THE FLORIDA STATE UNIVERSITY
COLLEGE OF ARTS AND SCIENCES

PERFORMANCE DRIVEN OPTIMIZA TION TUNING IN VISTA

By
PRASAD KULKARNI

A Thesis submitted to the
Department of Computer Science
in partial ful llment of the
requiremerts for the degreeof
Master of Science

DegreeAwarded:
Summer Semester,2003

The members of the Committee approve the thesis of Prasad Kulk arni defendedon May

30th, 2003.

David Whalley
Major Professor

Xin Yuan
Committee Member

Kyle Gallivan
Committee Member

The Ozce of Graduate Studies has veri ed and approved the above named committee

members.

Ac knowledgemen ts

I am deeply indebted to my adviser, Dr. David Whalley for his support and guidance,
without which this work would not have beenaccomplished.| would alsolike to thank the
other members of my committee for their commens and criticism during my work and also
Dr. Robert Engelenfor helping me out on many occasions.

| alsoappreciate the help and support of my friends, particularly Wankang Zhao for his
feedba& on VISTA, William Kreahling for helping me understand someaspects of VPO,
Clint Whaley for his ever ready and useful suggestionsand Hwa-Shin Moon and Kyung-
Hwan Cho for their work on the userinterface of VISTA which proved to be very useful.

Finally, | would like to thank my parents and my sister for the support and encourage-

mernt they always o®ered.

Table of Contents

List of Tables

List of Figures

Abstract
1 Intro duction
2 VPO, EASE and VIST A Framew ork
2.1 VPO (Very Portable Optimizer)
2.2 EASE (Environment for Architecture Study and Experimentation)
2.3 VISTA (VPO Interactive Systemfor Tuning Applications)
3 Interactiv ely Obtaining Performance Information
3.1 Optionsin VISTAtogetMeasures.
3.2 Specifying Con guration File
3.3 Getting PerformanceMeasures
4 Support For Interactiv e Code Tuning
4.1 Getting PerformanceMeasures e
4.2 NewConstructsin VISTA
5 Support for Performance Driv en Automatic Code Tuning
5.1 Constructs for Automatic Selectionof Optimization Sequence.
5.1.1 SelectBestFrom
5.1.2 SelectBest Combination,
6 Exp erimen tal Results
6.1 Batch Compilation Measures
6.2 Interactive Compilation Measuresusing Genetic Algorithms
7 Implemen tation Issues

7.1 Undoing Transformations
7.2 Required Analysis by Each Optimization Phase.

Vi

Vii

viii

=

7.3 Sanity Chedk e
7.4 Correct Button Statusin the Viewer
7.5 Batch Experiments
7.6 Obtaining Measuremetts on a Host Machine

8 Related Work
9 Future Work
10 Conclusions

App endix A Overview of Genetic Algorithms

Al Introduction.
A.2 Biological Terminology
A.3 A Simple Genetic Algorithm
A.4 SomeApplications of Genetic Algorithms

App endix B An Implemen tation of a Genetic Algorithm
App endix C Proto cols of Compiler-View er Messages
Bibliograph y

Biographical Sketch

58
60

62
62
63
65
66

68

70

75

78

List of Tables

a b~

Candidate Optimization Phasesin the Genetic Algorithm along with their

Designations e e e e 37
MiBench Bendhmarks Usedin the Experiments 38
Batch Optimization Measuremetls 43
E®ecton Speedand SpaceUsing the Three Fitness Criteria 46
Optimization Phase SequencesSelectedUsing the Three Fitness Criteria . . 50

Vi

List of Figures

© o0 N o o b~ W

11
12
13
14
15
16

VPO, EASE and VISTA interaction 5
Method of Gathering Data in EASE 8
Measuremen Options in VISTA, 13
VISTA with Measuremerts Turned On After Each Phase 14
Test Con guration Window 15
The Measuremem Process. o v i i i it 17
Interactively SelectingOptimization Phases. 26
Interactively SelectingOptimization Phases 27
Selectingthe Best of a Set of Speci ed Sequences. 30
Selectingthe Relative Weights during SelectBest From 31
Selectingthe Best Sequencdrom a Set of Optimization Phases 32
Selecting Options to Seart the Spaceof PossibleSequences 33
Window Shawing the Status of Searding for an E®ective Sequence. 35
VPO's Order of Optimizations Applied in the batch mode 40
Overall E®ecton Dynamic Instruction Count 47
Overall E®ecton static Instruction Count 48

Vii

Abstract

This thesis describesthe support provided in VISTA for nding e®ectie sequenceof op-
timization phases. VISTA is a software tool for a compiler which supports an interactive
compilation paradigm. It haslong beenknown that a single ordering of optimization phases
will not produce the best code for every application. This phaseordering problem can be
more sewere when generating code for embedded systemsdue to the needto meet con®ict-
ing constraints on time, code size and power consumption. Given that many enbedded
application developers are willing to spend time tuning an application, we believe a viable
approad is to allow the developer to steerthe processof optimizing a function. With this
in mind, we have enhancedVISTA with many new featuresand programming-language-like
constructs. VISTA alsoprovidesthe userwith dynamic and static performanceinformation
that can be usedduring an interactive compilation sessionto gaugethe progressof improv-
ing the code. In addition, VISTA provides support for automatically using performance
information to selectthe best optimization sequenceamong seeral attempted. One such
feature is the use of a genetic algorithm to seard for the most excient sequencebasedon
speci ¢ tness criteria. This thesisalsoincludesa number of experimental results that eval-
uate the e®ectivenessof using a genetic algorithm in VISTA to nd e®ecti\e optimization

phasesequences.

viii

Chapter 1

In tro duction

The phaseordering problem has long been known to be a ditcult dilemma for compiler
writers [1]. A single sequenceof optimization phasesis unlikely to produce optimal code
for every application (or even ead function within an application) on a given machine. A
particular optimization phasemay provide or prevent opportunities for improvemerts by
a subsequeh optimization phase. Someoptimizations can provide opportunities for other
optimizations to be applied. For instance, register allocation replacesload and store in-
structions with register-to-register moves, which in turn provides many opportunities for
instruction selection. Likewise, some optimizations can eliminate opportunities for other
optimizations. One example of this situation is when register allocation may consumethe
last available register within a speci ¢ region of code, which would prohibit other optimiza-
tions that require registersfrom being applied in that region. Whether or not a particular
optimization enablesor disablesopportunities for subsequeh optimizations is dixcult to
predict sinceit dependson the application being compiled, the previously applied optimiza-
tions, and the target architecture [2].

The problem of ordering optimization phasescan be more sewere when generating code
for embedded applications. Many applications for embedded systemsneedto meet con-
straints on time, code size, and power consumption. Often an optimization that could

improve one aspect (e.g., speed) can degrade another (e.g., size) [3]. For example, many

loop transformations may reduce execution time and increasecode size. In fact, it may
be desirable on many systemsto enhanceexecution time for the frequertly executedcode
portions and reduce code size for the lessfrequertly executed portions. In addition, em-
bedded microprocessorsoften have irregular instruction setswith small register Tes that
can quickly be exhaustedduring the compilation. Exploiting special purposearchitectural
features may require other optimizations to be performed. Thus, enbedded systemsare
more likely to be sensitive to the order in which optimization phasesare applied.

The traditional compilation framework has a xed order in which the optimization
phasesare applied and there is no cortrol over individual transformations, except for com-
pilation °agsto turn code-improving transformations on or o®. The compilation framework,
called VISTA (VPO Interactive Systemfor Tuning Applications) [4], givesthe application
user the ability to nely cortrol the code-improvemert process.It, however, failed to pro-
vide the user with a structured language, at a high level, for specifying the optimization
phases. In the later sectionswe will seea number of control statemerts addedto VISTA
which now enablesthe userto better steerthe code-improvemert process.Sud statemerts
provide the userwith more control in specifying the order of optimization phases.

Also, the earlier versionof VISTA provided no feedbad to the userby which he/she can
gaugethe code improvemert results. In such casesit is impossiblefor the userto conclude
if a particular optimization sequenceis the best for that region of code or even to infer if
the performancegoalssetfor that program have actually beenmet (evenif the optimization
sequencepplied is not bestone). In this thesis, we have provided two di®eren solutions for
this problem. The rst solution, which we call Interactive Performance Driven Code Tuning
requiresuserknowledgeand intuition to steerthe compilation processin the right direction
and produce excient code. In this approad the usermanually appliesthe transformations,
but getsregular feedbak from the compiler regarding the performanceof the resulting code
at ead stage. Theseperformancestatistics make it easierto decideon the next step in the
code improvemert process. VISTA also allows the userto undo previous transformations,
which facilitates experimentation with di®ereri optimization sequencesWe call the other

approad Automatic Performance Driven Code Tuning, wherethe compilerlooksat di®eren

sequence®f optimizations and basedon their performancesit automatically selectsthe best
one and then appliesit to the program. To support this feature we have added two new
constructs to VISTA, called selet best sequene and selet best combination. It should
be noted that given any set of optimization phases,the number of di®erert orderings can
potentially be exponertial. Evaluating an exponertial number of sequencess not likely
to be feasiblein a majority of cases.In this report we also discussways in which we have
attempted to e®ectiely probethe seard spaceto quickly obtain an acceptableoptimization
sequence.

The rst section of this report familiarizes the reader with some existing technologies
which were used during its creation. The next section describes how the performance
feedba& measurescan be obtained and its implementation. The next two sectionsdiscuss
the support provided in VISTA for interactive and automatic performance-driven code
tuning. This is followed by someexperimental results which demonstrate the usefulnessof
this work. In the following section, someinteresting implementation issuesare presened.

The nal sectionsare dewoted to a discussionof related work and scope for future work.

Chapter 2

VPO, EASE and VIST A

Framew ork

VPO and EASE are certral to the succes®f this work, and this chapter will give an overview
of the essetial principles of both of thesetechniques. We will alsodescribe the functionality
of VISTA from a user's viewpoint.

Figure 1 illustrates the °ow of information in VISTA and gives the reader a better
idea asto how VPO and EASE are assaiated with VISTA. The user initially speci es a
‘Te to be compiled. The user then speci es requeststhrough the viewer, which include
sequencef optimization phases,user-de ned transformations, queries and performance
measures.The compiler performsthe speci ed actions and sendsthe program represertation
information badk to the viewer. In responseto a requestto get performance measuresthe
compiler in turn requestsEASE to instrument the assenbly with additional instructions to
get static and dynamic instruction counts. This instrumented code when executedreturns
the performance counts. When the user choosesto terminate the session,VISTA saves
the sequenceof transformations in a Te sothey can be reapplied at a later time, enabling

updatesto the program in multiple sessions.

performance
measurement Executable

new Insert
Instructions Measurement
Code
Source . Assembl .
. — | Compiler | —— . y quked
File File File
Program Representation Info. Transformation Info.
Selections Requests
: Saved
User i Viewer
Display State

Figure 1. VPO, EASE and VISTA interaction

2.1 VPO (Very Portable Optimizer)

VISTA's optimization engineis basedon VPO, as it has sewral properties that allowed
easyintegration into VISTA. VPO employs a paradigm of compilation that hasprovento be
°exible and adaptable - all code improving transformations are performed on a singletarget-
speci ¢ represenation of the program [5], called RTLs (Register TransferLists). RTLs area
low-level, machine and languageindependent represeration that encades machine-speci ¢
instructions. The comprehensie useof RTLs in VPO has sewral important consequences.
One advantage of using RTLs asthe soleintermediate represenation is that the synthe-
sis phasesof the compiler can be invoked in any order and repeatedly if necessary[6]. This
largely eliminates code ine+ciencies often causedby the ordering of the phases. In con-
trast, a more corventional compiler systemwill perform optimizations on various di®eren
represertations. For instance, machine-independen transformations are often performedon
intermediate code and machine-dependert transformations are often performed on assenbly
code. Local transformations (within a basicblock) are often performed on DAG represetta-
tions and global transformations (acrossbasic blocks) are often performed on three-address

codes. Thus, the order in which optimizations are performedis ditcult to change. To be of

any practical use, an interactive compilation systemlike VISTA has be °exible enoughto

allow the userto selectoptimization phasesin an arbitrary order without many restrictions.

VPO, wasideally suited to this compilation framework. In addition, the useof RTLs allows
VPO to belargely machine-independert, yet exciently handle machine-speci ¢ aspectssuc

asregister allocation, instruction scheduling, memory latencies, multiple code registers, etc.

VPO, in e®ect,improvesaobject code. Machine-speci ¢ optimizations are important because
it is a viable approad for realizing high-level language compilers that produce code that

e®ectiely balancestarget-speci ¢ constraints such as code-density, power consumption and

execution speed.

The secondadvantage of using RTLs isthat it is easilyretargetted to anewmachine. Re-
targetabilit y is key for embedded microprocessorswhere chip manufacturers provide many
di®erert variants of the samebasearchitecture and somechips are custom designedfor a
particular application. To target VPO to a new machine, one must write a description of
the architecture's instruction set, which consistsof a grammar and semaric actions. The
grammar is usedto producea parserthat cheds the syntax of an RTL, and acceptsall legal
RTLs (instructions) and rejects all illegal RTLs. It is easierto write a machine description
for an instruction setthan it is to write a grammar for a programming language. The task
is further simpli ed by the similarity of RTLs acrossmachines, which permits a grammar
from one macdine to be usedas a model for a description of another machine. Sincethe
general RTL form is machine-independert, the algorithms that manipulate RTLs are also
macdhine-independert, which makes most optimization code machine independert. So the
bulk of VPO is machine- and language-independert. Overall, no more than 15 percen of
the code of VPO may require modi cation to handle a new machine or language.

The third advantage of VPO is that it is easily extendedto handle new architectural
featuresasthey appear. Extensibilit y is alsoimportant for embeddedchips where cost, per-
formance and power consumption considerationsoften mandate developmert of specialized
features certered around a core architecture.

The fourth advantage of VPO is that VPQO's analysis phases(e.g. data °ow analysis,

control °ow analysis) were designedso that information is easily extracted and updated.

This information can be usefulto a user of interactive compilation system.

Finally, by using RTLs, the e®ectof an optimization can be easily understood sinceead
RTL represerts an instruction on the machine. Thus, the impact that ead transformation
has on performancecan be easily grasped.

VISTA takes advantage of VPO's strengths. VISTA can graphically display the low-
level represeniation of the program either in assenbly or RTLs. The user can selectthe
type and the order of transformations to be performed becausephaseordering problemsare
to a great extent eliminated in VPO. SinceRTLs are easily understood, it is usefulto allow
usersto seethe transformations applied at ead step in VISTA. Best of all, understandable
machine-independert RTLs make it easierfor the usersto specify the transformations by

hand to further exploit special features of an architecture.

2.2 EASE (Environmen t for Arc hitecture Study and Exp er-

Imen tation)

The EASE environment [7] is usedin VISTA to collect performancemeasuresat any stage
in the compilation processin order to evaluate the improvemerts in code sizeand number of
dynamic instructions executedat that stage. This givesthe usera better perspective asto
if the sequenceof optimizations applied are giving the expectedbene ts or if he should roll
bad the changesand try somedi®eren sequence.The measuresalso indicate the portions
of the code which are more frequertly executed, so the user could focus his attention on
improving that portion of the program. It also helps VISTA automatically determine the
best sequenceof optimizations for a function.

The EASE environment was deweloped to integrate the tasks of translating a source
program to madine instructions for a proposed architecture, imitating the execution of
theseinstructions and collecting measuremets. The ervironment, which is easily retarget-
ted and quickly collectsdetailed measuremets, facilitates experimentation with a proposed
architecture and a compiler.

The rst task in EASE is to translate the test programsto instructions for the proposed

machine. This task is accomplishedby VPO, which was described in the previous section.

The secondtask is imitating the execution of code for the proposedarchitecture. To be
able to evaluate an architecture, one should determine the e®ectof executing instructions
from represenativ e test programs for the architecture. If the architecture has not yet
beenimplemerted, then one must imitate this execution by other means. In the EASE
ernvironment an instruction for the proposedmachine can either be generatedasan assenbly
instruction for the proposedarchitecture or asone or more equivalert assenbly instructions
for an existing architecture. This conversionof an RTL to assenbly languageis the last step
in the VPO compilation system. EASE can also be usedto emulate architectural features
that are not directly equivalent to featureson an existing architecture. For instance, it can
generatecode for an architecture having more registersthan the number of registerson the
host machine.

The nal stepis to extract measuresfor the proposedmachine in order to evaluate the
new architecture's performance. To accomplish this EASE modi es the bad end of the
compiler to store the characteristics of the instructions to be executedand to instrument
the assenbly code with instructions that will either count the number of times that ead
instruction is executedor invoke a routine to record everts that are dependen on the order
of the instructions executed. This method is illustrated in Figure 2.

Instrumented

Assembly
Code

Source Front Intermediate VPO Optimized VPO
e

Eile End Code System Code Updates

Instruction
Characteristics

Figure 2: Method of Gathering Data in EASE

Many modi cations were madeto the VPO compiler systemto support collecting mea-
suremerts. The rst modi cation of VPO to produce code for collecting measuremets is
to have the optimizer save the characteristics of the instruction that will be executed. As

ead assenbly instruction is produced, the characteristics of the instruction are alsowritten

to the assenbly Te. The secondmodi cation to VPO wasto have the compiler instrument
the assenbly code after all optimizations have occurred to either incremert courters or
invoke measuremen routines. Counters are usedto obtain information that is independert
of the order in which the instructions are executed,such asthe number of times ead type
of instruction is executed. Measuremen routines are invoked to record order-dependert
events, which includes trace generation and analysis of memory references.

In VISTA, the EASE ervironment is mainly usedto instrument the assenbly code with
instructions to determine the number of times ead basicblock is executedand to court the
number of instructions in a function. This instrumentation of codeis then usedto determine
the static and dynamic measuresat any point in the compilation process.Comparing this
with previous measureggivesus the current improvemert ascomparedto the baselinewhere

no optimizations were performed.

2.3 VIST A (VPO Interactiv e System for Tuning Applica-

tions)

In this section we will review the VISTA framework, upon which the current work is
based. VISTA is a new code improvemert paradigm that was initiated to achieve the
cost/p erformance trade-o®s (i.e. size, power, speed, cost etc.) demandedfor embedded
applications. A traditional compilation framework has a xed order in which the code
improvemert phasesare executedand there is no cortrol over individual transformations,
exceptfor compilation °ags to turn code improvemert phaseson or o®. In contrast, VISTA
givesthe application programmerthe ability to nely cortrol the code-improvemert process.

The dewelopers of VISTA had the following goals when deweloping the VISTA compi-
lation framework. First, the user should be able to direct the order of the compilation
phasesthat are to be performed. The order of the code-improvemert phasesin a typi-
cal compiler is xed, which is unlikely to be the best order for all applications. Second,
hand-speci ed transformations should be possible. For instance, the user may provide a

sequenceof instructions that VISTA inserts and integrates into the program. Third, the

usershould be able to undo code-improving transformations previously applied sincea user
may wish to experiment with other alternative phaseorderings or typesof transformations.

In cortrast, the e®ectsof a code transformation cannot be reversedonceit is applied in a
typical compiler. Finally, the low-level program represenation should appear in an easily
readabledisplay. The useof dynamically allocated structures by optimizing compilers and
the inadequate debuggingfacilities of convertional sourcelevel symbolic debuggersmakesit

dixcult for atypical userto visualize the low-level program represertation of an application

during the compilation process. To assistthe user when interacting with the optimization

engine,VISTA should provide the ability for the userto view the current program represen-
tation and any relevant compilation state information (i.e. live registers,available registers,
def-useinformation etc.) and performancemetrics.

In addition to adchieving thesegoals,VISTA wasshaowvn to have seeral other uses. First,
VISTA can assistthe compiler writer to develop new low-level code-improving transforma-
tions. The ability to specify transformations by hand and obtain performancemeasuremets
can help a compiler writer to prototype new low-level code-improving transformations. The
ability of viewing low-level represenations can help a compiler writer diagnoseproblems
when deweloping new transformations. Second,it can help compiler writers understand
the interactions and interplay of di®erert optimizations. Finally, an instructor or educator
teaching compilation technigues can usethe systemto illustrate code-improving transfor-
mations to studerts.

VISTA providesthe userwith the functionality for viewing the low-level represeration,
controlling when and where optimization phasesare applied, specifying code-improving
transformations by hand, reviewing previously applied transformations, reversingpreviously
applied changes, proceeding to the next function and supporting multiple sessions. In
addition, the user may wish to collect somepreliminary results about the performance of
the generatedcode, which can be accomplishedby producing assenbly that is instrumented
with additional instructions that collect a variety of measuremers during the program's
execution. VISTA also allows the userto limit the scope in which an optimization phase

will be applied. The scope can be a loop or a set of basic blocks. The usercan rst tune

10

critical portions of a function, and then use the resources(e.g. registers) that remain to
optimize the rest of the function.

We have made seeral important enhancemets to VISTA that facilitate the selection
of e®ective sequencef optimization phases. These enhancemers include automatically
obtaining performancefeedbad information, the useof structured statemerts for applying
optimization phases,and the automatic evaluation of performanceinformation for selecting
optimization phasesequences.These enhancemets are described in the following sections

of this report.

11

Chapter 3

Interactiv ely Obtaining

Performance Information

The ability for a userto acquire a measureof the performance of the program being com-
piled is a very important feature for any ervironment providing interactive compilation.
Examining the performancemeasuresat various stagesduring the compilation can give the
user a clear image of how the code improvemert processis progressing.In fact, actual pro-
gram performance measuresis the only concrete basisthe user has when hand tuning the
code. It canalsoindicate to the userif he/she can stop the optimization process,whenthe
performancedelivered by the program has reached the desiredlevel. VISTA givesthe user
the option to get both the static and dynamic performancecounts at any stageat the click
of a button. Here, static counts meanthe count of the number of static instructions in that
function, i.e. anindication of the code sizewhen ead instruction is the samesize. Dynamic
counts imply the number of instructions executedduring a particular run of the program on
somerepresertativ e input data (which the user hasto provide). More accurate measures,
such as operation or simulation times, could also potentially be used. VISTA alsotells the
user the percertage of time ead basic block is executed, so that the user can concerrate
his attention to the more critical portions of the code, like the blocks comprising the inner

loopsin that function. This can be easily accomplishedin VISTA by restricting the scope

12

of the optimizations to only those critical blocks.

3.1 Options in VIST A to get Measures

Figure 3 shaws the options provided in VISTA, which include the two options which enable

the userto get performancecournts at any stage. Theseoptions are:

. Proceed to next function.
Discard changes after current state.
Write rtls to a file
Compare RTL files

Show loop infermation

Sanity Check

Get Frequency Measures

Start Measurement
Create/Modify test config. file
Help on above Options

Figure 3: Measuremen Options in VISTA

1. Get Frequency Measures: Selectingthis option commandsthe compiler to immedi-
ately executethe program onceand get the frequency of execution of ead basicblock.
The program is executedusing sampleinput which the user must provide. The com-
piler sendsa count of the number of times ead basic block is executed, which the
viewer reads and corverts into percentages. These are then displayed at the top of
ead basic block (see gure 4). This allows the userto identify the critical regions of

a function.

2. Start/Stop Measuremen ts: This option allows the userto obtain both the static and
dynamic counts after every optimization phase. This is a toggle option, which allows

the measuremen processto be stopped/resumed at any point. When measuremets

13

are started, the compiler executesthe program once and records the static and dy-
namic measuresat that stage, which are used as the baseline measures. After eat
optimization phasethe program is again executedand measuresare collected. These
are sert to the viewer which in turn comparesthem with the baselinemeasurestaken
at the start of the measuremenh process. The relative improvemeris in code size
and instructions executedare then displayed in the viewer window. This information
allows the userto quickly gaugethe progressthat has beenmade in improving the

function. The viewer still displays the execution frequency of eat basic block (see

Figure 4).
R [-Ex
Function |man | Trans Number 1535 | =
b e _____| I 1535 | flo)=F[r(16]+LO[L31]];
i Code Size Inst Exec r(8)=r[18]{2;
Tnst Selection 533 56.72 60.77 | Flr(8l+r(25])=F[0];
Register Assipnment b 57.79 60.77 | r[20]=r[20]+1;
Conman Subexpr Elim 77 49.08 %5.91 -
Code Motion 14 49.60 55.51 | d,f
Register A11acation v 48.69 0.00 | STRNES) TTrew 44825
Dead Variable Elim 17 49.89 0.00 | .IC=F[21]?F[ZO]; I
Register Allocation 23 49.69 5.51 | PC=ICHhO,L32;
Merge Basic Blocks & 4960 55.51 |
Register Allocation 188 49.69 0.00 |
bead Variable Elim 12 48.62 55.51 | 2 [T 0.948% =
Inst Selection {3z7) 327 M|.22 9.05 | I
: Teg
|r[9)=r[26]);
IC=r[8]7r[12];
IPC=IChO, L26;
\l(— E
| | freq: .0010% -
r[B]=r[9];
r[9)=r[29];
r[10]=r[23];
’ = rl11]=r[25];
im.'r-lm‘s'uh'hw byHa. | RTLs ¥ FBQHFES|
r =r -
1< | == ”J opton | Ea ST=HI [fft_float]+LO[Fft_float] ;|
o Bl 1 | it i | =
Mun.n:| Mo Message H Help |

Figure 4: VISTA with Measuremerts Turned On After Each Phase

14

3.2 Specifying Con guration File

As mertioned earlier, to get the dynamic measuresthe user has to provide VISTA with
a set of commandsto link and execute the program and produce the output Te. This
information is assumed,by VISTA to be presen in a le, before the user speci es any
measuremets. In caseVISTA is unable to nd this Te, it prompts the userto enter the

required information at the very start of the measuremeh process. The window that is

openedis shawvn in Figure 5.

[= CreateMModify test configuration input =R
Link Cormmand: goc fitmisc.inst. s fourierf.inst. s main.inst. s math2 .o ease lib.a <im
Desired Qutput File: (Tf1.stdl. output
\ctual Output File: [fft. outpur
Execute Cormmand: {2 ourt
Max. Execution Time: 15
O Cancel

Figure 5: Test Con guration Window

The "elds in this window are:

Link Command: This is the commandto be usedto link the current Te and produce an

executable. If this "Te requires other source les or libraries to be linked, then these

also have to be speci ed here.

Desired Output File: This is the output data that should be produced whenewer this
program is executed. The compiler assumeghat such correct output data is provided
to it, sothat it can compare the "current output data" with the "known correct
output data" and ched for inconsistencies. This is very important especially for a
new transformation, to ensurethat the output produced is correct. The compiler

must never perform a transformation that results in incorrect output.

15

Actual Output File: This is the name of the output Te produced after running the

executable.

Execute Command: This command is usedto execute the program and produce the

output Te.

Max. Execution Time: An incorrect program transformation, performed by the com-
piler, may result in the program going into an in nite loop. This is certainly undesir-
able. This eld speci esthe maximum time the compiler should allow the program to
“nish executing. If, by this time the program has not nished, then it is terminated.
On termination, the compiler assumesthat the program state is incorrect and the

useris noti ed.

3.3 Getting Performance Measures

When the compiler gets a requestto determine the performance measures,it performs a
seriesof steps as shavn in the Figure 6. In casethe program consists of multiple input
“les, which needto be linked together to producethe executable,the user must ensurethat
an instrumented assenbly Te (.inst.s le) corresponding to ead input Te is presen before
the measuremen processis initiated. This can be done by simply running ead input Te
through the interactive compiler without performing any optimizations.

The compiler always storesa pointer to the start of the current function in the current
input Te (.cex le), which is produced by the code expander. No optimizations have been
performed on this Te. For ead function, the compiler always generatesboth the assenbly
code (in the .s 'le) and the instrumented assenbly code (in the .inst.s Te), which is the
assenbly code instrumented with additional instructions to collect performance measures.
At the start of the measuremen process,the instrumented assenbly Te generatedat that
point (for the preceding functions) is stored as the compiler would now needto generate
assenbly for the remaining functions in the Te in order to be able to executethe program.

Later, after the program is executed and measuremets taken, the stored instrumented

16

Compiler (VPO)

Send Static and Dynamic Frequency Measures

Function

For Current Function
Viewer Request for Save Current Restore Previous
! Program State Program State
Measurements
| Apply Required Read Program
' Transformations Frequency Count
Instrurnent Generate Link and Execute
EASE i Instrumented Assembly File
Code, Assembly
i Last Yes
| Function
No
i Read Next

Figure 6: The Measuremen Process

assenbly e is again renamedto the current output Te. We also have to store the list
of transformations applied to this function up to that point sothat they can be reapplied
after getting the measuremets, to get badk to the sameprogram state asit was beforethe
current measuremenh process.

There are somerequired transformations that haveto be always performedbeforeassem-
bly code for a function can be generated. These are register assignmentand X entry-exit.
Temporary values are initially stored in pseudo registers by the code expander. These
have higher numbers than the hardware registers. The register assignmei phase assigns
pseudoregistersto the hardware registers. Also, after most optimizations have been ap-

plied, typically sewral adjustments have to be made to the entry and exit points of a

17

function. These adjustments include allocating/deallo cating spaceon the run-time stack
and saving/restoring registers. This is donein the X entry-exit phase. Thus, it is obvious
that correct assenbly code cannot be generatedunlessthese compulsory phaseshave been
applied. It may be possiblethat these have not been performed on the current function
asyet. Before outputting assenbly for measuremets, we ched if these phaseshave been
applied and if not they are performed now.

The instrumentation of code by EASE is done as the next stage. As explained in an
earlier section, to take measuremets, the EASE ervironment instruments the code with
additional instructions, which among other things incremert counters assaiated with ead
basic block. The instrumented assenbly is output to an instrumented assenbly Te. After
code for the function is generated, all the data structures for holding the state of this
function are clearedand re-initialized. We now have to read in the remaining functions in
the le, apply the required transformations (register assignmen and x entry-exit) for each
remaining functions and output the assenbly.

We now have an assenbly Te instrumented with additional instructions by EASE and
ready to be executed. The con guration Te corntaining the link and execute commands,
described earlier, is opened and commandsread. The assenbly Te is linked and then
executed. Upon execution, the instrumented EASE code in the function producesa new
counts (.cnt) Te corntaining measuremeh information. This Te can be directly read and
interpreted to extract the frequency counts and number of executableinstructions in ead
basic block. Alternativ ely, we have a program called genreport which doesthis work for us
and producesthe output in report format. The static and dynamic counts for ead function
in the "Te are displayed here. The frequencycourts for ead individual basicblock still have
to be read directly from the courts Te.

We now have to get badk to the sameexact state for the current function asit waswhen
measuremelts were initiated. The stored pointer to the current function in the input Te
is usedto do a le seekto resetthe le pointer and the function is read bad into VPO's
internal data structures. The usermight have applied sometransformations to this function

before he started the measuremeh phase. Thesetransformations have to be performed as

18

well. The compiler stores the transformations, not as individual phases(lik e instruction
selection), but as a sequenceof small changesduring ead phase (like delete RTL, insert
RTL, modify RTL etc.). This is done so that the user can view ead individual change
applied to the function in the viewer and to alsosupport manually speci ed transformations.
After thesechangesare reapplied the function is set to the samestate as it was when we
started the measuremeh The measuresare then sent to the viewer, which displays it in
its windows.

Figure 4 shaws a snapshotof the viewer with a history of the sequenceof optimization
phasesdisplayed. Note that not only is the number of transformations assaiated with ead
optimization phasedisplayed, but alsothe improvemerts in instructions executedand code

size are shown.

19

Chapter 4

Support For Interactiv e Code

Tuning

In corvertional compilers a programmer has little control over the order in which code-
improving transformations are applied. It has beenshaown that a xed sequenceof opti-
mizations may not produce optimal code for all programs, or even for individual functions in
a program. The problem of automatically generating acceptablecode for embedded micro-
processorss much more complicated than for general-purposeprocessors.First, enbedded
applications are optimized for a number of con’icting constraints. In addition to speed,
other common constraints are code sizeand power consumption. An optimization sequence
tuned for producing faster code, may in fact increasethe code size, which may be unde-
sirable. For many embedded applications, code density and power consumption are often
more critical than speed. In fact, in many applications, the con®icting constraints of speed,
code density and power consumption are managed by the software designerwriting and
tuning assenbly code. Unfortunately, the resulting software is less portable, lessrobust,
and more costly to develop and maintain.

Automatic compilation for embedded microprocessorsis further complicated because
embeddedmicroprocessorsoften have specializedarchitectural featuresthat make code im-

provemert and code generation ditcult [8, 9]. While some progresshas been made in

20

developing compilers and embedded software developmen tools, many embedded appli-
cations still cortain substartial amounts of assenbly language becausecurrent compiler
technology cannot produce code that meetsthe cost and performance goals for the appli-
cation domain. The code improvemert paradigm provided by VISTA, hasthe potential to
achieve the cost/p erformancetrade-o®sdemandedfor embedded applications. The earlier
version of VISTA [4] provided support for interactive code optimization. In this section,
we describe the feedbad&-basedinteractive performancetuning provided in this version of
VISTA.

4.1 Getting Performance Measures

The earlier version of VISTA, enabledthe user to specify a sequenceof optimizations in
any order supported by the compiler and also allowed someuser-sgeci ed transformations
(e.g. for exploiting advanced architectural features which the compiler doesnot). But, it
did not automatically give the userany feedba&k about the improvemerts in code produced
after applying the optimizations. Whenewer measuremets are needed, an instrumented
executable for the program has to be produced, executed and measuresare obtained as
explainedin the previous section. In the earlier version of VISTA, a user could accomplish
this in a seriesof steps. First, after applying the desiredsequenceof optimizations, VISTA
is exited causingthe instrumented assenbly Te to be produced. Next, commandsare issued
to assenble, link and executethe program. This will producethe counts Te cortaining the
frequency of execution of ead basic block. Next time VISTA is re-invoked it will auto-
matically reapply the previous transformations to reach the samepoint in the compilation.
Also, now it will detect the presenceof the counts Te, and will sendthat information to the
viewer. The viewer displays relative execution frequency of ead basic block in that block's
header.

We felt the needto automate this processin order to give the user instant feedbak
regarding the program's performanceafter ead transformation, or whenewer the program-

mer felt necessary This ability is provided by the two options, described in the previous

21

section, namely:

1. Start/Stop measuremen ts: Start getting code-sizeand instruction count measure-

merts after eat transformation phase.

2. Get Frequency Measures: Get the relative execution frequency of eat basic block

at any stageduring the compilation process.

Thus, the programmer now does not have to rely on pure intuition to guide the code
improvemert process.The instant performancefeedbad provided by VISTA alleviates the
programmer's job of transforming the program to one which givesacceptableperformance.
Currently the viewer shaows improvemerts in both the code sizeas well as dynamic instruc-
tion counts. It should be possibleto display relative improvemers basedon any other

criteria.

4.2 New Constructs in VIST A

We also found that it is useful to conditionally invoke an optimization phase based on
whether a previous optimization phasecausedany changesto the program represenation.
The application of one optimization phase often provides opportunities for another opti-
mization phase. Sud a feature allows a sequenceof optimization phasesto be applied
until no more improvemerts can be found. Likewise,an optimization phasethat is unlikely
to result in code-improving transformations unlessa prior phasehas changedthe program
represermation can be invoked only if changesoccurred, which may save compilation time.

Prior support in VISTA for conditionally applying optimization phaseswasonly a low-
level branch operation (i.e. if changesgoto <label>) [4]. We now provide support for
testing if changeshave occurredin the form of four structured cortrol statements which the

user can interactively specify.

1. if-c hanges-then: This statemernt is similar to the if-then-endif construct in higher level

programming languages.It performsthe optimizations speci ed in the then block only

22

if the transformation immediately precedingthe if produceschangesto the program

represertation. This is cornverted by the viewer into a low-level sequenceof requests:

if-changes-then :: <IF-FALSE-GOTO-TRANS>

transforms in if-block

The compiler interprets this to meanthat if changes(in the previous phase)is false,

then jump over the number of transformsin if-block.

2. if-c hanges-then-else: This statemert is similar to the if-then-else construct. Depend-
ing on if the phaseprecedingthe if produceschanges,either the then branch is taken

or the elsebranch is taken. The low-level sequencecorresponding to this construct is:

if-changes-then-else . <IF-FALSE-GOTO-TRANS>
transforms in if-block
<GOTO-TRANS>

transforms in else block

This tells the compiler that if changes(in the precedingphase)is falsethen jump over
the transformations in the if-block and directly goto the transforms in the else-blak.
If changesis true, then the transformations in the if-block will be performedand then,
on encourtering the unconditional goto, cortrol will be transferred to the transform

after the else-blek.

3. do-while-c hanges: This statemernt is a looping construct similar to do-while in high-
level languages. The transformations in the do block are always performed at least
once and are repeated as long as any transformation in that block produces any

changesto the program being compiled. The low-level translation for this is:

do-while-changes :: <BEGIN_LOOP>

transforms in while-block

23

<IF-LOOP-TRUE-GOTO-TRANS>
<END_LOOP>

To the compiler this meansthat after performing the transformations in the while-
black if any of those made any changesto the program represertation, then again go
bad to the rst transform in the while-black. The BEGIN _LOOP and END _LOOP
delimiters indicate the scope of ead loop to the compiler. When multiple such while
and if constructs are nested,thesedelimiters enablesthe compiler to ched the proper
°ag (changesvariable) and make the right branching decisionsat ead loop nesting

level.

4. while-c hanges-do: This statemert is similar to the while statemert in high level lan-
guages. It is similar to the previous construct, exceptthat application of the trans-
formations in the while block for the rst iteration dependson, if the precedingphase

produced changes. The viewer will translate this to:

while-changes-do :: <BEGIN_LOOP>
<IF-LOOP-FALSE-GOTO-TRANS>
transforms in while-block
<GOTO-TRANS>
<END_LOOP>

For the rst iteration the compiler cheds if the preceding phase made changes. For
all future iterations the compiler cheds if any of the phasesin the do block make
any changeto the program represettation. As long as any phasemakesa changein
any iteration, the compiler executesthat loop again. After the last iteration cortrol
is transferred to the command after the END_LOOP command. As in the previous
construct BEGIN _LOOP and END _LOOP are usedto incremernt and decremen the

loop nesting levels.

24

These statemerts can be nested within one-another. The introduction of these struc-
tured statemerts will make the selection of sequencef optimization phasesmore cornve-
nient to the user. Figure 7 illustrates this with a simple example. The userhas selectedtwo
constructs, which are a do-while-changesstatement and a if-changes-thenstatemert. For
ead loop iteration, the compiler will perform register allocation. Instruction selectionwill
only be performedif registerallocation allocatesoneor more live rangesof a variable to areg-
ister. Registerallocation replacesload and store instructions with register-to-register move
instructions, which provides opportunities for instruction selection. Instruction selection
combines instructions together and reducesregister pressure,which may allow additional
opportunities for register allocation. Thus, in e®ectwe are providing an optimization phase
programming language.

Theseoperations are corverted by the viewer into a low-level sequenceof requestswhich
the compiler interprets. VPO applies the sequenceand sendsead resulting changeto the
program represenation bad to the viewer. The processcortinues until a stop operation
is encourtered. The following list re°ects the operations to be performed by the selections

shawn in Figure 7 .
1. Perform instruction selection
2. Perform register assignmer
3. Enter loop
4. Perform register allocation
5. If no changesin past phasethen goto 7
6. Perform instruction selection
7. If changesduring loop iteration then goto 4
8. Exit loop

9. Perform loop-invariant code motion

25

Phase Selection

Branch Chaining Bim Empty Bocks [=
Useless Jump Blim Dead Code Him |
Reverse Branches Basic Bk Reordering |
Merge Basic Blocks Inst Selection |
Fix Control Flow Eval Diler Deter

Glabal Inst Setect Register Assignment
Minimize Loop Jumps Dead Variable Bim
Common Subexpr Elim
Loop Strength Reduct

| Induction Var Bir

Register Assignment

do
Register Allocation
if changes then

Inst Selection

end if then

while changes

Code Motion

Loops | Undo LastChange | Dome | Cancel

start writing in |

seqlia || execute from file

rfBZj-d;
r[33)=r[30]+.70. 10_irwfft;

R[r[22]]=r[32];
r[32]=r[30]+.p0.0_argc;
r(22]=k[r[32]]:

PC=IC 0,L5;

r(3z]=HI[LB];
r(32)=r[32]+L0O[LE];
r(8]=r[32];

r[32]=HI [printf];
r[32]=r[32]+LO[printf];
ST=r[32];
r(24]=HI[L1O];
r[34]=r[34]+L0[L10];
r(8l=r[34];

r[32]=HI [printf];
r(32]=r[32]+L0[printf];
ST=r[32];
r[34]=HI[L12];
rlZ4]=r[34]+L0[L12];
r(8l=r[34];

r[32]=HI [printf];
r[32]=r[32]+L0O[printf];
ST=r[32];
r[24]=HI[L14];
r[34]=r[34]+L0[L14];
r(8l=r[34];

M| Please select some pptimization phases to be applied

10. Stop

Figure 7: Interactively SelectingOptimization Phases

Figure 8 shows the resulting viewer state after the above sequenceof optimizations have

beenapplied. In the gure, after the rst invocation of register allocation, instruction selec-

tion did not produceany changes.Dead variable elimination (which is actually deadvariable

identi cation) is sometimesperformed as side-e®ecbf register allocation automatically by

the compiler.

26

= 8%
-

Function rmain Trans Number 1522 | =
state | | Total [1522 F(Eler1:
fransformations Number Code Size Inst Exec FIO]=F[r[E]+LO[L31]];
Inst Selection 533 56.72 r(8l=r[1614{2;
Register Assignment 28 51.70 Flr[8)+r[23]]=F[0];
Register Allocation 377 57.79 r[20]=0;
Dead Variable Elim 19 57.79 PC=L35;
Fegister Allocation 35 57.79
Inst Selection 314 .15
Fegister Allocation 188 .15
Dead vVariable Elim 7 37.15 ST=HI [rand]+LO[rand] ; E
iCode Wotion B8) 8 37.76 r[8]=r[&];
r(9]=2;
ST=HI[.rem]+LO[.rem];
IC=r[E8]70;
PC=IC:0,L36;
r(2]=0;
r[17]=r[20]{2;
flol=F[r[17]+r[18]];
u.n—n-—.]u-mt_n-.| RTLs 4 r[6]=r[28];
d{2]=0[r[9]+L0O[L39]];
o T I I W S[2)-0{r (3}+l0[135]
start writing in J seqlad | exeaune from file R{r(20]+.T56]=r[2]; =
ll!n-m] No Message H Help ‘

Figure 8: Interactively SelectingOptimization Phases

27

Chapter 5

Supp ort for Performance Driv en

Automatic Code Tuning

The interactive performancetuning approad detailed in the precedingsection, in spite of
being very powerful, requires a lot of user intuition and e®ort to steer the optimization
processto obtain acceptableperformance. The programmer may make poor selectionsand
may have to undo some earlier optimizations and try other sequencedo ched if it gives
better performance. We felt it was necessaryto provide the user with another technique
which can come up with an e®ective sequenceof optimizations automatically. We have
addedtwo structured constructsin VISTA which have the ability to automatically compare
two or more sequencesand determine which is most bene cial. The rst is the selet-best-

from statemert and the other is selet-best-combination.

5.1 Constructs for Automatic Selection of Optimization Se-

quence

The constructs to automatically selectoptimization sequencesre described in this section.

28

5.1.1 Select Best From

The selet-best-from statemert is illustrated in Figure 9. As seenfrom the gure, the user
has selected?2 di®erent sequencesf optimizations separatedby an or. The programmer
only wants one of the two sequencedo be applied to the program, the one giving better
performance. The viewer rst corverts this statemert into a low-level form to sendto the

compiler.

select-best-from :: <SELECT-BEST-FROM>
optimization sequence 1
<OR>
optimization sequence 2

<DONE-SELECT>

Note that the user can select any number of di®ereri optimization sequencesseparated
by <OR>. The viewer then prompts the userto selectthe weights betweeninstructions
executedand code size, where the relative improvemert in ead is usedto determine the
overall performance. The compiler can make a choice of the better sequenceasedon only
the code size,only dynamic instruction counts or any combination of both, asper the weight
selectedby the user. Figure 10 shows the window that pops up during select-best-from to
enablethe userto specify the relative weights.

When the compiler gets this command, it rst stores the number of transformations
applied to this function up to this point. This will be usedto get the program state back to
what is was beforestarting this construct. The compiler then appliesthe transformations in
the rst sequenceand evaluatesthe program performance,accordingto the selectedcriteria.
For this the compiler hasto assenble, link and executethe current program as stated in an
earlier section. It then getsthe program state back to what it was when execution of this
construct was initiated. This can be easily done by reading back the current function again
and only applying the transformations until a speci ¢ point in the compilation process,in
this caseall transformations until the start of the selet-best-from statemert. This process

is repeatedfor all the alternativ e optimizations sequencesAfter evaluating ead sequence,

29

P I —

Branch Chaining Bim Empty Bocks
Useless Jump Bim Dead Code Bim
Reverse Branches Basic Bk Reordering
Merge Basic Bocks Inst Selection
Fix Control Flow Eval Order Deter
Glabal Inst Select Register Assignment
Minimize Loop Jumps Dead Variable Bim
Register Allocation Common Subexpr Bim
Code Motion Loop Strength Reduct
Recurrences i Induction Vas Bim 1
T —— I S ¥
Read Transfor mations From File
[Optimization Phase Sequence

Register Assignment
select best from
Inst Selection
Eranch Chaining
Register Allocation
or
Register Allocation
Code Motion
Loop Strength Reduct
Induction Var Elim
end select

I

f—{

-

start writing in execute from file

seqlist

Figure 9: Selectingthe Best of a Set of Speci ed Sequences

its performanceis comparedto the performance of the best sequencefound so far. If the
current sequences better, then it is made the new best sequence.After all the sequences
are evaluated for their performance,we have identi ed the best sequencewhich is reapplied
to the program and the new program state is sert to the viewer. Here we needto always
reapply the best sequencegven if the best sequencdound is the last sequencen the selest
best from construct. This is becausewhile testing for the best sequenceno messagesvere
sen to the viewer. When we reapply the best sequencethe changesmade by only this

sequenceare sert to the viewer. Reapplying the best sequencewould also be neededin

30

£ Sel_ Sequence Query (-3 x
Inst. Executed 70 Code Size 20
0 20 40 60 80 100
ok

Figure 10: Selectingthe Relative Weights during SelectBest From

the casewhen the °ag for getting performance measuresafter ead phaseis set. Note that
while determining the best sequencewe are only getting the measuresafter eath complete

sequenceas comparedto getting measuresafter ead individual phase.

5.1.2 Select Best Com hination

The other option is select-best-combination, which acceptsa set of optimization phasesand
attempts to discover the best sequenceof phases. Figure 11 shows an illustration of how
this works. Here the user has selecteda sequenceconsisting of 5 optimization phases.The

useris attempting to discover the best ordering of this sequenceof v e optimization phases.

The basicintuition isto try all combinations of the speci ed transformations, evaluating
ead onefor its performanceand coming up with the bestsequencewhich could bereapplied
to the program in a manner similar to select-best-from. The only problem hereis the searh
spacewhich grows exponertially basedon the length of the input sequence.Therefore it
was necessaryto somehav managethe exponertial seard space.

Figure 12 shaws the di®eren options that we provide the userto cortrol the seard for
the best sequence.The No. of Phases eld shows us the length of the input sequenceof
optimizations we selected. The Sequene Length can be di®eren from the No. of Phasesin
two of the three Search Options. VISTA also allows the userto selectthe weights between
instructions executedand code size, similar to the option provided during selet-best-from.

The usercan thus optimize the code basedon only code-size,only instruction counts or any

31

Optimization Phase Selection

Branch Chaining Him Empty Blocks

Useless Jump Bim Dead Code Bim

Reverse Branches Basic Bk Reordering

Merge Basic Blocks Inst Selection

Fixc Control Flow Eval Ovder Deter

Glwbal Insi Select Ilt’ll:'ﬂl’l.".lﬁl-l.li-llllt’-llf
Register Allocation Commen Subexpr Bim
Code Motion __Imlp Serength Redua i
Recurrences '|| InEll'l-rlm;-' l'-i;l Elllll;

o

Read Transfor mations From File

Optimization Phase Sequence
Register Assignment

select best combination

(bh) - Branch Chaining

(k) - Register Allocation
(s) - Inst Selection

(n) - Code Motion

(c) - Common Subexpr Elim
end select2000)

T»

Loops || Undo Last Change || Done J| Cancel
stant writing in ‘ execute from file

seqlixd

Figure 11: Selectingthe Best Sequencdrom a Set of Optimization Phases

combination of thesetwo performancemeasures.VISTA also o®ersthe usersthree di®erer

Search Options:

1. Exhaustiv e Search: An exhaustive seard results in all possible sequencedeing at-

tempted. If the user has selectedm distinct optimization phaseswith a sequence
length of n, then there will be m" di®eren sequencesattempted. An exhaustive
seard may be appropriate when the total number of possiblesequencegan be evalu-
ated in a reasonableperiod of time. But in many caseghe seart spaceis too great to

feasibly evaluate all possiblesequence®f optimization phases.The next two options

32

£ sel_Comb Query - X
MNo. of Phases: 5 Search Option:
Sequence Length: 7) Exhaustive Search
@ Biased Sampling Search
Weight Factors: Permutation Search
Insts Executed 50 Code Size 50 Population Size: (20
; e
Number of Generations: 100
1] 20 40 60 g0 100
ok cancel help

Figure 12: SelectingOptions to Seard the Spaceof Possible Sequences

attempt to intelligently probe the seart spacefor e®ective sequences.

2. Biased Sampling Search: In this option we apply a genetic algorithm to probe the
seard spaceto nd an e®ective sequenceuickly. The goalof usinga geneticalgorithm
is to nd an e®ectie sequencegiven a restricted number of sequencedo attempt.
Genetic algorithms are basically seard algorithms designedto mimic the processof
natural selectionand ewlution in nature. We de ne a few terms related to genetic

algorithm here. For a more detailed overview refer to Appendix A.

A population consistsof a xed number of members, or chromosomes Each chromo-
someis a xed-length string of genes The tness of a chromosomeis somemeasure
of how desirableit is to have that chromosomein the population. A geneation is a
time step in which seweral events occur. Someof the most 'unt’ chromosomesdie
and are removed from the population. To replacethese chromosomes,somenumber
of crossover operations are applied to the population. A crosswer is an operation
analogousto mating or genesplicing. It conbines part of one chromosomewith part
of another chromosometo create a new chromosome. Finally, someamount of muta-

tion occursin the population, in which individual genesare changedrandomly with

33

some (typically low) probability. It is also possibleto have elitism in the population
in which someof the most t genesare immune from mutation betweengenerations.
In our case,a chromosomecorresponds to a sequenceof optimization phasesand a
geneto an individual phasein the sequence.Somenumber of optimization sequences
together form a population. The operations of crossawer and mutation are de ned so
that the geneticalgorithm nds good optimization sequencesgjuickly. Fitness value of
a chromosomeis the performancemeasuresobtained when that sequences applied to
the program. Thus alower tness value (lower code-size,lower number of instructions
executed), is considereda better sequence.The actual genetic algorithm we usedin

described in Appendix B.

Thus, after selecting Biased Sampling Search, the user also needsto specify the Pop-
ulation Size and the Number of Generationsfor the genetic algorithm. The default
values of 100 generationsand a population size of 20, would produce 2000 sequences

of optimization phases,to be applied on the current function.

3. Permutation Search: The permutation seard attempts to evaluate all permutations
of the speci ed length. Unlik e the other two seardes,a permutation cannot have any
of its optimization phasesrepeated. Thus the sequenceength must be lessthan or
equalto the number of distinct phases.A permutation seart may be an appropriate
option when the user is sure that ead phase should be attempted at most once.
This alsoresults in reducing the number of attempted optimization sequencesver an

exhaustive seard.

The viewer converts this corntrol statemert into a low-level sequenceof requeststo be

sert to the compiler.

select best combination :: <SELECT-BEST-COMBINATION>
sequence of optimizations
list of options specified by user

<END-COMBINATION>

34

The compiler after receiving this request, saves the current transformations applied
on the function thus far, similar to selet-best-from. It then applies eadr sequenceto the
function, assenbles, links and executesit to get the performance measures. The program
state is rolled badk to that before starting this construct. Depending on the seard option
selectedby the user,the compiler determinesthe next sequenceo be applied to the function.
The sequenceof optimizations giving the best program performance is saved. After all
sequencesire applied the compiler determinesthe bestsequenceand reappliesthat sequence
to the function and sendsthe resulting program represenation to the viewer.

Performing theseseartiescanbe quite time consuming. Thus, VISTA providesawindow
shawing the current status of the seard. Figure 13 shows a snapshotof the status of the

searh that was selectedin Figures 11 and 12. The window displays the percertage of the

Figure 13: Window Shawing the Status of Searding for an E®ective Sequence

seard completed, the number of valid and invalid sequencesan encaded represertation
of the sequencewhich was last tried and the best sequenceso far along with their static
and dynamic measures.All the improvemen numbers shawn in this gure are relative to

the program state when selectbest combination was started. A sequencds declaredto be

35

invalid if the sequencds sudc that it doesnot adhereto all the constraints imposedon the
ordering of individual phases,e.qg. if register allocation appears before register assignmei
in the sequence.We also declare a sequencenvalid if it results in a program state which
producesa linker error or upon execution doesnot produce the desiredoutput or if it goes
into an in nite loop. Ideally the secondcasefor invalidating a sequenceshould never occur
in a compiler. If such a sequenceds encourtered then a log of that sequencds maintained so
the dewveloperscantry to resolwe the problem. Table 1 describeseadt phasein the compiler
and givesa designation (gene) of ead phasethat is usedfor displaying the sequencdn the
window in Figure 13.

It may be the casethat the performancedesiredby the useris achieved by an optimiza-
tion sequencesarly onin the seard process.In that caseit is not required to sit through the
remaining sequencesincethat could take a very long time. VISTA provides the option of
interrupting the seard processwheneer the userwants. If the processis interrupted then
the compiler applies the best sequencefound so far during the seart processand returns

the resulting program represenation to the viewer.

36

Table 1: Candidate Optimization Phasesin the Genetic Algorithm along with their Desig-
nations

| Optimization Phase

| Gene | Description

branch chaining b Replacesa branch or jump target with the target
of the last jump in the jump chain

eliminate empty block e Removesempty blocks from the cortrol °ow graph

uselesgump u Remove uselesgransfers of control like a jump to

elimination the next block in the control °ow

dead code elimination d Remove block unreadable from the top block

reversebranches r Reversesa conditional branch when it branches
over an jump to eliminate the jump

block reordering i Removesa jump by reordering basic blocks when the
target of the jump hasonly a single predecessor

merge basic blocks m Mergestwo consecutive basic blocks when the
predecessomhas no transfer of cortrol and the
successoihas only one predecessor

instruction selection S Combine instructions together when the conmbined
e®ectis in a legal instruction

“x cortrol °ow f Changecode that computesa booleanvalue and then
usesthat value to jump, to code that just jumps

eval order 0 Reorder instructions within a basic block to calc.

determination expressionsthat require the most registers rst

global instruction g Perform instruction selectionacrossbasic block

selection

register assignmen a Assign pseudoregistersto hardware registers

minimize loop jumps] Remove an unconditional jump at the end of a loop
or onethat jumps into a loop, by replicating a
portion of the loop

dead assignmen elim. h Removesassignmems where the assignmen value is
never used

register allocation k Replacesreferencesto a variable within a
speci ¢ live range with a register

common subexpr. elim. c Eliminates fully redundant calculations

code motion n Move loop invariant code into the preheader

loop strength i Replaceregister incremerts by constart valueson

reduction ead iteration of a loop by simple increment

recurrences p Avoid recurrencesin loops by retaining valuesin
registers acrossiterations of the loop

induction variable % Removesunnecessaryregister incremerts after

elimination loop strength reduction

strength reduction a Replacesan expensiwe instruction with one or more
cheaper ones

"X ertry exit w “x entry and exit of a function to managethe
run time stack

instruction t Rearrangethe order of instructions within a basic

scheduling block in an attempt to reduce pipeline stalls

Il delay slots u Fill the delay slots after transfer of control
instructions in RISC machines

37

Chapter 6

Exp erimen tal Results

In the previous sectionswe have describedthe VISTA framework and the support it provides
for feedbak basedperformancetuning. In this section we describe the results of a set of
experiments to illustrate the e®ectivenessof using VISTA's biased sampling seard, which
usesa geneticalgorithm to nd e®ective sequence®f optimization phases.We useda set of
mibench programs, which are C benchmarks targeting speci ¢ areasof the embeddedmarket
[10]. We usedone bendhmark from ead of the six categoriesof applications. Descriptions

of the programs we usedare shavn in Table 2.

Table 2: MiBench Benchmarks Usedin the Experiments

| Category | Program | Description
auto/industrial | bitcount test bit manipulation abilities of a processor
network dijkstra calculates shortest path betweennodesusing

Dijkstra's Algorithm

telecomm ®t performs a fast fourier transform on an array of data
consumer ipeg image compressionand decompression
security sha securehash algorithm
otce stringseard | searthesfor given words and phrases

Our target architecture for these experiments was the SPARC, as we do not currently
have a robust version of VISTA targeted to an embedded architecture. Using a genetic

algorithm to nd e®ecti\e optimization phasesequencesanresult in thousandsof sequences

38

being applied. This provides a se\ere stresstest for any compiler. In the future we plan to
test VISTA's ability to nd e®ectie optimization phasesequence®n embeddedprocessors.

Our experiments have many similarities to the Rice study, which useda geneticalgorithm
to reducecode size [11]. We believe the Rice study wasthe rst to demonstratethat genetic
algorithms could be e®ectie for nding ezcient optimization phase sequences.However,
there are sewral signi cant di®erencesbetween their study and our experiments, and we
will contrast someof the di®erencedn this section.

The Rice experiments useda genetic algorithm to nd e®ective sequencegonsisting of
twelve phasesfrom ten candidate optimizations. They comparedthesesequenceso the per-
formance obtained from a xed sequenceof twelve optimization phases.In cortrast, VPO
doesnot utilize a xed sequenceof phases. Instead, VPO repeatedly applies phasesuntil
no more improvemerts can be obtained. Figure 14 shows the algorithm usedto determine
the order in which optimization phasesare applied to VPO. This algorithm has ewolved
over the yearsand the primary goal has always beento reduce execution time. Initially it
was not obvious how to best assesd/ISTA's ability to nd e®ectie optimization sequences
as comparedto the batch VPO compiler. One complication is that the register assignment
(assigning pseudoregistersto hardware registers)and xed entry exit (xing the entry and
exit of the function to managethe run-time stadk) phasesare required, which meansthat
they have to be applied onceand only once. Many of the other phasesshown in Figure 14
have to be applied after register assignmentand before x entry exit. Thus, we decidedto
usethe geneticalgorithm to nd the best sequenceof improving phasesthat can be applied
between these two required phases. These candidate sequencesnvolve fourteen unique
phases,which can be applied in any order betweenthe two required phases. These phases
are: instruction selection, minimize loop jumps, merge basic blocks dead assignmentelimi-
nation, register allocation, common sukexpressionelimination, loop transformations (which
include loop-invariant code motion, recurrence elimination, loop strength reduction and in-
duction variable elimination), remove uselessjumps, strength reduction, branch chaining,
removeunreachablecode, removeuselessblacks reversejumps and block reordering. For a

description of what ead of these phasesdo refer Table 1.

39

branch chaining
remove useless basic blocks
remove useless jumps
remove unreachable code
reverse jumps
remove jumps by block reordering
merge basic blocks
instruction selection
fix control flow
evaluation order determination
global instruction selection
register assignment
instruction selection
minimize loop jumps
if(changes in last phase)
merge basic blocks
do
do
do
dead assignment eliminati
while changes
register allocation
if(changes in last two phases)
instruction selection
while changes
do
common subexpression elimina
dead assignment elimination
loop transformations
remove useless jumps
branch chaining
remove unreachable code
remove useless basic blocks
reverse jumps
remove jumps by block reorderi
remove useless jumps
if(changes in last 7 phases)
minimize loop jumps
if(changes in last phase)
merge basic blocks
dead assignment elimination
strength reduction
instruction selection
while changes
while changes
branch chaining
remove unreachable code
remove useless basic blocks
reverse jumps
remove jumps by block reordering
fix entry exit
instruction scheduling
fill delay slots
if(changes in last phase)
remove useless jumps
remove branch chains

Figure 14: VPO's Order of Optimizations Applied in the batch mode
40

Another issueis the number of optimization phasesto apply sinceit may be bene -
cial to perform a speci ¢ optimization phase multiple times. When applying the genetic
algorithm, one must specify the number of optimization phases(genes)in ead sequence
(chromosome). It was not clear how to determine an appropriate uniform limit sincethe
number of attempted optimization phasesby the batch compiler could vary with ead func-
tion. Therefore, we rst determined both the number of successfullyapplied optimization
phases(those which a®ectedone or more instructions in the compiled function) and the

total number of phasesattempted during batch compilation.

6.1 Batc h Compilation Measures

Table 3 shows batch compilation information for ead function in ead of the benchmark
programs. The rst column identi es the program and the number of static instructions

that is produced for the application after batch compilation. The second column lists
the functions in the corresponding benchmark program. In four of the benchmarks, some
functions were not executed even though we used the input data that was supplied with

the bendhmark. Since sud functions did not have anything signi cant to report we have
designatedsud functions together as unexecuted functions. The third and fourth columns
show the percentage of the program that ead function represets for the dynamic and static

instruction count after applying the optimization sequence.Although the batch compiler
appliesthe samesequenceof optimizations in the sameorder, many optimizations may not
produce any modi cations in the program. Also, iteration causessome transformations
to be repeatedly applied. Thus the sequenceand number of optimizations successfully
applied often di®ersbetweenfunctions. The fth column shaws the sequenceand number of
optimization phasessuccessfullyapplied by the batch compiler betweenregister assignment
and X entry exit. Note that this sequenceof phaseswas applied after attempting the
optimization phasesthat precederegister assignment in Figure 14. We found that the
sequenceof optimization phasesselectedbefore register assignmentand after x entry exit

were much more consistert. One can seethat the sequencesof successfuloptimization

41

phasescan vary greatly betweenfunctions in the sameapplication. The next column shows
the total number of optimization phasesattempted. The number applied can vary greatly
depending upon the size and loop structure of the function. The number of attempted
phasesis also always signi cantly larger than the number of successfullyapplied phases.
The last two columnsin Table 3 depict that iterativ ely applying optimization phaseshad
a signi cant impact on dynamic and static instruction court. We obtained this measure-
ment by comparing the results of the default batch compilation to results obtained without
iteration, which usesthe algorithm in Figure 14 with all the do-while's iterated only once.
The iteration impact result showns the power of iterativ ely applying optimization phasesun-
til no more improvemert can be found. In particular the number of instructions executed
is often reduced. The only caseswhere dynamic court increasedwas when loop invariant
code motion was performed and the loop was either never entered or only executedonce. In
fact, we were not sure if any additional dynamic improvemerts could be obtained using a
genetic algorithm given that iteration may mitigate many phaseordering problems. In the
rest of this section we comparethe results we obtained using a genetic algorithm to seard
for e®ectiwe optimization sequenceso the sequencegound by the iterativ e batch version of
VPO. For our geneticalgorithm experiments we set the optimization phasesequencdchro-
mosome)length to 1.25times the length of the number of successfullyapplied optimization
phasesfor ead function. We felt this sequencdength is a reasonablelimit for ead function
and still givesus an opportunity to successfullyapply more optimization phasesthan the
batch compiler was able to accomplish. Note that the number of attempted phasesfor eah

function by the batch compiler far exceededhis length.

42

Table 3: Batch Optimization Measuremetts

program | function % of % of | applied sequence attempted iteration impact %
and size dynamic | static | and length phases dynamic | static
bitcount | AR _btbl _bitcount 3.22 3.86 | kschsc (6) 53 -9.52 -9.52
(496) BW _btbl _bitcoun t 3.05 3.66 | emsaks (6) 24 0.00 0.00
bit _count 13.29 3.25 | sksc(4) 42 -18.64 -14.29

bit _shifter 37.41 3.86 | sks(3) 26 -9.09 -5.26

bitcoun t 8.47 10.16 | ksc (3) 40 0.00 0.00

main 13.05 19.51 | sjmhkscligsclilsllhsc (21) 125 -27.27 -8.16

ntbl _bitcn t 14.40 3.66 | sksc(4) 40 -11.10 -11.76

ntbl _bitcoun t 7.12 8.54 | ks (2) 24 0.00 0.00
unexecuted func. 0.00 43.49 | 5.00 40.57 N/A -9.57

average 5.13 43.87 -11.10 -7.19

dijkstra dequeue 0.85 10.40 | sksc(4) 40 0.00 0.00
(327) dijkstra 83.15 44.04 | sjmhksclliclisc (15) 71 -14.54 -4.44
enqueue 15.81 12.84 | shksc (5) 42 0.00 0.00

main 0.06 22.94 | sjmhkslislisc (13) 71 -12.13 +3.23
print_path 0.01 8.26 | shksc (5) 41 0.00 0.00

gcount 0.12 153 | (0) 21 0.00 0.00

average 7.17 47.67 -12.54 -1.36

®t CheckP ointer 0.00 2.34 | shksc (5) 41 0.00 0.00
(728) IsPowerOfTw o 0.00 2.61 | sksc(4) 40 0.00 0.00
NumberOfBits... 0.00 3.98 | sjmhksc (7) 43 0.00 0.00
ReverseBits 14.13 2.61 | sjmksc (6) 42 0.00 +5.56

®t_°oat 55.88 38.87 | sjmhkscllilhsc h (15) 57 -8.84 -7.64

main 29.98 39.56 | sjmhkscllliehscll (17) 58 -1.90 -1.23
unexecuted func. 0.00 10.03 | 3.00 65.00 N/A -2.99

average 8.29 49.43 -5.77 -3.95

jpeg “nish _input _ppm 0.01 0.04 | (0) 21 0.00 0.00
(5171) get_raw_row 48.35 0.48 | sksc(4) 40 0.00 0.00
jinit _read_ppm 0.10 0.35 | ksc (3) 39 0.00 0.00

main 43.41 3.96 | sjmhksclschc (12) 70 -0.03 -1.14
parse_switches 0.51 11.26 | sjmhksc (7) 43 0.00 0.00

pbm _getc 5.12 0.81 | sksch (5) 41 0.00 0.00

read_pbm _integer 1.41 1.26 | sksc(4) 41 0.00 0.00

select_Te _type 0.27 2.07 | sksec(5) 40 0.00 0.00

start _input _ppm 0.79 5.96 | sjmkschc (8) 55 0.00 0.00

write _stdout 0.03 0.12 | kss(3) 40 0.00 0.00
unexecuted func. 0.00 73.69 | 6.27 44.35 N/A -0.19

average 6.08 44.13 -0.01 -0.19

sha main 0.00 13.71 | sksclsl (7) 55 +6.67 +5.26
(372) sha_nal 0.00 10.75 | shksc (5) 41 0.00 0.00
shainit 0.00 5.11 | sks(3) 25 0.00 0.00

shaprint 0.00 3.76 | sksc(4) 40 0.00 0.00
sha_stream 0.00 11.02 | sjmkscl (7) 42 0.00 0.00
sha_transform 99.51 44.62 | skscllllllihsclllllihs(23) 56 -11.46 -12.50
sha_update 0.49 11.02 | sjmhkscc (8) 56 -0.08 -2.78

average 7.86 45.00 -11.44 -6.20

string- init _search 92.32 6.18 | sjmkscliscllhs (14) 70 -15.99 0.00
search main 3.02 14.08 | sjmksclhsclhl (13) 69 +0.01 +2.08
(760) strsearch 4.66 7.37 | sksclislscl (11) 69 -3.10 0.00
unexecuted func. 0.00 71.44 | 14.00 66.57 N/A +1.37

average 13.50 67.40 -15.01 +1.28

average 8.01 49.58 -9.31 -2.94

43

6.2 Interactiv e Compilation Measures using Genetic Algo-

rithms

There are a number of parameters in a genetic algorithm which can be varied to give
algorithms quite di®erert in performanceand the bestalgorithm for a particular application

only comesfrom experienceand continuous ne tuning basedon empirical results. Due to

lack of aquaintance with a better substitute, we decided to use an algorithm based on
the one usedin the Rice experiments. The population size (xed number of sequencesr
chromosomes)was set to twenty and ead of theseinitial sequencess randomly initialized.

The sequencesn the population are sorted by tness values(using the dynamic and static

counts according to the weight factors). At ead generation (time step) we remove the
worst sequenceand three others from the lower (poorer performing) half of the population

chosenat random. Each of the removed sequencesare replaced by randomly selecting a
pair of sequencedrom the upper half of the population and then performing a crosswer
operation on that pair to generatetwo new sequences.The crosswer operation conbines
the lower half of one sequencewith the upper half of the other sequenceand vice versato

create the new pair of sequencesFifteen chromosomesare then subjected to mutation (the

best performing sequenceand the newly generatedfour sequencesre not mutated). During

mutation, ead gene (optimization phase)is replaced with a randomly chosenone with a
low probability. For this study mutation occurswith a probability of 5% for a chromosome
in the upper half of the population and a probability of 10% in the lower half. This was
donefor a set of 100 generations. Note that all theseparameterscan be varied interactively
by the userduring compilation asshown in Figure 12. For more on genetic algorithms refer
appendix A.

Table 4 shows the results that were obtained for ead function by applying the genetic
algorithm. For these experimernts, we obtained the results for three di®erert criteria. For
ead function, the genetic algorithm was usedto perform a seard for the best sequence
of optimization phasesbasedon static instruction count only, dynamic instruction court

only, and 50% of ead factor. As in Table 3, unexecuted functions indicate those functions

44

in the benchmark that were never executed using the bendimark's input data. We also
indicate that the e®ecton the dynamic instruction count was not applicable (N/A) for
thesefunctions. The last six columns show the the e®ecton static and dynamic instruction
counts for eadh of the three tness criteria. The results that were expected to improve
according to the tness criteria used are shown in boldface. The genetic algorithm was
ableto nd a sequencdor ead function that either achievesthe sameresult or obtains an
improved result ascomparedto the batch compilation. In two caseshe dynamic instruction
count increasedwhen optimizing for both speedand space. But in ead casethe overall
bene t was improved since the percertage decreasein static instruction count was larger

than the percertage increasein dynamic instruction court.

45

Table 4: E®ecton Speedand SpaceUsing the Three Fitness Criteria

program | functions optimizing for speed | optimizing for space | optimizing for both
dynamic | static | dynamic | static | dynamic | static

bitcount | AR _btbl _bitcount 0.00 0.00 0.00 0.00 0.00 0.00
BW _btbl _bitcount 0.00 0.00 0.00 0.00 0.00 0.00

bit _count -25.29 -12.50 -25.29 -12.50 -25.29 -12.50

bit _shifter 0.00 0.00 0.00 0.00 0.00 0.00

bitcount -2.00 -2.00 -2.00 -2.00 -2.00 -2.00

main -10.00 -4.90 +20.00 -11.76 -0.00 -7.84

ntbl _bitcnt -10.46 -11.11 -5.82 -5.56 -10.46 -11.11

ntbl _bitcount 0.00 0.00 0.00 0.00 0.00 0.00
unexecuted func. N/A -2.55 N/A -3.73 N/A -3.73

total -6.30 -3.82 -2.02 -5.42 -5.10 -4.82

dijkstra dequeue 0.00 0.00 0.00 0.00 0.00 0.00
dijkstra -6.05 -3.47 -3.02 -4.86 -6.05 -6.25

enqueue 0.00 0.00 0.00 0.00 0.00 0.00

main 0.00 0.00 | +23.12 -6.67 0.00 -2.67

print_path 0.00 0.00 0.00 0.00 0.00 0.00

gcount 0.00 0.00 0.00 0.00 0.00 0.00

total -5.03 -1.53 -2.50 -3.67 -5.03 -3.36

®t ChedPointer 0.00 0.00 0.00 0.00 0.00 0.00
IsPowerOfTw o 0.00 0.00 0.00 0.00 0.00 0.00
NumberOfBits... 0.00 0.00 +16.47 -6.90 0.00 0.00
ReverseBits -0.93 -5.26 0.00 -15.79 0.00 -15.79

®t_°oat -6.14 -4.59 +0.71 -8.83 -6.14 -8.13

main -0.00 -1.74 +0.44 -5.21 +0.44 -5.21
unexecuted func. N/A -4.11 N/A -6.85 N/A -6.85

total -3.57 -3.02 +0.53 -6.87 -3.30 -6.32

jpeg “nish _input _ppm 0.00 0.00 0.00 0.00 0.00 0.00
get_raw_row 0.00 0.00 0.00 0.00 0.00 0.00

jinit _read_ppm 0.00 0.00 0.00 0.00 0.00 0.00

main -0.04 -1.95 -0.03 -3.90 -0.03 -3.90
parseswitches 0.00 -1.72 +2.17 -2.06 0.00 -1.72

pbm _getc 0.00 0.00 0.00 0.00 0.00 0.00

read_pbm _integer -3.54 -1.54 -3.54 -1.54 -3.54 -1.54

select Te _type -2.08 0.00 -2.08 0.00 -2.08 0.00

start _input _ppm 0.00 -0.65 0.00 -0.65 0.00 -0.65

write _stdout -16.67 -16.67 -16.67 -16.67 -16.67 -16.67
unexecuted func. N/A -3.15 N/A -3.94 N/A -3.94

total -0.08 -2.67 -0.06 -3.36 -0.07 -3.33

sha main -17.07 -9.80 -17.07 -9.80 -17.07 -9.80
sha_nal 0.00 0.00 0.00 0.00 0.00 0.00

sha.init 0.00 0.00 0.00 0.00 0.00 0.00

sha print -7.14 -7.14 -7.14 -7.14 -7.14 -7.14
sha_stream -6.65 -29.27 +6.59 -31.71 -6.65 -29.27

sha transform -0.04 -0.60 +6.07 -3.01 0.00 0.00
sha.update -0.06 -2.44 0.00 -7.32 0.00 -7.32

total -0.04 -5.38 +6.04 -7.26 -0.00 -5.65

string- init _search -0.37 -6.38 -0.31 -19.15 -0.37 -21.28
seardh main -1.90 -5.61 -1.90 -10.28 +5.67 -7.48
strsearch -4.40 -7.14 +0.61 -7.14 -2.24 -3.57
unexecuted func. N/A -9.64 N/A -9.64 N/A -9.64

total -0.61 -8.68 -0.32 -10.13 -0.28 -9.61

average -2.61 -4.18 +0.28 -6.12 -2.30 -5.52

46

Figures 15 and 16 show the overall e®ectof using the genetic algorithm for ead test
program on the dynamic and static results, respectively. The second measurefor eadh
function is obtained from the sequencefound by the batch compilation when iterativ ely
applying optimization phasesand is normalized to 1. The results shav that iterativ ely
applying optimization phaseshas a signi cant impact on dynamic instruction court and
lessof an impact on the code size. The genetic algorithm was more e®ectie at reducing
the static instruction count than dynamic instruction court, which is not surprising since
the batch compiler was deweloped with the primary goal of improving the speed of the
generated code and not reducing code size. However, respectable dynamic improvemerts
were still obtained despite having a baselinewith a batch compiler that iterativ ely applies
optimization phasesuntil no more improvemerts could be made. Note that many batch
compilers do not iterativ ely apply optimization phasesand the use of a genetic algorithm
to selectoptimization phasesequencewill have greater bene ts as comparedto suc non-
iterativ e batch compilations. The results when optimizing for both speedand spaceshoved
that we were able to achieve closeto the samedynamic bene ts when optimizing for speed
and closeto the samestatic bene ts when optimizing for space. A user can set the tness
criteria for a function to bestimprove the overall result. For instance, small functions with
high dynamic instruction counts can be optimized for speed, functions with low dynamic
instruction counts can be optimized primarily for space, and large functions with high

dynamic counts can be optimized for both spaceand speed.

] Noniterative Batch ~ [terative Batch [Optimizing for 50% [l Optimizing for 100%
Compilation Compilation Dynamic Dynamic

1.15 r

Figure 15: Overall E®ecton Dynamic Instruction Count

47

[Noniterative Batch [hterative Batch (I Optimizing for 50% Ml Optimizing for 100%
Compilation Compilation Static Static

12

1.1

1.05 {1

14

0.95

0.9
&

Figure 16: Overall E®ecton static Instruction Count

The optimization phase sequencesselectedby the genetic algorithm for ead function
are shovn in Table 5. The sequenceshawnn are the onesthat produced the best results
for the speci ed tness criteria. Sequencegor a function shown in boldface varied between
the di®erent tness criteria. Similar to the results in Table 3, thesesequencesepresert the
optimization phasessuccessfullyapplied as opposedto all optimization phasesattempted.

Someoptimization phaseslisted in Table 1 are rarely applied since they have already
been applied once before register assignment These are the cortrol-°0 w transformations
that include phasesl, 2, 3,5, 6 and 7 listed in Table 1. Strength reduction was not applied
due to using dynamic instruction courts instead of taking the latencies of more expensive
instructions, like integer multiplies, into accourt. It appears that certain optimization
phasesenable other speci ¢ phases. For instance, instruction seletion (s) often follows
register allocation (k) since instructions can often be combined after memory references
are replacedby registers. Likewise,dead assignmentelimination (h) often follows common
sukexpression elimination (c) since a sequenceof assignmeis often becomeuselesswhen
the useof its result is replacedwith a di®erer register.

The results in Table 5 also shaw that functions within the sameprogram produce the
best results with di®erert optimization sequences.The functions with fewer instructions
typically had not only fewer successfullyapplied optimization phasesbut alsolessvariance
in the sequenceselectedbetweenthe di®erert tness criteria. Note that many sequences

may producethe sameresult for a givenfunction and the oneshown is just the rst sequence

48

found that producesthe best result.

We use a hash table containing tness values and indexed by the chromosomesto re-
duce the seard overhead. If the sequencehas already been attempted, then we do not
recomputeit. We found that on average54% of the sequencesverefound in the hashtable.
The functions with shorter sequencelengths had a much higher percertage of redundart
sequencesA shorter sequencdength results in fewer possiblesequencesnd lesslik elihood
that mutation will changea sequencen the population.

The overheadof nding the bestsequencaisingthe geneticalgorithm for 100generations
with a population sizeof twenty required about 30-45minutes for ead function ona SPARC
Ultra-80 processor. The compilation time was lesswhen optimizing for size only since we
would only get dynamic instruction counts when the static instruction court was lessthan
or equal to the count found so far for the best sequence. In this casewe would use the
dynamic instruction cournt as a secondary tness value to break ties. In general, we found
that the seard time wasdominated not by the compiler, but instead by assenbling, linking,
and executing the program. If we use sizewithout obtaining a dynamic instruction court,

then we typically obtain results for ead function in lessthan one minute.

49

Table 5: Optimization Phase SequenceselectedUsing the Three Fitness Criteria

| program | functions

| optimizing for speed |

optimizing for space |

optimizing for both |

bitcount | AR _btbl bitcount | chks chks chks
BW _btbl _bitcount | ks ks ks
bit _court kchs kchs kchs
bit _shifter ks ks ks
bitcount ks ks ks
main slljc kllhsc hllimc chllk ¢ chlisklicllslc h
ntbl _bitcnt ckshc ksc ckhsc
ntbl _bitcount ks ks ks

dijkstra | dequeue ksc ksc ksc
dijkstra chllic hklljsc chklliclic ckclllscllhsc
enqueue kshc khsc khsc
main shklicllic skhc chkliclic
print_path kch kch kch
gcount

®t ChedPointer hkc kch hksc
IsPowerOfTwo kes kes kcs
NumberOfBits... hkjcs khs hkjmsc
ReverseBits kcjhsc kcs ksc
®t_°oat jkcslllic helh kslllhsc hc kcllliclihscllh
main skillisimc h shllliksc skshc

ipeg “nish _input _ppm
get.raw_row ke ke ke
jinit _read ppm ke ke ke
main kchcj kchc kchc
parseswitches jsksch kshc jkshcm
pbm_getc ksch ksch ksch
read_pbm_integer | kcs kchs kchs
select le _type rkch rkch rkch
start_input _ppm kschc kschc kschc
write _stdout ks ks ks

sha main kcsh kesh kesh
sha nal ksch ksch ksch
sha.init ke kc ke
shaprint chkc chkc chkc
shastream kcj chkc chkcl
shatransform cksliisclil lisllikssc skclllllihclllllish

(hilllllc h llllsh

sha.update kshcjc kschc kschc

string- init _seard Ik cjllhclc ckhscllc h kslislihs

searh main kslhicjhc skslhlc kslhls
strsearc clskclhs cksch sllksls

50

Chapter 7

Implemen tation Issues

The earlier sectionsdescribed the main work accomplishedas part of this thesis along with
some empirical results. There were some changesmade to the part already implemented
in an earlier version of the compiler to make the compiler more stable and robust. Also,
there were some other interesting implementation issueswhich could not be discussedin
the earlier sections. This chapter is devoted for the mention of somesudc apparertly minor

issues,whoseproper handling was necessaryfor the successf the main work.

7.1 Undoing Transformations

VISTA provides the ability to undo previously applied changesor transformations for two
purposes. First, this ability can help the user to experiment with di®erert orderings of
phasesand/or hand-speci ed transformations in an attempt to improve the generatedcode.
Second,this feature givesthe useran opportunity to changetheir mind if the earlier trans-
formations are not giving the desiredresults. This work was done by BaoshengCai [12] as
part of his master's thesis. To do this, a linked list was usedto keepa history of all the
changesthat occurred in the compiler. This resulted in a lot of additional code to store
the information and also resulted in some spaceoverhead. Moreover, this was dizcult to
maintain becauseknowing the exactthings to store after eat changeis very ditcult. Thus,

although the work was done very meticulously, it had certain shortcomings. These were

51

“rst noticed during the implementation of select best combination and selet best sequene,
where we needto undo all the changesafter ead sequencehas been applied, to get the
program bad to the initial state to apply the next sequence.

To make the undoing of transformations more stable and maintainable, it was decided
to implemernt it di®ererly. This is now accomplishedas follows: when the compiler gets a
requestto undo somechanges,it dumps the transformations applied so far to a le (this
was also done in the earlier version of VISTA to enable compilation of a Te over multiple
sessions). Then the current function along with all its data structures are discarded and
reinitialized. The samefunction is read bad in and the transformations are reapplied, but
only up to the point we want. Thus the remaining changesare automatically discarded.
This is the the samething that would have happenedwhenthe Te is compiled over multiple
sessionsput now there is no needto store all the state information at ead point. Doing
this we were able to remove a lot of redundant code and data structures which ultimately
helped in making the code more robust. The only drawbad with this schemeis that, when
the useronly wants to undo one change,the compiler needsto gothrough the ertire process
of reloading the current function and reapplying most of the transformations again. This
is arguably slower than the previous approad, but the increasein compilation time was
found to be a small cost to pay for the greatly increasedmaintainabilit y and smoothness

achieved by the new approad.

7.2 Required Analysis by Each Optimization Phase

Each optimization phaseneedssomedata and cortrol °ow analysisto be done before it
can be successfullyapplied. Absenceof the correct analysis can prevert the compiler from
recognizingall the points wherethe optimization can be usefully applied. Even worseis the
casewhenincorrect analysisleadsthe compiler into making changesat points that produces
wrong output code. Figuring out all the analysis required by ead optimization phaseis
dixcult. Also, in somecaseswvhen the required analysishas already beendone and is valid,

there is no needto spend more time redoing the analysis. So we also needto determine

52

which analysis are invalidated by ead phase. An example of this is instruction seletion
invalidating live variable analysis and registers usal analysis This important work was
painfully attempted during the previous versionof VISTA. Somebugsin that processwere
revealed during the implementation of the current version, especially when thousands of
di®eren sequencesvere attempted on the samefunction during a single run of selet best

combination. Somechangeswere madeto correct the faults.

7.3 Sanity Check

In VISTA the program represenation information for ead function is maintained at two
places,onewith the compiler and a copy of it with the viewer to bedisplayedto the user. It is
essetial that thesetwo versionsbe consistert at ead distinct point during the compilation
process. Whenewer the compiler makesa changeto the program represenation, it sendsa
messageto the viewer to do the sameto its version of the function. We felt it was useful
to have an option to ched if the two represerations are consistert. This would be very
helpful whenewer a changeis made to the compiler or a new optimization is implemented
in the compiler. Sanity check is the option we provide to accomplishthis, during which the
compiler essetially just sendsits complete state information to the viewer and the viewer
cross-hiedks it with the information it holds in its data structures. Discrepancies,if any,

are reported to the user.

7.4 Correct Button Status in the View er

In the VISTA user interface the only buttons active at any point during the compilation
processare those that can be legally selectedby the user. The rest of the buttons are
grayed out. As the user selectsoptimization phasesto be applied the sets of select-able
and disabled buttons should change. For example, selecting register assignment enables
many other optimizations dependert on register assignment like register allocation and

code motion. Clicking T1 delay slots grays out most other optimizations which are not legal

53

after this phase. The cortrol statemerts like the if, while, selet best from and selet best
combination constructs complicate the act of determining which buttons are active during
and after applying ead construct. This problem is further complicated by the feature of
undoing previously applied transformations, supported in VISTA, sincethis requiresstoring
detailed button status information at many di®erert points with the ability of getting
badk to a previous button state when changesare undone. The interaction of all these
factors made the task of determining the correct button status a non-trivial task requiring

meticulous and careful handling.

7.5 Batch Exp eriments

VISTA is an interactive system, which is cortrolled by the user sending requeststo the
compiler by clicking buttons. But this wasfound to be a hindrance while performing exper-
iments or extensiwe testing, like that done during regressiontesting. It was not reasonable
to expect the userto sit at his deskand do the testing manually by clicking buttons every
so often. To make testing easier, we support a new mode in VISTA where selectionsare
read from a e instead of requiring mouseclicks. Such a e could either be written by
hand or could also be generatedautomatically by the viewer at run-time. VISTA provides
an option to the userto store all the mouseclicks in a separate Te. This e can be read at
any later time and mouseclicks are not required. This was found to be very useful during
testing aswe could construct test Tes that could beinitiated in a batch mode wheneer any
major changeswere made to the compiler. It was also found to be helpful for conducting

experiments asthe onesdescribed in chapter 5.

7.6 Obtaining Measuremen ts on a Host Mac hine

As mertioned earlier, to get the dynamic instruction counts the compiler needsto produce
assenbly code, instrument the code with additional instructions to collect measuresand

then link and executethe program. Currently, the compiler produces SPARC assenhbly.

54

Consequetly, it was not possibleto executethe code and get measureson a non-SPARC
architecture. It was obsened that we can still get the static instruction counts (code size)
on a non-SPARC architecture. A small modi cation made to the compiler ensured that
it can now detect if the architecture is SPARC and if not then it only gets the code size

measures.This allows limited demonstration on a laptop.

55

Chapter 8

Related W ork

Other researters have dewveloped systemsthat provide interactive compilation support.
These systemsinclude the pat toolkit [13], the parafrase-2 ervironment [14], the e/sp sys-
tem [15], a visualization system developed at the University of Pittsburgh [16] , and SUIF
explorer [17]. Thesesystemsprovide support by illustrating the possibledependenciesthat
may prevent parallelizing transformations. A usercaninspect thesedependenciesand assist
the compilation systemby indicating if a dependencycan be removed. In cortrast, VISTA
supports low-level transformations and user-sgeci ed changes,which are neededfor tuning
embedded applications.

A few low-level interactive compilation systemshave also beendeveloped. One system,
which is coincidertally alsocalled VISTA (Visual Interface for Scheduling Transformations
and Analysis), allows a userto verify dependenciesduring instruction sceduling that may
prevent the exploitation of instruction level parallelismin a processoi{18]. Selective ordering
of di®eren optimization phasesdoesnot appearto bean option in their system. The system
that most resenblesour work is called VSSC (Visual Simple-SUIF Compiler) [19]. It allows
optimization phasesto be selectedat various points during the compilation process.It also
allows optimizations to be undone, but unlike our compiler only at the level of complete
optimization phasesas opposedto individual transformations within ead phase. Other

featuresin our system, such as supporting user-sgeci ed changesand performancefeedbad

56

information, do not appear to be available in these systems.

There has beenprior work that usedaggressie compilation techniquesto improve per-
formance. Superoptimizers have beendeweloped that usean exhaustive seard for instruc-
tion selection [20] or to eliminate branches [21]. Iterativ e techniques using performance
feedbak information after ead compilation have beenapplied to determine good optimiza-
tion parameters (e.g., blocking sizes)for speci ¢ programs or library routines [22, 23]. A
system using genetic algorithms to better parallelize loop nests has been developed and
evaluated [24]. These systemsperform source-to-sourcetransformations and are limited in
the set of optimizations they apply. Selecting the best combination of optimizations by
turning on or o® optimization °ags, as opposedto varying the order of optimizations, has
beeninvestigated [25]. A low-level compilation system developed at Rice University usesa
genetic algorithm to reducecode sizeby nding excient optimization phasesequence$l1].
Howewer, this system is batch oriented instead of interactive, concenrated primarily on
reducing code size and not execution time, and is designedto usethe same optimization

phaseorder for all of the functions within a Te.

57

Chapter 9

Future Work

There is much future work to consider on the topic of selecting e®ective optimization se-
guences. It would be informative to obtain measuremets on a real embedded systems
architecture. However, most of these systemsonly provide execution time measuremeits
via simulation on a host processor. The actual embedded processormay often not be
available or downloading the executable onto the embedded macdiine and obtaining mea-
suremens may not be easily automated. The overhead of simulating programsto obtain
speed performance information may be problematic when performing large seardes using
a genetic algorithm, which would likely require thousands of simulations. One option is
to translate the assenbly produced for the embedded machine to an equivalent assenbly
program on a host processor. This assenbly can be instrumented in order to produce a
dynamic instruction count of ead basicblock when executed. An estimation of the number
of CPU cyclesfor ead basic block can be multiplied by the court to give a responsive and
reasonablyaccurate measureof dynamic performanceon an embeddedprocessorthat does
not have a memory hierarchy.

Another area of future work is to vary the characteristics of the experiments. We only
obtained measuremets for 100 generationsand a optimization sequencehat is 1.25times
the length of the successfullyapplied batch optimization sequence.lt would be interesting

to seehow performance improves as the number of generations and the sequencelength

58

increases.The actual crosswer and mutation operations could also be varied. In addition,
the set of candidate optimization phasescould be extended. Finally, the set of benchmarks
evaluated could be increased.

All of the experiments in our study involved selecting optimization phasesequencegor
ertire functions. We have the ability in VISTA to limit the scope of an optimization phase
to a set of basic blocks. It would be interesting to perform genetic algorithm seardes for
di®ereri regionsof code within afunction. For frequertly executedregionswe could attempt
to improve speedand for infrequently executedregionswe could attempt to improve space.
Selecting sequencedor regions of code may result in the best measureswhen both speed

and sizeare considered.

59

Chapter 10

Conclusions

There are seweral contributions that we have presened in this thesis. First, we have devel-
oped an interactive compilation systemthat automatically provides performance feedbak
information to a user after ead successfullyapplied optimization phase. This feedbak
allows a userto gaugethe progresswhen tuning an application. Second,we allow a userto
interactively selectstructured constructs for applying optimization phasesequencesThese
constructs allow the conditional or iterativ e application of optimization phases. In e®ect,
we have provided an optimization phaseprogramming language. Third, we have provided
constructs that automatically selectoptimization phasesequenced®asedon the speci ed t-
nesscriteria. A usercan enter speci ¢ sequencesnd the compiler will choosethe sequence
that producesthe best result. A user can also specify a set of optimization phasesalong
with options for exploring the seart spaceof possiblesequencesThe useris provided with
feedbak describingthe progressof the seart and may abort the seart and acceptthe best
sequencefound at that point.

We have also performed a number of experimerts to illustrate the e®ectivenessof using
a genetic algorithm to seard for etcient sequencesof optimization phases. We found
that signi cantly di®erert sequencesre often best for ead function even within the same
program or module. We shoved that the bene ts can di®erdepending on the tness criteria

and that it is possibleto use tness criteria that takesboth speedand sizeinto accourt.

60

While we demonstrated that iterativ ely applying optimization phasesuntil no additional
improvemerts are found in a batch compilation can mitigate many phaseordering problems
with regardto dynamic instruction court, we found that dynamic improvemerns could still
be obtained from this aggressie baselineusing a genetic algorithm to seart for e®ectie
optimization phasesequences.

An ervironment that allows a userto easily tune the sequenceof optimization phases
for ead function in an embedded application can be very bene cial. The VISTA system
supports tuning of applications by providing the ability to supply performance feedbak
information, selectoptimization phases,and automatically seard for excient sequence®f
optimization phases. Embedded programmers often resort to coding in assenbly to meet
stringent constraints on time, size,and power consumption. Besidesusing VISTA to obtain
a more excient executable, such an environment may encouragemore usersto dewelop
applications in a high level language, which can result in software that is more portable,

more robust, and lesscostly to develop and maintain.

61

App endix A

Overview of Genetic Algorithms

A.1 Intro duction

Genetic Algorithms (GAs) are a family of computational models inspired by ewolution.
Thesewereinvented by John Holland in the 1960'sand were developed by Holland and his
students and colleaguesat the University of Michigan in the 1960'sand 1970's. In cortrast
with ewolution strategiesand ewolutionary programming, Holland's original goal wasnot to
designalgorithms to solve speci ¢ problems, but rather to formally study the phenomenon
of adaptation asit occursin nature and to develop ways in which the medanismsof natural
adaptation might be imported into computer systems. Holland's 1975book Adaptation in
Natural and Arti cial Systemspreseried the genetic algorithm as an abstraction of bio-
logical ewolution and gave a theoretical framework for adaptation under the GA. Holland's
GA is a method for moving from one population of chromosomes(e.g., strings of onesand
zeros,or "bits") to a new population by using a kind of natural selection together with the
genetics-inspiredoperators of crosswer, mutation, and inversion.

In the 1950sand the 1960sseweral computer sciertists independertly studied ewolu-
tionary systemswith the idea that ewlution could be used as an optimization tool for
engineering problems. The idea in all these systemswas to ewlve a population of candi-

date solutions to a given problem, using operators inspired by natural geneticvariation and

62

natural selection. Holland's introduction of a population-based algorithm with crosswer,
inversion,and mutation wasa major innovation. Moreover, Holland wasthe rst to attempt
to put computational ewolution on a rm theoretical footing. Until recertly this theoret-
ical foundation, basedon the notion of schemas was the basis of almost all subsequeh
theoretical work on genetic algorithms.

The medanisms of evolution and adaptation seemvery well suited for some of the
most pressingcomputation problemsin many “elds. Many computational problemsrequire
searding through a huge number of possibilities for solutions. One exampleis the problem
of computational protein engineering,in which an algorithm is sougtt that will seard among
the vast number of possibleamino acid sequencedor a protein with speci ed properties.
What is neededin such casesis both computational parallelism and an intelligent strategy
for choosing the next set of sequencedo evaluate. Many computational problems also
require a computer program to be adaptive - to cortinue to perform well in a changing
ervironment. This can be seenin some computer interfaces which needto adapt to the
idiosyncrasiesof di®erert users. Biological ewolution is an appealing source of inspiration
for addressingthese problems. Evolution is, in e®ect,a method of searding among an
enormousnumber of possibilities for solutions. In biology the enormousset of possibilities
is the set of possiblegenetic sequencesand the desired solutions are highly t organisms
- organismswell able to survive and reproduce in their ervironments. Evolution can also
be seenas a method for designinginnovative solutions to complex problems. For example,
the mammalian immune system is a marvelous ewolved solution to the problem of germs
invading the body. Seenin this light, the mecanismsof ewolution caninspire computational

seard methods.

A.2 Biological Terminology

All living organisms consist of cells, and ead cell cortains the same set of one or more
chromosomes(strings of DNA) that serwe as a blueprint for the organism. A chromosome

can be conceptually divided into genes(functional blocks of DNA), ead of which encades

63

a particular protein. Very roughly, one can think of a geneas encading a trait, suc aseye
color. The di®erert possiblesettings for a trait (e.g., blue, brown, hazel) are called alleles
Each geneis located at a particular locus (position) on the chromosome.

Many organisms have multiple chromosomesin ead cell. The complete collection of
genetic material (all chromosomestaken together) is called the organism's genome The
term genotyme refersto the particular set of genescorntained in a genome. Two individuals
that have identical genomesare said to have the samegenotype. The genotype givesrise,
under fetal and later developmert, to the organism's phenotyge - its physical and mental
characteristics, suc as eye color, height, brain size,and intelligence.

During sexualreproduction, recombination (or crossovel) occurs: in ead parent, genes
are exchangedbetweenead pair of chromosomesto form a gamete (a single chromosome),
and then gametesfrom the two parents pair up to createa full set of diploid chromosomes.
O®spring are subject to mutation, in which single nucleotides (elemertary bits of DNA)
are changedfrom parent to o®spring,the changesoften resulting from copying errors. The
‘tness of an organismis typically de ned asthe probability that the organism will live to
reproduce (viability) or asa function of the number of o®springthe organism has (fertility).

In genetic algorithms, the term chromosometypically refersto a candidate solution to
a problem, often encaded as a bit string. The genesare either single bits or short blocks of
adjacen bits that encale a particular elemen of the candidate solution (e.g., in the context
of multi-parameter function optimization the bits encaling a particular parameter might
be consideredto be a gene). An allele in a bit string is either 0 or 1; for larger alphabets
more alleles are possibleat eadt locus. Crosswer typically consistsof exdhanging genetic
material betweentwo single-diromosomeparents. Mutation consistsof °ipping the bit at
a randomly chosenlocus (or, for larger alphabets, replacing a the symbol at a randomly
chosenlocuswith a randomly chosennew symbol). The genotype of an individual in a GA

using bit strings is simply the con guration of bits in that individual's chromosome.

64

A.3 A Simple Genetic Algorithm

Given a clearly de ned problem to be solved and a bit string represertation for candidate

solutions, a simple GA works as follows:

1. Start with a randomly generatedpopulation of n I-bit chromosomes(candidate solu-

tions to a problem).
2. Calculate the tness f (x) of each chromosomex in the population.
3. Repeat the following stepsuntil n o®springhave beencreated:

(a) Selecta pair of parent chromosomesfrom the current population, the probabil-
ity of selection being an increasing function of tness. Selectionis done with
replae@ment meaningthat the samechromosomecan be selectedmore than once

to becomea parert.

(b) With probability P¢ (the "crossover probability" or "crossover rate"), crossover
the pair at a randomly chosenpoint (chosenwith uniform probability) to form
two o®spring. If no crosswer takesplace, form two o®springthat are exact copies
of their respective parents. (Note that here the crosswer rate is de ned to be
the probability that two parents will crossover in a single point. There are also
"multi-p oint crosswer" versionsof the GA in which the crosswer rate for a pair

of parents is the number of points at which a crosswer takesplace).

(c) Mutate the two o®springsat ead locuswith probability p, (the mutation prob-
ability or mutation rate), and place the resulting chromosomesin the new pop-

ulation.
4. Replacethe current population with the new population.
5. Go to step 2.

Each iteration of this processis called a geneation. A GA is typically iterated for

anywhere from 50 to 500 or more generations. The ertire set of generationsis called

65

a run. At the end of a run there are often one or more highly 't chromosomesin the
population. Sincerandomnessplays a largerole in ead run, two runs with di®erert random-
number seedswill generally produce di®erent detailed behaviors. GA researders often
report statistics (such as the best tness found in a run and the generation at which the
individual with that best tness was discovered) averagedover many di®eren runs of the

GA on the sameproblem.

A.4 Some Applications of Genetic Algorithms

The version of the genetic algorithm described above is very simple, but variations on the
basic theme have beenusedin a large number of scierti ¢ and engineering problems and

models. Somecommon applications are:

Optimization: GAs have been used in a wide variety of optimization tasks, including
numerical optimization and sudh combinatorial optimization problemsascircuit layout

and job-shop scheduling.

Automatic programming: GAs have beenusedto evolve computer programsfor speci ¢
tasks, and to design other computational structures suc as cellular automata and

sorting networks.

Mac hine learning: GAs have beenusedfor many machine learning applications, includ-
ing classi cation and prediction tasks, suc as the prediction of weather or protein
structure. GAs have also beenusedto ewlve aspects of particular machine learning
systems, such as weights for neural networks, rules for learning classi er systemsor

symbolic production systems,and sensorsfor robots.

Economics: GAs have been usedto model processesof innovation, the dewvelopmert of

bidding strategies, and the emergenceof economicmarkets.

Imm une systems: GAs have beenusedto model various aspects of natural immune sys-

tems, including somatic mutation during an individual's lifetime and the discovery of

66

multi-gene families during ewolutionary time.

Ecology: GAs have beenusedto model ecologicalphenomenasuc asbiological armsraces,

host-parasite coewolution, symbiosis, and resource°ow.

Population genetics: GAs have beenusedto study questionsin population genetics,sud

as "Under what conditions will a genefor reconbination be ewlutionarily viable?"

Evolution and learning: GAs have been used to study how individual learning and

speciesewlution a®ectone another.

Social systems: GAs have beenusedto study ewlutionary aspectsof social systems,such
asthe ewlution of sacial behavior in insect colonies,and, more generally, the evolution

of cooperation and communication in multi-agent systems.

67

App endix B

An Implemen tation of a Genetic

Algorithm

We have implemented a version of the genetic algorithm for use during the selet best
combination construct in VISTA. The algorithm employed is listed in this chapter.

When the biasel sampling search option is selected during selest best combination,
VISTA also allows the user to specify the parameters for the genetic algorithm, namely
the number of chromosomes(population size) and the number of generations. Let the user
specify numbersm and n for the population sizeand the number of generationsrespectively.

The algorithm then works as follows:

1. Create an initial population of m chromosomegoptimization sequencespy randomly

choosing optimizations in ead sequence.

2. Compute a tness value for ead chromosome. To do this, the optimization sequence
de ned by the chromosomeis applied to the function being compiled. The resulting
code is instrumented with instructions to calculate the static and dynamic courts.
This instrumented code is executedand the static and dynamic counts are collected.
The nal tness value depends on the relative weights assignedby the user to the

static and dynamic courts respectively.

68

3. The chromosomesare sorted by "tness valuesfrom lowest to highest. The population
is split into a lower and upper half, basedon tness value, eat half consisting of m=2
chromosomes. The upper half consistsof m=2 chromosomeswith the lowest tness
value. (Note that for our casethe lower the tness value the better, since we are

interested in lowering both the static code size and dynamic instruction court.)

4. The chromosomewith the highest tness value (worst performance)is removed from
the population. m=5j 1 additional chromosomesare chosenat random from the lower

half of the population and removed.

5. To 1l the vacanciesin the population, new chromosomesare generated using the
crosswer operation. Two parent chromosomesare randomly chosenfrom the upper
half of the population. The rst half of one chromosomeis concatenated with the
secondhalf of the other chromosomeand vice versa, creating two new chromosomes.

This operations is performed as many times asrequired to 1 all the vacancies.

6. The m j m=5 chromosomesnot altered during the previous step are subjected to
mutation. The best performing chromosomeis also exempted from mutation. For
ead such chromosome,ead geneis considered. For a chromosomein the lower half
of the population, mutation occurs with a probability of 0:1 (or 10 percert). For a
chromosomein the upper half of the population, the probability of mutation is reduced

to 0:05 (or 5 percert). To mutate a gene,it is replacedwith a randomly selectedgene.

This processis repeated for n generations,and we keeptrack of the best chromosome

found over the courseof the run.

69

App endix C

Proto cols of Compiler-View er

Messages

Below is a de nition of the protocolsof the messagesransferred betweenthe viewer and the

compiler. Words in upper casedenote constarts usedin either the compiler or the viewer.

1. Messagessert when VISTA is started

Viewer Compiler

< USER_INTERACT

< BEGINFUNCTIOfunction name}
SANITY_CHECK ABORT_VPO >
TRUE/ FALSE >

< {base nameof source file}

< {send basic blocks}

< ENDINITSET

< {initial transformations

from the .trans file}

ENDSEQ

70

< [BEGINFREQ
{send frequency measures}
ENDFREQ

2. Proceedto the next function (when next function exists)

NEXT_FUNC
QUIT_TRANS

SANITY_CHECK ABORT_VPO
TRUE/ FALSE

\

< ENDFUNCTION
< BEGINFUNCTIOuNction name}

< {base nameof source file}

< {send basic blocks}

< ENDINITSET

< | {initial transformations
from the .trans file}
ENDSEQ

< | BEGINFREQ
{send frequency measures}
ENDFREQ

3. Proceedto the next function (next function doesnot exist)

NEXT_FUNC
QUIT_TRANS

STOP_TRANS
QUIT_TRANS

71

< ENDVIEW

< {compiler exits}

4. Discard changesafter current state

UNDO_TRAN®mber of trans}

QUIT_TRANS

5. Show loop information

LOOPS_QUERY
QUIT_TRANS

6. Sanity Ched

SANITY_CHECK_REQUEST

QUIT_TRANS

7. Get Frequency Information

FREQUENCY_REQ
QUIT_TRANS

{send new config

QUIT_TRANS

values}

>

\

72

[BEGINFREQ
{send frequency measures}

ENDFREQ

{loops information}

ENDSEQ

{basic block information}

ENDSEQ

[CHANGE_TEST_CONFIG_ID
{send initial values in file}
ENDSEQ

BEGINFREQ

8. Start measuremeits

START _MEASUREMENT >
QUIT_TRANS >

{send new config values}

QUIT_TRANS

9. Create/ Modify test con guration Te

CHANGE_CONFIG_FILE >
QUIT_TRANS >
{send new config values} >
QUIT_TRANS >

10. Specifying optimization phasesequences

{list of selected blocks} >
{list of optimization phases} >

QUIT_TRANS >

73

{send frequency measures}

ENDFREQ

[CHANGE_TEST_CONFIG_ID
{send initial values in file}

ENDSEQ

BEGINFREQ
{send frequency measures and set flag}
ENDFREQ

CHANGE_TEST_CONFIG_ID
{send initial values in file}

ENDSEQ

< {sequence of changes}

< ENDSEQ
11. Exit

STOP_TRANS >

QUIT_TRANS >

74

Bibliograph vy

[1] StevenR. Vegdahl. Phasecoupling and constart generationin an optimizing microcode
compiler. In Proceedings of the fte enth annual workshop on microprogramming on
Micr oprogramming, pages125{133,1982.

[2] Deborah L. Whit eld and Mary Lou So®a. An approac for exploring code improv-
ing transformations. ACM Transactions on Programming Languagesand Systems
(TOPLAS) , 19(6):1053{1084,1997.

[3] Keith Clarke Simon Segarsand Liam Goudge. Embedded control problems, thumb,
and the arm7tdmi. IEEE Micro, 15(5):22{30, October 1995.

[4] Wankang Zhao, BaoshengCai, David Whalley, Mark W. Bailey, Robert van Engelen,
Xin Yuan, JasonD. Hiser, Jack W. Davidson, Kyle Gallivan, and Douglas L. Jones.
Vista: asystemfor interactive codeimprovemert. In Proceedings of the joint conference
on Languages,compilers and tools for emkedded systems pages155{164. ACM Press,
2002.

[5] Manuel E. Benitez and Jack W. Davidson. Target-speci ¢ global code improvemern:
Principles and applications. Tecnical Report CS-94-42,4, 1994,

[6] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. In Pro-
ceedings of the SIGPLAN'88 conferenae on Programming Languagedesignand Imple-
mentation, pages329{338. ACM Press,1988.

[7] Jack W. Davidson and David B. Whalley. A designernvironment for addressingarchi-
tecture and compiler interactions. Microprocessorsand Microsystems 15(9):459{472,
November 1991.

[8] Rainer Leupers. RetargetableCode Generation for Digital Signal Processors Kluwer
Academic Publishers, Boston, 1997.

[9] Haris Lekatsasand Wayne Wolf. Code compressionfor embedded systems. In Design
Automation Conference, pages516{521, 1998.

[10] Dan Ernst Todd M. Austin Trevor Mudge Matthew R. Guthaus, Je®reyS. Ringen-
berg and Richard B. Brown. Mibenc: A free, commercially represenativ e embedded

75

bendmark suite. IEEE 4th Annual Workshop on Workload Characterization, Decem-
ber 2001.

[11] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for reduced
code spaceusing geneticalgorithms. In Proceedings of the ACM SIGPLAN 1999 work-
shopon Languagescompilers, and tools for emtedded systems pages1{9. ACM Press,
1999.

[12] BaoshengCai. Compiler modi cations to support interactive compilation. Master's
thesis, Florida State University, Tallahassee Florida, 2001.

[13] Kevin Smith Bill Appelbe and Charlie McDowell. Start/pat: a parallel- programming
toolkit. In IEEE Software, volume 6 of 4, pages29{40, 1989.

[14] M. Haghighat C. Lee B. Leung C. Polychronopoulos, M. Girkar and D. Schouten.
Parafrase{2: An ervironment for parallelizing, partitioning, and scheduling programs
on multipro cessors.In International Journal of High Speed Computing, volume 1 of 1,
pages39{48, Pensyhania State University Press,August 1989.

[15] J. Kiall C. Denton J. Browne, K. Sridharan and W. Evento®. Parallel structuring of
real-time simulation programs. In COMPCON Spring '90: Thirty-Fifth IEEE Com-
puter Scciety International Conference, pages580{584, February 1990.

[16] Chyi-Ren Dow, Shi-Kuo Chang, and Mary Lou So®a.A visualization system for par-
allelizing programs. In Supercomputing, pages194{203, 1992.

[17] Shih-Wei Liao, Amer Diwan, Jr. Robert P. Bosch, Anwar Ghuloum, and Monica S.
Lam. Suif explorer: an interactive and interprocedural parallelizer. In Proceedings of
the seventhACM SIGPLAN sympmsium on Principles and practice of parallel program-
ming, pages37{48. ACM Press,1999.

[18] S. Novadk and A. Nicolau. Vista: The visual interface for scheduling transformations
and analysis. In Languagesand Compilers for Parallel Computing, pages449{460,
1993.

[19] Brian Harvey and Gary Tyson. Graphical user interface for compiler optimizations
with simple-suif. Tednical Report UCR-CS-96-5, Department of Computer Science,
University of California Riverside, Riverside, CA, 1996.

[20] Henry Massalin. Superoptimizer: a look at the smallest program. In Proceedings of
the 2nd International Conference on Architectural Support for Programming Languages
and Operating systems pages122{126, October 1987.

[21] T. Granlund and R. Kenner. Eliminating branchesusing a superoptimizer and the gnu
c compiler. In Proceedings of the SIGPLAN '92 Conference on Programming Language
Design and Implementation, pages341{352, June 1992.

76

[22] Toru Kisuki, Peter M. W. Knijnenburg, and Michael F. P. O'Boyle. Combined selection
of tile sizesand unroll factors using iterativ e compilation. In IEEE PACT, pages237{
248, 2000.

[23] A. Petitet Whaley, R. and J. Dongarra. utomated empirical optimization of software
and the atlas project. In Parallel Computing, volume 27 of 1-2, pages3{25, 2001.

[24] A. Nisbet. Genetic algorithm optimized parallelization. In Workshop on Prole and
Feedback Dir ected Compilation, 1998.

[25] K. Chow and Y. Wu. Feedba&-directed selection and characterization of compiler
optimizations. In Workshop on Feedback-Directed Optimization, November 1999.

[26] Melanie Mitchell. An Intr oduction to Genetic Algorithms. Cambridge, Mass. MIT
Press,1996.

77

Biographical Sketch

Prasad Kulk arni wasborn on October 13, 1979in Thane, India. He recieved his Bachelor of
Computer Engineering degreefrom Pune University, India in 2001. In 2003, he graduated
from Florida State University with a Master of ScienceDegreein Computer Science.He is
currently seekinghis Ph.D. in Computer Scienceat Florida State University. His areasof
interest include computer architecture, compilers, embeddedsystemsand real-time systems.

78

