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Abstract

This thesis describes the support provided in VISTA for finding effective sequences of op-

timization phases. VISTA is a software tool for a compiler which supports an interactive

compilation paradigm. It has long been known that a single ordering of optimization phases

will not produce the best code for every application. This phase ordering problem can be

more severe when generating code for embedded systems due to the need to meet conflict-

ing constraints on time, code size and power consumption. Given that many embedded

application developers are willing to spend time tuning an application, we believe a viable

approach is to allow the developer to steer the process of optimizing a function. With this

in mind, we have enhanced VISTA with many new features and programming-language-like

constructs. VISTA also provides the user with dynamic and static performance information

that can be used during an interactive compilation session to gauge the progress of improv-

ing the code. In addition, VISTA provides support for automatically using performance

information to select the best optimization sequence among several attempted. One such

feature is the use of a genetic algorithm to search for the most efficient sequence based on

specific fitness criteria. This thesis also includes a number of experimental results that eval-

uate the effectiveness of using a genetic algorithm in VISTA to find effective optimization

phase sequences.
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Chapter 1

Introduction

The phase ordering problem has long been known to be a difficult dilemma for compiler

writers [1]. A single sequence of optimization phases is unlikely to produce optimal code

for every application (or even each function within an application) on a given machine. A

particular optimization phase may provide or prevent opportunities for improvements by

a subsequent optimization phase. Some optimizations can provide opportunities for other

optimizations to be applied. For instance, register allocation replaces load and store in-

structions with register-to-register moves, which in turn provides many opportunities for

instruction selection. Likewise, some optimizations can eliminate opportunities for other

optimizations. One example of this situation is when register allocation may consume the

last available register within a specific region of code, which would prohibit other optimiza-

tions that require registers from being applied in that region. Whether or not a particular

optimization enables or disables opportunities for subsequent optimizations is difficult to

predict since it depends on the application being compiled, the previously applied optimiza-

tions, and the target architecture [2].

The problem of ordering optimization phases can be more severe when generating code

for embedded applications. Many applications for embedded systems need to meet con-

straints on time, code size, and power consumption. Often an optimization that could

improve one aspect (e.g., speed) can degrade another (e.g., size) [3]. For example, many
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loop transformations may reduce execution time and increase code size. In fact, it may

be desirable on many systems to enhance execution time for the frequently executed code

portions and reduce code size for the less frequently executed portions. In addition, em-

bedded microprocessors often have irregular instruction sets with small register files that

can quickly be exhausted during the compilation. Exploiting special purpose architectural

features may require other optimizations to be performed. Thus, embedded systems are

more likely to be sensitive to the order in which optimization phases are applied.

The traditional compilation framework has a fixed order in which the optimization

phases are applied and there is no control over individual transformations, except for com-

pilation flags to turn code-improving transformations on or off. The compilation framework,

called VISTA (VPO Interactive System for Tuning Applications) [4], gives the application

user the ability to finely control the code-improvement process. It, however, failed to pro-

vide the user with a structured language, at a high level, for specifying the optimization

phases. In the later sections we will see a number of control statements added to VISTA

which now enables the user to better steer the code-improvement process. Such statements

provide the user with more control in specifying the order of optimization phases.

Also, the earlier version of VISTA provided no feedback to the user by which he/she can

gauge the code improvement results. In such cases, it is impossible for the user to conclude

if a particular optimization sequence is the best for that region of code or even to infer if

the performance goals set for that program have actually been met (even if the optimization

sequence applied is not best one). In this thesis, we have provided two different solutions for

this problem. The first solution, which we call Interactive Performance Driven Code Tuning

requires user knowledge and intuition to steer the compilation process in the right direction

and produce efficient code. In this approach the user manually applies the transformations,

but gets regular feedback from the compiler regarding the performance of the resulting code

at each stage. These performance statistics make it easier to decide on the next step in the

code improvement process. VISTA also allows the user to undo previous transformations,

which facilitates experimentation with different optimization sequences. We call the other

approach Automatic Performance Driven Code Tuning, where the compiler looks at different
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sequences of optimizations and based on their performances it automatically selects the best

one and then applies it to the program. To support this feature we have added two new

constructs to VISTA, called select best sequence and select best combination. It should

be noted that given any set of optimization phases, the number of different orderings can

potentially be exponential. Evaluating an exponential number of sequences is not likely

to be feasible in a majority of cases. In this report we also discuss ways in which we have

attempted to effectively probe the search space to quickly obtain an acceptable optimization

sequence.

The first section of this report familiarizes the reader with some existing technologies

which were used during its creation. The next section describes how the performance

feedback measures can be obtained and its implementation. The next two sections discuss

the support provided in VISTA for interactive and automatic performance-driven code

tuning. This is followed by some experimental results which demonstrate the usefulness of

this work. In the following section, some interesting implementation issues are presented.

The final sections are devoted to a discussion of related work and scope for future work.
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Chapter 2

VPO, EASE and VISTA

Framework

VPO and EASE are central to the success of this work, and this chapter will give an overview

of the essential principles of both of these techniques. We will also describe the functionality

of VISTA from a user’s viewpoint.

Figure 1 illustrates the flow of information in VISTA and gives the reader a better

idea as to how VPO and EASE are associated with VISTA. The user initially specifies a

file to be compiled. The user then specifies requests through the viewer, which include

sequences of optimization phases, user-defined transformations, queries and performance

measures. The compiler performs the specified actions and sends the program representation

information back to the viewer. In response to a request to get performance measures, the

compiler in turn requests EASE to instrument the assembly with additional instructions to

get static and dynamic instruction counts. This instrumented code when executed returns

the performance counts. When the user chooses to terminate the session, VISTA saves

the sequence of transformations in a file so they can be reapplied at a later time, enabling

updates to the program in multiple sessions.
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Figure 1: VPO, EASE and VISTA interaction

2.1 VPO (Very Portable Optimizer)

VISTA’s optimization engine is based on VPO, as it has several properties that allowed

easy integration into VISTA. VPO employs a paradigm of compilation that has proven to be

flexible and adaptable - all code improving transformations are performed on a single target-

specific representation of the program [5], called RTLs (Register Transfer Lists). RTLs are a

low-level, machine and language independent representation that encodes machine-specific

instructions. The comprehensive use of RTLs in VPO has several important consequences.

One advantage of using RTLs as the sole intermediate representation is that the synthe-

sis phases of the compiler can be invoked in any order and repeatedly if necessary [6]. This

largely eliminates code inefficiencies often caused by the ordering of the phases. In con-

trast, a more conventional compiler system will perform optimizations on various different

representations. For instance, machine-independent transformations are often performed on

intermediate code and machine-dependent transformations are often performed on assembly

code. Local transformations (within a basic block) are often performed on DAG representa-

tions and global transformations (across basic blocks) are often performed on three-address

codes. Thus, the order in which optimizations are performed is difficult to change. To be of
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any practical use, an interactive compilation system like VISTA has be flexible enough to

allow the user to select optimization phases in an arbitrary order without many restrictions.

VPO, was ideally suited to this compilation framework. In addition, the use of RTLs allows

VPO to be largely machine-independent, yet efficiently handle machine-specific aspects such

as register allocation, instruction scheduling, memory latencies, multiple code registers, etc.

VPO, in effect, improves object code. Machine-specific optimizations are important because

it is a viable approach for realizing high-level language compilers that produce code that

effectively balances target-specific constraints such as code-density, power consumption and

execution speed.

The second advantage of using RTLs is that it is easily retargetted to a new machine. Re-

targetability is key for embedded microprocessors where chip manufacturers provide many

different variants of the same base architecture and some chips are custom designed for a

particular application. To target VPO to a new machine, one must write a description of

the architecture’s instruction set, which consists of a grammar and semantic actions. The

grammar is used to produce a parser that checks the syntax of an RTL, and accepts all legal

RTLs (instructions) and rejects all illegal RTLs. It is easier to write a machine description

for an instruction set than it is to write a grammar for a programming language. The task

is further simplified by the similarity of RTLs across machines, which permits a grammar

from one machine to be used as a model for a description of another machine. Since the

general RTL form is machine-independent, the algorithms that manipulate RTLs are also

machine-independent, which makes most optimization code machine independent. So the

bulk of VPO is machine- and language- independent. Overall, no more than 15 percent of

the code of VPO may require modification to handle a new machine or language.

The third advantage of VPO is that it is easily extended to handle new architectural

features as they appear. Extensibility is also important for embedded chips where cost, per-

formance and power consumption considerations often mandate development of specialized

features centered around a core architecture.

The fourth advantage of VPO is that VPO’s analysis phases (e.g. data flow analysis,

control flow analysis) were designed so that information is easily extracted and updated.
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This information can be useful to a user of interactive compilation system.

Finally, by using RTLs, the effect of an optimization can be easily understood since each

RTL represents an instruction on the machine. Thus, the impact that each transformation

has on performance can be easily grasped.

VISTA takes advantage of VPO’s strengths. VISTA can graphically display the low-

level representation of the program either in assembly or RTLs. The user can select the

type and the order of transformations to be performed because phase ordering problems are

to a great extent eliminated in VPO. Since RTLs are easily understood, it is useful to allow

users to see the transformations applied at each step in VISTA. Best of all, understandable

machine-independent RTLs make it easier for the users to specify the transformations by

hand to further exploit special features of an architecture.

2.2 EASE (Environment for Architecture Study and Exper-

imentation)

The EASE environment [7] is used in VISTA to collect performance measures at any stage

in the compilation process in order to evaluate the improvements in code size and number of

dynamic instructions executed at that stage. This gives the user a better perspective as to

if the sequence of optimizations applied are giving the expected benefits or if he should roll

back the changes and try some different sequence. The measures also indicate the portions

of the code which are more frequently executed, so the user could focus his attention on

improving that portion of the program. It also helps VISTA automatically determine the

best sequence of optimizations for a function.

The EASE environment was developed to integrate the tasks of translating a source

program to machine instructions for a proposed architecture, imitating the execution of

these instructions and collecting measurements. The environment, which is easily retarget-

ted and quickly collects detailed measurements, facilitates experimentation with a proposed

architecture and a compiler.

The first task in EASE is to translate the test programs to instructions for the proposed
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machine. This task is accomplished by VPO, which was described in the previous section.

The second task is imitating the execution of code for the proposed architecture. To be

able to evaluate an architecture, one should determine the effect of executing instructions

from representative test programs for the architecture. If the architecture has not yet

been implemented, then one must imitate this execution by other means. In the EASE

environment an instruction for the proposed machine can either be generated as an assembly

instruction for the proposed architecture or as one or more equivalent assembly instructions

for an existing architecture. This conversion of an RTL to assembly language is the last step

in the VPO compilation system. EASE can also be used to emulate architectural features

that are not directly equivalent to features on an existing architecture. For instance, it can

generate code for an architecture having more registers than the number of registers on the

host machine.

The final step is to extract measures for the proposed machine in order to evaluate the

new architecture’s performance. To accomplish this EASE modifies the back end of the

compiler to store the characteristics of the instructions to be executed and to instrument

the assembly code with instructions that will either count the number of times that each

instruction is executed or invoke a routine to record events that are dependent on the order

of the instructions executed. This method is illustrated in Figure 2.

UpdatesSystem
Front
 End

VPOVPO

   Code   Code

Optimized Intermediate

   Instruction
Characteristics

Code
Assembly 
Instrumented

File

Source

Figure 2: Method of Gathering Data in EASE

Many modifications were made to the VPO compiler system to support collecting mea-

surements. The first modification of VPO to produce code for collecting measurements is

to have the optimizer save the characteristics of the instruction that will be executed. As

each assembly instruction is produced, the characteristics of the instruction are also written
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to the assembly file. The second modification to VPO was to have the compiler instrument

the assembly code after all optimizations have occurred to either increment counters or

invoke measurement routines. Counters are used to obtain information that is independent

of the order in which the instructions are executed, such as the number of times each type

of instruction is executed. Measurement routines are invoked to record order-dependent

events, which includes trace generation and analysis of memory references.

In VISTA, the EASE environment is mainly used to instrument the assembly code with

instructions to determine the number of times each basic block is executed and to count the

number of instructions in a function. This instrumentation of code is then used to determine

the static and dynamic measures at any point in the compilation process. Comparing this

with previous measures gives us the current improvement as compared to the baseline where

no optimizations were performed.

2.3 VISTA (VPO Interactive System for Tuning Applica-

tions)

In this section we will review the VISTA framework, upon which the current work is

based. VISTA is a new code improvement paradigm that was initiated to achieve the

cost/performance trade-offs (i.e. size, power, speed, cost etc.) demanded for embedded

applications. A traditional compilation framework has a fixed order in which the code

improvement phases are executed and there is no control over individual transformations,

except for compilation flags to turn code improvement phases on or off. In contrast, VISTA

gives the application programmer the ability to finely control the code-improvement process.

The developers of VISTA had the following goals when developing the VISTA compi-

lation framework. First, the user should be able to direct the order of the compilation

phases that are to be performed. The order of the code-improvement phases in a typi-

cal compiler is fixed, which is unlikely to be the best order for all applications. Second,

hand-specified transformations should be possible. For instance, the user may provide a

sequence of instructions that VISTA inserts and integrates into the program. Third, the

9



user should be able to undo code-improving transformations previously applied since a user

may wish to experiment with other alternative phase orderings or types of transformations.

In contrast, the effects of a code transformation cannot be reversed once it is applied in a

typical compiler. Finally, the low-level program representation should appear in an easily

readable display. The use of dynamically allocated structures by optimizing compilers and

the inadequate debugging facilities of conventional source level symbolic debuggers makes it

difficult for a typical user to visualize the low-level program representation of an application

during the compilation process. To assist the user when interacting with the optimization

engine, VISTA should provide the ability for the user to view the current program represen-

tation and any relevant compilation state information (i.e. live registers, available registers,

def-use information etc.) and performance metrics.

In addition to achieving these goals, VISTA was shown to have several other uses. First,

VISTA can assist the compiler writer to develop new low-level code-improving transforma-

tions. The ability to specify transformations by hand and obtain performance measurements

can help a compiler writer to prototype new low-level code-improving transformations. The

ability of viewing low-level representations can help a compiler writer diagnose problems

when developing new transformations. Second, it can help compiler writers understand

the interactions and interplay of different optimizations. Finally, an instructor or educator

teaching compilation techniques can use the system to illustrate code-improving transfor-

mations to students.

VISTA provides the user with the functionality for viewing the low-level representation,

controlling when and where optimization phases are applied, specifying code-improving

transformations by hand, reviewing previously applied transformations, reversing previously

applied changes, proceeding to the next function and supporting multiple sessions. In

addition, the user may wish to collect some preliminary results about the performance of

the generated code, which can be accomplished by producing assembly that is instrumented

with additional instructions that collect a variety of measurements during the program’s

execution. VISTA also allows the user to limit the scope in which an optimization phase

will be applied. The scope can be a loop or a set of basic blocks. The user can first tune
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critical portions of a function, and then use the resources (e.g. registers) that remain to

optimize the rest of the function.

We have made several important enhancements to VISTA that facilitate the selection

of effective sequences of optimization phases. These enhancements include automatically

obtaining performance feedback information, the use of structured statements for applying

optimization phases, and the automatic evaluation of performance information for selecting

optimization phase sequences. These enhancements are described in the following sections

of this report.
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Chapter 3

Interactively Obtaining

Performance Information

The ability for a user to acquire a measure of the performance of the program being com-

piled is a very important feature for any environment providing interactive compilation.

Examining the performance measures at various stages during the compilation can give the

user a clear image of how the code improvement process is progressing. In fact, actual pro-

gram performance measures is the only concrete basis the user has when hand tuning the

code. It can also indicate to the user if he/she can stop the optimization process, when the

performance delivered by the program has reached the desired level. VISTA gives the user

the option to get both the static and dynamic performance counts at any stage at the click

of a button. Here, static counts mean the count of the number of static instructions in that

function, i.e. an indication of the code size when each instruction is the same size. Dynamic

counts imply the number of instructions executed during a particular run of the program on

some representative input data (which the user has to provide). More accurate measures,

such as operation or simulation times, could also potentially be used. VISTA also tells the

user the percentage of time each basic block is executed, so that the user can concentrate

his attention to the more critical portions of the code, like the blocks comprising the inner

loops in that function. This can be easily accomplished in VISTA by restricting the scope
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of the optimizations to only those critical blocks.

3.1 Options in VISTA to get Measures

Figure 3 shows the options provided in VISTA, which include the two options which enable

the user to get performance counts at any stage. These options are:

Figure 3: Measurement Options in VISTA

1. Get Frequency Measures: Selecting this option commands the compiler to immedi-

ately execute the program once and get the frequency of execution of each basic block.

The program is executed using sample input which the user must provide. The com-

piler sends a count of the number of times each basic block is executed, which the

viewer reads and converts into percentages. These are then displayed at the top of

each basic block (see figure 4). This allows the user to identify the critical regions of

a function.

2. Start/Stop Measurements: This option allows the user to obtain both the static and

dynamic counts after every optimization phase. This is a toggle option, which allows

the measurement process to be stopped/resumed at any point. When measurements
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are started, the compiler executes the program once and records the static and dy-

namic measures at that stage, which are used as the baseline measures. After each

optimization phase the program is again executed and measures are collected. These

are sent to the viewer which in turn compares them with the baseline measures taken

at the start of the measurement process. The relative improvements in code size

and instructions executed are then displayed in the viewer window. This information

allows the user to quickly gauge the progress that has been made in improving the

function. The viewer still displays the execution frequency of each basic block (see

Figure 4).

Figure 4: VISTA with Measurements Turned On After Each Phase
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3.2 Specifying Configuration File

As mentioned earlier, to get the dynamic measures the user has to provide VISTA with

a set of commands to link and execute the program and produce the output file. This

information is assumed, by VISTA to be present in a file, before the user specifies any

measurements. In case VISTA is unable to find this file, it prompts the user to enter the

required information at the very start of the measurement process. The window that is

opened is shown in Figure 5.

Figure 5: Test Configuration Window

The fields in this window are:

Link Command: This is the command to be used to link the current file and produce an

executable. If this file requires other source files or libraries to be linked, then these

also have to be specified here.

Desired Output File: This is the output data that should be produced whenever this

program is executed. The compiler assumes that such correct output data is provided

to it, so that it can compare the ”current output data” with the ”known correct

output data” and check for inconsistencies. This is very important especially for a

new transformation, to ensure that the output produced is correct. The compiler

must never perform a transformation that results in incorrect output.
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Actual Output File: This is the name of the output file produced after running the

executable.

Execute Command: This command is used to execute the program and produce the

output file.

Max. Execution Time: An incorrect program transformation, performed by the com-

piler, may result in the program going into an infinite loop. This is certainly undesir-

able. This field specifies the maximum time the compiler should allow the program to

finish executing. If, by this time the program has not finished, then it is terminated.

On termination, the compiler assumes that the program state is incorrect and the

user is notified.

3.3 Getting Performance Measures

When the compiler gets a request to determine the performance measures, it performs a

series of steps as shown in the Figure 6. In case the program consists of multiple input

files, which need to be linked together to produce the executable, the user must ensure that

an instrumented assembly file (.inst.s file) corresponding to each input file is present before

the measurement process is initiated. This can be done by simply running each input file

through the interactive compiler without performing any optimizations.

The compiler always stores a pointer to the start of the current function in the current

input file (.cex file), which is produced by the code expander. No optimizations have been

performed on this file. For each function, the compiler always generates both the assembly

code (in the .s file) and the instrumented assembly code (in the .inst.s file), which is the

assembly code instrumented with additional instructions to collect performance measures.

At the start of the measurement process, the instrumented assembly file generated at that

point (for the preceding functions) is stored as the compiler would now need to generate

assembly for the remaining functions in the file in order to be able to execute the program.

Later, after the program is executed and measurements taken, the stored instrumented
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Figure 6: The Measurement Process

assembly file is again renamed to the current output file. We also have to store the list

of transformations applied to this function up to that point so that they can be reapplied

after getting the measurements, to get back to the same program state as it was before the

current measurement process.

There are some required transformations that have to be always performed before assem-

bly code for a function can be generated. These are register assignment and fix entry-exit.

Temporary values are initially stored in pseudo registers by the code expander. These

have higher numbers than the hardware registers. The register assignment phase assigns

pseudo registers to the hardware registers. Also, after most optimizations have been ap-

plied, typically several adjustments have to be made to the entry and exit points of a
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function. These adjustments include allocating/deallocating space on the run-time stack

and saving/restoring registers. This is done in the fix entry-exit phase. Thus, it is obvious

that correct assembly code cannot be generated unless these compulsory phases have been

applied. It may be possible that these have not been performed on the current function

as yet. Before outputting assembly for measurements, we check if these phases have been

applied and if not they are performed now.

The instrumentation of code by EASE is done as the next stage. As explained in an

earlier section, to take measurements, the EASE environment instruments the code with

additional instructions, which among other things increment counters associated with each

basic block. The instrumented assembly is output to an instrumented assembly file. After

code for the function is generated, all the data structures for holding the state of this

function are cleared and re-initialized. We now have to read in the remaining functions in

the file, apply the required transformations (register assignment and fix entry-exit) for each

remaining functions and output the assembly.

We now have an assembly file instrumented with additional instructions by EASE and

ready to be executed. The configuration file containing the link and execute commands,

described earlier, is opened and commands read. The assembly file is linked and then

executed. Upon execution, the instrumented EASE code in the function produces a new

counts (.cnt) file containing measurement information. This file can be directly read and

interpreted to extract the frequency counts and number of executable instructions in each

basic block. Alternatively, we have a program called genreport which does this work for us

and produces the output in report format. The static and dynamic counts for each function

in the file are displayed here. The frequency counts for each individual basic block still have

to be read directly from the counts file.

We now have to get back to the same exact state for the current function as it was when

measurements were initiated. The stored pointer to the current function in the input file

is used to do a file seek to reset the file pointer and the function is read back into VPO’s

internal data structures. The user might have applied some transformations to this function

before he started the measurement phase. These transformations have to be performed as
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well. The compiler stores the transformations, not as individual phases (like instruction

selection), but as a sequence of small changes during each phase (like delete RTL, insert

RTL, modify RTL etc.). This is done so that the user can view each individual change

applied to the function in the viewer and to also support manually specified transformations.

After these changes are reapplied the function is set to the same state as it was when we

started the measurement. The measures are then sent to the viewer, which displays it in

its windows.

Figure 4 shows a snapshot of the viewer with a history of the sequence of optimization

phases displayed. Note that not only is the number of transformations associated with each

optimization phase displayed, but also the improvements in instructions executed and code

size are shown.
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Chapter 4

Support For Interactive Code

Tuning

In conventional compilers a programmer has little control over the order in which code-

improving transformations are applied. It has been shown that a fixed sequence of opti-

mizations may not produce optimal code for all programs, or even for individual functions in

a program. The problem of automatically generating acceptable code for embedded micro-

processors is much more complicated than for general-purpose processors. First, embedded

applications are optimized for a number of conflicting constraints. In addition to speed,

other common constraints are code size and power consumption. An optimization sequence

tuned for producing faster code, may in fact increase the code size, which may be unde-

sirable. For many embedded applications, code density and power consumption are often

more critical than speed. In fact, in many applications, the conflicting constraints of speed,

code density and power consumption are managed by the software designer writing and

tuning assembly code. Unfortunately, the resulting software is less portable, less robust,

and more costly to develop and maintain.

Automatic compilation for embedded microprocessors is further complicated because

embedded microprocessors often have specialized architectural features that make code im-

provement and code generation difficult [8, 9]. While some progress has been made in
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developing compilers and embedded software development tools, many embedded appli-

cations still contain substantial amounts of assembly language because current compiler

technology cannot produce code that meets the cost and performance goals for the appli-

cation domain. The code improvement paradigm provided by VISTA, has the potential to

achieve the cost/performance trade-offs demanded for embedded applications. The earlier

version of VISTA [4] provided support for interactive code optimization. In this section,

we describe the feedback-based interactive performance tuning provided in this version of

VISTA.

4.1 Getting Performance Measures

The earlier version of VISTA, enabled the user to specify a sequence of optimizations in

any order supported by the compiler and also allowed some user-specified transformations

(e.g. for exploiting advanced architectural features which the compiler does not). But, it

did not automatically give the user any feedback about the improvements in code produced

after applying the optimizations. Whenever measurements are needed, an instrumented

executable for the program has to be produced, executed and measures are obtained as

explained in the previous section. In the earlier version of VISTA, a user could accomplish

this in a series of steps. First, after applying the desired sequence of optimizations, VISTA

is exited causing the instrumented assembly file to be produced. Next, commands are issued

to assemble, link and execute the program. This will produce the counts file containing the

frequency of execution of each basic block. Next time VISTA is re-invoked it will auto-

matically reapply the previous transformations to reach the same point in the compilation.

Also, now it will detect the presence of the counts file, and will send that information to the

viewer. The viewer displays relative execution frequency of each basic block in that block’s

header.

We felt the need to automate this process in order to give the user instant feedback

regarding the program’s performance after each transformation, or whenever the program-

mer felt necessary. This ability is provided by the two options, described in the previous
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section, namely:

1. Start/Stop measurements: Start getting code-size and instruction count measure-

ments after each transformation phase.

2. Get Frequency Measures: Get the relative execution frequency of each basic block

at any stage during the compilation process.

Thus, the programmer now does not have to rely on pure intuition to guide the code

improvement process. The instant performance feedback provided by VISTA alleviates the

programmer’s job of transforming the program to one which gives acceptable performance.

Currently the viewer shows improvements in both the code size as well as dynamic instruc-

tion counts. It should be possible to display relative improvements based on any other

criteria.

4.2 New Constructs in VISTA

We also found that it is useful to conditionally invoke an optimization phase based on

whether a previous optimization phase caused any changes to the program representation.

The application of one optimization phase often provides opportunities for another opti-

mization phase. Such a feature allows a sequence of optimization phases to be applied

until no more improvements can be found. Likewise, an optimization phase that is unlikely

to result in code-improving transformations unless a prior phase has changed the program

representation can be invoked only if changes occurred, which may save compilation time.

Prior support in VISTA for conditionally applying optimization phases was only a low-

level branch operation (i.e. if changes goto <label>) [4]. We now provide support for

testing if changes have occurred in the form of four structured control statements which the

user can interactively specify.

1. if-changes-then: This statement is similar to the if-then-endif construct in higher level

programming languages. It performs the optimizations specified in the then block only
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if the transformation immediately preceding the if produces changes to the program

representation. This is converted by the viewer into a low-level sequence of requests:

if-changes-then :: <IF-FALSE-GOTO-TRANS>

transforms in if-block

The compiler interprets this to mean that if changes (in the previous phase) is false,

then jump over the number of transforms in if-block.

2. if-changes-then-else: This statement is similar to the if-then-else construct. Depend-

ing on if the phase preceding the if produces changes, either the then branch is taken

or the else branch is taken. The low-level sequence corresponding to this construct is:

if-changes-then-else :: <IF-FALSE-GOTO-TRANS>

transforms in if-block

<GOTO-TRANS>

transforms in else block

This tells the compiler that if changes (in the preceding phase) is false then jump over

the transformations in the if-block and directly go to the transforms in the else-block.

If changes is true, then the transformations in the if-block will be performed and then,

on encountering the unconditional goto, control will be transferred to the transform

after the else-block.

3. do-while-changes: This statement is a looping construct similar to do-while in high-

level languages. The transformations in the do block are always performed at least

once and are repeated as long as any transformation in that block produces any

changes to the program being compiled. The low-level translation for this is:

do-while-changes :: <BEGIN_LOOP>

transforms in while-block
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<IF-LOOP-TRUE-GOTO-TRANS>

<END_LOOP>

To the compiler this means that after performing the transformations in the while-

block if any of those made any changes to the program representation, then again go

back to the first transform in the while-block. The BEGIN LOOP and END LOOP

delimiters indicate the scope of each loop to the compiler. When multiple such while

and if constructs are nested, these delimiters enables the compiler to check the proper

flag (changes variable) and make the right branching decisions at each loop nesting

level.

4. while-changes-do: This statement is similar to the while statement in high level lan-

guages. It is similar to the previous construct, except that application of the trans-

formations in the while block for the first iteration depends on, if the preceding phase

produced changes. The viewer will translate this to:

while-changes-do :: <BEGIN_LOOP>

<IF-LOOP-FALSE-GOTO-TRANS>

transforms in while-block

<GOTO-TRANS>

<END_LOOP>

For the first iteration the compiler checks if the preceding phase made changes. For

all future iterations the compiler checks if any of the phases in the do block make

any change to the program representation. As long as any phase makes a change in

any iteration, the compiler executes that loop again. After the last iteration control

is transferred to the command after the END LOOP command. As in the previous

construct BEGIN LOOP and END LOOP are used to increment and decrement the

loop nesting levels.
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These statements can be nested within one-another. The introduction of these struc-

tured statements will make the selection of sequences of optimization phases more conve-

nient to the user. Figure 7 illustrates this with a simple example. The user has selected two

constructs, which are a do-while-changes statement and a if-changes-then statement. For

each loop iteration, the compiler will perform register allocation. Instruction selection will

only be performed if register allocation allocates one or more live ranges of a variable to a reg-

ister. Register allocation replaces load and store instructions with register-to-register move

instructions, which provides opportunities for instruction selection. Instruction selection

combines instructions together and reduces register pressure, which may allow additional

opportunities for register allocation. Thus, in effect we are providing an optimization phase

programming language.

These operations are converted by the viewer into a low-level sequence of requests which

the compiler interprets. VPO applies the sequence and sends each resulting change to the

program representation back to the viewer. The process continues until a stop operation

is encountered. The following list reflects the operations to be performed by the selections

shown in Figure 7 .

1. Perform instruction selection

2. Perform register assignment

3. Enter loop

4. Perform register allocation

5. If no changes in past phase then goto 7

6. Perform instruction selection

7. If changes during loop iteration then goto 4

8. Exit loop

9. Perform loop-invariant code motion
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Figure 7: Interactively Selecting Optimization Phases

10. Stop

Figure 8 shows the resulting viewer state after the above sequence of optimizations have

been applied. In the figure, after the first invocation of register allocation, instruction selec-

tion did not produce any changes. Dead variable elimination (which is actually dead variable

identification) is sometimes performed as side-effect of register allocation automatically by

the compiler.
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Figure 8: Interactively Selecting Optimization Phases
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Chapter 5

Support for Performance Driven

Automatic Code Tuning

The interactive performance tuning approach detailed in the preceding section, in spite of

being very powerful, requires a lot of user intuition and effort to steer the optimization

process to obtain acceptable performance. The programmer may make poor selections and

may have to undo some earlier optimizations and try other sequences to check if it gives

better performance. We felt it was necessary to provide the user with another technique

which can come up with an effective sequence of optimizations automatically. We have

added two structured constructs in VISTA which have the ability to automatically compare

two or more sequences and determine which is most beneficial. The first is the select-best-

from statement and the other is select-best-combination.

5.1 Constructs for Automatic Selection of Optimization Se-

quence

The constructs to automatically select optimization sequences are described in this section.
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5.1.1 Select Best From

The select-best-from statement is illustrated in Figure 9. As seen from the figure, the user

has selected 2 different sequences of optimizations separated by an or. The programmer

only wants one of the two sequences to be applied to the program, the one giving better

performance. The viewer first converts this statement into a low-level form to send to the

compiler.

select-best-from :: <SELECT-BEST-FROM>

optimization sequence 1

<OR>

optimization sequence 2

<DONE-SELECT>

Note that the user can select any number of different optimization sequences separated

by <OR>. The viewer then prompts the user to select the weights between instructions

executed and code size, where the relative improvement in each is used to determine the

overall performance. The compiler can make a choice of the better sequence based on only

the code size, only dynamic instruction counts or any combination of both, as per the weight

selected by the user. Figure 10 shows the window that pops up during select-best-from to

enable the user to specify the relative weights.

When the compiler gets this command, it first stores the number of transformations

applied to this function up to this point. This will be used to get the program state back to

what is was before starting this construct. The compiler then applies the transformations in

the first sequence and evaluates the program performance, according to the selected criteria.

For this the compiler has to assemble, link and execute the current program as stated in an

earlier section. It then gets the program state back to what it was when execution of this

construct was initiated. This can be easily done by reading back the current function again

and only applying the transformations until a specific point in the compilation process, in

this case all transformations until the start of the select-best-from statement. This process

is repeated for all the alternative optimizations sequences. After evaluating each sequence,
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Figure 9: Selecting the Best of a Set of Specified Sequences

its performance is compared to the performance of the best sequence found so far. If the

current sequence is better, then it is made the new best sequence. After all the sequences

are evaluated for their performance, we have identified the best sequence, which is reapplied

to the program and the new program state is sent to the viewer. Here we need to always

reapply the best sequence, even if the best sequence found is the last sequence in the select

best from construct. This is because while testing for the best sequence no messages were

sent to the viewer. When we reapply the best sequence the changes made by only this

sequence are sent to the viewer. Reapplying the best sequence would also be needed in
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Figure 10: Selecting the Relative Weights during Select Best From

the case when the flag for getting performance measures after each phase is set. Note that

while determining the best sequence we are only getting the measures after each complete

sequence as compared to getting measures after each individual phase.

5.1.2 Select Best Combination

The other option is select-best-combination, which accepts a set of optimization phases and

attempts to discover the best sequence of phases. Figure 11 shows an illustration of how

this works. Here the user has selected a sequence consisting of 5 optimization phases. The

user is attempting to discover the best ordering of this sequence of five optimization phases.

The basic intuition is to try all combinations of the specified transformations, evaluating

each one for its performance and coming up with the best sequence, which could be reapplied

to the program in a manner similar to select-best-from. The only problem here is the search

space which grows exponentially based on the length of the input sequence. Therefore it

was necessary to somehow manage the exponential search space.

Figure 12 shows the different options that we provide the user to control the search for

the best sequence. The No. of Phases field shows us the length of the input sequence of

optimizations we selected. The Sequence Length can be different from the No. of Phases in

two of the three Search Options. VISTA also allows the user to select the weights between

instructions executed and code size, similar to the option provided during select-best-from.

The user can thus optimize the code based on only code-size, only instruction counts or any
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Figure 11: Selecting the Best Sequence from a Set of Optimization Phases

combination of these two performance measures. VISTA also offers the users three different

Search Options:

1. Exhaustive Search: An exhaustive search results in all possible sequences being at-

tempted. If the user has selected m distinct optimization phases with a sequence

length of n, then there will be mn different sequences attempted. An exhaustive

search may be appropriate when the total number of possible sequences can be evalu-

ated in a reasonable period of time. But in many cases the search space is too great to

feasibly evaluate all possible sequences of optimization phases. The next two options
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Figure 12: Selecting Options to Search the Space of Possible Sequences

attempt to intelligently probe the search space for effective sequences.

2. Biased Sampling Search: In this option we apply a genetic algorithm to probe the

search space to find an effective sequence quickly. The goal of using a genetic algorithm

is to find an effective sequence given a restricted number of sequences to attempt.

Genetic algorithms are basically search algorithms designed to mimic the process of

natural selection and evolution in nature. We define a few terms related to genetic

algorithm here. For a more detailed overview refer to Appendix A.

A population consists of a fixed number of members, or chromosomes. Each chromo-

some is a fixed-length string of genes. The fitness of a chromosome is some measure

of how desirable it is to have that chromosome in the population. A generation is a

time step in which several events occur. Some of the most ’unfit’ chromosomes die

and are removed from the population. To replace these chromosomes, some number

of crossover operations are applied to the population. A crossover is an operation

analogous to mating or gene splicing. It combines part of one chromosome with part

of another chromosome to create a new chromosome. Finally, some amount of muta-

tion occurs in the population, in which individual genes are changed randomly with
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some (typically low) probability. It is also possible to have elitism in the population

in which some of the most fit genes are immune from mutation between generations.

In our case, a chromosome corresponds to a sequence of optimization phases and a

gene to an individual phase in the sequence. Some number of optimization sequences

together form a population. The operations of crossover and mutation are defined so

that the genetic algorithm finds good optimization sequences quickly. Fitness value of

a chromosome is the performance measures obtained when that sequence is applied to

the program. Thus a lower fitness value (lower code-size, lower number of instructions

executed), is considered a better sequence. The actual genetic algorithm we used in

described in Appendix B.

Thus, after selecting Biased Sampling Search, the user also needs to specify the Pop-

ulation Size and the Number of Generations for the genetic algorithm. The default

values of 100 generations and a population size of 20, would produce 2000 sequences

of optimization phases, to be applied on the current function.

3. Permutation Search: The permutation search attempts to evaluate all permutations

of the specified length. Unlike the other two searches, a permutation cannot have any

of its optimization phases repeated. Thus the sequence length must be less than or

equal to the number of distinct phases. A permutation search may be an appropriate

option when the user is sure that each phase should be attempted at most once.

This also results in reducing the number of attempted optimization sequences over an

exhaustive search.

The viewer converts this control statement into a low-level sequence of requests to be

sent to the compiler.

select best combination :: <SELECT-BEST-COMBINATION>

sequence of optimizations

list of options specified by user

<END-COMBINATION>
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The compiler after receiving this request, saves the current transformations applied

on the function thus far, similar to select-best-from. It then applies each sequence to the

function, assembles, links and executes it to get the performance measures. The program

state is rolled back to that before starting this construct. Depending on the search option

selected by the user, the compiler determines the next sequence to be applied to the function.

The sequence of optimizations giving the best program performance is saved. After all

sequences are applied the compiler determines the best sequence and reapplies that sequence

to the function and sends the resulting program representation to the viewer.

Performing these searches can be quite time consuming. Thus, VISTA provides a window

showing the current status of the search. Figure 13 shows a snapshot of the status of the

search that was selected in Figures 11 and 12. The window displays the percentage of the

Figure 13: Window Showing the Status of Searching for an Effective Sequence

search completed, the number of valid and invalid sequences, an encoded representation

of the sequence which was last tried and the best sequence so far along with their static

and dynamic measures. All the improvement numbers shown in this figure are relative to

the program state when select best combination was started. A sequence is declared to be
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invalid if the sequence is such that it does not adhere to all the constraints imposed on the

ordering of individual phases, e.g. if register allocation appears before register assignment

in the sequence. We also declare a sequence invalid if it results in a program state which

produces a linker error or upon execution does not produce the desired output or if it goes

into an infinite loop. Ideally the second case for invalidating a sequence should never occur

in a compiler. If such a sequence is encountered then a log of that sequence is maintained so

the developers can try to resolve the problem. Table 1 describes each phase in the compiler

and gives a designation (gene) of each phase that is used for displaying the sequence in the

window in Figure 13.

It may be the case that the performance desired by the user is achieved by an optimiza-

tion sequence early on in the search process. In that case it is not required to sit through the

remaining sequences since that could take a very long time. VISTA provides the option of

interrupting the search process whenever the user wants. If the process is interrupted then

the compiler applies the best sequence found so far during the search process and returns

the resulting program representation to the viewer.
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Table 1: Candidate Optimization Phases in the Genetic Algorithm along with their Desig-
nations

Optimization Phase Gene Description

branch chaining b Replaces a branch or jump target with the target
of the last jump in the jump chain

eliminate empty block e Removes empty blocks from the control flow graph
useless jump u Remove useless transfers of control like a jump to
elimination the next block in the control flow
dead code elimination d Remove block unreachable from the top block
reverse branches r Reverses a conditional branch when it branches

over an jump to eliminate the jump
block reordering i Removes a jump by reordering basic blocks when the

target of the jump has only a single predecessor
merge basic blocks m Merges two consecutive basic blocks when the

predecessor has no transfer of control and the
successor has only one predecessor

instruction selection s Combine instructions together when the combined
effect is in a legal instruction

fix control flow f Change code that computes a boolean value and then
uses that value to jump, to code that just jumps

eval order o Reorder instructions within a basic block to calc.
determination expressions that require the most registers first
global instruction g Perform instruction selection across basic block
selection
register assignment a Assign pseudo registers to hardware registers
minimize loop jumps j Remove an unconditional jump at the end of a loop

or one that jumps into a loop, by replicating a
portion of the loop

dead assignment elim. h Removes assignments where the assignment value is
never used

register allocation k Replaces references to a variable within a
specific live range with a register

common subexpr. elim. c Eliminates fully redundant calculations
code motion n Move loop invariant code into the preheader
loop strength i Replace register increments by constant values on
reduction each iteration of a loop by simple increment
recurrences p Avoid recurrences in loops by retaining values in

registers across iterations of the loop
induction variable v Removes unnecessary register increments after
elimination loop strength reduction
strength reduction q Replaces an expensive instruction with one or more

cheaper ones
fix entry exit w fix entry and exit of a function to manage the

run time stack
instruction t Rearrange the order of instructions within a basic
scheduling block in an attempt to reduce pipeline stalls
fill delay slots u Fill the delay slots after transfer of control

instructions in RISC machines
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Chapter 6

Experimental Results

In the previous sections we have described the VISTA framework and the support it provides

for feedback based performance tuning. In this section we describe the results of a set of

experiments to illustrate the effectiveness of using VISTA’s biased sampling search, which

uses a genetic algorithm to find effective sequences of optimization phases. We used a set of

mibench programs, which are C benchmarks targeting specific areas of the embedded market

[10]. We used one benchmark from each of the six categories of applications. Descriptions

of the programs we used are shown in Table 2.

Table 2: MiBench Benchmarks Used in the Experiments
Category Program Description

auto/industrial bitcount test bit manipulation abilities of a processor
network dijkstra calculates shortest path between nodes using

Dijkstra’s Algorithm
telecomm fft performs a fast fourier transform on an array of data
consumer jpeg image compression and decompression
security sha secure hash algorithm
office stringsearch searches for given words and phrases

Our target architecture for these experiments was the SPARC, as we do not currently

have a robust version of VISTA targeted to an embedded architecture. Using a genetic

algorithm to find effective optimization phase sequences can result in thousands of sequences
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being applied. This provides a severe stress test for any compiler. In the future we plan to

test VISTA’s ability to find effective optimization phase sequences on embedded processors.

Our experiments have many similarities to the Rice study, which used a genetic algorithm

to reduce code size [11]. We believe the Rice study was the first to demonstrate that genetic

algorithms could be effective for finding efficient optimization phase sequences. However,

there are several significant differences between their study and our experiments, and we

will contrast some of the differences in this section.

The Rice experiments used a genetic algorithm to find effective sequences consisting of

twelve phases from ten candidate optimizations. They compared these sequences to the per-

formance obtained from a fixed sequence of twelve optimization phases. In contrast, VPO

does not utilize a fixed sequence of phases. Instead, VPO repeatedly applies phases until

no more improvements can be obtained. Figure 14 shows the algorithm used to determine

the order in which optimization phases are applied to VPO. This algorithm has evolved

over the years and the primary goal has always been to reduce execution time. Initially it

was not obvious how to best assess VISTA’s ability to find effective optimization sequences

as compared to the batch VPO compiler. One complication is that the register assignment

(assigning pseudo registers to hardware registers) and fixed entry exit (fixing the entry and

exit of the function to manage the run-time stack) phases are required, which means that

they have to be applied once and only once. Many of the other phases shown in Figure 14

have to be applied after register assignment and before fix entry exit. Thus, we decided to

use the genetic algorithm to find the best sequence of improving phases that can be applied

between these two required phases. These candidate sequences involve fourteen unique

phases, which can be applied in any order between the two required phases. These phases

are: instruction selection, minimize loop jumps, merge basic blocks, dead assignment elimi-

nation, register allocation, common subexpression elimination, loop transformations (which

include loop-invariant code motion, recurrence elimination, loop strength reduction and in-

duction variable elimination), remove useless jumps, strength reduction, branch chaining,

remove unreachable code, remove useless blocks, reverse jumps and block reordering. For a

description of what each of these phases do refer Table 1.
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            remove useless jumps
            branch chaining
            remove unreachable code
            remove useless basic blocks
            reverse jumps
            remove jumps by block reordering
            remove useless jumps
            if(changes in last 7 phases)
                    minimize loop jumps
                    if(changes in last phase)
                           merge basic blocks
            dead assignment elimination
            strength reduction
            instruction selection
     while changes
while changes
branch chaining
remove unreachable code
remove useless basic blocks
reverse jumps
remove jumps by block reordering
fix entry exit
instruction scheduling
fill delay slots
if(changes in last phase)
      remove useless jumps
      remove branch chains

            loop transformations

branch  chaining 
remove useless basic blocks
remove useless jumps
remove unreachable code
reverse jumps
remove jumps by block reordering
merge basic blocks
instruction selection
fix control flow
evaluation order determination
global instruction selection
register assignment
instruction selection
minimize loop jumps

            dead assignment elimination
            common subexpression elimination
     do
     while changes
                     instruction selection
             if(changes in last two phases)
             register allocation
             while changes
                     dead assignment elimination
             do
     do
do
     merge basic blocks
if(changes in last phase)

Figure 14: VPO’s Order of Optimizations Applied in the batch mode
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Another issue is the number of optimization phases to apply since it may be benefi-

cial to perform a specific optimization phase multiple times. When applying the genetic

algorithm, one must specify the number of optimization phases (genes) in each sequence

(chromosome). It was not clear how to determine an appropriate uniform limit since the

number of attempted optimization phases by the batch compiler could vary with each func-

tion. Therefore, we first determined both the number of successfully applied optimization

phases (those which affected one or more instructions in the compiled function) and the

total number of phases attempted during batch compilation.

6.1 Batch Compilation Measures

Table 3 shows batch compilation information for each function in each of the benchmark

programs. The first column identifies the program and the number of static instructions

that is produced for the application after batch compilation. The second column lists

the functions in the corresponding benchmark program. In four of the benchmarks, some

functions were not executed even though we used the input data that was supplied with

the benchmark. Since such functions did not have anything significant to report we have

designated such functions together as unexecuted functions. The third and fourth columns

show the percentage of the program that each function represents for the dynamic and static

instruction count after applying the optimization sequence. Although the batch compiler

applies the same sequence of optimizations in the same order, many optimizations may not

produce any modifications in the program. Also, iteration causes some transformations

to be repeatedly applied. Thus the sequence and number of optimizations successfully

applied often differs between functions. The fifth column shows the sequence and number of

optimization phases successfully applied by the batch compiler between register assignment

and fix entry exit. Note that this sequence of phases was applied after attempting the

optimization phases that precede register assignment in Figure 14. We found that the

sequence of optimization phases selected before register assignment and after fix entry exit

were much more consistent. One can see that the sequences of successful optimization
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phases can vary greatly between functions in the same application. The next column shows

the total number of optimization phases attempted. The number applied can vary greatly

depending upon the size and loop structure of the function. The number of attempted

phases is also always significantly larger than the number of successfully applied phases.

The last two columns in Table 3 depict that iteratively applying optimization phases had

a significant impact on dynamic and static instruction count. We obtained this measure-

ment by comparing the results of the default batch compilation to results obtained without

iteration, which uses the algorithm in Figure 14 with all the do-while’s iterated only once.

The iteration impact result shows the power of iteratively applying optimization phases un-

til no more improvement can be found. In particular the number of instructions executed

is often reduced. The only cases where dynamic count increased was when loop invariant

code motion was performed and the loop was either never entered or only executed once. In

fact, we were not sure if any additional dynamic improvements could be obtained using a

genetic algorithm given that iteration may mitigate many phase ordering problems. In the

rest of this section we compare the results we obtained using a genetic algorithm to search

for effective optimization sequences to the sequences found by the iterative batch version of

VPO. For our genetic algorithm experiments we set the optimization phase sequence (chro-

mosome) length to 1.25 times the length of the number of successfully applied optimization

phases for each function. We felt this sequence length is a reasonable limit for each function

and still gives us an opportunity to successfully apply more optimization phases than the

batch compiler was able to accomplish. Note that the number of attempted phases for each

function by the batch compiler far exceeded this length.
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Table 3: Batch Optimization Measurements
program function % of % of applied sequence attempted iteration impact %
and size dynamic static and length phases dynamic static

bitcount AR btbl bitcount 3.22 3.86 kschsc (6) 53 -9.52 -9.52
(496) BW btbl bitcount 3.05 3.66 emsaks (6) 24 0.00 0.00

bit count 13.29 3.25 sksc (4) 42 -18.64 -14.29
bit shifter 37.41 3.86 sks (3) 26 -9.09 -5.26
bitcount 8.47 10.16 ksc (3) 40 0.00 0.00
main 13.05 19.51 sjmhkscllqsclllsllhsc (21) 125 -27.27 -8.16
ntbl bitcnt 14.40 3.66 sksc (4) 40 -11.10 -11.76
ntbl bitcount 7.12 8.54 ks (2) 24 0.00 0.00
unexecuted func. 0.00 43.49 5.00 40.57 N/A -9.57
average 5.13 43.87 -11.10 -7.19

dijkstra dequeue 0.85 10.40 sksc (4) 40 0.00 0.00
(327) dijkstra 83.15 44.04 sjmhksclllcllsc (15) 71 -14.54 -4.44

enqueue 15.81 12.84 shksc (5) 42 0.00 0.00
main 0.06 22.94 sjmhksllsllsc (13) 71 -12.13 +3.23
print path 0.01 8.26 shksc (5) 41 0.00 0.00
qcount 0.12 1.53 (0) 21 0.00 0.00
average 7.17 47.67 -12.54 -1.36

fft CheckPointer 0.00 2.34 shksc (5) 41 0.00 0.00
(728) IsPowerOfTwo 0.00 2.61 sksc (4) 40 0.00 0.00

NumberOfBits... 0.00 3.98 sjmhksc (7) 43 0.00 0.00
ReverseBits 14.13 2.61 sjmksc (6) 42 0.00 +5.56
fft float 55.88 38.87 sjmhkscllllhsch (15) 57 -8.84 -7.64
main 29.98 39.56 sjmhkscllllehscll (17) 58 -1.90 -1.23
unexecuted func. 0.00 10.03 3.00 65.00 N/A -2.99
average 8.29 49.43 -5.77 -3.95

jpeg finish input ppm 0.01 0.04 (0) 21 0.00 0.00
(5171) get raw row 48.35 0.48 sksc (4) 40 0.00 0.00

jinit read ppm 0.10 0.35 ksc (3) 39 0.00 0.00
main 43.41 3.96 sjmhksclschc (12) 70 -0.03 -1.14
parse switches 0.51 11.26 sjmhksc (7) 43 0.00 0.00
pbm getc 5.12 0.81 sksch (5) 41 0.00 0.00
read pbm integer 1.41 1.26 sksc (4) 41 0.00 0.00
select file type 0.27 2.07 sksec (5) 40 0.00 0.00
start input ppm 0.79 5.96 sjmkschc (8) 55 0.00 0.00
write stdout 0.03 0.12 kss (3) 40 0.00 0.00
unexecuted func. 0.00 73.69 6.27 44.35 N/A -0.19
average 6.08 44.13 -0.01 -0.19

sha main 0.00 13.71 sksclsl (7) 55 +6.67 +5.26
(372) sha final 0.00 10.75 shksc (5) 41 0.00 0.00

sha init 0.00 5.11 sks (3) 25 0.00 0.00
sha print 0.00 3.76 sksc (4) 40 0.00 0.00
sha stream 0.00 11.02 sjmkscl (7) 42 0.00 0.00
sha transform 99.51 44.62 skscllllllllhscllllllhs(23) 56 -11.46 -12.50
sha update 0.49 11.02 sjmhkscc (8) 56 -0.08 -2.78
average 7.86 45.00 -11.44 -6.20

string- init search 92.32 6.18 sjmkscllscllhs (14) 70 -15.99 0.00
search main 3.02 14.08 sjmksclhsclhl (13) 69 +0.01 +2.08
(760) strsearch 4.66 7.37 skscllslscl (11) 69 -3.10 0.00

unexecuted func. 0.00 71.44 14.00 66.57 N/A +1.37
average 13.50 67.40 -15.01 +1.28

average 8.01 49.58 -9.31 -2.94
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6.2 Interactive Compilation Measures using Genetic Algo-

rithms

There are a number of parameters in a genetic algorithm which can be varied to give

algorithms quite different in performance and the best algorithm for a particular application

only comes from experience and continuous fine tuning based on empirical results. Due to

lack of aquaintance with a better substitute, we decided to use an algorithm based on

the one used in the Rice experiments. The population size (fixed number of sequences or

chromosomes) was set to twenty and each of these initial sequences is randomly initialized.

The sequences in the population are sorted by fitness values (using the dynamic and static

counts according to the weight factors). At each generation (time step) we remove the

worst sequence and three others from the lower (poorer performing) half of the population

chosen at random. Each of the removed sequences are replaced by randomly selecting a

pair of sequences from the upper half of the population and then performing a crossover

operation on that pair to generate two new sequences. The crossover operation combines

the lower half of one sequence with the upper half of the other sequence and vice versa to

create the new pair of sequences. Fifteen chromosomes are then subjected to mutation (the

best performing sequence and the newly generated four sequences are not mutated). During

mutation, each gene (optimization phase) is replaced with a randomly chosen one with a

low probability. For this study mutation occurs with a probability of 5% for a chromosome

in the upper half of the population and a probability of 10% in the lower half. This was

done for a set of 100 generations. Note that all these parameters can be varied interactively

by the user during compilation as shown in Figure 12. For more on genetic algorithms refer

appendix A.

Table 4 shows the results that were obtained for each function by applying the genetic

algorithm. For these experiments, we obtained the results for three different criteria. For

each function, the genetic algorithm was used to perform a search for the best sequence

of optimization phases based on static instruction count only, dynamic instruction count

only, and 50% of each factor. As in Table 3, unexecuted functions indicate those functions
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in the benchmark that were never executed using the benchmark’s input data. We also

indicate that the effect on the dynamic instruction count was not applicable (N/A) for

these functions. The last six columns show the the effect on static and dynamic instruction

counts for each of the three fitness criteria. The results that were expected to improve

according to the fitness criteria used are shown in boldface. The genetic algorithm was

able to find a sequence for each function that either achieves the same result or obtains an

improved result as compared to the batch compilation. In two cases the dynamic instruction

count increased when optimizing for both speed and space. But in each case the overall

benefit was improved since the percentage decrease in static instruction count was larger

than the percentage increase in dynamic instruction count.
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Table 4: Effect on Speed and Space Using the Three Fitness Criteria
program functions optimizing for speed optimizing for space optimizing for both

dynamic static dynamic static dynamic static

bitcount AR btbl bitcount 0.00 0.00 0.00 0.00 0.00 0.00
BW btbl bitcount 0.00 0.00 0.00 0.00 0.00 0.00
bit count -25.29 -12.50 -25.29 -12.50 -25.29 -12.50
bit shifter 0.00 0.00 0.00 0.00 0.00 0.00
bitcount -2.00 -2.00 -2.00 -2.00 -2.00 -2.00
main -10.00 -4.90 +20.00 -11.76 -0.00 -7.84
ntbl bitcnt -10.46 -11.11 -5.82 -5.56 -10.46 -11.11
ntbl bitcount 0.00 0.00 0.00 0.00 0.00 0.00
unexecuted func. N/A -2.55 N/A -3.73 N/A -3.73
total -6.30 -3.82 -2.02 -5.42 -5.10 -4.82

dijkstra dequeue 0.00 0.00 0.00 0.00 0.00 0.00
dijkstra -6.05 -3.47 -3.02 -4.86 -6.05 -6.25
enqueue 0.00 0.00 0.00 0.00 0.00 0.00
main 0.00 0.00 +23.12 -6.67 0.00 -2.67
print path 0.00 0.00 0.00 0.00 0.00 0.00
qcount 0.00 0.00 0.00 0.00 0.00 0.00
total -5.03 -1.53 -2.50 -3.67 -5.03 -3.36

fft CheckPointer 0.00 0.00 0.00 0.00 0.00 0.00
IsPowerOfTwo 0.00 0.00 0.00 0.00 0.00 0.00
NumberOfBits... 0.00 0.00 +16.47 -6.90 0.00 0.00
ReverseBits -0.93 -5.26 0.00 -15.79 0.00 -15.79
fft float -6.14 -4.59 +0.71 -8.83 -6.14 -8.13
main -0.00 -1.74 +0.44 -5.21 +0.44 -5.21
unexecuted func. N/A -4.11 N/A -6.85 N/A -6.85
total -3.57 -3.02 +0.53 -6.87 -3.30 -6.32

jpeg finish input ppm 0.00 0.00 0.00 0.00 0.00 0.00
get raw row 0.00 0.00 0.00 0.00 0.00 0.00
jinit read ppm 0.00 0.00 0.00 0.00 0.00 0.00
main -0.04 -1.95 -0.03 -3.90 -0.03 -3.90
parse switches 0.00 -1.72 +2.17 -2.06 0.00 -1.72
pbm getc 0.00 0.00 0.00 0.00 0.00 0.00
read pbm integer -3.54 -1.54 -3.54 -1.54 -3.54 -1.54
select file type -2.08 0.00 -2.08 0.00 -2.08 0.00
start input ppm 0.00 -0.65 0.00 -0.65 0.00 -0.65
write stdout -16.67 -16.67 -16.67 -16.67 -16.67 -16.67
unexecuted func. N/A -3.15 N/A -3.94 N/A -3.94
total -0.08 -2.67 -0.06 -3.36 -0.07 -3.33

sha main -17.07 -9.80 -17.07 -9.80 -17.07 -9.80
sha final 0.00 0.00 0.00 0.00 0.00 0.00
sha init 0.00 0.00 0.00 0.00 0.00 0.00
sha print -7.14 -7.14 -7.14 -7.14 -7.14 -7.14
sha stream -6.65 -29.27 +6.59 -31.71 -6.65 -29.27
sha transform -0.04 -0.60 +6.07 -3.01 0.00 0.00
sha update -0.06 -2.44 0.00 -7.32 0.00 -7.32
total -0.04 -5.38 +6.04 -7.26 -0.00 -5.65

string- init search -0.37 -6.38 -0.31 -19.15 -0.37 -21.28
search main -1.90 -5.61 -1.90 -10.28 +5.67 -7.48

strsearch -4.40 -7.14 +0.61 -7.14 -2.24 -3.57
unexecuted func. N/A -9.64 N/A -9.64 N/A -9.64
total -0.61 -8.68 -0.32 -10.13 -0.28 -9.61

average -2.61 -4.18 +0.28 -6.12 -2.30 -5.52

46



Figures 15 and 16 show the overall effect of using the genetic algorithm for each test

program on the dynamic and static results, respectively. The second measure for each

function is obtained from the sequence found by the batch compilation when iteratively

applying optimization phases and is normalized to 1. The results show that iteratively

applying optimization phases has a significant impact on dynamic instruction count and

less of an impact on the code size. The genetic algorithm was more effective at reducing

the static instruction count than dynamic instruction count, which is not surprising since

the batch compiler was developed with the primary goal of improving the speed of the

generated code and not reducing code size. However, respectable dynamic improvements

were still obtained despite having a baseline with a batch compiler that iteratively applies

optimization phases until no more improvements could be made. Note that many batch

compilers do not iteratively apply optimization phases and the use of a genetic algorithm

to select optimization phase sequences will have greater benefits as compared to such non-

iterative batch compilations. The results when optimizing for both speed and space showed

that we were able to achieve close to the same dynamic benefits when optimizing for speed

and close to the same static benefits when optimizing for space. A user can set the fitness

criteria for a function to best improve the overall result. For instance, small functions with

high dynamic instruction counts can be optimized for speed, functions with low dynamic

instruction counts can be optimized primarily for space, and large functions with high

dynamic counts can be optimized for both space and speed.

Figure 15: Overall Effect on Dynamic Instruction Count
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Figure 16: Overall Effect on static Instruction Count

The optimization phase sequences selected by the genetic algorithm for each function

are shown in Table 5. The sequences shown are the ones that produced the best results

for the specified fitness criteria. Sequences for a function shown in boldface varied between

the different fitness criteria. Similar to the results in Table 3, these sequences represent the

optimization phases successfully applied as opposed to all optimization phases attempted.

Some optimization phases listed in Table 1 are rarely applied since they have already

been applied once before register assignment. These are the control-flow transformations

that include phases 1, 2, 3, 5, 6 and 7 listed in Table 1. Strength reduction was not applied

due to using dynamic instruction counts instead of taking the latencies of more expensive

instructions, like integer multiplies, into account. It appears that certain optimization

phases enable other specific phases. For instance, instruction selection (s) often follows

register allocation (k) since instructions can often be combined after memory references

are replaced by registers. Likewise, dead assignment elimination (h) often follows common

subexpression elimination (c) since a sequence of assignments often become useless when

the use of its result is replaced with a different register.

The results in Table 5 also show that functions within the same program produce the

best results with different optimization sequences. The functions with fewer instructions

typically had not only fewer successfully applied optimization phases but also less variance

in the sequences selected between the different fitness criteria. Note that many sequences

may produce the same result for a given function and the one shown is just the first sequence
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found that produces the best result.

We use a hash table containing fitness values and indexed by the chromosomes to re-

duce the search overhead. If the sequence has already been attempted, then we do not

recompute it. We found that on average 54% of the sequences were found in the hash table.

The functions with shorter sequence lengths had a much higher percentage of redundant

sequences. A shorter sequence length results in fewer possible sequences and less likelihood

that mutation will change a sequence in the population.

The overhead of finding the best sequence using the genetic algorithm for 100 generations

with a population size of twenty required about 30-45 minutes for each function on a SPARC

Ultra-80 processor. The compilation time was less when optimizing for size only since we

would only get dynamic instruction counts when the static instruction count was less than

or equal to the count found so far for the best sequence. In this case we would use the

dynamic instruction count as a secondary fitness value to break ties. In general, we found

that the search time was dominated not by the compiler, but instead by assembling, linking,

and executing the program. If we use size without obtaining a dynamic instruction count,

then we typically obtain results for each function in less than one minute.
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Table 5: Optimization Phase Sequences Selected Using the Three Fitness Criteria

program functions optimizing for speed optimizing for space optimizing for both

bitcount AR btbl bitcount chks chks chks
BW btbl bitcount ks ks ks
bit count kchs kchs kchs
bit shifter ks ks ks
bitcount ks ks ks
main slljckllhschlllmc chllkc chllskllcllslch
ntbl bitcnt ckshc ksc ckhsc
ntbl bitcount ks ks ks

dijkstra dequeue ksc ksc ksc
dijkstra chlllchklljsc chklllcllc ckclllscllhsc
enqueue kshc khsc khsc
main shkllclljc skhc chkllcllc
print path kch kch kch
qcount

fft CheckPointer hkc kch hksc
IsPowerOfTwo kcs kcs kcs
NumberOfBits... hkjcs khs hkjmsc
ReverseBits kcjhsc kcs ksc
fft float jkcsllllchclh kslllhschc kcllllcllhscllh
main skllllsjmch shllllksc skshc

jpeg finish input ppm
get raw row kc kc kc
jinit read ppm kc kc kc
main kchcj kchc kchc
parse switches jsksch kshc jkshcm
pbm getc ksch ksch ksch
read pbm integer kcs kchs kchs
select file type rkch rkch rkch
start input ppm kschc kschc kschc
write stdout ks ks ks

sha main kcsh kcsh kcsh
sha final ksch ksch ksch
sha init kc kc kc
sha print chkc chkc chkc
sha stream kcj chkc chkcl
sha transform cksllllllscllllll lllllsllllkssc skcllllllhcllllllsh

lhllllllch llllllsh
sha update kshcjc kschc kschc

string- init search llkcjllhclc ckhscllch ksllsllhs
search main kslhlcjhc skslhlc kslhls

strsearch clskclhs cksch sllksls
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Chapter 7

Implementation Issues

The earlier sections described the main work accomplished as part of this thesis along with

some empirical results. There were some changes made to the part already implemented

in an earlier version of the compiler to make the compiler more stable and robust. Also,

there were some other interesting implementation issues which could not be discussed in

the earlier sections. This chapter is devoted for the mention of some such apparently minor

issues, whose proper handling was necessary for the success of the main work.

7.1 Undoing Transformations

VISTA provides the ability to undo previously applied changes or transformations for two

purposes. First, this ability can help the user to experiment with different orderings of

phases and/or hand-specified transformations in an attempt to improve the generated code.

Second, this feature gives the user an opportunity to change their mind if the earlier trans-

formations are not giving the desired results. This work was done by Baosheng Cai [12] as

part of his master’s thesis. To do this, a linked list was used to keep a history of all the

changes that occurred in the compiler. This resulted in a lot of additional code to store

the information and also resulted in some space overhead. Moreover, this was difficult to

maintain because knowing the exact things to store after each change is very difficult. Thus,

although the work was done very meticulously, it had certain shortcomings. These were
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first noticed during the implementation of select best combination and select best sequence,

where we need to undo all the changes after each sequence has been applied, to get the

program back to the initial state to apply the next sequence.

To make the undoing of transformations more stable and maintainable, it was decided

to implement it differently. This is now accomplished as follows: when the compiler gets a

request to undo some changes, it dumps the transformations applied so far to a file (this

was also done in the earlier version of VISTA to enable compilation of a file over multiple

sessions). Then the current function along with all its data structures are discarded and

reinitialized. The same function is read back in and the transformations are reapplied, but

only up to the point we want. Thus the remaining changes are automatically discarded.

This is the the same thing that would have happened when the file is compiled over multiple

sessions, but now there is no need to store all the state information at each point. Doing

this we were able to remove a lot of redundant code and data structures which ultimately

helped in making the code more robust. The only drawback with this scheme is that, when

the user only wants to undo one change, the compiler needs to go through the entire process

of reloading the current function and reapplying most of the transformations again. This

is arguably slower than the previous approach, but the increase in compilation time was

found to be a small cost to pay for the greatly increased maintainability and smoothness

achieved by the new approach.

7.2 Required Analysis by Each Optimization Phase

Each optimization phase needs some data and control flow analysis to be done before it

can be successfully applied. Absence of the correct analysis can prevent the compiler from

recognizing all the points where the optimization can be usefully applied. Even worse is the

case when incorrect analysis leads the compiler into making changes at points that produces

wrong output code. Figuring out all the analysis required by each optimization phase is

difficult. Also, in some cases when the required analysis has already been done and is valid,

there is no need to spend more time redoing the analysis. So we also need to determine
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which analysis are invalidated by each phase. An example of this is instruction selection

invalidating live variable analysis and registers used analysis. This important work was

painfully attempted during the previous version of VISTA. Some bugs in that process were

revealed during the implementation of the current version, especially when thousands of

different sequences were attempted on the same function during a single run of select best

combination. Some changes were made to correct the faults.

7.3 Sanity Check

In VISTA the program representation information for each function is maintained at two

places, one with the compiler and a copy of it with the viewer to be displayed to the user. It is

essential that these two versions be consistent at each distinct point during the compilation

process. Whenever the compiler makes a change to the program representation, it sends a

message to the viewer to do the same to its version of the function. We felt it was useful

to have an option to check if the two representations are consistent. This would be very

helpful whenever a change is made to the compiler or a new optimization is implemented

in the compiler. Sanity check is the option we provide to accomplish this, during which the

compiler essentially just sends its complete state information to the viewer and the viewer

cross-checks it with the information it holds in its data structures. Discrepancies, if any,

are reported to the user.

7.4 Correct Button Status in the Viewer

In the VISTA user interface the only buttons active at any point during the compilation

process are those that can be legally selected by the user. The rest of the buttons are

grayed out. As the user selects optimization phases to be applied the sets of select-able

and disabled buttons should change. For example, selecting register assignment enables

many other optimizations dependent on register assignment like register allocation and

code motion. Clicking fill delay slots grays out most other optimizations which are not legal
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after this phase. The control statements like the if, while, select best from and select best

combination constructs complicate the act of determining which buttons are active during

and after applying each construct. This problem is further complicated by the feature of

undoing previously applied transformations, supported in VISTA, since this requires storing

detailed button status information at many different points with the ability of getting

back to a previous button state when changes are undone. The interaction of all these

factors made the task of determining the correct button status a non-trivial task requiring

meticulous and careful handling.

7.5 Batch Experiments

VISTA is an interactive system, which is controlled by the user sending requests to the

compiler by clicking buttons. But this was found to be a hindrance while performing exper-

iments or extensive testing, like that done during regression testing. It was not reasonable

to expect the user to sit at his desk and do the testing manually by clicking buttons every

so often. To make testing easier, we support a new mode in VISTA where selections are

read from a file instead of requiring mouse clicks. Such a file could either be written by

hand or could also be generated automatically by the viewer at run-time. VISTA provides

an option to the user to store all the mouse clicks in a separate file. This file can be read at

any later time and mouse clicks are not required. This was found to be very useful during

testing as we could construct test files that could be initiated in a batch mode whenever any

major changes were made to the compiler. It was also found to be helpful for conducting

experiments as the ones described in chapter 5.

7.6 Obtaining Measurements on a Host Machine

As mentioned earlier, to get the dynamic instruction counts the compiler needs to produce

assembly code, instrument the code with additional instructions to collect measures and

then link and execute the program. Currently, the compiler produces SPARC assembly.
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Consequently, it was not possible to execute the code and get measures on a non-SPARC

architecture. It was observed that we can still get the static instruction counts (code size)

on a non-SPARC architecture. A small modification made to the compiler ensured that

it can now detect if the architecture is SPARC and if not then it only gets the code size

measures. This allows limited demonstration on a laptop.
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Chapter 8

Related Work

Other researchers have developed systems that provide interactive compilation support.

These systems include the pat toolkit [13], the parafrase-2 environment [14], the e/sp sys-

tem [15], a visualization system developed at the University of Pittsburgh [16] , and SUIF

explorer [17]. These systems provide support by illustrating the possible dependencies that

may prevent parallelizing transformations. A user can inspect these dependencies and assist

the compilation system by indicating if a dependency can be removed. In contrast, VISTA

supports low-level transformations and user-specified changes, which are needed for tuning

embedded applications.

A few low-level interactive compilation systems have also been developed. One system,

which is coincidentally also called VISTA (Visual Interface for Scheduling Transformations

and Analysis), allows a user to verify dependencies during instruction scheduling that may

prevent the exploitation of instruction level parallelism in a processor [18]. Selective ordering

of different optimization phases does not appear to be an option in their system. The system

that most resembles our work is called VSSC (Visual Simple-SUIF Compiler) [19]. It allows

optimization phases to be selected at various points during the compilation process. It also

allows optimizations to be undone, but unlike our compiler only at the level of complete

optimization phases as opposed to individual transformations within each phase. Other

features in our system, such as supporting user-specified changes and performance feedback
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information, do not appear to be available in these systems.

There has been prior work that used aggressive compilation techniques to improve per-

formance. Superoptimizers have been developed that use an exhaustive search for instruc-

tion selection [20] or to eliminate branches [21]. Iterative techniques using performance

feedback information after each compilation have been applied to determine good optimiza-

tion parameters (e.g., blocking sizes) for specific programs or library routines [22, 23]. A

system using genetic algorithms to better parallelize loop nests has been developed and

evaluated [24]. These systems perform source-to-source transformations and are limited in

the set of optimizations they apply. Selecting the best combination of optimizations by

turning on or off optimization flags, as opposed to varying the order of optimizations, has

been investigated [25]. A low-level compilation system developed at Rice University uses a

genetic algorithm to reduce code size by finding efficient optimization phase sequences [11].

However, this system is batch oriented instead of interactive, concentrated primarily on

reducing code size and not execution time, and is designed to use the same optimization

phase order for all of the functions within a file.
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Chapter 9

Future Work

There is much future work to consider on the topic of selecting effective optimization se-

quences. It would be informative to obtain measurements on a real embedded systems

architecture. However, most of these systems only provide execution time measurements

via simulation on a host processor. The actual embedded processor may often not be

available or downloading the executable onto the embedded machine and obtaining mea-

surements may not be easily automated. The overhead of simulating programs to obtain

speed performance information may be problematic when performing large searches using

a genetic algorithm, which would likely require thousands of simulations. One option is

to translate the assembly produced for the embedded machine to an equivalent assembly

program on a host processor. This assembly can be instrumented in order to produce a

dynamic instruction count of each basic block when executed. An estimation of the number

of CPU cycles for each basic block can be multiplied by the count to give a responsive and

reasonably accurate measure of dynamic performance on an embedded processor that does

not have a memory hierarchy.

Another area of future work is to vary the characteristics of the experiments. We only

obtained measurements for 100 generations and a optimization sequence that is 1.25 times

the length of the successfully applied batch optimization sequence. It would be interesting

to see how performance improves as the number of generations and the sequence length
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increases. The actual crossover and mutation operations could also be varied. In addition,

the set of candidate optimization phases could be extended. Finally, the set of benchmarks

evaluated could be increased.

All of the experiments in our study involved selecting optimization phase sequences for

entire functions. We have the ability in VISTA to limit the scope of an optimization phase

to a set of basic blocks. It would be interesting to perform genetic algorithm searches for

different regions of code within a function. For frequently executed regions we could attempt

to improve speed and for infrequently executed regions we could attempt to improve space.

Selecting sequences for regions of code may result in the best measures when both speed

and size are considered.
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Chapter 10

Conclusions

There are several contributions that we have presented in this thesis. First, we have devel-

oped an interactive compilation system that automatically provides performance feedback

information to a user after each successfully applied optimization phase. This feedback

allows a user to gauge the progress when tuning an application. Second, we allow a user to

interactively select structured constructs for applying optimization phase sequences. These

constructs allow the conditional or iterative application of optimization phases. In effect,

we have provided an optimization phase programming language. Third, we have provided

constructs that automatically select optimization phase sequences based on the specified fit-

ness criteria. A user can enter specific sequences and the compiler will choose the sequence

that produces the best result. A user can also specify a set of optimization phases along

with options for exploring the search space of possible sequences. The user is provided with

feedback describing the progress of the search and may abort the search and accept the best

sequence found at that point.

We have also performed a number of experiments to illustrate the effectiveness of using

a genetic algorithm to search for efficient sequences of optimization phases. We found

that significantly different sequences are often best for each function even within the same

program or module. We showed that the benefits can differ depending on the fitness criteria

and that it is possible to use fitness criteria that takes both speed and size into account.
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While we demonstrated that iteratively applying optimization phases until no additional

improvements are found in a batch compilation can mitigate many phase ordering problems

with regard to dynamic instruction count, we found that dynamic improvements could still

be obtained from this aggressive baseline using a genetic algorithm to search for effective

optimization phase sequences.

An environment that allows a user to easily tune the sequence of optimization phases

for each function in an embedded application can be very beneficial. The VISTA system

supports tuning of applications by providing the ability to supply performance feedback

information, select optimization phases, and automatically search for efficient sequences of

optimization phases. Embedded programmers often resort to coding in assembly to meet

stringent constraints on time, size, and power consumption. Besides using VISTA to obtain

a more efficient executable, such an environment may encourage more users to develop

applications in a high level language, which can result in software that is more portable,

more robust, and less costly to develop and maintain.
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Appendix A

Overview of Genetic Algorithms

A.1 Introduction

Genetic Algorithms (GAs) are a family of computational models inspired by evolution.

These were invented by John Holland in the 1960’s and were developed by Holland and his

students and colleagues at the University of Michigan in the 1960’s and 1970’s. In contrast

with evolution strategies and evolutionary programming, Holland’s original goal was not to

design algorithms to solve specific problems, but rather to formally study the phenomenon

of adaptation as it occurs in nature and to develop ways in which the mechanisms of natural

adaptation might be imported into computer systems. Holland’s 1975 book Adaptation in

Natural and Artificial Systems presented the genetic algorithm as an abstraction of bio-

logical evolution and gave a theoretical framework for adaptation under the GA. Holland’s

GA is a method for moving from one population of chromosomes (e.g., strings of ones and

zeros, or ”bits”) to a new population by using a kind of natural selection together with the

genetics-inspired operators of crossover, mutation, and inversion.

In the 1950s and the 1960s several computer scientists independently studied evolu-

tionary systems with the idea that evolution could be used as an optimization tool for

engineering problems. The idea in all these systems was to evolve a population of candi-

date solutions to a given problem, using operators inspired by natural genetic variation and
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natural selection. Holland’s introduction of a population-based algorithm with crossover,

inversion, and mutation was a major innovation. Moreover, Holland was the first to attempt

to put computational evolution on a firm theoretical footing. Until recently this theoret-

ical foundation, based on the notion of schemas, was the basis of almost all subsequent

theoretical work on genetic algorithms.

The mechanisms of evolution and adaptation seem very well suited for some of the

most pressing computation problems in many fields. Many computational problems require

searching through a huge number of possibilities for solutions. One example is the problem

of computational protein engineering, in which an algorithm is sought that will search among

the vast number of possible amino acid sequences for a protein with specified properties.

What is needed in such cases is both computational parallelism and an intelligent strategy

for choosing the next set of sequences to evaluate. Many computational problems also

require a computer program to be adaptive - to continue to perform well in a changing

environment. This can be seen in some computer interfaces which need to adapt to the

idiosyncrasies of different users. Biological evolution is an appealing source of inspiration

for addressing these problems. Evolution is, in effect, a method of searching among an

enormous number of possibilities for solutions. In biology the enormous set of possibilities

is the set of possible genetic sequences, and the desired solutions are highly fit organisms

- organisms well able to survive and reproduce in their environments. Evolution can also

be seen as a method for designing innovative solutions to complex problems. For example,

the mammalian immune system is a marvelous evolved solution to the problem of germs

invading the body. Seen in this light, the mechanisms of evolution can inspire computational

search methods.

A.2 Biological Terminology

All living organisms consist of cells, and each cell contains the same set of one or more

chromosomes (strings of DNA) that serve as a blueprint for the organism. A chromosome

can be conceptually divided into genes (functional blocks of DNA), each of which encodes
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a particular protein. Very roughly, one can think of a gene as encoding a trait, such as eye

color. The different possible settings for a trait (e.g., blue, brown, hazel) are called alleles.

Each gene is located at a particular locus (position) on the chromosome.

Many organisms have multiple chromosomes in each cell. The complete collection of

genetic material (all chromosomes taken together) is called the organism’s genome. The

term genotype refers to the particular set of genes contained in a genome. Two individuals

that have identical genomes are said to have the same genotype. The genotype gives rise,

under fetal and later development, to the organism’s phenotype - its physical and mental

characteristics, such as eye color, height, brain size, and intelligence.

During sexual reproduction, recombination (or crossover) occurs: in each parent, genes

are exchanged between each pair of chromosomes to form a gamete (a single chromosome),

and then gametes from the two parents pair up to create a full set of diploid chromosomes.

Offspring are subject to mutation, in which single nucleotides (elementary bits of DNA)

are changed from parent to offspring, the changes often resulting from copying errors. The

fitness of an organism is typically defined as the probability that the organism will live to

reproduce (viability) or as a function of the number of offspring the organism has (fertility).

In genetic algorithms, the term chromosome typically refers to a candidate solution to

a problem, often encoded as a bit string. The genes are either single bits or short blocks of

adjacent bits that encode a particular element of the candidate solution (e.g., in the context

of multi-parameter function optimization the bits encoding a particular parameter might

be considered to be a gene). An allele in a bit string is either 0 or 1; for larger alphabets

more alleles are possible at each locus. Crossover typically consists of exchanging genetic

material between two single-chromosome parents. Mutation consists of flipping the bit at

a randomly chosen locus (or, for larger alphabets, replacing a the symbol at a randomly

chosen locus with a randomly chosen new symbol). The genotype of an individual in a GA

using bit strings is simply the configuration of bits in that individual’s chromosome.
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A.3 A Simple Genetic Algorithm

Given a clearly defined problem to be solved and a bit string representation for candidate

solutions, a simple GA works as follows:

1. Start with a randomly generated population of n l -bit chromosomes (candidate solu-

tions to a problem).

2. Calculate the fitness f(x) of each chromosome x in the population.

3. Repeat the following steps until n offspring have been created:

(a) Select a pair of parent chromosomes from the current population, the probabil-

ity of selection being an increasing function of fitness. Selection is done with

replacement meaning that the same chromosome can be selected more than once

to become a parent.

(b) With probability Pc (the ”crossover probability” or ”crossover rate”), cross over

the pair at a randomly chosen point (chosen with uniform probability) to form

two offspring. If no crossover takes place, form two offspring that are exact copies

of their respective parents. (Note that here the crossover rate is defined to be

the probability that two parents will cross over in a single point. There are also

”multi-point crossover” versions of the GA in which the crossover rate for a pair

of parents is the number of points at which a crossover takes place).

(c) Mutate the two offsprings at each locus with probability pm (the mutation prob-

ability or mutation rate), and place the resulting chromosomes in the new pop-

ulation.

4. Replace the current population with the new population.

5. Go to step 2.

Each iteration of this process is called a generation. A GA is typically iterated for

anywhere from 50 to 500 or more generations. The entire set of generations is called
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a run. At the end of a run there are often one or more highly fit chromosomes in the

population. Since randomness plays a large role in each run, two runs with different random-

number seeds will generally produce different detailed behaviors. GA researchers often

report statistics (such as the best fitness found in a run and the generation at which the

individual with that best fitness was discovered) averaged over many different runs of the

GA on the same problem.

A.4 Some Applications of Genetic Algorithms

The version of the genetic algorithm described above is very simple, but variations on the

basic theme have been used in a large number of scientific and engineering problems and

models. Some common applications are:

Optimization: GAs have been used in a wide variety of optimization tasks, including

numerical optimization and such combinatorial optimization problems as circuit layout

and job-shop scheduling.

Automatic programming: GAs have been used to evolve computer programs for specific

tasks, and to design other computational structures such as cellular automata and

sorting networks.

Machine learning: GAs have been used for many machine learning applications, includ-

ing classification and prediction tasks, such as the prediction of weather or protein

structure. GAs have also been used to evolve aspects of particular machine learning

systems, such as weights for neural networks, rules for learning classifier systems or

symbolic production systems, and sensors for robots.

Economics: GAs have been used to model processes of innovation, the development of

bidding strategies, and the emergence of economic markets.

Immune systems: GAs have been used to model various aspects of natural immune sys-

tems, including somatic mutation during an individual’s lifetime and the discovery of
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multi-gene families during evolutionary time.

Ecology: GAs have been used to model ecological phenomena such as biological arms races,

host-parasite coevolution, symbiosis, and resource flow.

Population genetics: GAs have been used to study questions in population genetics, such

as ”Under what conditions will a gene for recombination be evolutionarily viable?”

Evolution and learning: GAs have been used to study how individual learning and

species evolution affect one another.

Social systems: GAs have been used to study evolutionary aspects of social systems, such

as the evolution of social behavior in insect colonies, and, more generally, the evolution

of cooperation and communication in multi-agent systems.
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Appendix B

An Implementation of a Genetic

Algorithm

We have implemented a version of the genetic algorithm for use during the select best

combination construct in VISTA. The algorithm employed is listed in this chapter.

When the biased sampling search option is selected during select best combination,

VISTA also allows the user to specify the parameters for the genetic algorithm, namely

the number of chromosomes (population size) and the number of generations. Let the user

specify numbers m and n for the population size and the number of generations respectively.

The algorithm then works as follows:

1. Create an initial population of m chromosomes (optimization sequences) by randomly

choosing optimizations in each sequence.

2. Compute a fitness value for each chromosome. To do this, the optimization sequence

defined by the chromosome is applied to the function being compiled. The resulting

code is instrumented with instructions to calculate the static and dynamic counts.

This instrumented code is executed and the static and dynamic counts are collected.

The final fitness value depends on the relative weights assigned by the user to the

static and dynamic counts respectively.
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3. The chromosomes are sorted by fitness values from lowest to highest. The population

is split into a lower and upper half, based on fitness value, each half consisting of m/2

chromosomes. The upper half consists of m/2 chromosomes with the lowest fitness

value. (Note that for our case the lower the fitness value the better, since we are

interested in lowering both the static code size and dynamic instruction count.)

4. The chromosome with the highest fitness value (worst performance) is removed from

the population. m/5−1 additional chromosomes are chosen at random from the lower

half of the population and removed.

5. To fill the vacancies in the population, new chromosomes are generated using the

crossover operation. Two parent chromosomes are randomly chosen from the upper

half of the population. The first half of one chromosome is concatenated with the

second half of the other chromosome and vice versa, creating two new chromosomes.

This operations is performed as many times as required to fill all the vacancies.

6. The m − m/5 chromosomes not altered during the previous step are subjected to

mutation. The best performing chromosome is also exempted from mutation. For

each such chromosome, each gene is considered. For a chromosome in the lower half

of the population, mutation occurs with a probability of 0.1 (or 10 percent). For a

chromosome in the upper half of the population, the probability of mutation is reduced

to 0.05 (or 5 percent). To mutate a gene, it is replaced with a randomly selected gene.

This process is repeated for n generations, and we keep track of the best chromosome

found over the course of the run.
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Appendix C

Protocols of Compiler-Viewer

Messages

Below is a definition of the protocols of the messages transferred between the viewer and the

compiler. Words in upper case denote constants used in either the compiler or the viewer.

1. Messages sent when VISTA is started

Viewer Compiler

< USER_INTERACT

< BEGINFUNCTION {function name}

SANITY_CHECK / ABORT_VPO >

TRUE / FALSE >

< {base name of source file}

< {send basic blocks}

< ENDINITSET

< [ {initial transformations

from the .trans file}

ENDSEQ ]
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< [ BEGINFREQ

{send frequency measures}

ENDFREQ ]

2. Proceed to the next function (when next function exists)

NEXT_FUNC >

QUIT_TRANS >

< ENDFUNCTION

< BEGINFUNCTION {function name}

SANITY_CHECK / ABORT_VPO >

TRUE / FALSE >

< {base name of source file}

< {send basic blocks}

< ENDINITSET

< [ {initial transformations

from the .trans file}

ENDSEQ ]

< [ BEGINFREQ

{send frequency measures}

ENDFREQ ]

3. Proceed to the next function (next function does not exist)

NEXT_FUNC >

QUIT_TRANS >

< ENDVIEW

STOP_TRANS >

QUIT_TRANS >

< {compiler exits}
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4. Discard changes after current state

UNDO_TRANS {number of trans} >

QUIT_TRANS >

< [ BEGINFREQ

{send frequency measures}

ENDFREQ ]

5. Show loop information

LOOPS_QUERY >

QUIT_TRANS >

< {loops information}

< ENDSEQ

6. Sanity Check

SANITY_CHECK_REQUEST >

QUIT_TRANS >

< {basic block information}

< ENDSEQ

7. Get Frequency Information

FREQUENCY_REQ >

QUIT_TRANS >

< [ CHANGE_TEST_CONFIG_ID

{send initial values in file}

ENDSEQ

{send new config values} >

QUIT_TRANS ]

< BEGINFREQ
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< {send frequency measures}

< ENDFREQ

8. Start measurements

START_MEASUREMENT >

QUIT_TRANS >

< [ CHANGE_TEST_CONFIG_ID

{send initial values in file}

ENDSEQ

{send new config values} >

QUIT_TRANS ]

< BEGINFREQ

< {send frequency measures and set flag}

< ENDFREQ

9. Create / Modify test configuration file

CHANGE_CONFIG_FILE >

QUIT_TRANS >

< CHANGE_TEST_CONFIG_ID

< {send initial values in file}

< ENDSEQ

{send new config values} >

QUIT_TRANS >

10. Specifying optimization phase sequences

{list of selected blocks} >

{list of optimization phases} >

QUIT_TRANS >
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< {sequence of changes}

< ENDSEQ

11. Exit

STOP_TRANS >

QUIT_TRANS >
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