of data structures and data
manipulation in the early stages of programming.
However, in dynamic programming languages, a
running program can add a new method to one of
its classes without recompilation.

In metadata programs, the class structures are
defined partially by setting a number of constraints
over the class structure that must be satisfied. Ex-
amples of such constraints are method names and
the types of the data structures that the methods
will act upon. As a result, there are infinitely many
class structures satisfying the constraints defined
by a given metadata program. This is certainly the
case in our MCBR. Further, behaviors of the meth-
ods are not implemented thoroughly in these pro-
grams. Rather the methods are implemented using
metadata from the specific application domain.

3 Case Based Reasoning

Case based reasoning (CBR) systems store cases
that represent past concrete experiences. Cases are
stored as problem-solution pairs that describe com-
plete episodes, or full experiences. Thus, in CBR,
both knowledge elicitation and knowledge mainte-
nance amount simply to identifying new cases and
adding these to the library. For example, in a net-
work intrusion detection problem, cases might rep-
resent full network packet information for the pack-
ets that are used in previous attacks. Therefore,
such a case will have a feature for each field in the
packet header and a feature for the packet payload.

The case-based problem solving process involves
navigating through the solutions in a “solution
space,” guided by the similarity of a given problem
to those represented by the cases stored in a case
library. This is illustrated in Figure 1, adapted
from [6]. As a new problem is encountered, the
CBR system searches for those cases in the case
library whose problem descriptions are similar, ac-
cording to some similarity metric, to that of the
given problem. The solution(s) of the most simi-
lar case(s) is (are) then used as a starting point for

devising a solution to the new problem. The CBR
system creates a solution to the new problem by
adapting the solutions from the cases that were re-
trieved. This adaptation process is sometimes auto-
matic, but typically requires human assistance. See
[9] for a comprehensive overview of CBR including
discussion of several applications.

4 Metadata CBR

Our system has made extensive use of the metadata
software architecture techniques described in such
works as [4, 5]. A key idea is to use a metadata
dictionary for run-time method selection and run-
time parameterization of methods from metadata.
For instance, in our CBR framework, the metadata
dictionary says which comparator methods are to
be used for which case features during the simi-
larity matching part of the case retrieval step. A
metadata program is described as a partially de-
fined, and not thoroughly implemented, class struc-
ture that sets some constraints over actual, full-
functioned implementations [5]. Such a program
is instantiated by providing the needed items for
the metadata dictionary and the associated method
definitions. As a result, there are infinitely many
possible implementations, forming a family of pro-
grams that satisfy the constraints. The program
uses two metadata dictionaries. The first, called
the domain metadata, describes the domains usable
in the system. For example, in the current domain
metadata there are three systems, namely, network
intrusion detection, facial recognition, and network
fault detection. The data contained in these de-
scriptions are the name of the system, the problem
case base, and other metadata. The second, called
the case metadata, defines the features of the par-
ticular type of system.

Our MCBR uses the generic notion of the CBR
process and metadata of a given application do-
main. However, extracting the generic notion of
CBR requires separating the characteristics of CBR,
that are common to all case-based reasoners from
those that are specific to any particular problem do-
main. Two major common characteristics of CBR
studied in our research are the case representation
scheme and the mechanisms for assessing similarity
among cases. Additional common characteristics
might also be identified, e.g., the case-adaptation



Formulate
Problem/
Attack
1.0

Search
Archive

Description

Proble;
Attack

Select/
Adapt
3.0

Report

S Results

Measure of
Success /Failurg

olution/ Response

Generate
Response to

Granted Response

Problem/Attack
4.0

Results

Figure 1: Case-based reasoning process

phase (Step 3.b), and it is planned to implement
some of these in future work. Details of our present
CBR framework and how it can be instantiated for
a specific domain are depicted in Figure 2.

The instantiation of a specific domain CBR be-
gins with defining the metadata for the domain,
e.g., network intrusion detection. After the domain
is defined, the domain-specific case representations
are described in an XML schema. This is accom-
plished by analyzing the given problem domain, de-
termining the representations needed for a “case,”
and encoding this in the XML descriptions. Cases
in our system may have features of any user-defined
type (e.g., IP address, eye color, license plate num-
ber, etc.). These steps provide the domain meta-
data shown on the left side of Figure 2.

The XML schema is used in conjunction with
the Sun Microsystems Java XML Binding (JAXB)
package to generate a binding schema, which in
turn is used to generate the Java classes neces-
sary to parse XML documents that conform to the
schema. The Generic CBR Source code is the re-
compiled so as to inherit these cases. This pro-
duces the core of a case-based reasoner capable of
receiving an input problem described in XML and
searching the case archive for those cases that are

most similar to it according to a given similarity
metric.

At this point, however, the resulting system still
doesn’t know how to assess the similarity of cases
in the archive with a given problem situation. This
is accomplished by applying comparator methods
to the individual case/problem features. As men-
tioned, the determination of which comparator will
be used for which case feature is encoded in a meta-
data dictionary. When building a CBR system from
scratch, all the needed comparator methods must
be written. In subsequent systems, however, many
such comparators may be reused. These compo-
nents are depicted in the lower right part of Fig.
2. Once the comparators have been written or
selected, and the corresponding entries have been
made in the metadata dictionary, the instantiation
of the framework is complete. One now has a fully
functioning CBR system.

During case-retrieval, the correct comparator
method needed for each case feature is determined
dynamically by a look up in the metadata dictio-
nary. Each entry in this dictionary contains the
name and type of a case feature, the name of the
comparator to be used for that feature, and other
information relevant to that feature, such as the



/
’

Figure 2: Metadata case-based reasoner




name of any method used to generate the associated
part of the user interface. When a particular case
in the archive is being assessed regarding its simi-
larity with the given problem situation, each case
feature is compared with the corresponding prob-
lem feature. This is accomplished by looking up the
feature in the metadata dictionary, extracting the
name of the associated comparator, and then dy-
namically creating an instance of that comparator
by reflection on the comparator’s class definition.
Any domain specific comparator data is encoded
in the metadata. Last the comparator is applied
to the case-feature problem-feature pair, returning
a measure of the degree of match. This use of a
meta-data dictionary is a well-known practice of
metadata software programming. After all the nec-
essary comparators have been applied for a particu-
lar case, their results are combined using combina-
tion algorithms specified in the domain metadata.

5 Conclusion

This reasoner has been implemented as a proof of
concept to create a case-based implementation of
the well-known “Snort” network intrusion detection
system [8]. Snort is rule-based, where each rule has
features describing characteristics of network pack-
ets (protocol type, source and destination IP ad-
dresses and ports, payload contents, etc.) together
with a prescribed action (e.g., raising an alert).
The rule features are easily described in XML, and
the Snort rule set (currently around 1300 rules) is
easily converted into an XML archive (each Snort
rule becoming its own case). The comparators look
for such things as exact string matches on proto-
col names, and whether a destination IP address or
port falls within a certain range. Our system effec-
tively replicates the functionality of Snort. Addi-
tionally, we have also applied this approach to pro-
vide an intrusion detection system for ad hoc wire-
less networks [3]. Other domains, including facial
recognition and network fault management, have
been specified and are currently under implemen-
tation.

References

[1] Foote, B., and J. W. Yoder. “Metadata and Ac-
tive Object-Models.” Technical Report, WUSC-

98-25, Department of Computer Science, Wash-
ington University, 1998.

[2] Fowler, M. Analysis Patterns: Reusable Object
Models. Addison Wesley, 1997.

[3] Guha, R., O. Kachirski, D. G. Schwartz, S.
Stoecklin, and E. Yilmaz. “Case-based agents
for packet-level intrusion detection in ad hoc
networks.” Seventeenth International Sympo-
sium On Computer and Information Sciences,
ISCIS’02, Orlando, FL, October 28-30, 2002,
pp- 315-320.

[4] Hayes, C. and P. Cunningham. “Shaping a
CBR view with XML.” Case-Based Reasoning
Research and Development, Proceeding of the
Third International Conference on Case-Based
Reasoning, ICCBR-99, Lecture Notes in Com-
puter Science, LNAI v 1650, Springer Verlag,
1999.

[5] Lieberherr, K. J. Adaptive Object-Oriented
Software: The Demeter Method withPropaga-
tion Patterns. PWS Publishing Company, 1996.

[6] Schwartz, D. G., S. Stoecklin, and E. Yilmaz.
“A case-based approach to network intrusion
detection.” Proceedings of the Fifth Interna-
tional Conference on Information Fusion, IF’02,
Annapolis, MD, 2002, pp. 1084-1089.

[7] Shimazu, H. “A textual cased-based reasoning
system using XML on the world-wide web.” Ad-
vances in Case-Based Reasoning, Proceedings
of 4th European Workshop, EWCBR-98, Lec-
ture Notes in Computer Science, LNAT v 1488,
Springer Verlag, 1998, pp. 274-285.

[8] Snort, The Open Source Network In-
trusion Detection System, available at
http://www.snort.org

[9] Watson, I. “CBR is a methodology not a tech-
nology.” The Knowledge Based Systems Jour-
nal, v. 12, no.5-6 (1999) 303-8.

[10] Yoder, J., Balaguer , F., and Johnson, R.
“Architecture and Design of Adaptive Object
Models” Intriguing Technology Presentation at
the 2001 Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applica-
tions (OOPSLA ’01), ACM SIGPLAN Notices,
ACM Press, December 2001.



