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Abstract

This thesis describes the support provided in VISTA for ¯nding e®ective sequencesof op-

timization phases. VISTA is a software tool for a compiler which supports an interactive

compilation paradigm. It haslong beenknown that a singleordering of optimization phases

will not produce the best code for every application. This phaseordering problem can be

more severe when generating code for embeddedsystemsdue to the needto meet con°ict-

ing constraints on time, code size and power consumption. Given that many embedded

application developers are willing to spend time tuning an application, we believe a viable

approach is to allow the developer to steer the processof optimizing a function. With this

in mind, we have enhancedVISTA with many new featuresand programming-language-like

constructs. VISTA alsoprovides the userwith dynamic and static performanceinformation

that can be usedduring an interactive compilation sessionto gaugethe progressof improv-

ing the code. In addition, VISTA provides support for automatically using performance

information to select the best optimization sequenceamong several attempted. One such

feature is the useof a genetic algorithm to search for the most e±cient sequencebasedon

speci¯c ¯tness criteria. This thesisalso includesa number of experimental results that eval-

uate the e®ectivenessof using a genetic algorithm in VISTA to ¯nd e®ective optimization

phasesequences.
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Chapter 1

In tro duction

The phaseordering problem has long been known to be a di±cult dilemma for compiler

writers [1]. A single sequenceof optimization phasesis unlikely to produce optimal code

for every application (or even each function within an application) on a given machine. A

particular optimization phasemay provide or prevent opportunities for improvements by

a subsequent optimization phase. Someoptimizations can provide opportunities for other

optimizations to be applied. For instance, register allocation replacesload and store in-

structions with register-to-register moves, which in turn provides many opportunities for

instruction selection. Likewise, some optimizations can eliminate opportunities for other

optimizations. One example of this situation is when register allocation may consumethe

last available register within a speci¯c region of code, which would prohibit other optimiza-

tions that require registers from being applied in that region. Whether or not a particular

optimization enablesor disablesopportunities for subsequent optimizations is di±cult to

predict sinceit dependson the application being compiled, the previously applied optimiza-

tions, and the target architecture [2].

The problem of ordering optimization phasescan be more severe when generating code

for embedded applications. Many applications for embedded systemsneed to meet con-

straints on time, code size, and power consumption. Often an optimization that could

improve one aspect (e.g., speed) can degradeanother (e.g., size) [3]. For example, many
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loop transformations may reduce execution time and increasecode size. In fact, it may

be desirable on many systemsto enhanceexecution time for the frequently executedcode

portions and reduce code size for the less frequently executed portions. In addition, em-

bedded microprocessorsoften have irregular instruction sets with small register ¯les that

can quickly be exhaustedduring the compilation. Exploiting special purposearchitectural

features may require other optimizations to be performed. Thus, embedded systemsare

more likely to be sensitive to the order in which optimization phasesare applied.

The traditional compilation framework has a ¯xed order in which the optimization

phasesare applied and there is no control over individual transformations, except for com-

pilation °ags to turn code-improving transformations on or o®. The compilation framework,

called VISTA (VPO Interactive System for Tuning Applications) [4], gives the application

user the abilit y to ¯nely control the code-improvement process. It, however, failed to pro-

vide the user with a structured language,at a high level, for specifying the optimization

phases. In the later sectionswe will seea number of control statements added to VISTA

which now enablesthe user to better steer the code-improvement process.Such statements

provide the user with more control in specifying the order of optimization phases.

Also, the earlier versionof VISTA provided no feedback to the userby which he/she can

gaugethe code improvement results. In such cases,it is impossiblefor the user to conclude

if a particular optimization sequenceis the best for that region of code or even to infer if

the performancegoalsset for that program have actually beenmet (even if the optimization

sequenceapplied is not best one). In this thesis,we have provided two di®erent solutions for

this problem. The ¯rst solution, which we call Interactive Performance Driven Code Tuning

requiresuserknowledgeand intuition to steer the compilation processin the right direction

and producee±cient code. In this approach the usermanually applies the transformations,

but getsregular feedback from the compiler regarding the performanceof the resulting code

at each stage. Theseperformancestatistics make it easierto decideon the next step in the

code improvement process. VISTA also allows the user to undo previous transformations,

which facilitates experimentation with di®erent optimization sequences.We call the other

approach Automatic Performance Driven CodeTuning, wherethe compiler looksat di®erent
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sequencesof optimizations and basedon their performancesit automatically selectsthe best

one and then applies it to the program. To support this feature we have added two new

constructs to VISTA, called select best sequence and select best combination. It should

be noted that given any set of optimization phases,the number of di®erent orderings can

potentially be exponential. Evaluating an exponential number of sequencesis not likely

to be feasible in a majorit y of cases.In this report we also discussways in which we have

attempted to e®ectively probe the search spaceto quickly obtain an acceptableoptimization

sequence.

The ¯rst section of this report familiarizes the reader with someexisting technologies

which were used during its creation. The next section describes how the performance

feedback measurescan be obtained and its implementation. The next two sectionsdiscuss

the support provided in VISTA for interactive and automatic performance-driven code

tuning. This is followed by someexperimental results which demonstrate the usefulnessof

this work. In the following section, someinteresting implementation issuesare presented.

The ¯nal sectionsare devoted to a discussionof related work and scope for future work.
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Chapter 2

VPO, EASE and VIST A

Framew ork

VPO and EASE arecentral to the successof this work, and this chapter will givean overview

of the essential principles of both of thesetechniques. We will alsodescribe the functionalit y

of VISTA from a user's viewpoint.

Figure 1 illustrates the °ow of information in VISTA and gives the reader a better

idea as to how VPO and EASE are associated with VISTA. The user initially speci¯es a

¯le to be compiled. The user then speci¯es requests through the viewer, which include

sequencesof optimization phases,user-de¯ned transformations, queries and performance

measures.The compiler performsthe speci¯ed actionsand sendsthe program representation

information back to the viewer. In responseto a request to get performancemeasures,the

compiler in turn requestsEASE to instrument the assembly with additional instructions to

get static and dynamic instruction counts. This instrumented code when executedreturns

the performance counts. When the user choosesto terminate the session,VISTA saves

the sequenceof transformations in a ¯le so they can be reapplied at a later time, enabling

updates to the program in multiple sessions.
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Figure 1: VPO, EASE and VISTA interaction

2.1 VPO (V ery Portable Optimizer)

VISTA's optimization engine is based on VPO, as it has several properties that allowed

easyintegration into VISTA. VPO employs a paradigm of compilation that hasproven to be

°exible and adaptable - all code improving transformations are performedon a singletarget-

speci¯c representation of the program [5], called RTLs (Register TransferLists). RTLs are a

low-level, machine and languageindependent representation that encodesmachine-speci¯c

instructions. The comprehensive useof RTLs in VPO has several important consequences.

One advantage of using RTLs as the soleintermediate representation is that the synthe-

sis phasesof the compiler can be invoked in any order and repeatedly if necessary[6]. This

largely eliminates code ine±ciencies often causedby the ordering of the phases. In con-

trast, a more conventional compiler system will perform optimizations on various di®erent

representations. For instance,machine-independent transformations are often performedon

intermediate code and machine-dependent transformations are often performedon assembly

code. Local transformations (within a basicblock) are often performedon DAG representa-

tions and global transformations (acrossbasicblocks) are often performed on three-address

codes. Thus, the order in which optimizations are performed is di±cult to change. To be of
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any practical use, an interactive compilation system like VISTA has be °exible enough to

allow the user to selectoptimization phasesin an arbitrary order without many restrictions.

VPO, was ideally suited to this compilation framework. In addition, the useof RTLs allows

VPO to be largely machine-independent, yet e±ciently handlemachine-speci¯c aspectssuch

asregister allocation, instruction scheduling, memory latencies,multiple code registers,etc.

VPO, in e®ect,improvesobject code. Machine-speci¯c optimizations are important because

it is a viable approach for realizing high-level languagecompilers that produce code that

e®ectively balancestarget-speci¯c constraints such ascode-density, power consumption and

execution speed.

The secondadvantageof usingRTLs is that it is easilyretargetted to a newmachine. Re-

targetabilit y is key for embeddedmicroprocessorswhere chip manufacturers provide many

di®erent variants of the samebasearchitecture and somechips are custom designedfor a

particular application. To target VPO to a new machine, one must write a description of

the architecture's instruction set, which consistsof a grammar and semantic actions. The

grammar is usedto producea parser that checks the syntax of an RTL, and acceptsall legal

RTLs (instructions) and rejects all illegal RTLs. It is easierto write a machine description

for an instruction set than it is to write a grammar for a programming language. The task

is further simpli¯ed by the similarit y of RTLs acrossmachines, which permits a grammar

from one machine to be used as a model for a description of another machine. Since the

general RTL form is machine-independent, the algorithms that manipulate RTLs are also

machine-independent, which makes most optimization code machine independent. So the

bulk of VPO is machine- and language-independent. Overall, no more than 15 percent of

the code of VPO may require modi¯cation to handle a new machine or language.

The third advantage of VPO is that it is easily extended to handle new architectural

featuresasthey appear. Extensibilit y is also important for embeddedchips wherecost, per-

formanceand power consumption considerationsoften mandate development of specialized

features centered around a core architecture.

The fourth advantage of VPO is that VPO's analysis phases(e.g. data °ow analysis,

control °ow analysis) were designedso that information is easily extracted and updated.
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This information can be useful to a user of interactive compilation system.

Finally, by using RTLs, the e®ectof an optimization can be easilyunderstood sinceeach

RTL represents an instruction on the machine. Thus, the impact that each transformation

has on performancecan be easily grasped.

VISTA takes advantage of VPO's strengths. VISTA can graphically display the low-

level representation of the program either in assembly or RTLs. The user can select the

type and the order of transformations to be performed becausephaseordering problemsare

to a great extent eliminated in VPO. SinceRTLs are easily understood, it is useful to allow

usersto seethe transformations applied at each step in VISTA. Best of all, understandable

machine-independent RTLs make it easier for the users to specify the transformations by

hand to further exploit special features of an architecture.

2.2 EASE (En vironmen t for Arc hitecture Study and Exp er-

imen tation)

The EASE environment [7] is usedin VISTA to collect performancemeasuresat any stage

in the compilation processin order to evaluate the improvements in code sizeand number of

dynamic instructions executedat that stage. This givesthe user a better perspective as to

if the sequenceof optimizations applied are giving the expectedbene¯ts or if he should roll

back the changesand try somedi®erent sequence.The measuresalso indicate the portions

of the code which are more frequently executed, so the user could focus his attention on

improving that portion of the program. It also helps VISTA automatically determine the

best sequenceof optimizations for a function.

The EASE environment was developed to integrate the tasks of translating a source

program to machine instructions for a proposed architecture, imitating the execution of

theseinstructions and collecting measurements. The environment, which is easily retarget-

ted and quickly collectsdetailed measurements, facilitates experimentation with a proposed

architecture and a compiler.

The ¯rst task in EASE is to translate the test programsto instructions for the proposed
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machine. This task is accomplishedby VPO, which was described in the previous section.

The secondtask is imitating the execution of code for the proposedarchitecture. To be

able to evaluate an architecture, one should determine the e®ectof executing instructions

from representativ e test programs for the architecture. If the architecture has not yet

been implemented, then one must imitate this execution by other means. In the EASE

environment an instruction for the proposedmachine caneither begeneratedasan assembly

instruction for the proposedarchitecture or asoneor more equivalent assembly instructions

for an existing architecture. This conversionof an RTL to assembly languageis the last step

in the VPO compilation system. EASE can also be used to emulate architectural features

that are not directly equivalent to featureson an existing architecture. For instance, it can

generatecode for an architecture having more registersthan the number of registerson the

host machine.

The ¯nal step is to extract measuresfor the proposedmachine in order to evaluate the

new architecture's performance. To accomplish this EASE modi¯es the back end of the

compiler to store the characteristics of the instructions to be executedand to instrument

the assembly code with instructions that will either count the number of times that each

instruction is executedor invoke a routine to record events that are dependent on the order

of the instructions executed. This method is illustrated in Figure 2.

UpdatesSystem
Front
 End

VPOVPO

   Code   Code

Optimized Intermediate

   Instruction
Characteristics

Code
Assembly 
Instrumented

File

Source

Figure 2: Method of Gathering Data in EASE

Many modi¯cations were made to the VPO compiler systemto support collecting mea-

surements. The ¯rst modi¯cation of VPO to produce code for collecting measurements is

to have the optimizer save the characteristics of the instruction that will be executed. As

each assembly instruction is produced, the characteristics of the instruction are alsowritten
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to the assembly ¯le. The secondmodi¯cation to VPO was to have the compiler instrument

the assembly code after all optimizations have occurred to either increment counters or

invoke measurement routines. Counters are usedto obtain information that is independent

of the order in which the instructions are executed,such as the number of times each type

of instruction is executed. Measurement routines are invoked to record order-dependent

events, which includes trace generation and analysis of memory references.

In VISTA, the EASE environment is mainly usedto instrument the assembly code with

instructions to determine the number of times each basicblock is executedand to count the

number of instructions in a function. This instrumentation of code is then usedto determine

the static and dynamic measuresat any point in the compilation process.Comparing this

with previousmeasuresgivesus the current improvement ascomparedto the baselinewhere

no optimizations were performed.

2.3 VIST A (VPO In teractiv e System for Tuning Applica-

tions)

In this section we will review the VISTA framework, upon which the current work is

based. VISTA is a new code improvement paradigm that was initiated to achieve the

cost/p erformance trade-o®s(i.e. size, power, speed, cost etc.) demanded for embedded

applications. A traditional compilation framework has a ¯xed order in which the code

improvement phasesare executedand there is no control over individual transformations,

except for compilation °ags to turn code improvement phaseson or o®. In contrast, VISTA

givesthe application programmer the abilit y to ¯nely control the code-improvement process.

The developers of VISTA had the following goals when developing the VISTA compi-

lation framework. First, the user should be able to direct the order of the compilation

phasesthat are to be performed. The order of the code-improvement phasesin a typi-

cal compiler is ¯xed, which is unlikely to be the best order for all applications. Second,

hand-speci¯ed transformations should be possible. For instance, the user may provide a

sequenceof instructions that VISTA inserts and integrates into the program. Third, the
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usershould be able to undo code-improving transformations previously applied sincea user

may wish to experiment with other alternativ e phaseorderingsor typesof transformations.

In contrast, the e®ectsof a code transformation cannot be reversedonce it is applied in a

typical compiler. Finally, the low-level program representation should appear in an easily

readabledisplay. The useof dynamically allocated structures by optimizing compilers and

the inadequatedebuggingfacilities of conventional sourcelevel symbolic debuggersmakesit

di±cult for a typical user to visualize the low-level program representation of an application

during the compilation process.To assist the user when interacting with the optimization

engine,VISTA should provide the abilit y for the user to view the current program represen-

tation and any relevant compilation state information (i.e. live registers,available registers,

def-useinformation etc.) and performancemetrics.

In addition to achieving thesegoals,VISTA wasshown to have several other uses.First,

VISTA can assist the compiler writer to develop new low-level code-improving transforma-

tions. The abilit y to specify transformations by hand and obtain performancemeasurements

can help a compiler writer to protot ype new low-level code-improving transformations. The

abilit y of viewing low-level representations can help a compiler writer diagnoseproblems

when developing new transformations. Second, it can help compiler writers understand

the interactions and interplay of di®erent optimizations. Finally, an instructor or educator

teaching compilation techniques can use the system to illustrate code-improving transfor-

mations to students.

VISTA provides the userwith the functionalit y for viewing the low-level representation,

controlling when and where optimization phasesare applied, specifying code-improving

transformations by hand, reviewing previously applied transformations, reversingpreviously

applied changes, proceeding to the next function and supporting multiple sessions. In

addition, the user may wish to collect somepreliminary results about the performanceof

the generatedcode, which can be accomplishedby producing assembly that is instrumented

with additional instructions that collect a variety of measurements during the program's

execution. VISTA also allows the user to limit the scope in which an optimization phase

will be applied. The scope can be a loop or a set of basic blocks. The user can ¯rst tune
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critical portions of a function, and then use the resources(e.g. registers) that remain to

optimize the rest of the function.

We have made several important enhancements to VISTA that facilitate the selection

of e®ective sequencesof optimization phases. These enhancements include automatically

obtaining performancefeedback information, the useof structured statements for applying

optimization phases,and the automatic evaluation of performanceinformation for selecting

optimization phasesequences.Theseenhancements are described in the following sections

of this report.
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Chapter 3

In teractiv ely Obtaining

Performance Information

The abilit y for a user to acquire a measureof the performanceof the program being com-

piled is a very important feature for any environment providing interactive compilation.

Examining the performancemeasuresat various stagesduring the compilation can give the

user a clear image of how the code improvement processis progressing. In fact, actual pro-

gram performancemeasuresis the only concretebasis the user has when hand tuning the

code. It can also indicate to the user if he/she can stop the optimization process,when the

performancedelivered by the program has reached the desired level. VISTA givesthe user

the option to get both the static and dynamic performancecounts at any stageat the click

of a button. Here, static counts mean the count of the number of static instructions in that

function, i.e. an indication of the code sizewhen each instruction is the samesize. Dynamic

counts imply the number of instructions executedduring a particular run of the program on

somerepresentativ e input data (which the user has to provide). More accurate measures,

such as operation or simulation times, could also potentially be used. VISTA also tells the

user the percentage of time each basic block is executed,so that the user can concentrate

his attention to the more critical portions of the code, like the blocks comprising the inner

loops in that function. This can be easily accomplishedin VISTA by restricting the scope
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of the optimizations to only those critical blocks.

3.1 Options in VIST A to get Measures

Figure 3 shows the options provided in VISTA, which include the two options which enable

the user to get performancecounts at any stage. Theseoptions are:

Figure 3: Measurement Options in VISTA

1. Get Frequency Measures: Selectingthis option commandsthe compiler to immedi-

ately executethe program onceand get the frequencyof executionof each basicblock.

The program is executedusing sample input which the user must provide. The com-

piler sendsa count of the number of times each basic block is executed, which the

viewer reads and converts into percentages. These are then displayed at the top of

each basic block (see¯gure 4). This allows the user to identify the critical regionsof

a function.

2. Start/Stop Measuremen ts: This option allows the userto obtain both the static and

dynamic counts after every optimization phase. This is a toggle option, which allows

the measurement processto be stopped/resumed at any point. When measurements
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are started, the compiler executesthe program once and records the static and dy-

namic measuresat that stage, which are used as the baselinemeasures. After each

optimization phasethe program is again executedand measuresare collected. These

are sent to the viewer which in turn comparesthem with the baselinemeasurestaken

at the start of the measurement process. The relative improvements in code size

and instructions executedare then displayed in the viewer window. This information

allows the user to quickly gaugethe progressthat has been made in improving the

function. The viewer still displays the execution frequency of each basic block (see

Figure 4).

Figure 4: VISTA with Measurements Turned On After Each Phase
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3.2 Specifying Con¯guration File

As mentioned earlier, to get the dynamic measuresthe user has to provide VISTA with

a set of commands to link and execute the program and produce the output ¯le. This

information is assumed,by VISTA to be present in a ¯le, before the user speci¯es any

measurements. In caseVISTA is unable to ¯nd this ¯le, it prompts the user to enter the

required information at the very start of the measurement process. The window that is

openedis shown in Figure 5.

Figure 5: Test Con¯guration Window

The ¯elds in this window are:

Link Command: This is the command to be usedto link the current ¯le and produce an

executable. If this ¯le requires other source¯les or libraries to be linked, then these

also have to be speci¯ed here.

Desired Output File: This is the output data that should be produced whenever this

program is executed. The compiler assumesthat such correct output data is provided

to it, so that it can compare the "current output data" with the "known correct

output data" and check for inconsistencies. This is very important especially for a

new transformation, to ensure that the output produced is correct. The compiler

must never perform a transformation that results in incorrect output.
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Actual Output File: This is the name of the output ¯le produced after running the

executable.

Execute Command: This command is used to execute the program and produce the

output ¯le.

Max. Execution Time: An incorrect program transformation, performed by the com-

piler, may result in the program going into an in¯nite loop. This is certainly undesir-

able. This ¯eld speci¯es the maximum time the compiler should allow the program to

¯nish executing. If, by this time the program has not ¯nished, then it is terminated.

On termination, the compiler assumesthat the program state is incorrect and the

user is noti¯ed.

3.3 Getting Performance Measures

When the compiler gets a request to determine the performance measures,it performs a

seriesof steps as shown in the Figure 6. In casethe program consists of multiple input

¯les, which needto be linked together to produce the executable,the usermust ensurethat

an instrumented assembly ¯le (.inst.s ¯le) corresponding to each input ¯le is present before

the measurement processis initiated. This can be done by simply running each input ¯le

through the interactive compiler without performing any optimizations.

The compiler always storesa pointer to the start of the current function in the current

input ¯le (.cex ¯le), which is produced by the code expander. No optimizations have been

performed on this ¯le. For each function, the compiler always generatesboth the assembly

code (in the .s ¯le) and the instrumented assembly code (in the .inst.s ¯le), which is the

assembly code instrumented with additional instructions to collect performancemeasures.

At the start of the measurement process,the instrumented assembly ¯le generatedat that

point (for the preceding functions) is stored as the compiler would now need to generate

assembly for the remaining functions in the ¯le in order to be able to executethe program.

Later, after the program is executed and measurements taken, the stored instrumented
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Figure 6: The Measurement Process

assembly ¯le is again renamed to the current output ¯le. We also have to store the list

of transformations applied to this function up to that point so that they can be reapplied

after getting the measurements, to get back to the sameprogram state as it was before the

current measurement process.

There aresomerequired transformations that have to bealways performedbeforeassem-

bly code for a function can be generated. Theseare register assignmentand ¯x entry-exit.

Temporary values are initially stored in pseudo registers by the code expander. These

have higher numbers than the hardware registers. The register assignment phaseassigns

pseudoregisters to the hardware registers. Also, after most optimizations have been ap-

plied, typically several adjustments have to be made to the entry and exit points of a
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function. These adjustments include allocating/deallocating spaceon the run-time stack

and saving/restoring registers. This is done in the ¯x entry-exit phase. Thus, it is obvious

that correct assembly code cannot be generatedunlessthesecompulsory phaseshave been

applied. It may be possible that these have not been performed on the current function

as yet. Before outputting assembly for measurements, we check if these phaseshave been

applied and if not they are performed now.

The instrumentation of code by EASE is done as the next stage. As explained in an

earlier section, to take measurements, the EASE environment instruments the code with

additional instructions, which among other things increment counters associated with each

basic block. The instrumented assembly is output to an instrumented assembly ¯le. After

code for the function is generated, all the data structures for holding the state of this

function are clearedand re-initialized. We now have to read in the remaining functions in

the ¯le, apply the required transformations (register assignment and ¯x entry-exit) for each

remaining functions and output the assembly.

We now have an assembly ¯le instrumented with additional instructions by EASE and

ready to be executed. The con¯guration ¯le containing the link and execute commands,

described earlier, is opened and commands read. The assembly ¯le is linked and then

executed. Upon execution, the instrumented EASE code in the function producesa new

counts (.cnt) ¯le containing measurement information. This ¯le can be directly read and

interpreted to extract the frequency counts and number of executableinstructions in each

basic block. Alternativ ely, we have a program called genreport which doesthis work for us

and producesthe output in report format. The static and dynamic counts for each function

in the ¯le are displayed here. The frequencycounts for each individual basicblock still have

to be read directly from the counts ¯le.

We now have to get back to the sameexact state for the current function as it waswhen

measurements were initiated. The stored pointer to the current function in the input ¯le

is used to do a ¯le seek to reset the ¯le pointer and the function is read back into VPO's

internal data structures. The usermight have applied sometransformations to this function

before he started the measurement phase. These transformations have to be performed as
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well. The compiler stores the transformations, not as individual phases(lik e instruction

selection), but as a sequenceof small changesduring each phase(lik e delete RTL, insert

RTL, modify RTL etc.). This is done so that the user can view each individual change

applied to the function in the viewer and to alsosupport manually speci¯ed transformations.

After these changesare reapplied the function is set to the samestate as it was when we

started the measurement. The measuresare then sent to the viewer, which displays it in

its windows.

Figure 4 shows a snapshotof the viewer with a history of the sequenceof optimization

phasesdisplayed. Note that not only is the number of transformations associated with each

optimization phasedisplayed, but also the improvements in instructions executedand code

sizeare shown.
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Chapter 4

Supp ort For In teractiv e Code

Tuning

In conventional compilers a programmer has little control over the order in which code-

improving transformations are applied. It has been shown that a ¯xed sequenceof opti-

mizations may not produceoptimal code for all programs,or even for individual functions in

a program. The problem of automatically generating acceptablecode for embeddedmicro-

processorsis much more complicated than for general-purposeprocessors.First, embedded

applications are optimized for a number of con°icting constraints. In addition to speed,

other commonconstraints are code sizeand power consumption. An optimization sequence

tuned for producing faster code, may in fact increasethe code size, which may be unde-

sirable. For many embedded applications, code density and power consumption are often

more critical than speed. In fact, in many applications, the con°icting constraints of speed,

code density and power consumption are managed by the software designer writing and

tuning assembly code. Unfortunately, the resulting software is less portable, less robust,

and more costly to develop and maintain.

Automatic compilation for embedded microprocessorsis further complicated because

embeddedmicroprocessorsoften have specializedarchitectural featuresthat make code im-

provement and code generation di±cult [8, 9]. While some progress has been made in
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developing compilers and embedded software development tools, many embedded appli-

cations still contain substantial amounts of assembly language becausecurrent compiler

technology cannot produce code that meets the cost and performancegoals for the appli-

cation domain. The code improvement paradigm provided by VISTA, has the potential to

achieve the cost/p erformancetrade-o®sdemandedfor embeddedapplications. The earlier

version of VISTA [4] provided support for interactive code optimization. In this section,

we describe the feedback-based interactive performancetuning provided in this version of

VISTA.

4.1 Getting Performance Measures

The earlier version of VISTA, enabled the user to specify a sequenceof optimizations in

any order supported by the compiler and also allowed someuser-speci¯ed transformations

(e.g. for exploiting advanced architectural features which the compiler does not). But, it

did not automatically give the userany feedback about the improvements in code produced

after applying the optimizations. Whenever measurements are needed,an instrumented

executable for the program has to be produced, executed and measuresare obtained as

explained in the previous section. In the earlier version of VISTA, a user could accomplish

this in a seriesof steps. First, after applying the desiredsequenceof optimizations, VISTA

is exited causingthe instrumented assembly ¯le to be produced. Next, commandsare issued

to assemble, link and executethe program. This will produce the counts ¯le containing the

frequency of execution of each basic block. Next time VISTA is re-invoked it will auto-

matically reapply the previous transformations to reach the samepoint in the compilation.

Also, now it will detect the presenceof the counts ¯le, and will sendthat information to the

viewer. The viewer displays relative execution frequencyof each basic block in that block's

header.

We felt the need to automate this processin order to give the user instant feedback

regarding the program's performanceafter each transformation, or whenever the program-

mer felt necessary. This abilit y is provided by the two options, described in the previous
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section, namely:

1. Start/Stop measuremen ts: Start getting code-sizeand instruction count measure-

ments after each transformation phase.

2. Get Frequency Measures: Get the relative execution frequency of each basic block

at any stageduring the compilation process.

Thus, the programmer now does not have to rely on pure intuition to guide the code

improvement process.The instant performancefeedback provided by VISTA alleviates the

programmer's job of transforming the program to one which givesacceptableperformance.

Currently the viewer shows improvements in both the code sizeas well as dynamic instruc-

tion counts. It should be possible to display relative improvements based on any other

criteria.

4.2 New Constructs in VIST A

We also found that it is useful to conditionally invoke an optimization phase based on

whether a previous optimization phasecausedany changesto the program representation.

The application of one optimization phase often provides opportunities for another opti-

mization phase. Such a feature allows a sequenceof optimization phasesto be applied

until no more improvements can be found. Likewise,an optimization phasethat is unlikely

to result in code-improving transformations unlessa prior phasehas changedthe program

representation can be invoked only if changesoccurred, which may save compilation time.

Prior support in VISTA for conditionally applying optimization phaseswas only a low-

level branch operation (i.e. if changesgoto < label> ) [4]. We now provide support for

testing if changeshave occurred in the form of four structured control statements which the

user can interactively specify.

1. if-c hanges-then: This statement is similar to the if-then-endif construct in higher level

programming languages.It performsthe optimizations speci¯ed in the then block only
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if the transformation immediately precedingthe if produceschangesto the program

representation. This is converted by the viewer into a low-level sequenceof requests:

if-changes-then :: <IF-FALSE-GOTO-TRANS>

transforms in if-block

The compiler interprets this to mean that if changes(in the previous phase) is false,

then jump over the number of transforms in if-block.

2. if-c hanges-then-else: This statement is similar to the if-then-else construct. Depend-

ing on if the phaseprecedingthe if produceschanges,either the then branch is taken

or the elsebranch is taken. The low-level sequencecorresponding to this construct is:

if-changes-then-else :: <IF-FALSE-GOTO-TRANS>

transforms in if-block

<GOTO-TRANS>

transforms in else block

This tells the compiler that if changes(in the precedingphase)is falsethen jump over

the transformations in the if-block and directly go to the transforms in the else-block.

If changesis true, then the transformations in the if-block will be performedand then,

on encountering the unconditional goto, control will be transferred to the transform

after the else-block.

3. do-while-c hanges: This statement is a looping construct similar to do-while in high-

level languages. The transformations in the do block are always performed at least

once and are repeated as long as any transformation in that block produces any

changesto the program being compiled. The low-level translation for this is:

do-while-changes :: <BEGIN_LOOP>

transforms in while-block
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<IF-LOOP-TRUE-GOTO-TRANS>

<END_LOOP>

To the compiler this means that after performing the transformations in the while-

block if any of those made any changesto the program representation, then again go

back to the ¯rst transform in the while-block. The BEGIN LOOP and END LOOP

delimiters indicate the scope of each loop to the compiler. When multiple such while

and if constructs are nested,thesedelimiters enablesthe compiler to check the proper

°ag (changesvariable) and make the right branching decisionsat each loop nesting

level.

4. while-c hanges-do: This statement is similar to the while statement in high level lan-

guages. It is similar to the previous construct, except that application of the trans-

formations in the while block for the ¯rst iteration dependson, if the precedingphase

produced changes.The viewer will translate this to:

while-changes-do :: <BEGIN_LOOP>

<IF-LOOP-FALSE-GOTO-TRANS>

transforms in while-block

<GOTO-TRANS>

<END_LOOP>

For the ¯rst iteration the compiler checks if the precedingphasemade changes. For

all future iterations the compiler checks if any of the phasesin the do block make

any change to the program representation. As long as any phasemakes a change in

any iteration, the compiler executesthat loop again. After the last iteration control

is transferred to the command after the END LOOP command. As in the previous

construct BEGIN LOOP and END LOOP are usedto increment and decrement the

loop nesting levels.
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These statements can be nested within one-another. The intro duction of these struc-

tured statements will make the selection of sequencesof optimization phasesmore conve-

nient to the user. Figure 7 illustrates this with a simple example. The userhasselectedtwo

constructs, which are a do-while-changesstatement and a if-changes-thenstatement. For

each loop iteration, the compiler will perform register allocation. Instruction selectionwill

only beperformedif registerallocation allocatesoneor more liverangesof a variable to a reg-

ister. Register allocation replacesload and store instructions with register-to-register move

instructions, which provides opportunities for instruction selection. Instruction selection

combines instructions together and reducesregister pressure,which may allow additional

opportunities for register allocation. Thus, in e®ectwe are providing an optimization phase

programming language.

Theseoperations are converted by the viewer into a low-level sequenceof requestswhich

the compiler interprets. VPO applies the sequenceand sendseach resulting changeto the

program representation back to the viewer. The processcontinues until a stop operation

is encountered. The following list re°ects the operations to be performed by the selections

shown in Figure 7 .

1. Perform instruction selection

2. Perform register assignment

3. Enter loop

4. Perform register allocation

5. If no changesin past phasethen goto 7

6. Perform instruction selection

7. If changesduring loop iteration then goto 4

8. Exit loop

9. Perform loop-invariant code motion
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Figure 7: Interactively SelectingOptimization Phases

10. Stop

Figure 8 shows the resulting viewer state after the above sequenceof optimizations have

beenapplied. In the ¯gure, after the ¯rst invocation of register allocation, instruction selec-

tion did not produceany changes.Deadvariable elimination (which is actually deadvariable

identi¯cation) is sometimesperformed as side-e®ectof register allocation automatically by

the compiler.
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Figure 8: Interactively SelectingOptimization Phases
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Chapter 5

Supp ort for Performance Driv en

Automatic Code Tuning

The interactive performancetuning approach detailed in the precedingsection, in spite of

being very powerful, requires a lot of user intuition and e®ort to steer the optimization

processto obtain acceptableperformance. The programmer may make poor selectionsand

may have to undo someearlier optimizations and try other sequencesto check if it gives

better performance. We felt it was necessaryto provide the user with another technique

which can come up with an e®ective sequenceof optimizations automatically. We have

addedtwo structured constructs in VISTA which have the abilit y to automatically compare

two or more sequencesand determine which is most bene¯cial. The ¯rst is the select-best-

from statement and the other is select-best-combination.

5.1 Constructs for Automatic Selection of Optimization Se-

quence

The constructs to automatically selectoptimization sequencesare described in this section.
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5.1.1 Select Best From

The select-best-from statement is illustrated in Figure 9. As seenfrom the ¯gure, the user

has selected2 di®erent sequencesof optimizations separatedby an or. The programmer

only wants one of the two sequencesto be applied to the program, the one giving better

performance. The viewer ¯rst converts this statement into a low-level form to send to the

compiler.

select-best-from :: <SELECT-BEST-FROM>

optimization sequence 1

<OR>

optimization sequence 2

<DONE-SELECT>

Note that the user can select any number of di®erent optimization sequencesseparated

by < OR> . The viewer then prompts the user to select the weights between instructions

executedand code size, where the relative improvement in each is used to determine the

overall performance. The compiler can make a choice of the better sequencebasedon only

the code size,only dynamic instruction counts or any combination of both, asper the weight

selectedby the user. Figure 10 shows the window that pops up during select-best-from to

enablethe user to specify the relative weights.

When the compiler gets this command, it ¯rst stores the number of transformations

applied to this function up to this point. This will be usedto get the program state back to

what is wasbeforestarting this construct. The compiler then appliesthe transformations in

the ¯rst sequenceand evaluatesthe program performance,accordingto the selectedcriteria.

For this the compiler has to assemble, link and executethe current program asstated in an

earlier section. It then gets the program state back to what it was when execution of this

construct was initiated. This can be easily doneby reading back the current function again

and only applying the transformations until a speci¯c point in the compilation process,in

this caseall transformations until the start of the select-best-from statement. This process

is repeated for all the alternativ e optimizations sequences.After evaluating each sequence,
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Figure 9: Selectingthe Best of a Set of Speci¯ed Sequences

its performance is compared to the performanceof the best sequencefound so far. If the

current sequenceis better, then it is made the new best sequence.After all the sequences

are evaluated for their performance,we have identi¯ed the best sequence,which is reapplied

to the program and the new program state is sent to the viewer. Here we need to always

reapply the best sequence,even if the best sequencefound is the last sequencein the select

best from construct. This is becausewhile testing for the best sequenceno messageswere

sent to the viewer. When we reapply the best sequencethe changesmade by only this

sequenceare sent to the viewer. Reapplying the best sequencewould also be neededin
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Figure 10: Selectingthe Relative Weights during SelectBest From

the casewhen the °ag for getting performancemeasuresafter each phaseis set. Note that

while determining the best sequencewe are only getting the measuresafter each complete

sequenceas comparedto getting measuresafter each individual phase.

5.1.2 Select Best Com bination

The other option is select-best-combination, which acceptsa set of optimization phasesand

attempts to discover the best sequenceof phases. Figure 11 shows an illustration of how

this works. Here the user has selecteda sequenceconsisting of 5 optimization phases.The

user is attempting to discover the best ordering of this sequenceof ¯v e optimization phases.

The basic intuition is to try all combinations of the speci¯ed transformations, evaluating

each onefor its performanceand comingup with the bestsequence,which could bereapplied

to the program in a manner similar to select-best-from. The only problem here is the search

spacewhich grows exponentially basedon the length of the input sequence.Therefore it

was necessaryto somehow managethe exponential search space.

Figure 12 shows the di®erent options that we provide the user to control the search for

the best sequence.The No. of Phases¯eld shows us the length of the input sequenceof

optimizations we selected.The Sequence Length can be di®erent from the No. of Phasesin

two of the three Search Options. VISTA also allows the user to select the weights between

instructions executedand code size,similar to the option provided during select-best-from.

The usercan thus optimize the code basedon only code-size,only instruction counts or any
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Figure 11: Selectingthe Best Sequencefrom a Set of Optimization Phases

combination of thesetwo performancemeasures.VISTA alsoo®ersthe usersthree di®erent

Search Options:

1. Exhaustiv e Search: An exhaustive search results in all possiblesequencesbeing at-

tempted. If the user has selectedm distinct optimization phaseswith a sequence

length of n, then there will be mn di®erent sequencesattempted. An exhaustive

search may be appropriate when the total number of possiblesequencescan be evalu-

ated in a reasonableperiod of time. But in many casesthe search spaceis too great to

feasibly evaluate all possiblesequencesof optimization phases.The next two options
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Figure 12: SelectingOptions to Search the Spaceof PossibleSequences

attempt to intelligently probe the search spacefor e®ective sequences.

2. Biased Sampling Search: In this option we apply a genetic algorithm to probe the

search spaceto ¯nd an e®ectivesequencequickly. The goalof usinga geneticalgorithm

is to ¯nd an e®ective sequencegiven a restricted number of sequencesto attempt.

Genetic algorithms are basically search algorithms designedto mimic the processof

natural selection and evolution in nature. We de¯ne a few terms related to genetic

algorithm here. For a more detailed overview refer to Appendix A.

A population consistsof a ¯xed number of members, or chromosomes. Each chromo-

someis a ¯xed-length string of genes. The ¯tness of a chromosomeis somemeasure

of how desirable it is to have that chromosomein the population. A generation is a

time step in which several events occur. Someof the most 'un¯t' chromosomesdie

and are removed from the population. To replace these chromosomes,somenumber

of crossover operations are applied to the population. A crossover is an operation

analogousto mating or genesplicing. It combines part of one chromosomewith part

of another chromosometo create a new chromosome.Finally, someamount of muta-

tion occurs in the population, in which individual genesare changed randomly with
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some(t ypically low) probabilit y. It is also possibleto have elitism in the population

in which someof the most ¯t genesare immune from mutation betweengenerations.

In our case,a chromosomecorresponds to a sequenceof optimization phasesand a

geneto an individual phasein the sequence.Somenumber of optimization sequences

together form a population. The operations of crossover and mutation are de¯ned so

that the geneticalgorithm ¯nds good optimization sequencesquickly. Fitness value of

a chromosomeis the performancemeasuresobtained when that sequenceis applied to

the program. Thus a lower ¯tness value (lower code-size,lower number of instructions

executed), is considereda better sequence.The actual genetic algorithm we used in

described in Appendix B.

Thus, after selectingBiased Sampling Search, the user also needsto specify the Pop-

ulation Size and the Number of Generations for the genetic algorithm. The default

valuesof 100 generationsand a population sizeof 20, would produce 2000sequences

of optimization phases,to be applied on the current function.

3. Perm utation Search: The permutation search attempts to evaluate all permutations

of the speci¯ed length. Unlike the other two searches,a permutation cannot have any

of its optimization phasesrepeated. Thus the sequencelength must be lessthan or

equal to the number of distinct phases.A permutation search may be an appropriate

option when the user is sure that each phase should be attempted at most once.

This also results in reducing the number of attempted optimization sequencesover an

exhaustive search.

The viewer converts this control statement into a low-level sequenceof requeststo be

sent to the compiler.

select best combination :: <SELECT-BEST-COMBINATION>

sequence of optimizations

list of options specified by user

<END-COMBINATION>
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The compiler after receiving this request, saves the current transformations applied

on the function thus far, similar to select-best-from. It then applies each sequenceto the

function, assembles, links and executesit to get the performancemeasures.The program

state is rolled back to that before starting this construct. Depending on the search option

selectedby the user,the compiler determinesthe next sequenceto beapplied to the function.

The sequenceof optimizations giving the best program performance is saved. After all

sequencesareapplied the compiler determinesthe best sequenceand reappliesthat sequence

to the function and sendsthe resulting program representation to the viewer.

Performing thesesearchescanbequite time consuming. Thus, VISTA providesa window

showing the current status of the search. Figure 13 shows a snapshot of the status of the

search that was selectedin Figures 11 and 12. The window displays the percentage of the

Figure 13: Window Showing the Status of Searching for an E®ective Sequence

search completed, the number of valid and invalid sequences,an encoded representation

of the sequencewhich was last tried and the best sequenceso far along with their static

and dynamic measures.All the improvement numbers shown in this ¯gure are relative to

the program state when selectbest combination was started. A sequenceis declaredto be
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invalid if the sequenceis such that it doesnot adhereto all the constraints imposedon the

ordering of individual phases,e.g. if register allocation appearsbefore register assignment

in the sequence.We also declare a sequenceinvalid if it results in a program state which

producesa linker error or upon execution doesnot produce the desiredoutput or if it goes

into an in¯nite loop. Ideally the secondcasefor invalidating a sequenceshould never occur

in a compiler. If such a sequenceis encountered then a log of that sequenceis maintained so

the developers can try to resolve the problem. Table 1 describeseach phasein the compiler

and givesa designation (gene) of each phasethat is usedfor displaying the sequencein the

window in Figure 13.

It may be the casethat the performancedesiredby the user is achieved by an optimiza-

tion sequenceearly on in the search process.In that caseit is not required to sit through the

remaining sequencessincethat could take a very long time. VISTA provides the option of

interrupting the search processwhenever the user wants. If the processis interrupted then

the compiler applies the best sequencefound so far during the search processand returns

the resulting program representation to the viewer.
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Table 1: Candidate Optimization Phasesin the Genetic Algorithm along with their Desig-
nations

Optimization Phase Gene Description
branch chaining b Replacesa branch or jump target with the target

of the last jump in the jump chain
eliminate empty block e Removesempty blocks from the control °ow graph
uselessjump u Remove uselesstransfers of control like a jump to
elimination the next block in the control °ow
dead code elimination d Remove block unreachable from the top block
reversebranches r Reversesa conditional branch when it branches

over an jump to eliminate the jump
block reordering i Removesa jump by reordering basic blocks when the

target of the jump has only a single predecessor
mergebasic blocks m Mergestwo consecutive basic blocks when the

predecessorhas no transfer of control and the
successorhas only one predecessor

instruction selection s Combine instructions together when the combined
e®ectis in a legal instruction

¯x control °ow f Changecode that computesa boolean value and then
usesthat value to jump, to code that just jumps

eval order o Reorder instructions within a basic block to calc.
determination expressionsthat require the most registers ¯rst
global instruction g Perform instruction selectionacrossbasic block
selection
register assignment a Assign pseudoregisters to hardware registers
minimize loop jumps j Remove an unconditional jump at the end of a loop

or one that jumps into a loop, by replicating a
portion of the loop

dead assignment elim. h Removesassignments where the assignment value is
never used

register allocation k Replacesreferencesto a variable within a
speci¯c live range with a register

common subexpr. elim. c Eliminates fully redundant calculations
code motion n Move loop invariant code into the preheader
loop strength i Replaceregister increments by constant valueson
reduction each iteration of a loop by simple increment
recurrences p Avoid recurrencesin loops by retaining values in

registersacrossiterations of the loop
induction variable v Removesunnecessaryregister increments after
elimination loop strength reduction
strength reduction q Replacesan expensive instruction with one or more

cheaper ones
¯x entry exit w ¯x entry and exit of a function to managethe

run time stack
instruction t Rearrangethe order of instructions within a basic
scheduling block in an attempt to reducepipeline stalls
¯ll delay slots u Fill the delay slots after transfer of control

instructions in RISC machines
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Chapter 6

Exp erimen tal Results

In the previoussectionswehavedescribed the VISTA framework and the support it provides

for feedback basedperformance tuning. In this section we describe the results of a set of

experiments to illustrate the e®ectivenessof using VISTA's biasedsampling search, which

usesa geneticalgorithm to ¯nd e®ective sequencesof optimization phases.We useda set of

mibench programs,which areC benchmarks targeting speci¯c areasof the embeddedmarket

[10]. We usedone benchmark from each of the six categoriesof applications. Descriptions

of the programs we usedare shown in Table 2.

Table 2: MiBench Benchmarks Used in the Experiments
Category Program Description

auto/industrial bitcount test bit manipulation abilities of a processor
network dijkstra calculatesshortest path betweennodesusing

Dijkstra's Algorithm
telecomm ®t performs a fast fourier transform on an array of data
consumer jpeg image compressionand decompression
security sha securehash algorithm
o±ce stringsearch searchesfor given words and phrases

Our target architecture for these experiments was the SPARC, as we do not currently

have a robust version of VISTA targeted to an embedded architecture. Using a genetic

algorithm to ¯nd e®ectiveoptimization phasesequencescan result in thousandsof sequences
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being applied. This provides a severe stresstest for any compiler. In the future we plan to

test VISTA's abilit y to ¯nd e®ective optimization phasesequenceson embeddedprocessors.

Our experiments havemany similarities to the Ricestudy, which useda geneticalgorithm

to reducecode size [11]. We believe the Rice study wasthe ¯rst to demonstratethat genetic

algorithms could be e®ective for ¯nding e±cient optimization phasesequences.However,

there are several signi¯cant di®erencesbetween their study and our experiments, and we

will contrast someof the di®erencesin this section.

The Rice experiments useda genetic algorithm to ¯nd e®ective sequencesconsisting of

twelve phasesfrom ten candidate optimizations. They comparedthesesequencesto the per-

formance obtained from a ¯xed sequenceof twelve optimization phases. In contrast, VPO

does not utilize a ¯xed sequenceof phases. Instead, VPO repeatedly applies phasesuntil

no more improvements can be obtained. Figure 14 shows the algorithm usedto determine

the order in which optimization phasesare applied to VPO. This algorithm has evolved

over the yearsand the primary goal has always beento reduceexecution time. Initially it

was not obvious how to best assessVISTA's abilit y to ¯nd e®ective optimization sequences

as comparedto the batch VPO compiler. One complication is that the register assignment

(assigningpseudoregistersto hardware registers) and ¯xed entry exit (¯xing the entry and

exit of the function to managethe run-time stack) phasesare required, which meansthat

they have to be applied onceand only once. Many of the other phasesshown in Figure 14

have to be applied after register assignment and before ¯x entry exit. Thus, we decidedto

usethe geneticalgorithm to ¯nd the best sequenceof improving phasesthat can be applied

between these two required phases. These candidate sequencesinvolve fourteen unique

phases,which can be applied in any order betweenthe two required phases.Thesephases

are: instruction selection, minimize loop jumps, merge basic blocks, dead assignmentelimi-

nation, register allocation, common subexpressionelimination , loop transformations (which

include loop-invariant code motion, recurrence elimination , loop strength reduction and in-

duction variable elimination ), removeuselessjumps, strength reduction, branch chaining,

removeunreachablecode, removeuselessblocks, reversejumps and block reordering. For a

description of what each of thesephasesdo refer Table 1.
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            remove useless jumps
            branch chaining
            remove unreachable code
            remove useless basic blocks
            reverse jumps
            remove jumps by block reordering
            remove useless jumps
            if(changes in last 7 phases)
                    minimize loop jumps
                    if(changes in last phase)
                           merge basic blocks
            dead assignment elimination
            strength reduction
            instruction selection
     while changes
while changes
branch chaining
remove unreachable code
remove useless basic blocks
reverse jumps
remove jumps by block reordering
fix entry exit
instruction scheduling
fill delay slots
if(changes in last phase)
      remove useless jumps
      remove branch chains

            loop transformations

branch  chaining 
remove useless basic blocks
remove useless jumps
remove unreachable code
reverse jumps
remove jumps by block reordering
merge basic blocks
instruction selection
fix control flow
evaluation order determination
global instruction selection
register assignment
instruction selection
minimize loop jumps

            dead assignment elimination
            common subexpression elimination
     do
     while changes
                     instruction selection
             if(changes in last two phases)
             register allocation
             while changes
                     dead assignment elimination
             do
     do
do
     merge basic blocks
if(changes in last phase)

Figure 14: VPO's Order of Optimizations Applied in the batch mode
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Another issue is the number of optimization phasesto apply since it may be bene¯-

cial to perform a speci¯c optimization phasemultiple times. When applying the genetic

algorithm, one must specify the number of optimization phases(genes) in each sequence

(chromosome). It was not clear how to determine an appropriate uniform limit since the

number of attempted optimization phasesby the batch compiler could vary with each func-

tion. Therefore, we ¯rst determined both the number of successfullyapplied optimization

phases(those which a®ectedone or more instructions in the compiled function) and the

total number of phasesattempted during batch compilation.

6.1 Batc h Compilation Measures

Table 3 shows batch compilation information for each function in each of the benchmark

programs. The ¯rst column identi¯es the program and the number of static instructions

that is produced for the application after batch compilation. The second column lists

the functions in the corresponding benchmark program. In four of the benchmarks, some

functions were not executed even though we used the input data that was supplied with

the benchmark. Since such functions did not have anything signi¯cant to report we have

designatedsuch functions together as unexecuted functions. The third and fourth columns

show the percentageof the program that each function represents for the dynamic and static

instruction count after applying the optimization sequence.Although the batch compiler

applies the samesequenceof optimizations in the sameorder, many optimizations may not

produce any modi¯cations in the program. Also, iteration causessome transformations

to be repeatedly applied. Thus the sequenceand number of optimizations successfully

applied often di®ersbetweenfunctions. The ¯fth column shows the sequenceand number of

optimization phasessuccessfullyapplied by the batch compiler betweenregister assignment

and ¯x entry exit. Note that this sequenceof phaseswas applied after attempting the

optimization phasesthat precede register assignment in Figure 14. We found that the

sequenceof optimization phasesselectedbefore register assignmentand after ¯x entry exit

were much more consistent. One can see that the sequencesof successfuloptimization
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phasescan vary greatly betweenfunctions in the sameapplication. The next column shows

the total number of optimization phasesattempted. The number applied can vary greatly

depending upon the size and loop structure of the function. The number of attempted

phasesis also always signi¯cantly larger than the number of successfullyapplied phases.

The last two columnsin Table3 depict that iterativ ely applying optimization phaseshad

a signi¯cant impact on dynamic and static instruction count. We obtained this measure-

ment by comparing the results of the default batch compilation to results obtained without

iteration, which usesthe algorithm in Figure 14 with all the do-while's iterated only once.

The iteration impact result shows the power of iterativ ely applying optimization phasesun-

til no more improvement can be found. In particular the number of instructions executed

is often reduced. The only caseswhere dynamic count increasedwas when loop invariant

code motion wasperformed and the loop waseither never entered or only executedonce. In

fact, we were not sure if any additional dynamic improvements could be obtained using a

genetic algorithm given that iteration may mitigate many phaseordering problems. In the

rest of this section we comparethe results we obtained using a genetic algorithm to search

for e®ective optimization sequencesto the sequencesfound by the iterativ e batch versionof

VPO. For our geneticalgorithm experiments we set the optimization phasesequence(chro-

mosome)length to 1.25 times the length of the number of successfullyapplied optimization

phasesfor each function. We felt this sequencelength is a reasonablelimit for each function

and still gives us an opportunit y to successfullyapply more optimization phasesthan the

batch compiler wasable to accomplish. Note that the number of attempted phasesfor each

function by the batch compiler far exceededthis length.
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Table 3: Batch Optimization Measurements
program function % of % of applied sequence attempted iteration impact %
and size dynamic static and length phases dynamic static

bitcoun t AR btbl bitcoun t 3.22 3.86 kschsc (6) 53 -9.52 -9.52
(496) BW btbl bitcoun t 3.05 3.66 emsaks (6) 24 0.00 0.00

bit count 13.29 3.25 sksc (4) 42 -18.64 -14.29
bit shifter 37.41 3.86 sks (3) 26 -9.09 -5.26
bitcoun t 8.47 10.16 ksc (3) 40 0.00 0.00
main 13.05 19.51 sjmhkscllqsclllsllhsc (21) 125 -27.27 -8.16
ntbl bitcn t 14.40 3.66 sksc (4) 40 -11.10 -11.76
ntbl bitcoun t 7.12 8.54 ks (2) 24 0.00 0.00
unexecuted func. 0.00 43.49 5.00 40.57 N/A -9.57
average 5.13 43.87 -11.10 -7.19

dijkstra dequeue 0.85 10.40 sksc (4) 40 0.00 0.00
(327) dijkstra 83.15 44.04 sjmhksclllcllsc (15) 71 -14.54 -4.44

enqueue 15.81 12.84 shksc (5) 42 0.00 0.00
main 0.06 22.94 sjmhksllsllsc (13) 71 -12.13 +3.23
prin t path 0.01 8.26 shksc (5) 41 0.00 0.00
qcount 0.12 1.53 (0) 21 0.00 0.00
average 7.17 47.67 -12.54 -1.36

®t CheckPointer 0.00 2.34 shksc (5) 41 0.00 0.00
(728) IsPowerOfTw o 0.00 2.61 sksc (4) 40 0.00 0.00

NumberOfBits... 0.00 3.98 sjmhksc (7) 43 0.00 0.00
ReverseBits 14.13 2.61 sjmksc (6) 42 0.00 +5.56
®t °oat 55.88 38.87 sjmhkscllllhsc h (15) 57 -8.84 -7.64
main 29.98 39.56 sjmhkscllllehscll (17) 58 -1.90 -1.23
unexecuted func. 0.00 10.03 3.00 65.00 N/A -2.99
average 8.29 49.43 -5.77 -3.95

jp eg ¯nish input ppm 0.01 0.04 (0) 21 0.00 0.00
(5171) get raw row 48.35 0.48 sksc (4) 40 0.00 0.00

jinit read ppm 0.10 0.35 ksc (3) 39 0.00 0.00
main 43.41 3.96 sjmhksclschc (12) 70 -0.03 -1.14
parse switches 0.51 11.26 sjmhksc (7) 43 0.00 0.00
pbm getc 5.12 0.81 sksch (5) 41 0.00 0.00
read pbm integer 1.41 1.26 sksc (4) 41 0.00 0.00
select ¯le type 0.27 2.07 sksec (5) 40 0.00 0.00
start input ppm 0.79 5.96 sjmkschc (8) 55 0.00 0.00
write stdout 0.03 0.12 kss (3) 40 0.00 0.00
unexecuted func. 0.00 73.69 6.27 44.35 N/A -0.19
average 6.08 44.13 -0.01 -0.19

sha main 0.00 13.71 sksclsl (7) 55 +6.67 +5.26
(372) sha ¯nal 0.00 10.75 shksc (5) 41 0.00 0.00

sha init 0.00 5.11 sks (3) 25 0.00 0.00
sha prin t 0.00 3.76 sksc (4) 40 0.00 0.00
sha stream 0.00 11.02 sjmkscl (7) 42 0.00 0.00
sha transform 99.51 44.62 skscllllllllhscllllllhs(23) 56 -11.46 -12.50
sha update 0.49 11.02 sjmhkscc (8) 56 -0.08 -2.78
average 7.86 45.00 -11.44 -6.20

string- init search 92.32 6.18 sjmkscllscllhs (14) 70 -15.99 0.00
search main 3.02 14.08 sjmksclhsclhl (13) 69 +0.01 +2.08
(760) strsearch 4.66 7.37 skscllslscl (11) 69 -3.10 0.00

unexecuted func. 0.00 71.44 14.00 66.57 N/A +1.37
average 13.50 67.40 -15.01 +1.28

average 8.01 49.58 -9.31 -2.94
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6.2 In teractiv e Compilation Measures using Genetic Algo-

rithms

There are a number of parameters in a genetic algorithm which can be varied to give

algorithms quite di®erent in performanceand the best algorithm for a particular application

only comesfrom experienceand continuous ¯ne tuning basedon empirical results. Due to

lack of aquaintance with a better substitute, we decided to use an algorithm based on

the one used in the Rice experiments. The population size (¯xed number of sequencesor

chromosomes)was set to twenty and each of theseinitial sequencesis randomly initialized.

The sequencesin the population are sorted by ¯tness values(using the dynamic and static

counts according to the weight factors). At each generation (time step) we remove the

worst sequenceand three others from the lower (poorer performing) half of the population

chosenat random. Each of the removed sequencesare replaced by randomly selecting a

pair of sequencesfrom the upper half of the population and then performing a crossover

operation on that pair to generatetwo new sequences.The crossover operation combines

the lower half of one sequencewith the upper half of the other sequenceand vice versa to

create the new pair of sequences.Fifteen chromosomesare then subjected to mutation (the

best performing sequenceand the newly generatedfour sequencesare not mutated). During

mutation, each gene(optimization phase) is replaced with a randomly chosenone with a

low probabilit y. For this study mutation occurs with a probabilit y of 5% for a chromosome

in the upper half of the population and a probabilit y of 10% in the lower half. This was

donefor a set of 100generations. Note that all theseparameterscan be varied interactively

by the userduring compilation asshown in Figure 12. For more on geneticalgorithms refer

appendix A.

Table 4 shows the results that were obtained for each function by applying the genetic

algorithm. For these experiments, we obtained the results for three di®erent criteria. For

each function, the genetic algorithm was used to perform a search for the best sequence

of optimization phasesbasedon static instruction count only, dynamic instruction count

only, and 50% of each factor. As in Table 3, unexecuted functions indicate those functions
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in the benchmark that were never executed using the benchmark's input data. We also

indicate that the e®ecton the dynamic instruction count was not applicable (N/A) for

thesefunctions. The last six columnsshow the the e®ecton static and dynamic instruction

counts for each of the three ¯tness criteria. The results that were expected to improve

according to the ¯tness criteria used are shown in boldface. The genetic algorithm was

able to ¯nd a sequencefor each function that either achievesthe sameresult or obtains an

improved result ascomparedto the batch compilation. In two casesthe dynamic instruction

count increasedwhen optimizing for both speed and space. But in each casethe overall

bene¯t was improved since the percentage decreasein static instruction count was larger

than the percentage increasein dynamic instruction count.
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Table 4: E®ecton Speedand SpaceUsing the Three Fitness Criteria
program functions optimizing for speed optimizing for space optimizing for both

dynamic static dynamic static dynamic static

bitcount AR btbl bitcount 0.00 0.00 0.00 0.00 0.00 0.00
BW btbl bitcount 0.00 0.00 0.00 0.00 0.00 0.00
bit count -25.29 -12.50 -25.29 -12.50 -25.29 -12.50
bit shifter 0.00 0.00 0.00 0.00 0.00 0.00
bitcount -2.00 -2.00 -2.00 -2.00 -2.00 -2.00
main -10.00 -4.90 +20.00 -11.76 -0.00 -7.84
ntbl bitcn t -10.46 -11.11 -5.82 -5.56 -10.46 -11.11
ntbl bitcount 0.00 0.00 0.00 0.00 0.00 0.00
unexecuted func. N/A -2.55 N/A -3.73 N/A -3.73
total -6.30 -3.82 -2.02 -5.42 -5.10 -4.82

dijkstra dequeue 0.00 0.00 0.00 0.00 0.00 0.00
dijkstra -6.05 -3.47 -3.02 -4.86 -6.05 -6.25
enqueue 0.00 0.00 0.00 0.00 0.00 0.00
main 0.00 0.00 +23.12 -6.67 0.00 -2.67
prin t path 0.00 0.00 0.00 0.00 0.00 0.00
qcount 0.00 0.00 0.00 0.00 0.00 0.00
total -5.03 -1.53 -2.50 -3.67 -5.03 -3.36

®t CheckPointer 0.00 0.00 0.00 0.00 0.00 0.00
IsPowerOfTw o 0.00 0.00 0.00 0.00 0.00 0.00
NumberOfBits... 0.00 0.00 +16.47 -6.90 0.00 0.00
ReverseBits -0.93 -5.26 0.00 -15.79 0.00 -15.79
®t °oat -6.14 -4.59 +0.71 -8.83 -6.14 -8.13
main -0.00 -1.74 +0.44 -5.21 +0.44 -5.21
unexecuted func. N/A -4.11 N/A -6.85 N/A -6.85
total -3.57 -3.02 +0.53 -6.87 -3.30 -6.32

jpeg ¯nish input ppm 0.00 0.00 0.00 0.00 0.00 0.00
get raw row 0.00 0.00 0.00 0.00 0.00 0.00
jinit read ppm 0.00 0.00 0.00 0.00 0.00 0.00
main -0.04 -1.95 -0.03 -3.90 -0.03 -3.90
parse switches 0.00 -1.72 +2.17 -2.06 0.00 -1.72
pbm getc 0.00 0.00 0.00 0.00 0.00 0.00
read pbm integer -3.54 -1.54 -3.54 -1.54 -3.54 -1.54
select ¯le type -2.08 0.00 -2.08 0.00 -2.08 0.00
start input ppm 0.00 -0.65 0.00 -0.65 0.00 -0.65
write stdout -16.67 -16.67 -16.67 -16.67 -16.67 -16.67
unexecuted func. N/A -3.15 N/A -3.94 N/A -3.94
total -0.08 -2.67 -0.06 -3.36 -0.07 -3.33

sha main -17.07 -9.80 -17.07 -9.80 -17.07 -9.80
sha ¯nal 0.00 0.00 0.00 0.00 0.00 0.00
sha init 0.00 0.00 0.00 0.00 0.00 0.00
sha prin t -7.14 -7.14 -7.14 -7.14 -7.14 -7.14
sha stream -6.65 -29.27 +6.59 -31.71 -6.65 -29.27
sha transform -0.04 -0.60 +6.07 -3.01 0.00 0.00
sha update -0.06 -2.44 0.00 -7.32 0.00 -7.32
total -0.04 -5.38 +6.04 -7.26 -0.00 -5.65

string- init search -0.37 -6.38 -0.31 -19.15 -0.37 -21.28
search main -1.90 -5.61 -1.90 -10.28 +5.67 -7.48

strsearch -4.40 -7.14 +0.61 -7.14 -2.24 -3.57
unexecuted func. N/A -9.64 N/A -9.64 N/A -9.64
total -0.61 -8.68 -0.32 -10.13 -0.28 -9.61

average -2.61 -4.18 +0.28 -6.12 -2.30 -5.52
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Figures 15 and 16 show the overall e®ectof using the genetic algorithm for each test

program on the dynamic and static results, respectively. The secondmeasure for each

function is obtained from the sequencefound by the batch compilation when iterativ ely

applying optimization phasesand is normalized to 1. The results show that iterativ ely

applying optimization phaseshas a signi¯cant impact on dynamic instruction count and

lessof an impact on the code size. The genetic algorithm was more e®ective at reducing

the static instruction count than dynamic instruction count, which is not surprising since

the batch compiler was developed with the primary goal of improving the speed of the

generatedcode and not reducing code size. However, respectable dynamic improvements

were still obtained despite having a baselinewith a batch compiler that iterativ ely applies

optimization phasesuntil no more improvements could be made. Note that many batch

compilers do not iterativ ely apply optimization phasesand the use of a genetic algorithm

to selectoptimization phasesequenceswill have greater bene¯ts as comparedto such non-

iterativ e batch compilations. The results when optimizing for both speedand spaceshowed

that we were able to achieve closeto the samedynamic bene¯ts when optimizing for speed

and closeto the samestatic bene¯ts when optimizing for space. A user can set the ¯tness

criteria for a function to best improve the overall result. For instance, small functions with

high dynamic instruction counts can be optimized for speed, functions with low dynamic

instruction counts can be optimized primarily for space, and large functions with high

dynamic counts can be optimized for both spaceand speed.

Figure 15: Overall E®ecton Dynamic Instruction Count
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Figure 16: Overall E®ecton static Instruction Count

The optimization phasesequencesselectedby the genetic algorithm for each function

are shown in Table 5. The sequencesshown are the ones that produced the best results

for the speci¯ed ¯tness criteria. Sequencesfor a function shown in boldfacevaried between

the di®erent ¯tness criteria. Similar to the results in Table 3, thesesequencesrepresent the

optimization phasessuccessfullyapplied as opposedto all optimization phasesattempted.

Someoptimization phaseslisted in Table 1 are rarely applied since they have already

been applied once before register assignment. These are the control-°o w transformations

that include phases1, 2, 3, 5, 6 and 7 listed in Table 1. Strength reduction was not applied

due to using dynamic instruction counts instead of taking the latenciesof more expensive

instructions, like integer multiplies, into account. It appears that certain optimization

phasesenable other speci¯c phases. For instance, instruction selection (s) often follows

register allocation (k) since instructions can often be combined after memory references

are replacedby registers. Likewise,dead assignmentelimination (h) often follows common

subexpression elimination (c) since a sequenceof assignments often becomeuselesswhen

the useof its result is replacedwith a di®erent register.

The results in Table 5 also show that functions within the sameprogram produce the

best results with di®erent optimization sequences.The functions with fewer instructions

typically had not only fewer successfullyapplied optimization phasesbut also lessvariance

in the sequencesselectedbetween the di®erent ¯tness criteria. Note that many sequences

may producethe sameresult for a given function and the oneshown is just the ¯rst sequence
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found that producesthe best result.

We use a hash table containing ¯tness values and indexed by the chromosomesto re-

duce the search overhead. If the sequencehas already been attempted, then we do not

recompute it. We found that on average54%of the sequenceswere found in the hash table.

The functions with shorter sequencelengths had a much higher percentage of redundant

sequences.A shorter sequencelength results in fewer possiblesequencesand lesslikelihood

that mutation will changea sequencein the population.

The overheadof ¯nding the bestsequenceusing the geneticalgorithm for 100generations

with a population sizeof twenty required about 30-45minutes for each function on a SPARC

Ultra-80 processor. The compilation time was lesswhen optimizing for size only since we

would only get dynamic instruction counts when the static instruction count was lessthan

or equal to the count found so far for the best sequence. In this casewe would use the

dynamic instruction count as a secondary¯tness value to break ties. In general,we found

that the search time wasdominated not by the compiler, but instead by assembling, linking,

and executing the program. If we usesizewithout obtaining a dynamic instruction count,

then we typically obtain results for each function in lessthan one minute.
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Table 5: Optimization PhaseSequencesSelectedUsing the Three Fitness Criteria

program functions optimizing for speed optimizing for space optimizing for both
bitcount AR btbl bitcount chks chks chks

BW btbl bitcount ks ks ks
bit count kchs kchs kchs
bit shifter ks ks ks
bitcount ks ks ks
main slljc kllhsc hlllmc chllk c chllskllcllslc h
ntbl bitcnt ckshc ksc ckhsc
ntbl bitcount ks ks ks

dijkstra dequeue ksc ksc ksc
dijkstra chlllc hklljsc chklllcllc ckclllscllhsc
enqueue kshc khsc khsc
main shkllclljc skhc chkllcllc
print path kch kch kch
qcount

®t CheckPointer hk c kch hksc
IsPowerOfTwo kcs kcs kcs
NumberOfBits... hkjcs khs hkjmsc
ReverseBits kcjhsc kcs ksc
®t °oat jk csllllc hclh kslllhsc hc kcllllcllhscllh
main skllllsjmc h shllllksc skshc

jpeg ¯nish input ppm
get raw row kc kc kc
jinit read ppm kc kc kc
main kchcj kchc kchc
parse switches jsksch kshc jkshcm
pbm getc ksch ksch ksch
read pbm integer kcs kchs kchs
select ¯le type rkch rkch rkch
start input ppm kschc kschc kschc
write stdout ks ks ks

sha main kcsh kcsh kcsh
sha ¯nal ksch ksch ksch
sha init kc kc kc
sha print chkc chkc chkc
sha stream kcj chk c chk cl
sha transform cksllllllscllllll lllllsllllkssc skcllllllhcllllllsh

lhllllllc h llllllsh
sha update kshcjc kschc kschc

string- init search llk cjllhclc ckhscllc h ksllsllhs
search main kslhlcjhc skslhlc kslhls

strsearch clskclhs cksch sllksls
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Chapter 7

Implemen tation Issues

The earlier sectionsdescribed the main work accomplishedas part of this thesis along with

someempirical results. There were somechangesmade to the part already implemented

in an earlier version of the compiler to make the compiler more stable and robust. Also,

there were someother interesting implementation issueswhich could not be discussedin

the earlier sections. This chapter is devoted for the mention of somesuch apparently minor

issues,whoseproper handling was necessaryfor the successof the main work.

7.1 Undoing Transformations

VISTA provides the abilit y to undo previously applied changesor transformations for two

purposes. First, this abilit y can help the user to experiment with di®erent orderings of

phasesand/or hand-speci¯ed transformations in an attempt to improve the generatedcode.

Second,this feature givesthe user an opportunit y to changetheir mind if the earlier trans-

formations are not giving the desiredresults. This work was done by BaoshengCai [12] as

part of his master's thesis. To do this, a linked list was used to keep a history of all the

changesthat occurred in the compiler. This resulted in a lot of additional code to store

the information and also resulted in somespaceoverhead. Moreover, this was di±cult to

maintain becauseknowing the exact things to store after each changeis very di±cult. Thus,

although the work was done very meticulously, it had certain shortcomings. These were
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¯rst noticed during the implementation of select best combination and select best sequence,

where we need to undo all the changesafter each sequencehas been applied, to get the

program back to the initial state to apply the next sequence.

To make the undoing of transformations more stable and maintainable, it was decided

to implement it di®erently . This is now accomplishedas follows: when the compiler gets a

request to undo somechanges,it dumps the transformations applied so far to a ¯le (this

was also done in the earlier version of VISTA to enablecompilation of a ¯le over multiple

sessions). Then the current function along with all its data structures are discarded and

reinitialized. The samefunction is read back in and the transformations are reapplied, but

only up to the point we want. Thus the remaining changesare automatically discarded.

This is the the samething that would have happenedwhen the ¯le is compiled over multiple

sessions,but now there is no need to store all the state information at each point. Doing

this we were able to remove a lot of redundant code and data structures which ultimately

helped in making the code more robust. The only drawback with this schemeis that, when

the useronly wants to undo onechange,the compiler needsto go through the entire process

of reloading the current function and reapplying most of the transformations again. This

is arguably slower than the previous approach, but the increasein compilation time was

found to be a small cost to pay for the greatly increasedmaintainabilit y and smoothness

achieved by the new approach.

7.2 Required Analysis by Each Optimization Phase

Each optimization phase needssome data and control °ow analysis to be done before it

can be successfullyapplied. Absenceof the correct analysis can prevent the compiler from

recognizingall the points where the optimization can be usefully applied. Even worseis the

casewhen incorrect analysisleadsthe compiler into making changesat points that produces

wrong output code. Figuring out all the analysis required by each optimization phase is

di±cult. Also, in somecaseswhen the required analysishasalready beendoneand is valid,

there is no need to spend more time redoing the analysis. So we also need to determine

52



which analysis are invalidated by each phase. An example of this is instruction selection

invalidating live variable analysis and registers used analysis. This important work was

painfully attempted during the previous version of VISTA. Somebugs in that processwere

revealed during the implementation of the current version, especially when thousands of

di®erent sequenceswere attempted on the samefunction during a single run of select best

combination. Somechangeswere made to correct the faults.

7.3 Sanit y Check

In VISTA the program representation information for each function is maintained at two

places,onewith the compiler and a copy of it with the viewer to bedisplayedto the user. It is

essential that thesetwo versionsbe consistent at each distinct point during the compilation

process.Whenever the compiler makesa changeto the program representation, it sendsa

messageto the viewer to do the sameto its version of the function. We felt it was useful

to have an option to check if the two representations are consistent. This would be very

helpful whenever a change is made to the compiler or a new optimization is implemented

in the compiler. Sanity check is the option we provide to accomplishthis, during which the

compiler essentially just sendsits complete state information to the viewer and the viewer

cross-checks it with the information it holds in its data structures. Discrepancies,if any,

are reported to the user.

7.4 Correct Button Status in the View er

In the VISTA user interface the only buttons active at any point during the compilation

processare those that can be legally selectedby the user. The rest of the buttons are

grayed out. As the user selectsoptimization phasesto be applied the sets of select-able

and disabled buttons should change. For example, selecting register assignment enables

many other optimizations dependent on register assignment like register allocation and

code motion. Clicking ¯l l delay slots grays out most other optimizations which are not legal
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after this phase. The control statements like the if , while, select best from and select best

combination constructs complicate the act of determining which buttons are active during

and after applying each construct. This problem is further complicated by the feature of

undoing previously applied transformations, supported in VISTA, sincethis requiresstoring

detailed button status information at many di®erent points with the abilit y of getting

back to a previous button state when changesare undone. The interaction of all these

factors made the task of determining the correct button status a non-trivial task requiring

meticulous and careful handling.

7.5 Batc h Exp erimen ts

VISTA is an interactive system, which is controlled by the user sending requests to the

compiler by clicking buttons. But this was found to be a hindrance while performing exper-

iments or extensive testing, like that done during regressiontesting. It was not reasonable

to expect the user to sit at his desk and do the testing manually by clicking buttons every

so often. To make testing easier,we support a new mode in VISTA where selectionsare

read from a ¯le instead of requiring mouseclicks. Such a ¯le could either be written by

hand or could also be generatedautomatically by the viewer at run-time. VISTA provides

an option to the user to store all the mouseclicks in a separate¯le. This ¯le can be read at

any later time and mouseclicks are not required. This was found to be very useful during

testing aswe could construct test ¯les that could be initiated in a batch mode whenever any

major changeswere made to the compiler. It was also found to be helpful for conducting

experiments as the onesdescribed in chapter 5.

7.6 Obtaining Measuremen ts on a Host Mac hine

As mentioned earlier, to get the dynamic instruction counts the compiler needsto produce

assembly code, instrument the code with additional instructions to collect measuresand

then link and execute the program. Currently , the compiler produces SPARC assembly.
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Consequently , it was not possibleto executethe code and get measureson a non-SPARC

architecture. It was observed that we can still get the static instruction counts (code size)

on a non-SPARC architecture. A small modi¯cation made to the compiler ensured that

it can now detect if the architecture is SPARC and if not then it only gets the code size

measures.This allows limited demonstration on a laptop.

55



Chapter 8

Related Work

Other researchers have developed systems that provide interactive compilation support.

Thesesystemsinclude the pat toolkit [13], the parafrase-2 environment [14], the e/sp sys-

tem [15], a visualization system developed at the University of Pittsburgh [16] , and SUIF

explorer [17]. Thesesystemsprovide support by illustrating the possibledependenciesthat

may prevent parallelizing transformations. A usercan inspect thesedependenciesand assist

the compilation systemby indicating if a dependencycan be removed. In contrast, VISTA

supports low-level transformations and user-speci¯ed changes,which are neededfor tuning

embeddedapplications.

A few low-level interactive compilation systemshave also beendeveloped. One system,

which is coincidentally also called VISTA (Visual Interface for Scheduling Transformations

and Analysis), allows a user to verify dependenciesduring instruction scheduling that may

prevent the exploitation of instruction level parallelism in a processor[18]. Selectiveordering

of di®erent optimization phasesdoesnot appear to bean option in their system. The system

that most resemblesour work is called VSSC (Visual Simple-SUIF Compiler) [19]. It allows

optimization phasesto be selectedat various points during the compilation process.It also

allows optimizations to be undone, but unlike our compiler only at the level of complete

optimization phasesas opposed to individual transformations within each phase. Other

featuresin our system,such assupporting user-speci¯ed changesand performancefeedback
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information, do not appear to be available in thesesystems.

There has beenprior work that usedaggressive compilation techniques to improve per-

formance. Superoptimizers have beendeveloped that usean exhaustive search for instruc-

tion selection [20] or to eliminate branches [21]. Iterativ e techniques using performance

feedback information after each compilation have beenapplied to determine good optimiza-

tion parameters (e.g., blocking sizes) for speci¯c programs or library routines [22, 23]. A

system using genetic algorithms to better parallelize loop nests has been developed and

evaluated [24]. Thesesystemsperform source-to-sourcetransformations and are limited in

the set of optimizations they apply. Selecting the best combination of optimizations by

turning on or o® optimization °ags, as opposedto varying the order of optimizations, has

beeninvestigated [25]. A low-level compilation system developed at Rice University usesa

geneticalgorithm to reducecode sizeby ¯nding e±cient optimization phasesequences[11].

However, this system is batch oriented instead of interactive, concentrated primarily on

reducing code size and not execution time, and is designedto use the sameoptimization

phaseorder for all of the functions within a ¯le.
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Chapter 9

Future Work

There is much future work to consider on the topic of selecting e®ective optimization se-

quences. It would be informativ e to obtain measurements on a real embedded systems

architecture. However, most of these systemsonly provide execution time measurements

via simulation on a host processor. The actual embedded processormay often not be

available or downloading the executableonto the embedded machine and obtaining mea-

surements may not be easily automated. The overhead of simulating programs to obtain

speed performance information may be problematic when performing large searches using

a genetic algorithm, which would likely require thousands of simulations. One option is

to translate the assembly produced for the embedded machine to an equivalent assembly

program on a host processor. This assembly can be instrumented in order to produce a

dynamic instruction count of each basicblock when executed. An estimation of the number

of CPU cyclesfor each basic block can be multiplied by the count to give a responsive and

reasonablyaccurate measureof dynamic performanceon an embeddedprocessorthat does

not have a memory hierarchy.

Another area of future work is to vary the characteristics of the experiments. We only

obtained measurements for 100 generationsand a optimization sequencethat is 1.25 times

the length of the successfullyapplied batch optimization sequence.It would be interesting

to seehow performance improves as the number of generations and the sequencelength
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increases.The actual crossover and mutation operations could also be varied. In addition,

the set of candidate optimization phasescould be extended. Finally, the set of benchmarks

evaluated could be increased.

All of the experiments in our study involved selectingoptimization phasesequencesfor

entire functions. We have the abilit y in VISTA to limit the scope of an optimization phase

to a set of basic blocks. It would be interesting to perform genetic algorithm searches for

di®erent regionsof codewithin a function. For frequently executedregionswecould attempt

to improve speedand for infrequently executedregionswe could attempt to improve space.

Selecting sequencesfor regions of code may result in the best measureswhen both speed

and sizeare considered.
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Chapter 10

Conclusions

There are several contributions that we have presented in this thesis. First, we have devel-

oped an interactive compilation system that automatically provides performancefeedback

information to a user after each successfullyapplied optimization phase. This feedback

allows a user to gaugethe progresswhen tuning an application. Second,we allow a user to

interactively selectstructured constructs for applying optimization phasesequences.These

constructs allow the conditional or iterativ e application of optimization phases. In e®ect,

we have provided an optimization phaseprogramming language. Third, we have provided

constructs that automatically selectoptimization phasesequencesbasedon the speci¯ed ¯t-

nesscriteria. A user can enter speci¯c sequencesand the compiler will choosethe sequence

that producesthe best result. A user can also specify a set of optimization phasesalong

with options for exploring the search spaceof possiblesequences.The user is provided with

feedback describingthe progressof the search and may abort the search and acceptthe best

sequencefound at that point.

We have also performed a number of experiments to illustrate the e®ectivenessof using

a genetic algorithm to search for e±cient sequencesof optimization phases. We found

that signi¯cantly di®erent sequencesare often best for each function even within the same

program or module. We showed that the bene¯ts can di®erdepending on the ¯tness criteria

and that it is possible to use ¯tness criteria that takes both speed and size into account.
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While we demonstrated that iterativ ely applying optimization phasesuntil no additional

improvements are found in a batch compilation can mitigate many phaseordering problems

with regard to dynamic instruction count, we found that dynamic improvements could still

be obtained from this aggressive baselineusing a genetic algorithm to search for e®ective

optimization phasesequences.

An environment that allows a user to easily tune the sequenceof optimization phases

for each function in an embedded application can be very bene¯cial. The VISTA system

supports tuning of applications by providing the abilit y to supply performance feedback

information, selectoptimization phases,and automatically search for e±cient sequencesof

optimization phases. Embedded programmers often resort to coding in assembly to meet

stringent constraints on time, size,and power consumption. Besidesusing VISTA to obtain

a more e±cient executable, such an environment may encouragemore users to develop

applications in a high level language,which can result in software that is more portable,

more robust, and lesscostly to develop and maintain.
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App endix A

Overview of Genetic Algorithms

A.1 In tro duction

Genetic Algorithms (GAs) are a family of computational models inspired by evolution.

Thesewere invented by John Holland in the 1960'sand were developed by Holland and his

students and colleaguesat the University of Michigan in the 1960'sand 1970's. In contrast

with evolution strategiesand evolutionary programming, Holland's original goal was not to

designalgorithms to solve speci¯c problems, but rather to formally study the phenomenon

of adaptation asit occurs in nature and to develop ways in which the mechanismsof natural

adaptation might be imported into computer systems. Holland's 1975book Adaptation in

Natural and Arti¯cial Systems presented the genetic algorithm as an abstraction of bio-

logical evolution and gave a theoretical framework for adaptation under the GA. Holland's

GA is a method for moving from one population of chromosomes(e.g., strings of onesand

zeros,or "bits") to a new population by using a kind of natural selection together with the

genetics-inspiredoperators of crossover, mutation, and inversion.

In the 1950sand the 1960sseveral computer scientists independently studied evolu-

tionary systems with the idea that evolution could be used as an optimization tool for

engineeringproblems. The idea in all these systemswas to evolve a population of candi-

date solutions to a given problem, using operators inspired by natural geneticvariation and
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natural selection. Holland's intro duction of a population-based algorithm with crossover,

inversion,and mutation wasa major innovation. Moreover, Holland wasthe ¯rst to attempt

to put computational evolution on a ¯rm theoretical footing. Until recently this theoret-

ical foundation, based on the notion of schemas, was the basis of almost all subsequent

theoretical work on genetic algorithms.

The mechanisms of evolution and adaptation seem very well suited for some of the

most pressingcomputation problems in many ¯elds. Many computational problemsrequire

searching through a huge number of possibilities for solutions. One example is the problem

of computational protein engineering,in which an algorithm is sought that will search among

the vast number of possibleamino acid sequencesfor a protein with speci¯ed properties.

What is neededin such casesis both computational parallelism and an intelligent strategy

for choosing the next set of sequencesto evaluate. Many computational problems also

require a computer program to be adaptive - to continue to perform well in a changing

environment. This can be seenin some computer interfaces which need to adapt to the

idiosyncrasiesof di®erent users. Biological evolution is an appealing sourceof inspiration

for addressing these problems. Evolution is, in e®ect, a method of searching among an

enormousnumber of possibilities for solutions. In biology the enormousset of possibilities

is the set of possiblegenetic sequences,and the desired solutions are highly ¯t organisms

- organismswell able to survive and reproduce in their environments. Evolution can also

be seenas a method for designing innovative solutions to complex problems. For example,

the mammalian immune system is a marvelous evolved solution to the problem of germs

invading the body. Seenin this light, the mechanismsof evolution can inspire computational

search methods.

A.2 Biological Terminology

All living organisms consist of cells, and each cell contains the same set of one or more

chromosomes(strings of DNA) that serve as a blueprint for the organism. A chromosome

can be conceptually divided into genes(functional blocks of DNA), each of which encodes
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a particular protein. Very roughly, one can think of a geneas encoding a trait, such as eye

color. The di®erent possiblesettings for a trait (e.g., blue, brown, hazel) are called alleles.

Each geneis located at a particular locus (position) on the chromosome.

Many organisms have multiple chromosomesin each cell. The complete collection of

genetic material (all chromosomestaken together) is called the organism's genome. The

term genotype refers to the particular set of genescontained in a genome.Two individuals

that have identical genomesare said to have the samegenotype. The genotype gives rise,

under fetal and later development, to the organism's phenotype - its physical and mental

characteristics, such as eye color, height, brain size,and intelligence.

During sexual reproduction, recombination (or crossover) occurs: in each parent, genes

are exchangedbetweeneach pair of chromosomesto form a gamete(a single chromosome),

and then gametesfrom the two parents pair up to create a full set of diploid chromosomes.

O®spring are subject to mutation, in which single nucleotides (elementary bits of DNA)

are changedfrom parent to o®spring,the changesoften resulting from copying errors. The

¯tness of an organism is typically de¯ned as the probabilit y that the organism will live to

reproduce(viability ) or asa function of the number of o®springthe organismhas(fertility ).

In genetic algorithms, the term chromosometypically refers to a candidate solution to

a problem, often encoded as a bit string. The genesare either single bits or short blocks of

adjacent bits that encode a particular element of the candidate solution (e.g., in the context

of multi-parameter function optimization the bits encoding a particular parameter might

be consideredto be a gene). An allele in a bit string is either 0 or 1; for larger alphabets

more alleles are possibleat each locus. Crossover typically consistsof exchanging genetic

material between two single-chromosomeparents. Mutation consistsof °ipping the bit at

a randomly chosen locus (or, for larger alphabets, replacing a the symbol at a randomly

chosenlocus with a randomly chosennew symbol). The genotype of an individual in a GA

using bit strings is simply the con¯guration of bits in that individual's chromosome.
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A.3 A Simple Genetic Algorithm

Given a clearly de¯ned problem to be solved and a bit string representation for candidate

solutions, a simple GA works as follows:

1. Start with a randomly generatedpopulation of n l -bit chromosomes(candidate solu-

tions to a problem).

2. Calculate the ¯tness f (x) of each chromosomex in the population.

3. Repeat the following stepsuntil n o®springhave beencreated:

(a) Selecta pair of parent chromosomesfrom the current population, the probabil-

it y of selection being an increasing function of ¯tness. Selection is done with

replacement meaning that the samechromosomecan be selectedmore than once

to becomea parent.

(b) With probabilit y Pc (the "crossover probabilit y" or "crossover rate"), crossover

the pair at a randomly chosenpoint (chosenwith uniform probabilit y) to form

two o®spring. If no crossover takesplace,form two o®springthat are exact copies

of their respective parents. (Note that here the crossover rate is de¯ned to be

the probabilit y that two parents will crossover in a single point. There are also

"multi-p oint crossover" versionsof the GA in which the crossover rate for a pair

of parents is the number of points at which a crossover takesplace).

(c) Mutate the two o®springsat each locuswith probabilit y pm (the mutation prob-

abilit y or mutation rate), and place the resulting chromosomesin the new pop-

ulation.

4. Replacethe current population with the new population.

5. Go to step 2.

Each iteration of this processis called a generation. A GA is typically iterated for

anywhere from 50 to 500 or more generations. The entire set of generations is called
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a run. At the end of a run there are often one or more highly ¯t chromosomesin the

population. Sincerandomnessplays a large role in each run, two runs with di®erent random-

number seedswill generally produce di®erent detailed behaviors. GA researchers often

report statistics (such as the best ¯tness found in a run and the generation at which the

individual with that best ¯tness was discovered) averagedover many di®erent runs of the

GA on the sameproblem.

A.4 Some Applications of Genetic Algorithms

The version of the genetic algorithm described above is very simple, but variations on the

basic theme have been used in a large number of scienti¯c and engineeringproblems and

models. Somecommon applications are:

Optimization: GAs have been used in a wide variety of optimization tasks, including

numerical optimization and such combinatorial optimization problemsascircuit layout

and job-shop scheduling.

Automatic programming: GAs have beenusedto evolve computer programsfor speci¯c

tasks, and to design other computational structures such as cellular automata and

sorting networks.

Mac hine learning: GAs have beenusedfor many machine learning applications, includ-

ing classi¯cation and prediction tasks, such as the prediction of weather or protein

structure. GAs have also beenused to evolve aspects of particular machine learning

systems,such as weights for neural networks, rules for learning classi¯er systemsor

symbolic production systems,and sensorsfor robots.

Economics: GAs have been used to model processesof innovation, the development of

bidding strategies,and the emergenceof economicmarkets.

Imm une systems: GAs have beenusedto model various aspects of natural immune sys-

tems, including somatic mutation during an individual's lifetime and the discovery of
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multi-gene families during evolutionary time.

Ecology: GAs havebeenusedto model ecologicalphenomenasuch asbiological armsraces,

host-parasite coevolution, symbiosis, and resource°ow.

Population genetics: GAs have beenusedto study questionsin population genetics,such

as "Under what conditions will a genefor recombination be evolutionarily viable?"

Ev olution and learning: GAs have been used to study how individual learning and

speciesevolution a®ectone another.

Social systems: GAs have beenusedto study evolutionary aspectsof social systems,such

asthe evolution of social behavior in insect colonies,and, moregenerally, the evolution

of cooperation and communication in multi-agent systems.
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App endix B

An Implemen tation of a Genetic

Algorithm

We have implemented a version of the genetic algorithm for use during the select best

combination construct in VISTA. The algorithm employed is listed in this chapter.

When the biased sampling search option is selected during select best combination,

VISTA also allows the user to specify the parameters for the genetic algorithm, namely

the number of chromosomes(population size) and the number of generations. Let the user

specify numbersm and n for the population sizeand the number of generationsrespectively.

The algorithm then works as follows:

1. Create an initial population of m chromosomes(optimization sequences)by randomly

choosing optimizations in each sequence.

2. Compute a ¯tness value for each chromosome.To do this, the optimization sequence

de¯ned by the chromosomeis applied to the function being compiled. The resulting

code is instrumented with instructions to calculate the static and dynamic counts.

This instrumented code is executedand the static and dynamic counts are collected.

The ¯nal ¯tness value depends on the relative weights assignedby the user to the

static and dynamic counts respectively.
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3. The chromosomesare sorted by ¯tness valuesfrom lowest to highest. The population

is split into a lower and upper half, basedon ¯tness value, each half consistingof m=2

chromosomes. The upper half consistsof m=2 chromosomeswith the lowest ¯tness

value. (Note that for our casethe lower the ¯tness value the better, since we are

interested in lowering both the static code sizeand dynamic instruction count.)

4. The chromosomewith the highest ¯tness value (worst performance) is removed from

the population. m=5¡ 1 additional chromosomesare chosenat random from the lower

half of the population and removed.

5. To ¯ll the vacanciesin the population, new chromosomesare generated using the

crossover operation. Two parent chromosomesare randomly chosenfrom the upper

half of the population. The ¯rst half of one chromosomeis concatenatedwith the

secondhalf of the other chromosomeand vice versa,creating two new chromosomes.

This operations is performed as many times as required to ¯ll all the vacancies.

6. The m ¡ m=5 chromosomesnot altered during the previous step are subjected to

mutation. The best performing chromosomeis also exempted from mutation. For

each such chromosome,each geneis considered. For a chromosomein the lower half

of the population, mutation occurs with a probabilit y of 0:1 (or 10 percent). For a

chromosomein the upper half of the population, the probabilit y of mutation is reduced

to 0:05 (or 5 percent). To mutate a gene,it is replacedwith a randomly selectedgene.

This processis repeated for n generations,and we keep track of the best chromosome

found over the courseof the run.
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App endix C

Proto cols of Compiler-View er

Messages

Below is a de¯nition of the protocolsof the messagestransferred betweenthe viewer and the

compiler. Words in upper casedenote constants usedin either the compiler or the viewer.

1. Messagessent when VISTA is started

Viewer Compiler

< USER_INTERACT

< BEGINFUNCTION{function name}

SANITY_CHECK/ ABORT_VPO >

TRUE/ FALSE >

< {base nameof source file}

< {send basic blocks}

< ENDINITSET

< [ {initial transformations

from the .trans file}

ENDSEQ ]
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< [ BEGINFREQ

{send frequency measures}

ENDFREQ ]

2. Proceedto the next function (when next function exists)

NEXT_FUNC >

QUIT_TRANS >

< ENDFUNCTION

< BEGINFUNCTION{function name}

SANITY_CHECK/ ABORT_VPO >

TRUE/ FALSE >

< {base nameof source file}

< {send basic blocks}

< ENDINITSET

< [ {initial transformations

from the .trans file}

ENDSEQ ]

< [ BEGINFREQ

{send frequency measures}

ENDFREQ ]

3. Proceedto the next function (next function doesnot exist)

NEXT_FUNC >

QUIT_TRANS >

< ENDVIEW

STOP_TRANS >

QUIT_TRANS >

< {compiler exits}
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4. Discard changesafter current state

UNDO_TRANS{number of trans} >

QUIT_TRANS >

< [ BEGINFREQ

{send frequency measures}

ENDFREQ ]

5. Show loop information

LOOPS_QUERY >

QUIT_TRANS >

< {loops information}

< ENDSEQ

6. Sanity Check

SANITY_CHECK_REQUEST >

QUIT_TRANS >

< {basic block information}

< ENDSEQ

7. Get FrequencyInformation

FREQUENCY_REQ >

QUIT_TRANS >

< [ CHANGE_TEST_CONFIG_ID

{send initial values in file}

ENDSEQ

{send new config values} >

QUIT_TRANS ]

< BEGINFREQ
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< {send frequency measures}

< ENDFREQ

8. Start measurements

START_MEASUREMENT >

QUIT_TRANS >

< [ CHANGE_TEST_CONFIG_ID

{send initial values in file}

ENDSEQ

{send new config values} >

QUIT_TRANS ]

< BEGINFREQ

< {send frequency measures and set flag}

< ENDFREQ

9. Create / Modify test con¯guration ¯le

CHANGE_CONFIG_FILE >

QUIT_TRANS >

< CHANGE_TEST_CONFIG_ID

< {send initial values in file}

< ENDSEQ

{send new config values} >

QUIT_TRANS >

10. Specifying optimization phasesequences

{list of selected blocks} >

{list of optimization phases} >

QUIT_TRANS >
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< {sequence of changes}

< ENDSEQ

11. Exit

STOP_TRANS >

QUIT_TRANS >
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