
Implementing an Object Oriented, Knowledge Based Network
Reference Monitor and Intrusion Detection System

Abstract
With the unprecedented growth of computer networks in the past decade, the need for security

is now bigger than ever. An intrusion detection system (IDS) can add a level of security to a
computer network by monitoring all the users in its environment. Generally, an IDS detects attacks
by analyzing the payload in messages or commands. Recently, a way of detecting intruders without
looking at the contents of a message was introduced [1]. The technique is applied to the specific
problem setting of security protocols.

This paper addresses a new and novel technique of gathering meta-information of network
messages and describes the technique as implemented. Unfortunately, actual encrypted traffic is
not available to test this concept, so our work includes development of a simulation environment.
Consequently, our system consists of a monitor, a principal simulation environment, and a security
protocol intrusion detection engine. We address our design framework, the software techniques to
accomplish the network programming in our environment and how our design relates to the
Common Intrusion Detection Framework.

Keywords: Threads, Network Programming, Intrusion Detection, Reference Monitor,
Consumer-Producer

1. Introduction

In the 1990’s we experienced the dawn of the Internet revolution. Now the Internet is

growing at an unprecedented rate and is embedding itself in the fabric of our society. The

average American can now trade stocks, check bank accounts, and buy goods online.

Unfortunately, this new convenience comes with a price. Network security has not grown in par

with the Internet and as a result many Internet users are vulnerable to attacks.

Two approaches to security for electronic communication have emerged: (1) Detection and

response and (2) Protection. In the first paradigm, Intrusion Detection Systems (IDS) add a level

of security to a computer network by monitoring the users network activity. IDSs build on early

security technology that depended on monitoring system logs to determine if malicious activity

*Dr. Alec Yasinsac Yasinsac@cs.fsu.edu
Edwin A. Melendez Melendez@cs.fsu.edu
Sachin Goregaoker Goregaoker@cs.fsu.edu

 850.644.6407 (voice)
850.644.0058 (fax)

Department of Computer Science
Florida State University

Tallahassee, FL 32306-4530

The Monitor and Principals

2

occurred. On the other hand, protection mechanisms prevent security compromise, usually

through access control technology with or without encryption. Encryption has proven to be

effective in protecting privacy and enhancing authentication in network communications.

These approaches are each effective mechanisms, though neither is foolproof. Moreover,

while they have complementary characteristics, until recently, they have been mutually exclusive

in application. There is one issue that is the primary reason for this. Generally, an IDS detects

attack by analyzing the payload in messages or commands, while in encrypted environments,

payloads are not available for inspection.

Recently, a novel way of detecting intruders without looking at the contents of a message

was introduced [1]. This technique proposed analyzing meta-information about packets on the

network, specifically targeting characteristics of security protocols. Security protocols are

commonly used on networks for authentication purposes, distribution of encryption keys, and

initiating and terminating secure communication sessions. These protocols have characteristics

that allow detection of known attacks without knowing the content of the message payloads.

This paper discusses an implementation of a monitor, detection engine, and simulation

environment that can be used to detect intrusions from encrypted network messages. The monitor

system is a client-server application with the server gathering and organizing the meta-

information. To test the functionality of the monitor a principal simulation environment was

created. This environment can simulate normal, suspicious, and attack behavior.

The rest of this paper is organized as follows: In Section 2, we present background

information about intrusion detection systems, and in section 3, summarize the SEADS

architecture. In Section 4 we describe the monitor and in section 5, detail the principal simulation

environment. Section 6 describes the detection engine while Section 7 details test results. We

conclude the paper in Section 7.

2. Intrusion Detection Systems

Numerous intrusion detection systems have been created and applied to a wide range of

problems [2]. They can be used on networks to provide an extra layer of security. However, they

do not provide security alone. IDSs are designed to complement and assist other forms of

security. This interoperability between security systems is essential and represents the time-

tested principle of defense in depth.

The Monitor and Principals

3

The Common Intrusion Detection Framework or CIDF is a movement to develop ways to

allow intrusion detection engines to interoperate with other programs [5]. One of their attempts is

to architecturally divide the IDS into four major independent components that can be reused in

other systems: Event Generator, Event Analyzer, Event Database, and the Response Unit

The event generator is the component that samples activity from the network environment

and convert the information into objects that can be used by other components. After converting

the information into objects, the generator stores the objects in the event Database. The event

analyzer retrieves the objects from the event database and analyses them in order to detect

intrusions.

There are two main designs available to the event analyzer for detecting attacks: 1) the

knowledge-based design and 2) the behavioral-based designs [6]. In theory, an IDS can use

either or both design approaches to detect intruders.

Knowledge-based design detects intruders by pattern-matching user activity to known attack

signatures. Signatures are kept in a database containing a repertoire of information describing

normal, suspicious, or attack behavior. A signature is a description of a behavior. For instance, in

an operating system, an attack signature may consist of the following sequence of commands:

su <correct password>

rm –R /*

If the event analyzer detects a sequence of events that matches a corresponding attack

signature, then an attack has been detected.

The behavior-based design uses statistical methods or artificial intelligence in order to detect

attacks. Profiles of normal activity are created and stored in a database. Any activity gathered by

the event generator that deviates from the normal profile in a statistically significant way can be

deemed as suspicious activity or an attack.

3. Secure Enclave Attack Detection System (SEADS)

3.1 The Topology of SEADS

SEADS applies the well-known monitor model to an IDS application. SEADS is

conceptually divided into three parts similar to the ones described in the CIDF model presented

in section 2. The three parts are the Monitor, the Intrusion Detection Engine (IDE), and the

Knowledge Base (KB).

The Monitor and Principals

4

The monitor in SEADS is comparable to the CIDF event generator and event database. This

is because the monitor gathers information from the network, converts the information to objects

and stores these into an internal database. The intrusion detection engine and the knowledge base

together are analogous to the event analyzer. The IDE uses the knowledge-base design described

in section 2. It retrieves objects from the monitor’s database and searches for the presence of

attacks by comparing these with signatures stored in the KB. The KB is a repository of normal,

suspicious, and attack signatures.

SEADS assumes secure communication between the monitor and principals. Inside this

protected environment, the principals can safely forward information to SEADS. The principals

communicate between one another via public networks such as the Internet. Accordingly, the

intruder only interacts with the principals on the public network.

3.2 The Needham-Schroeder Protocol

In this section, we use a well-known protocol to illustrate how SEADS can detect an

attack on a security protocol. The Needham-Schroeder Protocol (NSP) is a popular and widely

used key distribution and authentication protocol. This protocol was first introduced in [12] in

1978 and now countless papers show how intruders can spoof the participants by replaying

messages. The protocol contains the messages shown in Table 1.

The NSP protocol consists of five messages

and involves the participation of three parties.

Since the messages are encrypted, their

contents cannot be used to detect attacks. A

primary contribution of the work on SEADS is

that there is other pertinent information

available. For instance, every message in the NSP protocol is sent by one participant and

received by another. The series of send and received events are valuable information that does

not involve the decryption of messages. The NSP protocol is shown in Table 2 as a series of send

and receive events.

We now show the Denning and Sacco attack on NSP [3] and how it is detected in this

architecture. The attack requires the intruder to intercept messages from one session,

compromise a session key, and open a second session to replay the intercepted messages.

1. A -> S: A,B,na
2. S -> A: {na,B,kab,{kab,A}kbs}kas
3. A -> B: {kab,A}kbs
4. B -> A: {nb}kab
5. A -> B: {nb-1}kab

Table 1

The Monitor and Principals

5

Effectively, the attack is enacted by the intruder replaying message #3 from the compromised

session to the same recipient that originally received the message. Even though payloads are

encrypted in NSP messages, the intruder is able to obtain authentication from B. The intruder

does not have to decipher the payloads in order to perform this attack. Instead, the intruder relies

on copying and replaying messages.

In order for this attack to be possible, the intruder needs to be sophisticated enough to

remove and insert messages in the network at will. Unfortunately, the technology to do this is

available to many intruders.

The events that identify the attack are given in Table 3. When the IDS detects these three

events signified by the action, protocol message number and session, it should signal that an

attack has occurred.

4. The Monitor

4.1 The Monitor Database

In an intrusion detection system, the monitor is the component that gathers traffic between

principals and other pertinent activity. It packages this information into events and stores them in

an internal database for later use or forwards them directly to the intrusion detection engine.

Our monitor is novel because it gathers information without looking at the contents of the

network traffic. The information that is collected is meta-information about the traffic.

Seq # Action Protocol
Msg #

Session
ID

1. B<-A 3 x
2. B->A 4 x
3. B <- A: 5 x

Table 3

Seq # Action Protocol
Msg #

1. A -> S 1
2. S <- A 1
3. S -> A 2
4. A <- S 2
5. A -> B 3
6. B <- A 3
7. B -> A 4
8. A <- B 4
9. A -> B 5
10. B <- A 5

Table 2

The Monitor and Principals

6

Specifically, we utilize characteristics about security protocols and attacks gleaned from years of

formal method research.

In order to gather the necessary meta-information, principals are required to report events to

the monitor. You may recall from section 3, that during the execution of a protocol, a series of

messages are exchanged between principals. Each message in the protocol consist of at least two

events: a send and a receive event. These send and receive events are the ones forwarded to the

monitor. Thus, the principals execute cooperating processes that automatically communicate

with the monitor. Every time a protocol message is sent, the principal notifies the monitor by

reporting it as an event; the same for receive events.

For our implementation of events, we selected a minimal set of data that we can use to

identify attacks. These include the identity of the acting principal (PN), a session identifier

(nonce), other parties to the session (Parties), and the type of event (send or receive).

A session represents one execution of a security protocol. At any given time, the monitor can

be gathering information from countless sessions involving different principals. It is crucial for

the monitor to efficiently record the event and store it in its database. Figure 4a shows how an

event is stored

As shown in Figure 4.1, a session can be distinguished from any other session with its PN,

Parties and Nonce fields. Each session in turn has a collection of events.

It is worth noting that this organization of events by the monitor aids the intrusion detection

engine in detecting attacks. This is due because many known attacks span multiple sessions

involving the same group of principals [4]. Since the monitor’s database stores events according

to the group of principals involved, it is easy and fast for the IDE to retrieve this information.

4.2 The Monitor’s Threads

The monitor was designed to be robust and able to handle a high volume of sessions. To

accomplish this, a multi-threaded design was chosen, commonly referred to as the consumer-

producer thread design.

The Monitor and Principals

7

In this case, the consumer is a thread, which is constantly listening to network socket

connections and managing all the open sockets. Any information the consumer reads from a

socket is quickly placed in a queue. The producer thread takes the packets waiting in the queue,

checks them for proper format, converts them to event objects and then stores the objects in the

monitor’s database.

After storing an object in the database, the producer thread signals the IDE engine about the

presence of new events. In turn, the IDE uses a well-defined interface provided to it by the

monitor to retrieve events from the monitor’s database. This consumer-producer thread design

helps the monitor handle many concurrent sessions by shifting the bottleneck from the network

socket’s I/O and into the internal, dynamic queue of the monitor. Figure 4.2 illustrates the

monitor’s threads collaborating in a consumer-producer thread design.

“DSP” “WP” …

[102,230,159]

[102,132,221]

…

session 1 session 2 …

A -> B

B <- A

…

Packet received from a principal

[PN] [parties] [nonce] [event]

The Monitor’s Database

“DSP” “WP” …

[102,230,159]

[102,132,221]

…

session 1 session 2 …

A -> B

B <- A

…

“DSP” “WP” …

[102,230,159]

[102,132,221]

…

session 1 session 2 …

A -> B

B <- A

…

Packet received from a principal

[PN] [parties] [nonce] [event]

The Monitor’s Database

Figure 4.1

The Monitor and Principals

8

4.3 The Monitor’s Code

The monitor was coded in Visual C++ for the Win32 platform. Win32 kernel objects such as

sockets, threads, events and critical sections [7] were used. The sockets allowed the monitor to

listen for network traffic and the threads were used in the coding of the consumer-producer

monitor design.

Standard Template Library [8] containers were also used. For instance, the monitor’s

database was created with maps, linked-lists, and vectors. Since these containers grow

dynamically, the monitor’s database can hold as much data as possible limited only by the

computer’s memory.

Network Thread

Database Thread

IDE

DB

1. The principals send
events to the monitor

2. The network thread reads the
events from the monitor’s network
socket

3. The network thread places the
events in the monitor’s queue

4. The database thread reads
events from the queue

5. The database thread
places the processed
event object in the
database

6. The database thread
signals the IDE about
updating the database

7. The IDE reads the new
events from the database.

The Monitor’s Use Case Scenario

…

Network Thread

Database Thread

IDE

DB

1. The principals send
events to the monitor

2. The network thread reads the
events from the monitor’s network
socket

3. The network thread places the
events in the monitor’s queue

4. The database thread reads
events from the queue

5. The database thread
places the processed
event object in the
database

6. The database thread
signals the IDE about
updating the database

7. The IDE reads the new
events from the database.

The Monitor’s Use Case Scenario

…

Figure 4.2

The Monitor and Principals

9

5. The Principal Simulation Environment

5.1 The Components of the Principal Simulation Environment

In order to test the functionality and correctness of the monitor, a network environment of

principals was developed. The principals were created with the intelligence to initiate and engage

in security protocol sessions involving other autonomous principals. The principals can run on

any Windows computer and execute any given protocol signature over the network. During a

session, the principals report the completion of events to the monitor. The principals have the

ability to engage in normal, suspicious or attack behavior.

The Principal Simulation Environment is divided into three different programs: Principal

Simulator, Principal Dispatcher, and The Principals themselves. The Principal Simulator

provides the user-interface for creating an environment of principals. Each simulation requires

the input of parameters that are used to configure the system. Some of the configuration

parameters that the user can customize are the number of sessions to be executed, the computers

involved in the simulation and the protocols and signatures that the principals will execute.

After the simulation has been created, it is the job of the Principal Dispatcher to instantiate

the principals at a given computer when instructed to do so by the Principal Simulator. The

autonomous principals then communicate with each other, execute protocols and report events to

the monitor. Figure 5.1 illustrates how the three components interact to produce a simulation.

5.2 The Principal Simulator

The Principal Simulator is the program that configures the principal's network environment.

This is a Graphical User Interface program that provides the user with an easy to use interface to

create and run simulations.

All the commands necessary to work with the simulator are presented as menu items in the

menu bar. The toolbar also contains the most commonly used commands such as run, new, edit,

save and print. The user can create a new simulation by clicking on the new command. This

command will show a dialog box that permits the user to add activities to the simulation. A

simulation consists of activities and each activity requires configuration parameters for the

protocol name, number of sessions, identity of principals, signatures to use, and a start time for

the simulation.

The Monitor and Principals

10

In order to assist the user in selecting a protocol name, the program reads the file containing

the protocol signatures and populates the “Protocol Name” combo box with the available

protocols.

Again the program reads the protocol signature file to populate another combo box listing

the attack signatures available for this particular protocol. The attack signatures are numbered

from 0 to (n-1) where n is the total number of signatures given for the protocol. Once the user

has finished adding activity to the simulation, all the configuration parameters are printed to the

screen as shown in Figure 5.2.

After the simulation is created, the user has the choice of editing, saving, printing deleting or

the simulation. When the user clicks on run, the Principal Simulator communicates with every

Principal Dispatcher running on all the participating computers. The Principal Dispatcher in

turns creates the principals that will run on his computer.

Figure 5.1

Principal
Sim ulator1. T he user interacts w ith

the Principal Sim ulator to
create and configure a
sim ulation.

T he Principal S im ulation E nvironm ent’s U se C ase

PD PD PDPD PD

2. W hen the user clicks on run, the Principal Sim ulator
instructs the Principal D ispatchers at every participa ting
com puter to create the principals according to the
configuration param eters entered by the user.

3 . T he Principal
D ispatcher creates
the principals

4. The Principals
com m unicate
w ith each other

Principal
Sim ulator1. T he user interacts w ith

the Principal Sim ulator to
create and configure a
sim ulation.

T he Principal S im ulation E nvironm ent’s U se C ase

PDPD PDPD PDPDPDPD PDPD

2. W hen the user clicks on run, the Principal Sim ulator
instructs the Principal D ispatchers at every participa ting
com puter to create the principals according to the
configuration param eters entered by the user.

3 . T he Principal
D ispatcher creates
the principals

4. The Principals
com m unicate
w ith each other

The Monitor and Principals

11

5.3 The Principal Dispatcher

The reason for having a Principal Dispatcher has to do with the inability of creating

processes on a computer remotely. This inability is expected since the ability to start remote

processes on a computer can be seen as a security breach.

One solution to this problem is to create a process in every computer that listens to the

network on a pre-established port number. The Principal Simulator sends instructions to each

Principal Dispatcher at this port number. The instructions contain the number of Principals to be

created and configuration parameters for each. After getting the instructions, the dispatcher

creates each Principal.

5.4 The Principals

Principals are autonomous network programs that engage in sessions with other principals.

They execute protocols and report events to the monitor. The design issue for this program was

figuring out the easiest way to create a principal that could engage in normal and attack behavior

when instructed? The answer was to provide a file containing signatures of normal, suspicious

and attack behavior that the principals could read and execute.

This file, named “Simulation_File.txt”, is almost identical to the one provided to the intrusion

detection engine by the knowledge base. The file is divided by protocols and each protocol

contains at most one normal signature. Any additional signatures in the file represent suspicious

Figure 5.2

The Monitor and Principals

12

or attack scenarios. An example of a signature present in the file is the one shown below

executing a normal session of the Denning-Sacco Protocol or DSP:

When the Principal Dispatcher creates the Principal, the first step is to read

“Simulation_File.txt”. After picking the selected signature from the database the Principal

determines the number of other Principals involved. This number may differ since different

security protocols differ in the number of participating entities. All protocols involve at least two

principals.

The next step is to determine the initiating principal. The initiator is responsible for creating a

random number called a nonce that is used to identify the session. As you may recall, the

monitor uniquely identifies sessions by the protocol name, group of principals and nonce. The

initiating principal is now ready to send the first message to the corresponding party. During

execution of the protocol signature, the principals report their activities to the monitor. Figure 5.3

shows the flow of the Principal program.

The Principal’s Use Case

Send the next message
to the corresponding
principal. Forward

message to the monitor

Start

Read knowledge database

Open network connections to
monitor and other principals

Process configuration information
supplied by the principal simulator

Initialization

If Initiator?

send the first message
to the corresponding
principal. Forward

message to the
monitor

Yes W ait for
messages

from other
principals

No

Message
received

If protocol
is over or
timeout?

No

Yes

End

Send the next message
to the corresponding
principal. Forward

message to the monitor

Start

Read knowledge database

Open network connections to
monitor and other principals

Process configuration information
supplied by the principal simulator

Initialization

If Initiator?

send the first message
to the corresponding
principal. Forward

message to the
monitor

Yes W ait for
messages

from other
principals

No

Message
received

If protocol
is over or
timeout?

No

Yes

End

Figure 5.3

The Monitor and Principals

13

The principals have the special ability to open multiple sessions with the same group of

principals. They can accomplish this feat with the assistance of threads. This feature is necessary

since some protocols require the execution of parallel sessions. In addition, opening multiple

sessions allows for the simulation of particular sophisticated attacks. These types of attacks

usually involve the intruder opening multiple sessions with the same group of principals.

The IDE uses distinct detection methodologies for protocol attacks depending on the number

of sessions used in each specific attack. Attacks on security protocols may be over only a single

session of the protocol or may utilize information gleaned from multiple runs of the protocol.

Thus, attacks may be classified as Single session attacks or Multi-session attacks.

Single session attacks are those attacks which may occur in a single session. The signature of

such an attack may differ from the protocol itself in only something so subtle as a missing

receive statement. In our environment, these subtle differences are easily recognized.

Interestingly, we consider the attack on the Needham and Schroeder Conventional Key

Protocol (NSCKP) a single session attack even though the attack depends on a previously

compromised key from another session. The telling factor is that the attack can be detected by

recognition of a single protocol session. In the NSCKP case, even though it is, technically a

replay attack, it can be recognized by the signature given in Table 1 without any knowledge of

the previous session.

Detection of single session attacks by the IDE is simply a matter of the relevant attack finite

state machine reaching the final state, upon which the IDE will signal a notification. No

knowledge of the previous session is necessary for the IDE to detect this attack.

Multi-session attacks are those attacks that use information extracted from more than one

previous or concurrent protocol sessions. We make the reasonable assumption that such attack

sessions must use the information within a certain time period of the reference session(s), from

which the information is taken in order to subvert the protocol. For multi-session attacks, the

IDE classifies them as either Replay Attacks or Parallel Session Attacks.

Replay attacks use information extracted from a previous run of a protocol. The first question

that must be answered is: "How much time can pass between the reference session and the attack

session?" This is an important question in our architecture because of the way replay attacks are

detected. The signature of a replay attack consists of the signature of the reference session

The Monitor and Principals

14

followed by the signature of the attack session. Thus, the recognizer must remain active until

either an attack is detected or the threshold period expires.

We handle this by requiring the author of signatures of replay attacks to include the threshold

in the signature, which will vary from protocol to protocol. The default wait constant was chosen

to be ten seconds for the IDE prototype. If events occur that triggers a replay recognizer, if the

time difference between the attack session and the reference session is greater than the wait time,

the IDE will flag this activity as suspicious behavior.

A parallel session attack occurs when two or more protocol runs are executed concurrently

and messages from one run (the reference session) are used to form spoofed messages in another

run (the attack session). As a simple example consider the following One-Way Authentication

Protocol (OWAP) [13]:

A � B : E(Kab : Na)

B � A : E(Kab : Na + 1)

Successful execution should convince A that B is operational since only B could have formed

the appropriate response to the challenge issued in the first message. An intruder can play the

role of B both as responder and initiator. The attack works by starting another protocol run in

response to the initial challenge.

To initiate the attack, Mallory waits for Alice to initiate the first protocol session with Bob.

Mallory intercepts the message and pretends to be Bob, starting the second run of the protocol by

replaying the intercepted message. Alice replies to Mallory's challenge with exactly the value

that Mallory requires to accurately complete the attack session. The attack is shown in Figure

5.4.

The IDE detects parallel session attacks by matching the ongoing activity against the attack

signatures. The telling factor in this case is the omission of any information from Alice's partners

in either session, as reflected in the signature in Table 4.

Attack Session
A � M(B): E(Kab : Na)

M(B) � A: E(Kab : Na + 1)

Reference Session

M(B) � A: E(Kab : Na)
A � M(B): E(Kab :Na + 1)

Figure 5.4

The Monitor and Principals

15

6. Intrusion Detection Engine Design

This section provides an insight into the design of the Intrusion Detection Engine.

Justification of the major design decisions is also given. The design of the IDE uses the object-

oriented paradigm. The problem was broken down into smaller components, and appropriate

classes were developed to accurately represent the problem.

A major factor in the design of the IDE, was the complexity of the environment being

monitored. Within any enclave, we expect to monitor events interleaved from multiple:

• = Concurrent sessions
• = Different principals
• = Different protocols

In addition there is no guarantee that all the sessions will properly conclude. Some sessions may

be suspended abnormally and messages may be lost.

a. Architectural Design

A number of issues had to be taken into account in the design phase of this research

implementation. The design was created in order to ensure that all the requirements and

specifications were satisfied.

In the secure enclave it is possible to have multiple concurrent sessions of different protocols

executing within the enclave. The sessions may consist of the same or different principals. The

Intrusion detection engine must be able to keep track of the different protocol sessions executing

within the enclave in order to detect any attacks or suspicious activity. Not all attacks on security

protocols occur over a single session. As described earlier, multi-session attacks such as replay

attacks or parallel attacks may occur within the enclave. These multi-session attacks span

multiple different protocol sessions. The Intrusion detection engine must provide a means to

keep track of such executing sessions and detect any attacks.

Current
State

Event Protocol Session Sender Receiver Message
Number

Next
State

SS send OWAP X A B 1 S1
S1 receive OWAP X+α B A 1 S2
S2 send OWAP X+α A B 2 S3
S3 receive OWAP X B A 2 FS

Table 4

The Monitor and Principals

16

Additionally, the detection of attacks has to be communicated to the person or system

monitoring the enclave. Detailed reports of all attacks or suspicious behavior must be generated

by the IDE. Such reports provide in-depth information about the type of attack and principals

participating in the protocol session. The Intrusion Detection Engine receives crucial inputs from

the Activity Monitor and from the Knowledge base of protocol signatures. It is important to

ensure that interfaces with the Monitor and the Knowledge base are well defined and reliable.

b. The Thread Dispatcher and Monitors

As noted earlier, the IDE receives protocol events from the monitor as they occur. The IDE is

multi-threaded with a single thread to serve as the thread dispatcher. Since each protocol may

have many attack signatures associated with it, when a new protocol session begins, the IDE

spawns a new thread to monitor all the FSM recognizers for that protocol. As illustrated in

Figure 6.1, the Thread Dispatcher then routes events to the appropriate thread as they arrive.

To keep track of all the threads existing within the system, a ThreadList class is employed,

that holds the protocol name, session number, identifiers of the principals involved, a signal to

which the thread listens, and a thread identifier for each thread.

The threads provide the detailed functionality of the Intrusion Detection Engine. Each thread

monitors the activity within a single protocol session. As events for a particular protocol session

come in from the activity monitor, the thread matches those events against the protocol

signatures stored in the knowledge base. If a event matches, the Finite State Machine

corresponding to that particular signature is advanced to the next state.

Upon conclusion of an attack session or a normal protocol session, it may so happen that the

entire signature from the knowledge base matches the succession of events for that protocol

session coming in from the activity monitor. In such cases, the thread will raise alerts to the

console, providing information about the attack or normal session. If an attack is detected by the

Intrusion Detection Engine, the detailed information about that attack is written to a text file.

Activity
Monitor

IDE Thread
Dispatcher Protocol A Session 2

Protocol B Session 1

Protocol C Session 1

Protocol A Session 1

Figure 6.1:Thread Dispatcher

The Monitor and Principals

17

This information is used by the Graphical User Interface component of the IDE to generate the

attack reports.

Threads terminate in two normal ways: (1) An attack is detected, or (2) The protocol ends

normally. However if a particular protocol session hangs with no further events coming into the

IDE, the thread will die after a timeout period and it will signal the activity as an abnormal

termination. When a thread dies, the corresponding entry from the list of threads designed as an

object of the ThreadList class is removed.

Threads are chosen as control structure of choice for the IDE for several reasons. First, the

number of concurrent threads spawned by a process is limited only by the virtual memory on the

system. This allows the IDE to track a large number of concurrent sessions, accurately

representing an Internet environment that is rich with security protocols. Secondly, there are no

synchronization issues to be taken care of as all the threads have their own memory space and

can also access the global variables. Any data structure that is accessed by all the threads has

been protected by means of a critical section. The overall design of the IDE is reflected in the

flow chart in Figure 6.2.

FSMs…

New
Session?

Event
Match?

Attack

Activity

Wait for
Events

Create New
Thread

Channel the
event to the

relevant
monitoring

thread Advance
FSM

Advance
FSM

Continue Monitoring for
attacks

Notify and write
to attack log file

 Stop FSM
/Suspicious

No

No
No

Time out

Event: (B->A,NSCKP, session #, message #)

Yes

Yes

Yes

Figure 6.2: Design Flowchart.

The Monitor and Principals

18

7. Test and Results

Upon completion of each significant milestone, the IDE was tested to ensure that the product

functioned correctly. We approached the testing from four standpoints:

(1) Detection of attacks against protocols in all three categories of single session, replay,
and parallel session

(2) Detection of suspicious activity
(3) Effective operation in a highly concurrent environment
(4) Effective user interface.

We began our testing by addressing the ability of the IDE to detect different categories of

attacks. The environment being monitored was systematically subjected to attacks of each of the

three categories of single session, replay and parallel session. For the single session attacks we

simulated those attacks on protocols which span over only a single session. The single session

attack on the Needham and Schroeder Conventional Key Protocol (NSCKP) explained in detail

earlier was one of the many attacks that were simulated. The IDE was correctly able to detect all

such single session attacks.

To test the replay attacks, we simulated a correct run of protocols such as the Ottway-Rees

Protocol (ORP) [14] and, within 10 seconds, we ran an attack session on the same protocol. In

every instance, the IDE detected such replay attacks and classified them correctly.

To test our ability to detect parallel session attacks, we ran the parallel session attack on the

Woo and Lam Authentication Protocol First (WLAPF), which was successfully detected by the

IDE. We also ensured that protocol activity which may be considered abnormal or suspicious

was detected by the IDE. Event sequences not corresponding to any attacks currently existing in

the knowledge base or normal protocol runs were simulated for protocols. The IDE was correctly

able to report such activity as unrecognizable suspicious activity on the basis of its inability to

find a complete match for that particular signature in the Knowledge base. It is not always the

case that protocol sessions successfully run to termination. Events get lost or the protocol session

may stall. We simulated a protocol session in which there is abnormal termination before the

current run has reached its completion In such cases the IDE thread monitoring this session times

out after the TIMEOUT period and reports abnormal termination of the protocol.

It was important to ensure that the IDE is able to function correctly under a highly concurrent

environment. Sixty concurrent sessions of different security protocols were simulated. These

The Monitor and Principals

19

included attack sessions as well as correct sessions. Specifically, five distinct protocols were

executed. A total of one hundred seventy principals were concurrently executing within the

enclave. Out of the sixty protocol sessions, forty sessions were attack sessions and twenty

sessions were normal protocol sessions. The IDE was able to correctly detect attacks and report

them to the Graphical User Interface.

The Graphical User Interface is an integral part of our research implementation. This GUI

allows the user to have an overall detailed view of all the attacks that took place within the

environment over any given period of time. After each attack is detected, the IDE writes the

detailed attack report to an attack log file. This attack report file is used by the GUI to provide

the user with customized attack reports. We tested the functionality of the GUI after each

simulated attack was detected to ensure that the attack has been logged and its details are

displayed by the GUI. Moreover, we ensured that on providing inputs to the GUI it will only

display the attack reports for specific protocols over a specific duration of time.

Based on the results obtained from the numerous tests performed on the IDE we can say that

the IDE interfaces correctly and seamlessly with the activity monitor and the knowledge base.

During the correct functioning of the IDE, there is no loss of events between the IDE and the

monitor and hence no loss of functionality of one due to the other. Also, signatures can be added

to the Knowledge to allow the IDE to detect the additional attacks on protocols.

Extensive testing on the IDE shows that the IDE fulfills its functionality successfully. The

IDE can be used to detect different types of attacks on security protocols under environments of

high concurrency. The Graphical User Interface also proved to be very reliable in order to

increase the amount of information available to the user upon occurrence of such attacks.

Extensive testing and demos were conducted to test the functionality of the Monitor and the

Principal Simulation Environment. We initially conducted limited tests to ensure that a single

session could be recorded. We gradually increased the workload, varying the size and nature of

the traffic. As example, one test included eleven sessions of three different protocols, with

twenty four different principals participating. Another simulation exercised one hundred and

twenty five concurrent sessions.

We also exercised sessions that modeled classic replay attacks as well as more complex

parallel session attacks. In all the tests, the software executed according to specifications. Stress

The Monitor and Principals

20

tests were also conducted to test the robustness of the software. These tests primarily involved

overloading the network with a multitude of sessions executing different protocols and involving

different principals. The Principals were successful at generating a large volume of traffic and

the monitor was able to gather all event information from the principals.

8. Conclusion

This monitor program shows that relevant and useful information can be gathered without

having to examine the payload of messages exchanged between principals. This is the first

instance that we are aware of where security protocols have been analyzed in an environment

comprised of different protocols running multiple concurrent sessions with multiple users. This

is particularly significant because of the importance of encryption in protecting networks and

computers in the future.

An integral part of this work was the creation of the Principal Simulation Environment. The

monitor needs the active participation of the principals in order to collect the meta-information

from the network traffic. The principals are autonomous network programs that execute

signatures between each other and report the events to the monitor.

9. Bibliography

[1] Alec Yasinsac, "An Environment for Security Protocol Intrusion Detection", Journal of
Computer Security, Vol. 10, pp. 177-88, No. 1-2, 2002

[2] Alec Yasinsac, "Active Protection of Trusted Security Services", Technical Report TR--
000101, Department of Computer Science, Florida State University, Jan 2000

[3] D. E. Denning and G. M. Sacco, "Timestamps in key distribution protocols,"
Communications of the ACM, vol. 24, no. 8, Aug 1981, pp. 533-536

[4] John Clark and Jeremy Jacob, “A Survey of Authentication Protocol Literature: Version
1.0”,A continually updated library of protocols analyzed in the literature, available at
www.cs.york.ac.uk/~jac/, 1997

[5] Brian Tung, Common Intrusion Detection Framework (CIDF)-website, www.gidos.org
[6] Dorothy E. Denning, “An Intrusion-Detection Model”, From 1986 IEEE Computer Society

Symposium on Research in Security and Privacy, pp118-131
[7] Aaron Cohen and Mike Woodring, Win32 Multithreaded Programming, O’Reilly Press, 1998
[8] Nicolai M. Josuttis, The C++ Standard Library, Addison-Wesley, 1999
[9] Chuck Sphar, Learn Microsoft Visual C++ 6.0 Now, Microsoft Press, 1999
[10] Anthony Jones, Network Programming for Microsoft Windows, Microsoft Press, 1999
[11] Robert C. Martin, “UML Tutorial”, www.uml.org, Nov. 1998

The Monitor and Principals

21

[12] Roger M. Needham, Michael D. Schroeder, “Using Encryption for Authentication in Large
Networks of Computers”, Comm of the ACM, December 1978 vol. 21, #12, pp.993-999

[13] John Clark & Jeremy Jacob, “Attacking Authentication Protocols”, High Integrity Systems
1(5):465-474, August 1996.

[14] Otwy, D., and Rees, O. 'Efficient and timely mutual authentication'. Operating Systems
Review 21, 1(Jan. 1987), pp. 8-10

