Graphical User Interface Using a Reflective
Architecture®

Mahesh Patel, Sara Stoecklin, Daniel G. Schwartz
Department of Computer Science
Florida State University
Tallahassee, FL 32306, U.S.A.
{mahpatel, stoeckli, schwartz}@Qcs.fsu.edu

Abstract: Reflective architectures are used to al-
low a software system to define its behavior at
runtime based on information that can be stored
in metadata. In this paper we expand the ap-
proach used to build systems using reflective ar-
chitectures to include the development of graphi-
cal user interfaces. We give an example of a dy-
namically built GUI for a generic case-based rea-
soner. This example shows how a clean separa-
tion of domain-specific data from application op-
erational behavior can be used to create GUIs dy-
namically using a defined metadata dictionary. It
represents an appropriate solution if the system
domain changes or if users need to dynamically
configure and extend their applications. This re-
flective architecture can lead to a system that al-
lows users to modify the behavior of a program
without programming.

Keywords: Case-Based Reasoning, Metadata Architec-
ture, Reflection

1 Introduction

The complexity of today’s problem environments
and the increasing expectations placed on the devel-
opment of software make it difficult to design sys-
tems that satisfy all the expectations of the users.
The pressure placed on developers to produce soft-
ware in a short period of time jeopardizes the de-
velopment of consistent and reusable software.

*This work was supported by the US Army Research Of-
fice, grant number DAAD19-01-1-0502.

One time consuming activity is the development
of user interfaces to support a system. In this pa-
per, we address a specific instance of this, namely
Graphical User Interface (GUI) development. GUIs
are normally developed for application programs,
which in turn are developed as applications for spe-
cific problem domains. Accordingly, the GUI de-
velopment in this context requires that program-
mers build domain specific GUI components for
screens and visual reports. They typically do this
by using generic components such as text fields,
labels, etc. They then define the domain-specific
attributes, such as the needed component labels,
text field lengths, ranges of valid values, error mes-
sages, component colors, etc. If it is later desired
to build a GUI for a similar, but different appli-
cation, however, most of the original code needs
to be rewritten. The results of the earlier time-
consuming development activity normally cannot
be reused.

With the advent of reflective software architec-
tures [1, 2, 3], however, it is now possible to design
application frameworks that apply across a large
collection of closely related, or structurally similar,
application domains. Such a framework embodies
abstractions of the key elements of a collection of
domains in such a way that a specific application for
a given domain can be obtained by instantiating the
framework. The instantiation process entails speci-
fying the necessary domain-specific elements at the
level of metadata. Because of this, software frame-
works employing this approach are said to embody
“adaptive architectures.” They can be adapted to
new application domains simply by modifying the

metadata. The aim of this paper is to show how
this approach can be used for GUI generation.

We illustrate the technique by describing its use
in conjunction with an adaptive framework for case-
based reasoning.

2 An Adaptive Case-Based
Reasoning Framework

An adaptive generic case-based reasoning (CBR)
framework has been presented in [4]. For any CBR
system there are three input files: the problems
data file consisting of problems in the domain, the
cases data file which has a history of previous prob-
lems together with their solutions, and the meta-
data file holding the domain-specific data. Cases
are problem-solution pairs, where the problems are
described by a collection of features. Input prob-
lems use these same features. For each input prob-
lem, a similarity metric is applied to conduct a
search of the case library for those cases whose
problem features are most similar to it. This simi-
larity metric employs reflection from the metadata,
where the metadata contains a listing of all the
possible features, their data types, etc., and most
importantly, the “comparator” used for evaluating
the similarity between two different values (problem
and case) for this feature. The similarity between
the input problem and a case in the library is then
computed as a combination of the results returned
by the comparators for the individual features.

The paper [4] describes this framework, together
with a specific instance of it. The instance is a
case-based version of the well-known “Snort” net-
work intrusion detection system (NIDS) [5]. Snort
contains a set of if-then rules where the premises
describe features of incoming packets that may be
considered suspect, and the conclusions describe ac-
tions to be taken (e.g., raise an alert) if a packet
having these features is detected. The current
Snort rule set has more than 1500 such rules.
Snort rules are reinterpreted as cases by taking the
premises as case features (describing problems) and
the conclusions as case actions (solutions).

3 Reflective GUI
Development

We illustrate the adaptive approach to GUI devel-
opment with an application of it to GUI genera-
tion for the above CBR framework. As mentioned,
both input problems and cases are characterized
by a set of features. In the Snort NIDS implemen-
tation, the features include such items as protocol
name, source IP address, source port, destination
IP address, destination port, and packet contents
(payload). The salient information about each such
feature is stored in metadata. This information in-
cludes: (1) feature name, (2) data type of the fea-
ture, (3) comparator, (4) label name, (5) type of
component in Java Swing used to display the con-
tents, and (6) sequence number of the feature, i.e.
the order in which it should be displayed.

Attribute Value
Feature Name sourceip
Data Type String
Comparator IPRange
Label Name Source-IP
Component JTextField
Sequence Number | 1

Table 1: Metadata for feature Source IP

An entry in the metadata dictionary for the fea-
ture “Source IP”, is shown in Table 1. The fea-
ture name is used to identify the feature internally
throughout the code. The data type, as the name
implies, is the kind of data the feature will describe.
The comparator indicates the type of comparator
to use for that particular feature. The label name
is the name to be displayed as a label in the GUI.
The component describes the particular Java Swing
component to be used to display the feature value.
Finally the sequence number is the order in which
the feature is to be displayed relative to other fea-
tures.

A GUI that displays this information can be
hard coded using appropriate Java Swing compo-
nents. The aim here, however, is to automatically
generate the GUI from the metadata. This involves
creating a package that can do this, i.e., which takes
the metadata as input and outputs the GUI. This
adaptive capability of the package is implemented

RESILT | cask FLE | PrOBLEMS | CompamaTors | oPmions |

EE— ol

Source a5 ar
Dee=tination IF F28T8E12235

Source Pori B
Corerts

oo i S

- |

. Tire | casebumbers |
a 111450 FEUAD TRAFFIC b port O traffic™ d =]
4 111452 DS Real Server tersdate ki ts
" 11 14:53 ST AN FINT 51
FSCAN SYM PR Ed
FECAN nmap ingerpar sthempe” 2]
FSCAN Symscan porscan” O |
PSCAN MMAPR MM s [
15 |41 14:54 TS shaft cliernt 10 handier <]
1€ 111454 D00 TrinD0 Attacker to Masler detaull statup password” o
19 1185 FEMPLOIT popd <86 b owver Sow™ =
- 1:14:55 MOIDOS TrimiDD Adtscher to Masher detoull password® =] #|
PROBLEM NP0 RESLLT CASE MFORMATICHN
P T “TDOS shaft client to handler™ Case Id : 3

protocel @ top

seurceip : any

seurceport @ any
destinatienip : LIS.186.122
destinationport : 20432

==

| sroe |

Figure 1: The actual GUL

using the process of reflection discussed in the fore-
going. The resulting package thus embodies a GUI
generation process that is domain independent.

3.1 GUI Creation

The GUI generated for the CBR domain is shown in
Figure 1. In review of the code for the abovemen-
tioned package, there are no variables for specific
GUI components. The code uses the metadata to
define the type of GUI component needed for each
attribute, e.g., a text field for a feature name. It
also defines any domain specific information associ-
ated with that component, such as the string used
in a label name, the length of the text field, the
color of the component, and any string comprising
an error message associated with the component.
In the upper portion of Figure 1, domain inde-
pendent information tabs are used. These are as
follows: (1) Result: used to display results of the
CBR, (2) Case File: where cases can be viewed and
added, (3) Problems: all the input problems, (4)
Comparators: the comparators used for each fea-

ture, (5) Options: allows selecting alternate case
and/or problem (packet) files.

These tabs are fixed for all possible domains of
the CBR. The Options tab enables specification of
the domain under consideration for the CBR. For
example, if the CBR is detecting intrusion using the
Snort like detector, the domain would be SNORT,
whereas if it is performing facial recognition, the
domain would be FACIALRECOGNITION. The
Case File, Result, and Problems tabs are supplied
with metadata information making them domain
specific after a domain has been selected from the
Options Tab. The comparators are selected from
the metadata in the specific domain.

As an illustration of the adaptive nature of the
GUI, consider the PROBLEM INFO panel in the
southwest corner of the GUI. This box displays
problem information (packets in the case of the
SNORT domain). The label information, the com-
ponent type, and the size of the component are all
defined by the SNORT domain metadata. Chang-
ing domains would require changing the metadata,
which in turn results in a change in the labels, com-

ponents, attributes, and sizes of the items in the
PROBLEM INFO panel. A snippet of the code
for the generation of this GUI is depicted in Fig-
ure 2. This code creates instances of the Swing
components JTextField and JLabel and then fills
in the parameter information needed for these com-
ponents from the domain metadata before placing
them on the panel at runtime. This is where the
reflection API provided by Java is applied. The
GUIs in the Case File and the Result tabs are also
generated from metadata in a similar manner.
The advantage of specifying the layout of the
GUI in metadata is that the look of the GUI can
be changed without compiling the GUI code or the
CBR code. Any change made to the metadata is
reflected in the appearance of the GUI at run time.

i

Class textFieldClass = Class.forName(ddRecord.getComponentType());

If (ddRecord.getComponentType().equals(‘JTextField"))

{
JTextField jTextField= (JTextField) textFieldClass.newlnstance();
jTextField.setBounds(xx+85,yy,(2*xsize),ysize);
jTextField.setText(tempPF.getFeatureValue());
probleminfoPanel.add(jTextField);
yy+=20;

Figure 2: Snippet of GUI code.

3.2 Code Specific Details for Creat-
ing the GUI

To create the screen in Figure 1, we use some of
same metadata as used by other components of
the application, in this case packets. To this is
added further metadata indicating how to display
the packet features. One such set of metadata was
shown in Table 1. For the steps involved, consider
again the example in Figure 2. This shows the code
required to create a Java JTextField by reading
the information about its placement and attributes
from the metadata in Table 1.

The first line after the “try” statement is used
to create an object of the type Class. The

name of the class object to be created is obtained
from the meta-data as indicated by the method
ddRecord.getComponentType(). In the case of the
metadata shown in Table 1, this would be the
JtextField class. The next line creates an object of
the type JTextComponent (from the Swing pack-
age). This object belongs to a class of objects from
which other components are inherited. The next
line sets the placement of the created component
with reference to the other components. After this,
the value is set to the feature value of the compo-
nent. Finally, the created component is added to
the panel to be displayed.

This illustrates the general manner in which
components are put on the GUI Other features
may require more than a simple JTextField com-
ponent, and hence can similarly make use of
JTextArea. This snippet of code assumes that the
component being specified to display a feature value
will be a subclass of JTextComponent.

References

[1] Joseph W. Yoder and Reza Razavi, Meta-
data and adaptive object-models, ECOOP’2000
Workshop Reader; Lecture Notes in Computer
Science, vol. 1964, Springer Verlag, 2000.

[2] Joseph W. Yoder and Reza Razavi, Adaptive
object-models (poster session abstract), Com-
panion Papers of OOPSLA’00, Minneapolis,
MN, ACM Press, October 2000.

[3] Joseph W. Yoder, Federico Balaguer, and Ralph
Johnson, Architecture and design of adaptive
object models: Intriguing Technology Presenta-
tion at the 2001 Conference on Object-Oriented
Programming Systems, Languages, and Appli-
cations, OOPSLA’01, ACM SIGPLAN Notices,
ACM Press, December 2001.

[4] Daniel G. Schwartz, Sara Stoecklin, and Erbil
A. Yilmaz, A case-based Approach to network
intrusion detection, Fifth International Confer-
ence on Information Fusion, IF’02, Annapolis,
Maryland., July 7-12, 2002, pp. 1084-1089.

[5] Snort, The Open Source Network In-
trusion Detection System, available at
http://www.snort.org

