
The Florida State University
College of Arts and Science

Yahoo Database Project
Super Search Application

By
Xi Rao

July 2002

A masters project submitted to the
Department of Computer Science in partial fulfillment of

For the Degree of Master of Science

Major Professor: Dr. D.G. Schwartz

 1

Table of Contents

ACKNOWLEDGEMENTS

ABSTRACT

CHAPTER 1 PROCESS…………………………………………………………...5

CHAPTER 2 VISION……………………………………………………………...6

CHAPTER 3 USE CASE: LOGIN………………………………………………..12

CHAPTER 4 USE CASE: BUILD ……………………………………………….15

CHAPTER 5 USE CASE: SEARCH ……………………………………………..18

CHAPTER 6 USE CASE: VIEW………………………………………………….21

CHAPTER 7 SOFTWARE ARCHITECTURE…………………………………...24

CHAPTER 8 USER GUIDE ……………………………………………………...38

 2

ACKNOWLEDGEMENTS

First and foremost, thanks to my major professor Dr. D.G. Schwartz. Without his help,
I couldn’t have completed this project.

Thanks to everyone at the Computer Science Department, Florida State University.
They taught me and helped me to earn my degree.

 3

Abstract

The Super Search Application is a Java/Swing/JDBC-based application that provides
the user the capability to download all the html pages from a website, parse these to
get the parent-child linkage information, and insert this into a database. It also
provides a user interface for searching the data after it has been put into this form.

The test case is the well-known Yahoo website, where the resulting database contains
all the classification, but the same technique can be applied to any other website that
is structured similarly. The reason for focusing on the Yahoo website in this project
was to provide a test bed of data that can be used in future projects concerned with 2D
and 3D graphical displays of concept taxonomies. The Yahoo classification index is a
typical such taxonomy being used for document classification.

The project was carried out using state-of-the-art software engineering (SE)
techniques. This is a light weight rational united process (RUP). Originally, RUP
has very heavy documentation guidelines, which is not fit the small project. So, I
decide to define my own process, which is based on the RUP. I call it light weight
RUP process.

The Super Search Application use layer technology to do development. The system
has a GUI layer, a Data Service layer, an Event layer, and a Parser layer. Each layer
has its own responsibility, and there are rules specified for communication between
layers. The layering technology greatly increases the extensibility of the system,
while decreasing the maintenance costs. The Super Search Application also uses
numerous design patterns. Layering together with design patterns are essence of
modern day Object-Oriented Programming.

The Super Search Application use Java Swing to implement the GUI. It uses Swing’s
built in parser to parse the html files, and it uses the freeware MySql as the database
to store all the information.

 4

CHAPTER 1
PROCESS

One well-known software engineering processes is the rational united process (RUP).
RUP is very good for large projects, but it has heavy documentation guidelines, which
do not fit well for smaller projects. So, I decide to define my own light weight RUP
process to decrease the documentation burden.

The overall flow-through the process is described below. This may run either
sequentially or iteratively through each stage. Some stages may be combined or
performed in parallel.

Overview of Process Activities:

� Requirement development
� Scenario development
� Analysis and Design
� Combined review
� Code and Unit test
� Application test

Requirement--A high-level description of what the application is intended to do. This
appears in a Vision document.

Scenario--A high-level description of interactions with application. Each scenario has
a Use Case document.

Analysis--High level, domain-recognizable models of the object and responsibilities
of the framework solution.

Design--Detailed model of objects and responsibilities of the classes that are used to
implement the analysis results. This appears in a Software Architecture document.

 5

CHAPTER 2
VISION

Revision History

Date Version Description Author

09/01/2001 1.0 Initial release Xi Rao

 06/12/2002 2.0 Revised Xi Rao

 6

Table of Contents
1. Introduction

1.1 References

2. Positioning

2.1 Problem Statement
2.2 Product Position Statement

3. Stakeholder and User Descriptions

3.1 Stakeholder Summary
3.2 User Summary
3.3 User Environment
3.4 Summary of Key Stakeholder or User Needs
3.5 Alternatives and Competition

4. Product Overview

4.1 Product Perspective
4.2 Assumptions and Dependencies

5. Product Features

6. Other Product Requirements

 7

http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://www.buginword.com
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://www.buginword.com
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://www.buginword.com
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://www.buginword.com
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://www.buginword.com
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://www.buginword.com
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l

Vision
1 Introduction
The purpose of this document is to define the high-level requirements of the Yahoo Database
Project (Super Search system) in terms of the needs of the end users.

1.1 References

Applicable references are:

1. Use Case document

2. Requirement management plan

2 Positioning
2.1 Problem Statement

Currently, many people use Yahoo or other portal web sites to search for information on the
Internet. There are two popular ways for doing this. One is the keyword search approach
employed by services such as AltaVista and Google. The other is the structured index
approach, where the users drills down through a hierarchical classification system such as
employed by services like Yahoo. This project concerns that latter.

The primary objective is to provide a test bed that can be used in future projects dealing with
2D and 3D visual displays of concept taxonomies for use in indexing large digital libraries.
For the sake of the exercise, however, searching and viewing tools are provided here as well.

In the Yahoo index it happens that there can be more than one pathway from the root down to
the same item of information (html reference link). That means that the item is implicitly
cross-referenced.

Most of time, when we find such information, however, the portal web site doesn’t give the
cross-references. This is a drawback, since cross-references can often provide important
information. In particular, it can help the user to understand that how the same information
may be used by other people.

The goal of this project is to capture the category classification information, including cross-
references, from the Yahoo web site. The information is to be put into a database in such a
way that the parent-child links between categories are explicitly represented. The project is
also to provide an interface through which the user can execute keyword searches directly on
the database.

Thus the system should perform an analysis the Yahoo web site. It should determine the
relations between classification categories and it should also get the URL from the html files
and determine the relationship of the URL with its category. When the information is obtained,
it is put into a relational database. The system should provide functions for user to search the
database and view the cross-referencing information.

The problem of Find the cross reference

Affects User

the impact of which is User can’t get cross-reference from yahoo web site.

 8

A successful solution would be The user can find cross-reference from our product.

2.2 Product Position Statement

For Current yahoo user

Who User needs it to search URL.

The Super Search System Is a tool

That Enable finding the cross reference function

Our product Could have more information than yahoo web page. The
user find URL by searching as well the cross reference

3 Stakeholder and User Descriptions
This section describes the users of Super Search System.

3.1 Stakeholder Summary

Name Description Responsibilities

Professor Professor Responsible for project
approval. Monitors project
progress. Ensure that the system
meets his need.

3.2 User Summary

Name Description Responsibilities Stakeholder

User Any people Manage the database and use it to
search and view cross-reference

Self-represented

3.3 User Environment

The user needs to use MS Front Page 2000/XP to download the Yahoo web site information
into the local file system.

The user needs to install the Mysql database software.

The application can run on Windows 95/98/NT/2000/XP

3.4 Key Stakeholder or User Needs

Need Priority Concerns Proposed Solutions

Login Medium Security User name and password
needed for authentication

 9

Build Database High Data for
searching

Parse the html file to get the
data. Having a parser to get
URL and description out and
insert them into database.

Search Database High Searching Get the user input key word
and build the sql query to
search the database.

View cross-reference High Viewing View the cross references for a
specific URL

 10

3.5 Alternatives and Competition

The user community was unaware of any viable alternatives or off-the-shelf solutions.

4 Product Overview
This section provides a high level view of the Super Search system capabilities.

4.1 Product Perspective

In general, the goal is to get the information from the portal web site. The user can execute
searches on the local database. It should be faster than executing the same search on the
Internet. The user also can get the cross-referencing information from this product.

- Fast search on the local database

- View the cross-reference

- Build test-bed for future knowledge-base projects

4.2 Assumptions and Dependencies

The user need to use MS Front Page 2000/XP to download the Yahoo category web site for
building the local database.

More is explained in the User Guide Manual

5 Product Features
5.1 Login

1. User Login required

User must input the user name and password correctly to login to the system.

2. Built in user name and password

The user name and password are predefined. The user can’t change the user
name or password. The user can’t add new users.

5.2 Build Database

1. Provide an interface to permit the user to input the root directory from which
the information extraction will begin.

 The user can input the directory, which contains the starting HTML file.
Inputting the root directory is required for building the database.

2. Recursively access the subdirectories.

 The program can recursively access directories under the root directory,
which the user input.

3. Get child category names.

The program will store the directory relationships with as parent-child
relations. Here, “category” and “directory” have the same meaning.

4. Find the URL and its description from the HTML file.

5. Build the database to keep the URL and Category information

5.3 Search Database

1. Provide an interface for user to input a keyword.

The user can input one keyword for searching the database.

2. Search the Database.

 11

The system will get the user’s input keyword and build a query to search the
database. The current version only supports one-keyword queries.

3. Display the result in another window inside the table.

A table will be used to display the search result. The table will have three
columns: URL, description, and category.

5.4 View Cross-reference

1. Permit the user to choose a URL from the table

User can choose one URL from the table.

2. Display the cross-references in another window inside the table.

A table will be used to display the cross-references. The table will have three
columns: URL, description, and category.

6 Other Product Requirements
N/A

 12

CHAPER 3
USE CASE: LOGIN

Revision History
Date Version Description Author

08/02/2002 1.0 Initial Release Xi Rao

 13

Table of Contents
1. Use-Case Name

1.1 Brief Description

2. Flow of Events
2.1 Basic Flow
2.2 Alternative Flows

3. Special Requirements

4. Preconditions

5. Postconditions

6. Extension Points

 14

http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l

Use-Case Specification: Login
1 Use-Case Name
1.1 Brief Description

This use case describes how a user logs into the Yahoo Database System. The
actors starting this use case are users.

2 Flow of Events
The use case begins when the actor types the user name and password on the login
form.

2.1 Basic Flow

1. The user input the user name and password.

2. The system validates the user name and password. The system decides that
is a valid password.

3. The system displays the Main Form and user ends

2.2 Alternative Flows

2.2.1 invalid Name/Password
 1. The user input the user name and password.
 2. The system validates the user name and password. The system decides

it is invalid password.
 3. The system let user input user name and password.

3 Special Requirements
 There are no special requirements associated with this use case.

4 Preconditions
 The user must have a user id and password.

5 Postconditions

 There are no Postconditions associated with this use case.

6 Extension Points
 There are no extension points associated with this use case.

 15

CHAPTER 4
USE CASE: BUILD

 Revision History
Date Version Description Author

08/03/2001 1.0 Initial Release Xi Rao

 16

Table of Contents
1. Use-Case Name

1.1 Brief Description

2. Flow of Events
2.1 Basic Flow
2.2 Alternative Flows

3. Special Requirements

4. Preconditions
4.1 < Precondition One >

5. Postconditions

6. Extension Points

 17

http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l

Build Database Use Case
1 Use-Case Name
1.1 Brief Description

This use case allows the user to build the database from scratch. The system will
parse the html file to get the URL, its description and the path to reach the URL. The
system will insert the results it gets from the html files into the database.

2 Flow of Events
 The system begins when the user selects the “build” menu from the main form.

2.1 Basic Flow

 1. The user inputs the root directory, which contains the html file for parsing.

 2. The user presses the “build” button.

 3. The system begins the building of the database.

 4. The system will notify the user build finish. The record is in the database.

2.2 Alternative Flows

2.2.1 The user inputs the wrong directory name

 1. The user input the root directory, which don’t contain the html for parsing.
 2. The user presses the “build” button.
 3. The system begins the building of the database.
 4. The system will notify the user build finish, but no record in the database.

2.2.2 The user clicks the “browse” button

 1. The user click “browse” button.

 2. The system will pop up a window to let the user browse the directory structure of
the file system and the files in the directory. The user can’t choose the directory
from the window.

2.2.3 The user clicks the “back” button

 1. The user click “back” button

 2. The system will go back the main menu form

3 Special Requirements
 There are no special requirements associated with this use case.

4 Preconditions
4.1 Login

 The user must be logged onto the system in order for the use case to begin.

5 Postconditions
 The html files exist.

6 Extension Points
 There are no extension points associated with this use case.

 18

CHAPTER 5
USE CASE: SEARCH

Revision History
Date Version Description Author

09/04/2001 1.0 Initial release Xi Rao

 19

Table of Contents
1. Use-Case Name

1.1 Brief Description

2. Flow of Events
2.1 Basic Flow
2.2 Alternative Flows

3. Special Requirements

4. Preconditions
4.1 < Precondition One >

 4.2 < Precondition two >

5. Postconditions
5.1 < Postcondition One >

6. Extension Points

 20

http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l

Use-Case Specification: Search Use Case
1 Use-Case Name
1.1 Brief Description

 This use case allows the user input a keyword for searching the URLs. The system
will return the search results.

2 Flow of Events
 The system begins when the user selects the “search” menu from the main form.

2.1 Basic Flow

 1. The user inputs the keyword into a text field, which is used to search the database.

 2. The user clicks the “search database button”.

 3. The system will return the search results in another window. The search results will
have the URL, URL description, and category.

2.2 Alternative Flows

2.2.1 No results

 1. The user input the keyword in a text field, which is used to search the database.

 2. The user click the “search database button.”

 3. The system searches for the keyword in the database, but it doesn’t find a match.
Another window will show, but there will be no search result.

2.2.2 The user clicks the “back” button.

1. The user clicks the “back button”.

2. The system will go back to the main menu.

3 Special Requirements
 There are no special requirements associated with this use case.

4 Preconditions

4.1 Login

 The user must be logged onto the system in order for the use case to begin.

4.2 Database exist

The database must exist. If the database doesn’t not exist, this use case requires the
user to build the database before executing this use case.

5 Postconditions
5.1 Search result

The search result will be shown in another window, which will enable the user to view
the cross-references.

6 Extension Points

 There are no extension points associated with this use case.

 21

CHAPTER 6
USE CASE: VIEW

 Revision History
Date Version Description Author

09/09/2001 1.0 Initial release Xi Rao

 22

Table of Contents
1. Use-Case Name

1.1 Brief Description

2. Flow of Events
2.1 Basic Flow
2.2 Alternative Flows

3. Special Requirements

4. Preconditions
4.1 < Precondition One >
4.2 < Precondition Two >
4.3 < Precondition Three >

5. Postconditions

6. Extension Points

 23

http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesreq%22 l

Use-Case Specification: View Use Case
1 Use-Case Name
1.1 Brief Description

 This use case allows the user to choose a URL from the search results. The user can
view the cross-references of this URL.

2 Flow of Events
2.1 Basic Flow

 1. The user chooses a URL from the search results table.

 2. The user clicks the “view cross reference button”.

 3. The system will open another window to show the cross-references.

2.2 Alternative Flows

2.2.1 No cross reference

 1. The user chooses a URL from the search results table.

 2. The user clicks the “view cross reference button”.

 3. The system fail to find a cross-reference. It will say this in the view cross reference
window.

2.2.2 The user clicks “close” button.

The user clicks the “close” button. The system will close the view cross-reference
window.

3 Special Requirements
 There are no special requirements associates with this use case.

4 Preconditions
4.1 Login

The user must be logged onto the system in order for the use case to begin.

4.2 Database exist

The database must exist. If the database is not exist, this use case requires the user
to build the database before executing this use case.

4.3 Search result exist

The user must search for URLs using the search function of the system.

5 Postconditions
 There are no Postconditions associated with this use case.

6 Extension Points

 There are no extension point associated with this use case.

 24

CHAPTER 7
SOFTWARE ARCHITECTURE

Revision History

Date Version Description Author

03/13/2002 1.0 Initial Release Xi Rao

06/15/2002 2.0 Revised Xi Rao

 25

Table of Contents
1. Introduction

1.1 Purpose
1.2 Scope
1.3 Definitions, Acronyms and Abbreviations
1.4 References

2. Architectural Representation

3. Architectural Goals and Constraints

4. Use-Case View

5. Logical View

5.1 Overview
5.2 Architecturally Significant Design Packages

6. Process View
6.1 Login
6.2 Build Database
6.3 Search Database
6.4 View cross-reference

7. Deployment

8. ER-diagram

 26

http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l
http://grids.ucs.indiana.edu:18002/Documents and Settings/Administrator/My Documents/Program FilesRationalRationalUnifiedProcesswebtmpltemplatesa_and_d%22 l

Software Architecture Document
1. Introduction

1.1 Purpose

This document provides a comprehensive architectural overview of the system, using
a number of different architectural views to depict different aspects of the system. It
is intended to capture and convey the significant architectural decisions that have been
made for the system.

1.2 Scope

This Software Architecture Document provides an architectural overview of the Super
Search system.

1.3 Definitions, Acronyms and Abbreviations

N/A

1.4 References

Rational Rose SoDA’s Software Architecture Document template.

2. Architectural Representation

This document presents the architecture as a series of views: use case view, logical
view, process view, and deployment view. There is no separate implementation view
described in this document. These are views of an underlying Unified Modeling
Language (UML) model developed using Rational Rose.

3. Architectural Goals and Constraints

A. The application should be layered, and have clear separation among
presentation, control, and data storage.

B. Throughout the design, we should follow various patterns (standard object-
oriented design pattern).

4. Use-Case View

The Use Case View is important input to the selection of the set of scenarios and/or
use cases that are the focus of iteration. It describes the set of scenarios and/or use
cases that represent some significant, central functionality. It also describes the set of
scenarios and/or use cases that have a substantial architectural coverage (that exercise
many architectural element) or that stress or illustrate a specific, delicate point of the
architecture.

 27

Login

Build Database

Search Database

View Cross-reference

User

The use cases are:

- Login
- Build database
- Search database
- View cross-reference

The user initiates these use cases.

Reference the use case document.

5. Logical View

Logical view is a description of the logical view of the architecture, which describes
the most important classes, their organization into service package and subsystems,
and the organization of these subsystems into layers. Also describes the most
important use-case realizations, examples, and the dynamic aspects of the
architecture. Class diagrams may be included to illustrate the relationships between
architecturally significant classes, subsystems, packages and layers.

 28

The logical view of the course registration system is comprised of the 4 main
packages: GUI, Data Service, Event, and Parser.

5.1 Overview

Data Service

GUI Event

parser

The logical view of the system is comprised of the 4 main packages: GUI, Data
Service, Event, and Parser.

The GUI package (User Interface) contains classes for each of the forms that the
actors use to communicate with the System. Boundary classes exist to support login.

The Data Service package contains the classes to map to the database table and the
classes to regular operations on the database. The main goal of this package is to
communicate with the database and provide the response to the GUI.

The Event package contains the events for communicating between the Data Service
and GUI.

The Parser package contains the classes to parse the HTML files. It is to
communicate with the Data Service package. The Data service package will tell it
where to parse the file. The parser package will generate the data and return these to
the data service package for insertion into the database.

Here, each package can be viewed as a layer.

5.2 Architecturally Significant Design Packages

5.2.1 Event layer

Observer

sendNotify()

Subject

registerInterest()

 29

Interface Observer and Interface Subject reside in this layer.

The class that implements the Subject interface will implement a “registerInterest()”
method, which will have a parameter (Observer) and register itself into Observer. The
class that implements the Observer interface will implement a “sendNotify()” method,
which will have a parameter (String) and notify any registered Object when a specific
event happens. This design is the Observer pattern.

SearchFrame
(from GUI)

Observer

sendNotify()

(from Event)

Subjec t

registerInterest()

(from Event)

DataAgent
(from Data Service)

BuildFrame
(from GUI)

From this diagram, we can see that the DataAgent class implements the Subject
interface. Its “registerInterest()” method will register any class that implements the
Observer interface, so the BuildFrame class is registered. The BuildFrame class
implements the Observer interface. Its “sendNotify()” method will do some real work
when it is invoked. BuildFrame knows the DataAgent, but DataAgent don’t know the
BuildFrame. So, the BuildFrame will let the DataAgent handle the database task.
When the DataAgent finishes the task, it will notify the BuildFrame by using
Observer pattern.

The benefit is that we separate the two layers. No matter how we change the GUI and
Data Server layer. It won’t affect these two layer. It also is an asynchronization
message implementation.

5.2.2 Data Service layer

 30

Communicate with
GUI and Event Layer

Map to Database
table

Communicate with
Database

SearchAgent

IDFactory

NodesBroker

Parent_child Node_Url NodeUrl

DataAgent

Url, Parent_child, Node_Url, and Node class are entity classes, which map to the
database tables. They provide some get and set methods to access the internal data.

The DataAgent class will communicate with the GUI layer for building the database.
It will use the parser layer to get the data and put them into the four entity classes.
DataAgent will use the NodesBroker class to insert the data in the entity class into the
database.

The IDFactory class will be used by the DataAgent class for detecting duplicate URLs
and generating a unique number for every URL and Category instance.

The SearchAgent class will communicate with the GUI layer and the database. It will
search the database for a specific query.

5.2.3 Parser layer

 31

ParserGet ter

getParser()

UrlMaker

handleStartTag()
handleEndTag()
handleText()
readFrom()
writeTo()

The UrlMaker class will read the html file and parse it to get the URL and its
description as well as the current category and upper level category.

The ParserGetter class will return the UrlMaker instance for parsing the html
document.

The parser layer is built on top of a swing html parser, which has the ability to handle
standard html3.2 tags.

5.2.4 GUI layer

Helper table

MainMenuFr
ameNor

BuildFrame

MainMenuFra
meFactory

MainMenu
Frame

LoginFrame

MainMenuFr
ameSys

SearchFrame

CrossReferenceFrame
(from table)

SearchResultFrame
(from table)

The LoginFrame class will show the login form for the client.

The MainMenuFrameFactory class will create the MainMenuFrameNor instance or
MainMenuFrameSys instance depending on the client’s input. This function is not

 32

fully implemented. At present, there is only one kind of user, i.e., there is no
difference between a system administrator and a normal user. The full functionality
may be implemented in a future iteration. This design exists for scalability purposes.

The MainMenuFrameNor class is not fully implemented. It exists for scalability
purposes.

The MainMenuFrameSys class will show the menu form to the client. From this
frame, it can go the BuildFrame and SearchFrame classes.

The BuildFrame class will show the build form to the client. It knows the DataAgent
class. It will forward the client’s build database request to DataAgent.

The SearchFrame class will show the search form to the client. It knows the
SearchAgent class. It will forward the client’s database search request to Search
Agent.

Helper package: holds some helper classes.

Login MainMenu

The Login class holds the built in user name and password. This is not a very secure
way to do password authentication. It could be change in the future, such as to access
an LDAP to verify the user name and password.

The MainMenu class is used by MainMenuFrameSys to create the DataAgent.

Table Package: holds the class for tables.

ColumnData

RowData

SearchTabl
eData

CrossReferen
ceFrame

SearchResu
ltFrame

The SearchResultFrame class displays a form for searching for result using the JTable
widget. It can go the CrossReferenceFrame.

 33

The CrossReferenceFrame class displays a form for cross-references using the JTable
widget.

The ColumnData class holds the column information for the JTable.

The RowData class holds the row data for the JTable.

The SearchTableData classes extend from the swing AbstractTableModel and hold
the data for JTable. It includes ColumnData and RowData instances and is used by
CrossReferenceFrame and SearchResultFrame.

6. Process View

In the sequence diagram, the “create” label means to initialize an instance. The entity
instances represent the four class instances (Url, Parents-child, Node_Url, and Node).

6.1 Login

 : User : LoginFrame : Login : MainMenuFrameFactory : MainMenuFrame

actionPerformed create

create

createMainMenuFrame

The user inputs the user name and password and presses the button to trigger the
actionPerformed() method. The LoginFrame will be responsible for creating a login
instance and passing it to create the MainMenuFrameFactory class, which will return
either MainMenuFrameSys or MainMenuFrameNor based on the input (Login
instance) by calling the createMainMenuFrame() method. The MainMenuFrameSys
and MainMenuFrameNor inherit from MainMenuFrame class. This is using a Factory
Pattern.

6.2 Build database

 34

 : User :
MainMenuFrameSys

 : BuildFrame : DataAgent : IDFactory :EntityUrlMaker

actionPerformed actionPerformed

create startBuild

travelNode

get

create

handleTag

insertToDatabase

The user chooses the menu by pressing the button to trigger the
MainMenuFrameSys’s actionPerformed() method. The user will input a root
directory for building and press the button to trigger the BuildFrame’s
actionPerformed() method. This will create the DataAgent. The DataAgent will call
its startBuild() method to start building. The DataAgent will call its travelNode()
method to recursively travel through the directories under the root directory and
access the html files. The DataAgent will give the html files to the UrlMaker to let it
parse them. The UrlMaker class will be responsible for getting the url and description
from the html file. The DataAgent also holds the current directory name and parent
directory name. The DataAgent will ask the IDFactory to assign a unique ID for each
Url and Category. After that, the DataAgent will put all information into the Entity
class and insert them into the database by using insertToDatabase() method.

6.3 Search database

 35

 : User :
MainMenuFrameSys

 : SearchFrame : SearchAgent :
SearchTableData

 :
SearchResultFrame

actionPerformed

actionPerformed

create
searchDB

create
create

The user chooses the menu by pressng the button to trigger the MainMenuFrameSys’s
actionPerformed() method. The user inputs the keyword for searching and presses the
button to trigger the SearchFrame’s actionPerformed() method. The SearchFrame
will create a SearchAgent instance. It will use the keyword to build an SQL query to
search the database and create a SearchTableData instance for the results. The
SearchTableData will create the SearchReferenceFrame for displaying the results.

6.4 View cross-reference

 : User :
SearchResultFrame

 : SearchAgent :
SearchTableData

 :
CrossReferenceFrame

actionPerformed create
searchDatabase

create create

The user chooses one URL from the table in the SearchResultFrame and triggers the
actionPerformed() method in the SearchResultFrame. This will create a SearchAgent
to build a query and search the database again. The SearchAgent will create a

 36

SearchTableData instance for the results. The SearchTableData instance will create a
CrossReferenceFrame for displaying the results.

7. Deployment

The Super Search system is a typical 3-tier system containing the GUI, data service,
and database. These 3 tiers live on the same machine for the current implementation.

8. ER-diagram

URLS

Description

URL_ID

URL

Nodes_URL

Contain

1

N

Cat_ID

URL_ID

Nodes

Contain

M

1 Cat_Name

Cat_ID

Parent_Child

Contain

N

1
Child_ID

Parent_ID

Parsent_child_id

 37

CHAPTER 8
USER GUIDE

Section 1 – Installation
Unzip the file to a folder, and then double click the install.htm file in the folder.

From this screen, you can press the start installer button. If you don’t have java on
your machine, you can check the “include VM” choice. Even if you have the JDK on
your local machine, you still can chose include VM. this will not affect your already
existing JRE. The VM version is 1.3.1. After that, follow the instructions; you can
easily install this application.

Section 2 – Install MySql Database

The Super Search application requires a database engine. You need to install the
MySQL database on your local machine. For this you can go to www.mysql.com to
download the MySql for windows version.

After you install MySql, you will find the icon on your right lower
side. Then you need to copy all the sql files under SuperSearch\sql to the mysql\bin
directory.

Section 3 – Configure MySql

Go to the MySql directory and run the MySql command.

 38

http://www.mysql.com/

Create the database for Super Search Application. You can type the exit command to
quit the MySql command interpreter.

Run create all.bat file to create tables inside samp_db database for the Yahoo Super
Search use. The create_all.bat and other .sql files are copied from the SuperSearch\sql
directory.

Section 4 – FrontPage download Yahoo web site

1. Start MS FrontPage2000 and choose File->new->web-> import web wizard.
2. Visit www.yahoo.com to choose one category (e.g., Art). The following page will
show the URL in the address bar (http://dir.yahoo.com/Arts/).

 39

http://www.yahoo.com/
http://dir.yahoo.com/Arts/

3. Input the address for the Art category.

In this screen, you need to specify a limit for pages level and a limit for size. You just
increase these to a very big number (as large as you want).

 40

If you see this screen, it means that MS Frontpage is downloading the html file for you. If you want to
skip this step, you can use the SuperSearch\yahoo directory as the root directory for building the
database.

Section 5 – Login

In this screen, you can input the user name and password. The Super System has a
built in user name (system) and password (manager).

Section 6 – Build

 41

After you click the build database button, you will begin to build. This will take some
time depending on your input, i.e., depending on how many html files are under your
root directory.

This screen shows a dialog that will notify you when the build is finished.

Section 7 – Search and view cross-reference

You can input the keyword here for a search.

 42

From the above table, you can choose the URL to view the cross-references.

This table shows the cross-references.

 43

	1 Introduction
	The purpose of this document is to define the high-level requirements of the Yahoo Database Project (Super Search system) in terms of the needs of the end users.
	1.1 References

	Applicable references are:
	Use Case document
	Requirement management plan
	2 Positioning
	2.1 Problem Statement
	Currently, many people use Yahoo or other portal web sites to search for information on the Internet. There are two popular ways for doing this. One is the keyword search approach employed by services such as AltaVista and Google. The other is the struc
	The primary objective is to provide a test bed that can be used in future projects dealing with 2D and 3D visual displays of concept taxonomies for use in indexing large digital libraries. For the sake of the exercise, however, searching and viewing too
	In the Yahoo index it happens that there can be more than one pathway from the root down to the same item of information (html reference link). That means that the item is implicitly cross-referenced.
	Most of time, when we find such information, howe
	The goal of this project is to capture the category classification information, including cross-references, from the Yahoo web site. The information is to be put into a database in such a way that the parent-child links between categories are explicitly
	Thus the system should perform an analysis the Yahoo web site. It should determine the relations between classification categories and it should also get the URL from the html files and determine the relationship of the URL with its category. When the in
	2.2 Product Position Statement

	3 Stakeholder and User Descriptions
	This section describes the users of Super Search System.
	3.1 Stakeholder Summary
	3.2 User Summary
	3.3 User Environment
	The user needs to use MS Front Page 2000/XP to download the Yahoo web site information into the local file system.
	The user needs to install the Mysql database software.
	The application can run on Windows 95/98/NT/2000/XP
	3.4 Key Stakeholder or User Needs
	3.5 Alternatives and Competition

	The user community was unaware of any viable alternatives or off-the-shelf solutions.
	4 Product Overview
	This section provides a high level view of the Super Search system capabilities.
	4.1 Product Perspective
	In general, the goal is to get the information from the portal web site. The user can execute searches on the local database. It should be faster than executing the same search on the Internet. The user also can get the cross-referencing information from
	Fast search on the local database
	View the cross-reference
	Build test-bed for future knowledge-base projects
	4.2 Assumptions and Dependencies

	The user need to use MS Front Page 2000/XP to download the Yahoo category web site for building the local database.
	More is explained in the User Guide Manual
	5 Product Features
	5.1 Login
	User Login required
	User must input the user name and password correctly to login to the system.
	Built in user name and password
	The user name and password are predefined. The us
	5.2 Build Database
	1.Provide an interface to permit the user to input the root directory from which the information extraction will begin.
	The user can input the directory, which contains the starting HTML file. Inputting the root directory is required for building the database.
	2.Recursively access the subdirectories.
	The program can recursively access directories under the root directory, which the user input.
	Get child category names.
	The program will store the directory relationship
	Find the URL and its description from the HTML file.
	5.Build the database to keep the URL and Category information
	5.3 Search Database
	Provide an interface for user to input a keyword.
	The user can input one keyword for searching the database.
	Search the Database.
	The system will get the user’s input keyword and
	Display the result in another window inside the table.
	A table will be used to display the search result. The table will have three columns: URL, description, and category.
	5.4 View Cross-reference
	Permit the user to choose a URL from the table
	User can choose one URL from the table.
	Display the cross-references in another window inside the table.
	A table will be used to display the cross-references. The table will have three columns: URL, description, and category.
	6 Other Product Requirements
	1 Use-Case Name
	1.1 Brief Description
	This use case describes how a user logs into the Yahoo Database System. The actors starting this use case are users.

	2 Flow of Events
	The use case begins when the actor types the user name and password on the login form.
	2.1 Basic Flow
	The user input the user name and password.
	The system validates the user name and password. The system decides that is a valid password.
	The system displays the Main Form and user ends
	2.2 Alternative Flows
	2.2.1 invalid Name/Password

	3 Special Requirements
	There are no special requirements associated with this use case.
	4 Preconditions
	The user must have a user id and password.
	5 Postconditions
	6 Extension Points
	1 Use-Case Name
	1.1 Brief Description
	This use case allows the user to build the database from scratch. The system will parse the html file to get the URL, its description and the path to reach the URL. The system will insert the results it gets from the html files into the database.

	2 Flow of Events
	The system begins when the user selects the “buil
	2.1 Basic Flow
	1. The user inputs the root directory, which contains the html file for parsing.
	2. The user presses the “build” button.
	3. The system begins the building of the database.
	4. The system will notify the user build finish. The record is in the database.
	2.2 Alternative Flows
	2.2.1 The user inputs the wrong directory name
	1. The user input the root directory, which don’t

	2.2.2 The user clicks the “browse” button

	1. The user click “browse” button.
	2. The system will pop up a window to let the use
	2.2.3 The user clicks the “back” button
	1. The user click “back” button
	2. The system will go back the main menu form
	3 Special Requirements
	There are no special requirements associated with this use case.

	4 Preconditions
	4.1 Login

	5 Postconditions
	The html files exist.

	6 Extension Points
	1 Use-Case Name
	1.1 Brief Description

	This use case allows the user input a keyword for searching the URLs. The system will return the search results.
	2 Flow of Events
	The system begins when the user selects the “sear
	2.1 Basic Flow
	1. The user inputs the keyword into a text field, which is used to search the database.
	2. The user clicks the “search database button”.
	3. The system will return the search results in another window. The search results will have the URL, URL description, and category.
	2.2 Alternative Flows
	2.2.1 No results
	1. The user input the keyword in a text field, which is used to search the database.
	2. The user click the “search database button.”
	3. The system searches for the keyword in the dat

	2.2.2 The user clicks the “back” button.
	1. The user clicks the “back button”.
	2. The system will go back to the main menu.

	3 Special Requirements
	There are no special requirements associated with this use case.
	4 Preconditions
	4.1 Login
	The user must be logged onto the system in order for the use case to begin.
	Database exist
	The database must exist. If the database doesn’t

	5 Postconditions
	5.1 Search result
	The search result will be shown in another window, which will enable the user to view the cross-references.

	6 Extension Points
	1 Use-Case Name
	1.1 Brief Description

	This use case allows the user to choose a URL from the search results. The user can view the cross-references of this URL.
	2 Flow of Events
	2.1 Basic Flow
	1. The user chooses a URL from the search results table.
	2. The user clicks the “view cross reference bu
	3. The system will open another window to show the cross-references.
	2.2 Alternative Flows
	2.2.1 No cross reference
	1. The user chooses a URL from the search results table.
	2. The user clicks the “view cross reference butt
	3. The system fail to find a cross-reference. It will say this in the view cross reference window.

	2.2.2 The user clicks “close” button.
	The user clicks the “close” button. The system wi

	3 Special Requirements
	There are no special requirements associates with this use case.
	4 Preconditions
	4.1 Login
	The user must be logged onto the system in order for the use case to begin.
	4.2 Database exist
	The database must exist. If the database is not exist, this use case requires the user to build the database before executing this use case.
	4.3 Search result exist
	The user must search for URLs using the search function of the system.

	5 Postconditions
	There are no Postconditions associated with this use case.
	6 Extension Points
	
	
	1.Introduction
	1.1 Purpose
	Scope
	This Software Architecture Document provides an architectural overview of the Super Search system.
	1.3 Definitions, Acronyms �
	1.4 References

	2. Architectural Repre
	3. Architectural Goals
	The application should be layered, and have clear separation among presentation, control, and data storage.
	Throughout the design, we should follow various patterns (standard object-oriented design pattern).
	4. Use-Case View
	5. Logical View
	5.1 Overview
	5.2 Architecturally Signif�

	6. Process View
	7. Deployment
	8. ER-diagram

