
Master Project Defense

XML Transformer Web Service
XML-SQL Web Application

Defense Date: June 19, 2003

By

Sami I. Sarhan

Advisor
Dr. Gregory Riccardi

Committee Members

Dr. Lois Wright Hawkes

 Dr. Robert A. van Engelen

Computer Science Department
Florida State University

 2

Table of Content

1.0 Interface ……………………………………………………………… 2
2.0 Introduction ………………………………………………………….. 3
3.0 XML Web Services ………………………………………………….. 4
3.1 Why XML Web Services? …………………………………………... 4
3.2 Standards and Protocols …………………………………………….. 5
3.2.1 SOAP ……………………………………………………………….. 5
3.2.2 WSDL ………………………………………………………………. 8
3.2.3 UDDI ………………………………………………………………... 8
3.2.4 XML ………………………………………………………………… 9
4.0 Development XML Web Services in .NET Environment ………….. 10
4.1 ASP.NET ……………………………………………………………… 10
4.1.1 ASP.NET vs. Traditional ASP …………………………………….. 10
4.1.2 ASP.NET and XML ………………………………………………... 10
4.2 Creating XML Web Service using VS .NET ………………….……..11
4.2.1 Building the Add XML Web Service ……………………….………12
4.2.2 Building a Web Client for the Add XML Web Service …….……..16
5.0 XML Transformer Web Service …………………………….………..19
5.1 XSL Transformations of XML …………………………….………….20
5.2 Building the Service …………………………………………….……...21
5.3 Building Web Client ……………………………………………….…..25
5.4 Building Console Client ……………………………………….……….29
5.5 Testing and Running ………………………………………….………..30
5.5.1 Testing and Running the Web Client ……………………………….32
5.5.2 Testing and Running the Console Client ………………………........34
6.0 XML-SQL Application …………………………………………………34
6.1 Building Web Based Application ………………………………………36
6.2 Testing and Running ……………………………………………………42
7.0 Conclusion ……………………………………………………………….44
8.0 References ………………………………………………………...……. 45
Appendix A: Files Used and Descriptions ………………………..….…….46
Appendix B: XML Classes in .NET …………………………….…….……48
Appendix C: SQL Classes in .NET …………………………..………….…50
Appendix D: Source Code Attachments …………………..…………….…51

 3

1.0 Interface

The goals of this master project is to be able to achieve proficiency in creating XML Web
Service in .NET Environment as well as develop skills in building XML-SQL Web
Application using ASP.NET.

To achieve these goals I have set three main objectives: First, is to develop an XML
Transformer Web Service, which will transform an XML document to another XML
document given a stylesheet in this case it is an XSLT document. The two input parameters
to the service will be the XML document, that we want to transform, and the XSLT
document, which could be in different format (File, URL and Memory Stream). The service
will return a string that contains the XML document.

Once we have built the service we would like to communicate with it. The second
objective was to develop a consumer to the XML Transformer Web Service. The consumer
will both be a web based and console based clients that will work as interfaces to the service.

The third objective is to develop XML-SQL Web Application. Given an XML document
with SQL query and SQL connection string elements as an input parameter to the application.
According to the connection string and the SQL query, the application will connects to the
database and run the query. The result from the database will replaces the query string in
XML format.

To meet the objectives I have gone through many activities some of which learning how
to work with Visual Studio .NET (VS.NET) as well as learning how to build Web form in
ASP.NET, which included examining different types of Web form components. This activity
also included learning C# pronounced as “C sharp” .NET language. Knowing how to
program in C and C++ made the learning of C# .NET easy and fast process.

In particular, XmlReader class and XmlWriter class was the focal point since I have used
these classes extensively in this project. I have conducted other activities such as reading
books and articles about developing XML Web Services in .NET environment. I have bought
all the books that are listed in the reference section of this report. I read at least two chapters
from each book and browsed the other chapters for reference.

According to the activities I have accomplished developing the XML Transformer Web
Service and its both consumers the web based and the console based clients. Also, I have
developed the XML-SQL application

2.0 Introduction

The Internet revolutionized how users interact with application specifically how
computers talk to other computer by providing a universal data format that lets data be easily
adapted or transferred. Before Web services, Internet computing and e-commerce were based
on the exchange of information through enterprise application integration (EAI). Developers
created one-time, proprietary solutions for system integration. Web services have emerged as
the next generation of Web-based technology for exchanging information

 4

Open standards and the focus on communication and collaboration among people and
applications have created an environment where XML Web Services are becoming a
platform for application integration. Applications are constructed using multiple XML Web
Services from various sources that work together regardless of where they reside or how they
were implemented.

The following sections are the main sections of this report. Starting at section three which
will cover the building blocks for XML Web Service. Section four will cover what it takes to
developing XML Web Service in .NET environment. We will build an Add XML Web
Service and its consumer as an example for building XML Web Service with VS.NET.
Section five will talk about the XML Transformer service and it consumers. Then in section
six we will discusses the XML-SQL Web application development.

3.0 XML Web Services

“XML Web Services are a category of software components that provide functionality
over the network” [3] this is very general definition to Web Services. However, if we would
like to define Web Services in terms of functionality then XML Web Services let
applications share data, and-more powerfully- invoke capabilities from other application
without regards to how those applications were built, what operating system or platform they
run on, and what device are used to access them. While XML Web Services remain
independent of each other, they can loosely link themselves into a collaborating group that
performs a particular task. [4]

3.1 Why XML Web Services?

There are many benefits to XML Web Services such as standard based, vendor neutral,
simplicity, discoverable, and reduced development time. However, to answer the above
question, in addition to the listed benefits, as a computer since student one main benefit of
XML Web Services; in my opinion, they are language and platform independence. The only
requirement for consuming an XML Web Services is the ability to communicate over TCP/IP
and the ability to process XML.

XML Web Services do not enforce the use of any particular programming language or
operating system. “A program written in C (a procedural language) running on handheld
devices can consume an XML Web Service written in C# (an object-oriented language)
that’s running on Windows 2000 server” [3]

In addition to the language and platform independence, XML Web Services use industry
standard protocols. Being standard based means that all XML Web Services implementations
operate in the same way, use the same protocol and encode data consistency, which makes
consuming XML Web Services a simple process no matter what platform the service and the
consumer are running on.

 5

3.2 Standards and Protocols

XML Web Services are invoked by means of industry-standard protocols including
SOAP, WSDL, UDDI, and XML. They are defined through public standard organizations
such as the World Wide Web Consortium (W3C) in the following sections we will discusses
each of these underling technologies which are the building blocks of any XML Web
Services.

3.2.1 SOAP

The Simple Object Access Protocol is the communication protocol for XML Web
Services, which provides a standard way of packaging messages. A SOAP message is composed
of an envelope that contains the body of the message and any header information used to
describe the message, which is an XML document that follows specific XML schema. The latest
version of SOAP is 1.1. However, “On July 9, 2001, a working group draft of SOAP 1.2 was
published (http://www.w3.org/TR/2001/WD-soap12-20010709) by the XML Protocol Working
Group” [2]

The major key aspects of the SOAP specification are as follows:

? The SOAP envelope : This is used to encode the header information about the message
and the body of the message itself. Elements that can be included in to the header:
Authentication, Security digits information, Routing information, Transactions, and
payment information. The header entries appear as child nodes within the SOAP Header
element. Here is an example:
<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Header>
 <Digest>B839D234A3F87</Digest>

</soap:Header>
<soap:Body>

 <StockReport>
 <Symbol>MSFT</Symbol>
 <Price>74.56</Price>
 </StockReport>

</soap:Body>
</soap:Envelope>

? SOAP encoding : SOAP Encoding defines the way data can be serialized within a SOAP
message. It builds on the types defined in the XML specification, which defines a
standard way of encoding data within an XML document. Also, it clarifies how data
should be encoded and covers items not explicitly covered in the XML specification,
such as arrays and how to properly encode references.

? RPC-style messages: This is the protocol that facilitates procedure-oriented
communication via request and response messages patterns. The SOAP 1.1 specification

 6

described the recommended way to encode the request/response messages [2]. An
example 1 of a request messages written in C#:

public int Add(int x, int y)
{ return x + y;}

Is as follows:

POST /project/Add/Service1.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://localhost/project/Add/Add"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Add xmlns="http://localhost/project/Add/">
 <x>int</x>
 <y>int</y>
 </Add>
 </soap:Body>
</soap:Envelope>

The <soap:Body> element contains an <Add> element. Each of the input parameters is
represented as a sub element (<x>, <y>) within the <Add> element. The order of the <x>
and <y> elements must match the order in which the parameters are specified in the
method.

An example of a response message that is used to communicate the results of the above
SOAP request is as follows:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <AddResponse xmlns="http://localhost/project/Add/">
 <AddResult>int</AddResult>
 </AddResponse>
 </soap:Body>

1 Note: The SOAP, HTTP GET and HTT POST examples correspond to the actual service I have
implemented for this report. The service will be discussed in detail in section 4.2.

 7

</soap:Envelope>

? The HTTP POST protocol binding : This is the standard method of binding SOAP
messages. Since HTTP protocol are supported by almost all current operating systems it
became the typical way to send the message to a remote application. Some of the
advantages of using HTTP protocol are:

o Firewall friendly: most firewalls have port 80, which are most of the time are
open for HTTP traffic.

o Strong Support: many technologies have been introduced in the effort to increase
the scalability and availability of HTTP-based applications.

o Stateless: the stateless nature of HTTP helps ensure that communication between
the client and the server is reliable, especially across the Internet.

o Simple: the HTTP protocol is composed of a header section and a body section.

o RPC-style message exchanges: HTTP is a natural protocol for RPC-style
communication because a request is always accompanied by a response.

o Open: practically every network-aware system supports HTTP.

Example HTTP GET of the Add Service is as follows:

GET /project/Add/Service1.asmx/Add?x=string&y=string HTTP/1.1
Host: localhost

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<int xmlns="http://localhost/project/Add/">int</int>

Example HTTP POST of the Add Service is as follows:

POST /project/Add/Service1.asmx/Add HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: length

x=string&y=string

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<int xmlns="http://localhost/project/Add/">int</int>

 8

3.2.2 WSDL

Web Service Description Language (WSDL) is an XML-based language layered on top
of the schema that describes a Web Service. It provides the information necessary for a client
to interact with the Web Service. “WSDL specifies what a request message must contain and
what the response message will look like in unambiguous notation.”[5] WSDL is extensible
and can be used to describe practically any network service, including SOAP over HTTP and
even protocols that are not XML-based, such as DCOM over UDP.

The WSDL document contains five main elements under the <definition> elements that
can be divided further in to two main sections. The first three elements are the abstract
sections, which define SOAP messages in a platform and language independent manner; they
do not contain any machine nor language specific elements [6]. They are:

1. <types>: contains schema definitions for the data exchanged between the client and the
server. The default schema language is XML Schema. However, we can specify another
schema language through the use of extensibility elements.

2. <message>: identifies a particular message that is exchanged between the client and the
server. A message is composed of one or more parts. Each part is represented by the part
element and can refer to an element or type definition defined within the <types> element.

3. <portTypes>: element contains one or more operation elements. We can think of an
operation as an interface, a contract about how the client and the server will interact with
each other to perform an action. An operation can be one of four types: request-response,
solicit-response, one-way, or notification [2].

The remaining two elements are Site-specific matters such as serialization, which contain
concrete descriptions. They are:

4. <binding>: is used to associate a port type with a particular protocol. This is
accomplished via extensibility elements. Extensibility elements are elements defined
outside the WSDL namespace. The WSDL specification defines three sets of extensibility
elements for specifying binding information: SOAP, HTTP GET/POST, and MIME.
Because specific technologies such as SOAP and HTTP are represented by extensibility
elements, WSDL can be used to describe practically any service.

5. <service>: contains one or more port elements. A port element is used to define an
address where a Web Service that supports a particular binding can be reached.

3.2.3 UDDI

Universal Description, Discovery, and Integration provide a central directory service for
publishing technical information about Web Services. In other words, it is the yellow pages
of Web Services. UDDI is the result of an industry initiative backed by a significant number
of technology companies, including Microsoft, IBM, SAP, and Ariba. (You can find a full
list of participants in the UDDI project at http://www.uddi.org/community.html.)

 9

The infrastructure that supports UDDI is composed of a set of registries and registrars. A
registry contains a full copy of the UDDI directory; a registrar provides UDDI registration
services on behalf of a customer. A business must choose a registry in which to maintain its
information. All updates made to the directory will be replicated to all the other registries.
Then the updated information can be queried from any registry.

Figure 1

Figure 1 shows one user updating the UDDI business directory through a registrar and
then another user accessing the updated information.

Microsoft introduced new technology that facilitates the publishing and discovering of
XML Web Services this is the Discovery (DISCO) files. DISCO files are XML documents
with an extension .disco. They include: URL reference to WSDL and URL reference to other
DISCO files.

3.2.4 XML

All the above protocols and standards we discussed so far are based on the Extensible
Markup Language. Indeed, XML is the backbone of any Web Service. “XML is a vehicle for
information that brings usable data to the desktop and is a universal data format that does for
data what HTML does for web content- it provides the necessary markup”[7]

The extensibility of XML language what makes XML the first choice for programmer to
create richly structured documents that could be used in the Web. Compared to HTML, in
XML we can add new tags and new elements to support our application. Whereas in HTML
we are limited to the tags provided by the language. Also, HTML comes bound with a set of
semantics and does not provide arbitrary structure. However, XML is a Meta
language for describing markup languages and provides a facility for defining tags
and structural relation between them.

Registrar Registrar Registrar Registrar Registrar Registrar

Registry Registry

USER USER

 10

4.0 Development XML Web Services in .NET Environment

Microsoft .NET allow programmer to develop applications in language independent manner.
It has been specifically designed with Web Services in minds. VS.Net is the IDE (Integrated
Development Environment) for .NET based application. I am using the academic version of
VS.NET, which contains the .NET Framework SDK (Software Development Kits) and the
main .NET languages VB (Visual Basic), C++, C# and Java script (Jscript) .NET.

All the XML capabilities that where formally available to the programmer through the
Microsoft XML (MSXML) parsers are now encapsulated in the system.Xml namespace of
classes. Refer to Appendix B for the list of classes we used in this project. In this project C# was
the main language used to develop the XML Web Services along together with ASP.NET Web
forms. In the following subsections we will talk about ASP.NET and building Web Services and
its consumers in .NET

4.1 ASP.NET

The key to .NET technology for developing XML Web Services is ASP.NET, which is the
next generation of ASP (Active Server Pages) platform. ASP.NET provides framework for
developing Web based applications in which the user interacts with a service using a browser.
Although the main emphasis of ASP.NET is to build conventional web applications, Microsoft
has added support for building XML Web Services as well.

4.1.1 ASP.NET vs. Traditional ASP

ASP.NET provides a true language neutral execution framework for web application to use.
This means that whether we use C#, VB, Jscript .NET, C++ or Perl our code will compile to IL
(Intermediate Languages) and then executed by .NET Framework. This also means that
ASP.NET will take full advantages of .NET Framework based classes through and compiled
languages. However, compared to the traditional ASP, the choice of languages are limited with
VB script and Java script.

Another major difference between traditional ASP and ASP.NET; is that traditional ASP
pages are parsed each time they are requested, which will make the ASP execution slower. On
the other hand, when we execute an ASP.NET page for the first time it gets compiled in to a
binary .dll (dynamic library link) and then get executed. All further requests are served by this
compiled code, making execution faster.

4.1.2 ASP.NET and XML

The relation between ASP.NET and XML can be summarized but not limited to the
following points:

 11

? ASP.NET uses XML extensively to represent Web Controls and configuration setting. It
relies on special XML document for configuration purposes it is the web.config file refer
to Appendix A for the description of this file.

? ASP.NET provides Web Controls that can deal with XML data and display it as our
requirement, which can be either tabular or style sheet-based.

? The creation of XML Web Services in .NET platform is done through ASP.NET. We will
see how we can create a Web Service in .NET and a client in the next section.

4.2 Creating XML Web Service using VS .NET

There is always two parts of any XML Web Service: the Web Service itself and the
consumer of the service in this case the client of the Web Service. The client could be a Web
application, Windows application, server process, and another XML Web Service. In this
section I will illustrate how to build both an XML Web Service and a Web client to the service
using VS .NET.

The example I will use is a simple Add XML Web Service that will add two numbers and
return the result. But before I build the service and its consumer Figure 2 will illustrate for us the
role of the proxy class, which we will discuss in detail in section 4.2.2 Building a Web Client for
the Add XML Web Service.

Figure 2

In the above figure the client application is unaware of the activates that are happening once
the call is made to the proxy method. Since XML Web Service interfaces are defined using

Proxy class

SOAP

HTTP

TCP/IP

IIS/ASP.NET

SOAP

HTTP

TCP/IP

Add
XML Web Service

Physical communication

Logical
communication

 12

WSDL, VS.NET can auto generate the proxy class for us, which will takes the complexity of
SOAP processing out of the application code.

4.2.1 Building the Add XML Web Service

We will build simple addition Web Service given two numbers to the service as an input
parameter the service will add them and return the result. We will implement what we discussed
in earlier section when we talked about SOAP. When we chose to create new project in VS.NET
one of the template option under the C# projects is ASP.NET Web Service as it is in Figure 3:

Figure 3

I assume that IIS (Internet Info rmation Server) in installed. As soon as we click the OK
button VS.NET start to communicate with IIS and create a new virtual directory for the new
service under the specified location (http://localhost/project/Add).

VS.NET will create the service class and give a name Service1.asmx, which can be renamed.
We add a new method and name it Add it is in the code below2:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace Add
{
[WebService(Namespace="http://localhost/project/Add/", Name="AddService",
Description="XML Web Service for adding two numbers")]

2 Note: that I have removed some of the auto generated code by VS.NET. For the full code refer to
Appendix E.

 13

public class Service1 : System.Web.Services.WebService
{

public Service1()
{ //CODEGEN: This call is required by the ASP.NET Web //Services

Designer
InitializeComponent();}

[WebMethod]
public int Add(int x, int y)
{ return x + y; }

}}

We can notice a few things from the code above:

1. The using of the System.Web namespace. It supplies classes and interfaces that enable
browser-server communication. This namespace includes the HttpRequest class which
provides extensive information about the current HTTP request, the HttpResponse class
which manages HTTP output to the client, and the HttpServerUtility class which provides
access to server-side utilities and processes. System.Web also includes classes for cookie
manipulation, file transfer, exception information, and output cache control.

2. The System.Web.Services namespace consists of the classes that enable us to create
XML Web Services using ASP.NET and XML Web Service clients. It also, defines the
optional base class for XML Web Services, which provides direct access to common
ASP.NET objects, such as application and session state.

3. The two attribute [WebService], which is optional, and [WebMethod], which is required.

a. The [WebService] attribute, which is placed in top of the class name, is used to
add additional information to an XML Web Service, such as a string describing its
functionality and its name as I did in the above code.

b. The [WebMethod], which must be placed on any method that we want to
programmatically expose over the Web. Adding this attribute to a method within
an XML Web Service created using ASP.NET makes the method callable from
remote Web clients. This class cannot be inherited. The method and class must be
public and running inside an ASP.NET Web application.

Now that we have created the Web Service, we can test it using the auto generated
form/interface by the ASP.NET. By hitting F-5, the program will be compiled and run by
opening Internet Explorer (IE) to the Web Service front page. As it is in Figure 4.

 14

Figure 4

Notice that the name and the description we used in the [Web Service] attribute are shown in
the front page of the service. Even though this page was auto generated by ASP.NET, we can
customize it by adding extra information about the service or even pictures and background.

Also, we notice there are two links available for us to click one is the Add link and the other
is the service description link. Let’s examine the Add link first.

Before we activate this link, let’s ask this question: Assume we had another method/s in our
class will they show up in this front page as clickable link? The answer is NO. If we want to
show another method that can be clicked and tested then we must add the [WebMethod] attribute
in top of it. I will add two more methods Mult() and Sub() to the code. The Mult() method will
not have the [WebMethod] attribute in top of it but the Sub() will have as it is below.

……
……
public int Mult(int x, int y)
{return x*y;}

[WebMethod]
public int Sub(int x, int y)
{return x - y;}

The expected front page for the service is in Figure 5.

Figure 5

Also, notice that the WSDL file will change accordingly since now we have access to two
methods instead of one through the service.

Back to our original discussion if we click the Add link we will get the ASP.NET form. We
can enter the values we need to add in the form, then by clicking Invoke button we will get the
result in XML document opened in new browser window. As it is shown in Figure 6 and 7
respectively.

 15

Figure 6

Figure 7

Figure 8

 16

The other link that was available for us to click in Figure 4 is the service description link,
which is the link to the WSDL file as it is in Figure 8.

We can see the five elements we have discussed earlier in the WSDL section and for the
demonstration purpose I have collapsed all the nodes axcept the service node. In the <service>
element, which specifies port address/es of each binding, as well as the http address location in
this case the URL to the .asmx file, which is a .NET convention for XML Web Service files.

By now our service is ready we can consume this service and call it from another application.
Next we will discuss the process of creating a Web client that will communicate to the Add
XML Web Service and in particular we will elaborate on the proxy object in .NET framework.
But before we move on to the next section it worth to mention that the page that included the
ASP.NET auto generated form for our service also it included the sample request and response
for SOAP, HTTP GET, and HTTP POST and those are the examples we used above in the
SOAP section earlier.

4.2.2 Building a Web Client for the Add XML Web Service

In this section I will build a web based client for the Add XML Web Service we developed in
the previous section and go through the steps of adding the service to the application before we
used it.

XML Web Service consumers do not need to know the detail of the platform or the language
used to implement the XML Web Service; the only requirement as I said earlier in section 3.0 is
the ability to communicate over TCP/IP and the ability to process XML. What I mean by process,
is to be able to formulate request and process response using correct protocol and message
structures, which are defined in the WSDL of the service.

It is possible to manually encode complex data as SOAP messages; however, .NET
introduced a proxy class with methods mirror the functionality exposed by an XML Web Service
[3]. In other words, the proxy object is the glue between the .NET Framework and an XML Web
Service. Each proxy method takes the same number and type of arguments and returns the same
data types as its XML Web Service equivalent.

To call XML Web Service’s functionality, a client application simply calls the proxy class
method. Which will then takes care of all the communications with XML Web Service and
returns the response it receives from the service to the client application. In this case the XML
Web Service invocation appears to be a local method call, while in reality the call could be
serviced by an XML Web Service anywhere in the Internet.

Now we will go over the steps for add any XML Web Services in to an application that is
developed by VS.NET:

Step1: Create the Proxy Class

Although, it is possible to create proxy classes using the Wsdl.exe command line tools
supplied with the .NET Framework SDK. However, I will walk through adding a Web Reference
to the client using .NET wizards that will create the proxy class for us. After we choose the new

 17

ASP.NET Web Application from the new project menu on the Solution Explorer highlight
References and right click Add Web Reference. We will get the Figure 9.

Figure 9

We need to type the URL for our XML Web Service. In this case the Service was located in
my machine, but it could be located any where on the Internet. The URL for our Add Service is:
http://localhost/project/Add/Service1.asmx as we said before the .asmx file extensions are .NET
convention for XML Web Services. However, as well this could be a service that was created by
non-Microsoft product. As long as the wizard is able to locate the WDSL file for the service to
create the proxy class.

Once the service was added successfully that’s mean proxy class was auto generated by
VS.NET and placed under the Web Reference folder with a new directory that corresponds to the
service name. For example, the path to the directory of the Add service is:
C:\Inetpub\wwwroot\project\AddApp\Web References\AddServ. Under the AddServ directory
there exist four files that are used by the application refer to Appendix A for full detail of these
files. The proxy class will always be given the name References.cs3 and should not be edited
manually.

3 C# files ends with .cs

 18

Step 2: Enabling the Proxy class

Once we are successful in adding our web reference we will enable the proxy class by first
importing the namespace for the proxy class. That is done in C# by adding the following line of
code:
using AddApp.AddServ;

AddApp corresponds to the project name and the AddServ is the name given by me when I
added the web reference I had the choice of renaming it from localhost the given name by
VS.NET to AddServ.

Second by instantiating the proxy class and calling the Add() method. That is done as well in
C# by adding the following code:

AddService Number = new AddService();

Remember the AddService is our Service Name that we defined it in the [WebService]
attributes and the Number is our proxy object. The proxy instance is stateless and thread safe;
multiple objects and threads can use the proxy repeatedly. Now we can call the methods of the
proxy class in this case we only have one method Add() and pass the right argument to it:

Result.Text = Number.Add(Numb1, Numb2).ToString();

Since our client is a web form, then we needed the ToString() method to convert the integer
to a string to be able to post the result in to the Result text box. The following code corresponds
to the client I avoided VS.NET auto generated code for simplicity:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

using AddApp.AddServ;

namespace AddApp
{

 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.TextBox Num1;

 19

 protected System.Web.UI.WebControls.Button Add;
 protected System.Web.UI.WebControls.TextBox Num2;
 protected System.Web.UI.WebControls.Label Equale;
 protected System.Web.UI.WebControls.TextBox Result;

 private void Add_Click(object sender, System.EventArgs e)
 {
 // Initialization
 int Numb1 = 0;
 int Numb2 = 0;

 // Parsing the String Text Box in to the Numb1 and Numb2
 Numb1 = int.Parse(Num1.Text);
 Numb2 = int.Parse(Num2.Text);

 //Instantiate the proxy class
 AddService Number = new AddService();

// Call the method of the proxy class and convert the //result in
to String

 Result.Text = Number.Add(Numb1, Numb2).ToString();

 }
 }
}

The interface for the form will look like Figure 10:

Figure 10

Now that we have built a good background on how to build an XML Web Services in .NET
environment and build a client that will consume the service, in the next section I will discuss the
XML Transformer Service and its client from an application point of view. In other words, I will
be focusing on the particular XML methods in .NET and there capabilities of building XML
based application.

5.0 XML Transformer Web Service

XML documents can contain all sorts of information that are some time not important to its
consumers. To extract the useful data from an XML document and leave the others, there are two
main tools that are available to programmers for displaying XML content in different format and
extracting specific elements. One of these tools is the Cascading Style Sheet (CCS), which is the
most familiar method for transforming XML documents for rendering on the Web. CSS allows

 20

document authors to specify the presentation of elements on a Web page separately from the
structure of the document. This separation of structure from presentation simplifies maintaining
and modifying a document layout [8].

However, like any other technology there are drawbacks for using CSS to transform XML
document for real- life application. For example, some of these drawbacks are CSS enables us to
format and display XML elements only, where in any XML document transforming attributes is
as important as transforming elements. CSS lacks the manipulation of records and displaying of
data dynamically, it can only display static data.

In the next section we will discuses the second tool for transforming XML document which
is the Extensible Stylesheet Language Transformation (XSLT). And we will see how we can
overcome CSS drawbacks. Then we will talk about .NET support for XSLT.

5.1 XSL Transformations of XML

The goal of the XSLT is to transform the content of a source XML document into another
document that is different in format or structure. For example, to transform XML into HTML for
use on a Web site or to transform it into a document that contains only the fields required by an
application. This transformation process is specified by the W3C XSL Transformations (XSLT)
Version 1.0 recommendation located at http://www.w3.org/TR/xslt. XSLT is a technology that
can perform tighter manipulation of XML than CSS [7].

Transforming an XML Document using XSLT to another XML document involves two tree
structures. One is the source tree, which is the XML document that we want to transform. Two is
the result tree, which is the created XML document. In the .NET Framework, the XslTransform
class, found in the System.Xml.Xsl namespace, is the XSLT processor that implements the
functionality of this specification. Figure 11 shows the transformation architecture of the .NET
Framework [9].

Figure 11

 21

The XSLT recommendation uses XPath expression parser and evaluator, which are found in
the System.Xml.XPath namespace, to select parts of an XML document. XPath is a locator
language for XML document that enables us to select one or more nodes from an XML
document that match the conditions in the locator. The .NET Framework implementation of
XPath is used to select parts of an XmlDocument, an XmlDataDocument, and an
XPathDocument as shown figure 11.

The XPathDocument class optimizes XSLT data store, and when used with XslTransform
provides highly performed XSLT transformations. In the next section we will discus the
programming point of view for building an XML transformer Web Service using .NET XML
classes: XPathDocument, XslTransform, XmlReader, and XmlWriter.

5.2 Building the Service

We have talked about the building blocks of developing an XML Web Services in .NET in
previous sections. In this section we will rather discuss the code needed to build our XML
Transformer Service. I have divided this section in to four major steps for building the Web
Service.

Step1: Reading the source documents using XmlReader class

Since we will not be using the direct interface/form that is auto generated by ASP.NET, we
want to make sure that we can read both the XML and XSLT documents in all formats. By that I
mean if the document is coming to us from Internet URL, file stream or string in the memory.
The service should be able to handle any of these sources or a mixture of them. For example, the
XSLT document could be residing in a local hard disk and the XML document can only be
reached by a URL, then the service should be able to accept both inputs and process the
transformation and return the result to the consumer of the service.

This step implemented by the ReadInputDocument() method. The method code as follows:

private XmlTextReader ReadInputDocument(string Doc)
{

XmlTextReader DocReader;

 if (Doc.EndsWith("xml") || Doc.EndsWith("xsl"))
 {
 DocReader = new XmlTextReader(Doc);
 }
 else
 {
 // Memory stream reading the XML Document/Data
 byte[] byteDoc = Encoding.UTF8.GetBytes(Doc);
 MemoryStream DocStream = new MemoryStream(byteDoc);
 DocReader = new XmlTextReader(DocStream);
 }
 return DocReader;

 22

 DocReader.Close();
}

As you can see from the above code we are passing one string value to this method string Doc,
it could be the either the XML input document or the XSLT document.

In this method we are using one of the implementation for the XmlReader class which is the
XmlTextReader. The XmlReader abstract class is a forward only reader class; we will cover
XmlReader class in detail when we talk about the XML-SQL Web Application. In short, the
XmlReader provides methods that can be used to navigate through the document node-by-node.

The XmlTextReader class is the most useful version of XmlReader. It enforces the rules that
XML must be well formed. It is neither a validating nor a non-validating parser since it does not
have DTD or schema information.

We start by declaring a new instance in XmlTextReader class:

XmlTextReader DocReader;

The XmlTextReader can read data from different inputs, such as a stream object, a
TextReader Class object, and a URL identifying a local file location or web site.

The purpose of the if statement in the method is to be able to distinguish the type of the input
string we are getting and add credibility to the service to be able to accept any form of input (File,
URL, Memory Stream). The first branch of the if statement will resolves inputs strings that are
either files located in the local hard disk or files located in the internet.

if (Doc.EndsWith("xml") || Doc.EndsWith("xsl"))
 {
 DocReader = new XmlTextReader(Doc);
 }
 else
 {
 // Memory stream reading the XML Document/Data
 byte[] byteDoc = Encoding.UTF8.GetBytes(Doc);
 MemoryStream DocStream = new MemoryStream(byteDoc);
 DocReader = new XmlTextReader(DocStream);
 }

The else branch of the if statement will load document from a string in memory. We are
using the MemoryStream form of the constructor. And since MemoryStream only has byte array
constructor, not a string constructor, we first need to move the string in to byte array then
construct the MemoryStream object DocStream.

Finally, the method will return the XmlTextReader object DocReader and close the
XmlTextReader object.

 23

Step 2:Create XPathDocument Instance:

As we said earlier XPath is a query language used to navigate nodes of a document tree. We
are using an instance of XPathDocument to hold the document being transformed. The
XPathDocument is a performant cache, for processing documents with XslTransform. It is
structurally similar to the XML DOM, but it is highly optimized for XSLT processing and the
XPath data model using the XPath optimization functions on the XPathNavigator [10].

This is implemented in the [WebMethod] xmlToxml(). The following line of code establishes
this step:

XPathDocument xmlDoc = new XPathDocument (ReadInputDocument(xmlinput));

The main method of the our service is the [WebMethod] xmlToxml(). This method will pass
in two string values one for the XML document and the other is for the XSLT document. The
string xmlinput will be passed to our reader method that will return the XmlTextReader object that
XPathDocument will used it to navigate through the document.

Step 3: Creating XslTransform Instance:

XML documents are transformed in .NET framework using XslTransform class. This class
constructor takes no parameters. The transformation is done in tree sub steps:

1. We create an instance of the XslTransform. This step will be established by the following
line of code:

XslTransform xslDoc = new XslTransform();

2. Then we need to use the Load() method to load the stylesheet to be used for the
transforms. In this case the string xslinput will be passed to our reader method that will
return the XmlTextReader object. This step will be established by the following line of
code:

 xslDoc.Load(ReadInputDocument(xslinput));

3. Like the Load() method, the Transform() method has several overloads. In this case;
however, it is important for us to carefully consider which form of the method we will
use to perform the transformation. Ideally, we should use an instance of XPathDocument
to hold the document being transformed. This step will be established by the following
line of code:

xslDoc.Transform(xmlDoc, null, myWriter);

 24

In this case the three arguments of the Transform() method are: the XPathDocument object,
XSLT argument list object in this case is null, and the XmlTextWriter object. Before the
compiler executes this line of code it has to have the XmlTextWriter object created, which is the
topic of the final step for building the transformer service. The XsltArgumentList class contains
XSLT parameters and XSLT extension objects. When passed to the Transform these parameters
and extension objects can be invoked from stylesheets.

Step 4: Create an XmlTextWriter to handle the output:

The final Step in building the XML Transformer Service is to create the XmlTextWriter
object. Just like the XmlTextReader, XmlTextWriter, derived from the XmlWriter, writes XML
to a file, console, stream, and other output types. Also, it represents a writer that provides a fast,
non-cached, forward-only way of generating streams or files containing XML data that conforms
to the W3C XML 1.0 and the namespaces in XML recommendations.

Some of the tasks are done by the XmlTextWriter to ensure well- formed XML are as
follows:

? Ensures that the XML elements are written out in the correct order. For example, it will
not let you write an attribute outside of an element, write a CDATA block inside an
attribute, or write multiple root elements.

? Ensures that value and format of the xml:space attribute is correct and makes sure that its
value is acceptable according to the XML 1.0 2nd recommendation
(www.w3.org/XML/Group/2000/07/REC-xml-2e-review#sec-white-space) [11].

? Checks when a string is used as a parameter, for example Null==String.Empty and
String.Empty and whether it follows the W3C rules.

The XmlTextWriter constructors creates an instance of the XmlTextWriter, which takes a
filename, stream, or TextWriter. An overloaded method exists to take an additional parameter
that defines the encoding type. The following line of code creates an instance of XmlTextWriter:

XmlTextWriter myWriter;

Since we are not sure how the consumer would like to store the transformed document we
will return the document in a string format. In this case the XmlTextWriter will send the data to a
MemoryStream. Then we can use the stream form of the constructor. The following line of code
will establishes this task for us:
Stream s = new MemoryStream();
myWriter = new XmlTextWriter(s, null);
myWriter.Formatting = Formatting.Indented;

The Formatting properties will defines whether indenting is used to format the output.

Now our object is ready to be used. Back to step three above, we can now pass the
XmlTextWriter object to the Transform() method. Once the transformation if done we would like

 25

to read the memory and extract the transformed string then return it to the client/consumer. The
following line of code will established this task:

myWriter.Flush();
s.Position = 0;
StreamReader sr = new StreamReader(s);
return sr.ReadToEnd();

In this case we used the StreamReader to read the MemoryStream. The Flush() method would
clears all buffers for the current writer and causes any buffered data to be written to the
underlying device.

By now our service is ready to be used. In the next section we will go over the process of
creating the client that will consume this service.

5.3 Building Web Client

We have gone through building a simple client to use .NET created Web Service in previous
sections. Since one of the goals of this project is to become an experienced ASP.NET
programmer. In this section I will go though the steps of creating an ASP.NET web form for our
service. But, before we jump in to the code we would like to ask the following questions :

? How the users will be interacting with the service? In other world we need to provide
user friendly Web form.

? Also, after the user will get the transformed document, what they will do with it? In other
words, are they going to view it, if yes, how? Will they save it to local hard disk?

To answer the first question I thought of a simple Web form that will contain user friendly
components such as buttons, text boxes with label on each text box, and radio buttons that will
allow the users to choose one option at time. Also, in case the user will make a mistake a reset
button is provided to for re-entering the data.

To answer the second question, after the user will get the transformed document and feel that
he/she wants to use it for other purpose such as saving the document in local hard disk. Or view
it on the Internet Explorer (IE) which has the capability to view XML document in nice
hierarchal view.

Now that we have in mind users expectation on how to interact with the service. I thought
about having three main text boxes: one for the XML document, one for the XSLT document
and the last one is for the result document. In ASP.NET these text boxes are set by default to
accept single line. To allow the user to copy any of the input documents and pastes it to the text
box we have to change the property of the text box to accept Multi line. For this reason, during
the development of the ReadInputDocument() method, we discussed the in the previous section,
we considered that the document could be coming as a string from the memory not just a URL to
a file either in local disk or in the Internet.

 26

After the user will get the result document he/she will have at least three choices of what to
do with the transformed document. One option would be just to view it in IE browser. The other
option is to save it in to local disk for later use or to a directory that will be used by another
application. The last option I have is to send it a container that is a text box in a new Web page.
Which is a regular behavior of many forms in the Internet where the result could be viewed in a
different Web page.

From the above dissection we know that we need to have at least three buttons: one for the
transformation, one for the reset, and the last one is for what to do with the result document.
Figure 13 shows the final page that was developed in ASP.NET.

Figure 13

Now we can move forward to the code behind this form and look in to the action behind the
major buttons. To understand the code Table 1 lists the components of the Web form along with
there names.

Components Name Components Type Description

txtXML Text Box XML document
txtXSL Text Box XSLT document

txtResult Text Box Transformed/Result document

 27

ResultFile Text Box Result document file name
Transform Button Execute transformation

Reset Button Clear all content
Send Button Send the result according to the radio

button selection
File Radio Button List

value
Send the result to a file specified in

the file name text box
New_Windows_Container Radio Button List

value
Send the result to new Web page

container
New_Browser_Page Radio Button List

value
Open the result in new IE browser

window
 Table 1

We will start by looking in to the code behind the “Transform” button:

private void Transform_Click(object sender, System.EventArgs e)
{
 //Instantiate the proxy class
 Trans x_Trans = new Trans();

 // Call the method of the proxy class
 x_file = x_Trans.xmlToxml(txtXML.Text,txtXSL.Text);

 // To send the output to the container within the page
 txtResult.Text = x_file;
}

Since, the expected action of the Transform button was to get the result document; as a result,
it is appropriate then to call upon the Web service in the code behind this button. After we
instantiate the proxy class we pass the two strings we have collected from the txtXML, and the
txtXSL text boxes, to the [WebMethod] xmlToxml() of the service. The x_file was declared
globally as a string that will hold the result document. After we get the result we assign the x_file
to txtResult text box. The property “Text ” contains the unformatted text and is identical to the text
entered in the control by the user. This property is not available at design time; read-only at run
time.

The next fragment of code we will examine is the code behind the “Send” button.
private void Send_Click(object sender, System.EventArgs e)
{
 if (RadioButtonList1.SelectedItem.Value.Equals("File") &&
ResultFile.Text.EndsWith("xml"))
 {
 StreamWriter wr = new StreamWriter(ResultFile.Text);
 wr.Write(txtResult.Text);
 wr.Close();
 }
else if(RadioButtonList1.SelectedItem.Value.Equals("New_Browser_Page"))

{
 // To send the output to the new Browser Window
 ASCIIEncoding ae = new ASCIIEncoding();

 28

 byte[] byteXML = ae.GetBytes(txtResult.Text);

Response.ContentType="text/xml";
 Response.OutputStream.Write(byteXML,0,byteXML.Length);

Response.End();
 }
else if(RadioButtonList1.SelectedItem.Value.Equals("New_Windows_Container"))
 {
 // To send the output to a container out in a new page
 string ResultDoc = txtResult.Text;

Response.Redirect("FormContainer.aspx?ResultDoc=" +
System.Web.HttpUtility.UrlEncode(ResultDoc));

 }

}

After the user get the result document he/she will have three choices of what to do with the
transformed XML document. These choices are in the form of radio buttons. Once the selection
is made the user will click “Send”.

The code for the send button start with an if statement to examine if the radio button value
was a “File” at the same time the name of the file need to be an .xml extension since we are
expecting a transformed XML document. If that is the case then we ask the StreamWriter to
write the content of the Result text box to the specified file name. StreamWriter class
implements a TextWriter for writing characters to a stream in a particular encoding

The next branch of the if statement is the else if. This branch will examine if the selection
value was "New_Browser_Page". In this case result will be opened in a new IE browser page. To
establish this task we need to capture the string from the Result text box in to a byte array. But
before we do that we have to associate an encoding with the string in this case is an ASCII
encoding. The ASCIIEncoding class represents an ASCII character encoding of Unicode
characters.

HttpResponse class encapsulates HTTP response information from an ASP.NET operation.
One of the public properties of this class is the OutputStream, which enables binary output to the
outgoing HTTP content body. But before we send the content in to an output stream we need to
decide what the content type will be, in this case “text/xml”. The ContentType is one of the entity
header fields of the HTTP header, which can be used in request messages or response messages.
Also, they contain information about the entity-body of the message [12]. After we set the
content type we will write the byteXML starting at potion 0 to the length of the byteXML.

The last else if statement will redirect the result to a new form in a different web page. In
other word, the behavior will look like the new browser page but this time it will be a new text
box in a different Web page. The Redirect() method is one of the public methods of the
HttpResponse class that will redirects a client in our case the result document to a new URL. But
before we redirect the result in to a new URL we have to construct the page that will contain the
result.

The following code is the class ResultContainer() that sets behind the ASP.NET form for the
new page.

 29

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.IO;

namespace WebClientApplication
{
 public class ResultContainer : Page
 {
 public TextBox ResultBox;
 public void Page_Load(Object Sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 ResultBox.Text = Request.Params["ResultDoc"];
 }
 }
 }
}

The Page class represents an .aspx file requested from a server that hosts an ASP.NET Web
application. One of the public properties of the Page class is the IsPostBack which has the
property value “true” if the page is being loaded in response to a client post back; otherwise,
“false”.

The ResultBox is our new text box that will contain the result for the transformed document.
And the ResultDoc is the string passed from the txtResult of the main Web form of the client.

Now that we have examined codes for the main two buttons (Transform and Send); we
would like to examine the code for the reset button, which is very straight forward. When the
user clicks the “Reset” button the following code get executed:

private void Reset_Click(object sender, System.EventArgs e)
{
 txtXML.Text =" ";
 txtXSL.Text =" ";
 ResultFile.Text = "";
 txtResult.Text = " ";
 RadioButtonList1.SelectedIndex = -1;
}

All we are doing is basically emptying each users entered text box or radio button selection.
In the case of the radio button we are assigning -1 to the SelectedIndex property of the
RadioButtonList1.

This will conclude the development of the Web client for the XML Transformer Web Service.

5.4 Building Console Client

 30

The development of the Console based client for the XML Transformer Web Service is not
different from the development of the Web client except we do not use any web components. It
is purely a command line execution of the program. There will be only two augments one for the
XML document and the other is for the XSLT document. The code for the console client is as
follows:

using System;
// Import the XML Transformer Web Service
using ConsoleClientApplication.TransService;

namespace ConsoleClientApplication
{
 class ConsoleClient
 {
 [STAThread]
 static void Main(string[] args)
 {
 if (args.Length != 2)
 {
 Console.Write("Usage: ");

Console.WriteLine("XmlDocument.xml XslDocument.xsl");
 return;
 }
 else
 {
 Trans x_Trans = new Trans();
 string x_file = x_Trans.xmlToxml(args[0],args[1]);

 Console.Write(x_file);
 Console.ReadLine();
 }
 }
 }
}

The if statement is there to check for the number of argument provided by the user. In case
the user provides less than two arguments a “Usage:” message will be posted to inform the user
with number and type of the files excepted.

The else part of the if statement is something we have seen in previous sections. When we
get the string from the service basically we write it out to the console screen. The extra line of
code

Console.ReadLine();

Is to allow us to read the result and hit “Enter” when we are done.

This will conclude the development of the Console client for the XML Transformer Web Service.

5.5 Testing and Running

 31

In this section I will show some screen shots of the two clients. But before we will show the
XML and XSLT document that we will be using.

The XML document:
 <?xml version='1.0'?>
<!-- This file represents a fragment of a book store inventory database -->
<bookstore>
 <book genre="autobiography" publicationdate="1981" ISBN="1-861003-11-0">
 <title>The Autobiography of Benjamin Franklin</title>
 <author>
 <first-name>Benjamin</first-name>
 <last-name>Franklin</last-name>
 </author>
 <price>8.99</price>
 </book>
 <book genre="novel" publicationdate="1967" ISBN="0-201-63361-2">
 <title>The Confidence Man</title>
 <author>
 <first-name>Herman</first-name>
 <last-name>Melville</last-name>
 </author>
 <price>11.99</price>
 </book>
 <book genre="philosophy" publicationdate="1991" ISBN="1-861001-57-6">
 <title>The Gorgias</title>
 <author>
 <name>Plato</name>
 </author>
 <price>9.99</price>
 </book>
</bookstore>

The XSLT document:
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <root>
 <xsl:apply-templates/>
 </root>
 </xsl:template>
 <xsl:template match="bookstore">
 <!-- Prices and books -->
 <bookstore>
 <xsl:apply-templates select="book"/>
 </bookstore>
 </xsl:template>
 <xsl:template match="book">
 <book>
 <xsl:attribute name="ISBN">
 <xsl:value-of select="@ISBN"/>
 </xsl:attribute>
 <price><xsl:value-of select="price"/></price><xsl:text>
 </xsl:text>
 <title><xsl:value-of select="title"/></title><xsl:text>

 32

 </xsl:text>
 </book>

 </xsl:template>
</xsl:stylesheet>

If you notice in the XSLT document we are only interested in the <book> element ISBN
attribute and the elements <price> and <title>.

5.5.1 Testing and Running the Web Client

In figure 14 we have entered a URL for the XML document and the copy and pasted the
XSLT document.

Figure 14

After we got the result we choose to send it to the a New Browser Page, Figure 15 shows the
result in the IE browser

 33

Figure 15

Figure 16 is the same result sent to a New Windows container

Figure 16

 34

5.5.2 Testing and Running the Console Client

Figure 17 shows the console client that will run the following command line

>ConsoleClientApplication.exe C:\temp\books.xml
http://localhost/project/WebClientApplication/books.xsl

Figure 17

6.0 XML-SQL Application

In this section we will discusses the implementation of the XML-SQL Web application.

This Web based application process XML documents that have SQL queries impeded inside
them. To be able to run these queries across databases the connection string elements will
also be provided. The application will collect these elements and send it over to the database.
The result of the query will be in XML format that will replace the query elements and the
string elements.

The main functionality of this application is to implement SAX (Simple API for XML)
like parser using XmlReader. The XmlReader is a forward-only, read-only cursor. It provides
fast, non-cached stream access to the input. It can read a stream or a document. It allows the
user to pull data, and skip records of no interest to the application. The big difference lies in
the fact that the SAX model is a "push" model, where the parser pushes events to the
application, notifying the application every time a new node has been read, while
applications using XmlReader can pull nodes from the reader at will [13]. Figure 18 illustrate
the difference between the push model and the pull model.

 35

Figure 18 [14]

Also, this application will have the ability to communicate to more than one database
based on the connection string provided. The input XML document can have other elements
that are not in our interest but are relevant to the document as a whole. The tag
<SQLStatement> will contain all the needed information for our application to connect to
the database and return the result. The following XML fragment from the input document is
an example of the <SQLStatement> tag:

<SQLStatement>

<server>server = (local)\NetSDK</server>
<security>Integrated Security = true</security>
<database>database = Northwind</database>
<timeout>Connection Timeout = 5</timeout>
<DataSetElement>Employees_Table</DataSetElement>
<ResultElement>Employees</ResultElement>
<SQLQuery>SELECT EmployeeID, FirstName, LastName FROM

Employees</SQLQuery>
</SQLStatement>

The first four elements will be used as a connection string to the database. The method
buildConnectionString() will build the connection string in this format:
server = (local)\NetSDK; Integrated Security = true; database = Northwind;
Connection Timeout = 5

It will add “;” after each string clause. The last string will not require a “;”.

The <SQLQuery> will hold the query that will run across the database server and is
required by the SqlDataAdapter class, which represents a set of data commands and a
database connection that are used to fill the DataSet and update a SQL Server database. The
<DataSetElement> and <ResultElement> is required by the DataSet class, which
represents an in-memory cache of data. The <DataSetElement> will work as a root element
for the whole result. And the <ResultElement> will work as a root element for each set.
Finally, the <SQLStatement> will be replaced with <SQLQueryResult> also; the rest of the
elements in between will be removed and replaced with result. The following XML fragment
is the result of the above example:

<SQLQueryResult>

 36

 <Employees_Table sql:query="SELECT EmployeeID, FirstName, LastName FROM
Employees" source="database = Northwind">
 <Employees>
 <EmployeeID>1</EmployeeID>
 <FirstName>Nancy</FirstName>
 <LastName>Davolio</LastName>
 </Employees>
 ……………………………………
 <Employees>
 <EmployeeID>2</EmployeeID>
 <FirstName>Andrew</FirstName>
 <LastName>Fuller</LastName>
 </Employees>
 </Employees_Table>
 </SQLQueryResult>

We notice that the <DataSetElement>Employees_Table</DataSetElement> and
<ResultElement>Employees</ResultElement> are part of the result in the same way we
described above. The <DataSetElement> included two attributes the sql:query and
source these two attributes are not required by the result document or the DataSet class, I
have added them for more clarity so we would know where we are getting the result from
and what was the query that generated the result.

In the next section we will discuss the code that will read these elements and extract the
text behind them.

6.1 Building Web Based Application

In this section we will discuss the code behind XML-SQL Web application. However, we
will not cover all of the code since some of the code where discussed in previous sections.
Also, we will not discuses the ASP.NET component in this application since they are the
same component used in the previous application. We will start with the ASP.NET form that
worked as an interface to this application. Figure 19 is the Web form for the XML-SQL
application.

We will start with the Run_Click() method which is the method that sets behind the
“Run” button and is the main method in this application. The main data structure in this
method is the Stack, while loop and switch statement. After we prepare the XmlTextWriter to
write to stream, as we did in the XML Transformer Web Service, we will ask the
XmlTextReader to read the input document. Since we expect the document to be coming
from file, URL, or memory stream we used the same method but different name we
implemented earlier to read the input document. This method is the ReadXmlSqlTextBox()

 37

Figure 19

private void Run_Click(object sender, System.EventArgs e) {

 //XML Writer send the data to a Memory Stream
 XmlTextWriter myWriter;
 Stream s = new MemoryStream();
 myWriter = new XmlTextWriter(s, null);
 myWriter.Formatting = Formatting.Indented;

 //Calling the method that will read the XML-SQL Document Text Box
 //to find out wither it is a Document or a file
 XmlTextReader myReader = ReadXmlSqlTextBox();
 myReader.WhitespaceHandling = WhitespaceHandling.Significant;

Since we are implementing SAX like model we want to react to elements as they appear
or come to us. We will not pull the elements from the documents. The way we will
implement this is by a while loop that will loop as long as the reader object is reading. In this
case myReader.Read() then we implement a switch statement that will read each XML node
type once we read an element we push it to the stack. We will start with first case which is
the

Stack myStack = new Stack();
 // Reading and Writing Loop
 while(myReader.Read()) {
 switch(myReader.NodeType) {
 case XmlNodeType.Element:
 if(myReader.Name == "server"){
 myStack.Push(myReader.Name);
 }

 38

 else if(myReader.Name == "security"){
 myStack.Push(myReader.Name);
 }
 else if(myReader.Name == "database"){
 myStack.Push(myReader.Name);
 }
 else if(myReader.Name == "timeout"){
 myStack.Push(myReader.Name);
 }
 else if(myReader.Name=="DataSetElement")
{
 myStack.Push(myReader.Name);
 }
 else if(myReader.Name =="ResultElement")
{
 myStack.Push(myReader.Name);
 }
 else if(myReader.Name=="SQLQuery") {
 myStack.Push(myReader.Name);
 }
 else if (myReader.Name == "SQLStatement"){

myStack.Push(myReader.Name);
myWriter.WriteStartElement("SQLQueryResult");

 myWriter.WriteAttributes(myReader, true);
 }
 else {
 myStack.Push(myReader.Name);
 myWriter.WriteStartElement(myReader.Name);
 myWriter.WriteAttributes(myReader, true);

}
break;

As we are reading through the input document we may come across elements that are not in
our interest. We will need to write those elements as they appear to the reader to the output
document. The last else statement will do this function. However, if we come across elements
that are important to the application we do not want to write them but consume them and push
them to the stack. The if else statement before the end will replaced <SQLStatement> with
<SQLQueryResult>.

The other important case in this switch statement is the case XmlNodeType.EndElement:
since we do not want to write those elements that are used to build the connection string and the
elements needed by the DataSet class and the SqlDataAdapter class, once we get to the end
element we will pop our stack for any elements. The if statement in this switch case will filter
those elements and the else statement will write everything else.

 case XmlNodeType.CDATA:
 myWriter.WriteCData(myReader.Value);
 break;

 case XmlNodeType.EndElement:
if ((myReader.Name== "DataSetElement") || (myReader.Name== "ResultElement")
|| (myReader.Name== "SQLQuery")||(myReader.Name== "server")||
(myReader.Name== "security") || (myReader.Name==
"database")||(myReader.Name== "timeout")) {
 myStack.Pop();

 39

 }
 else {
 myWriter.WriteEndElement();
 myStack.Pop();
 }
 break;

 case XmlNodeType.EntityReference:
 myWriter.WriteEntityRef(myReader.Name);
 break;

 case XmlNodeType.ProcessingInstruction:
 myWriter.WriteProcessingInstruction(myReader.Name,myReader.Value);
 break;

The other important case is the case XmlNodeType.Text: in this case we will be
extracting the values that are important to the application. This case was implement by another
method
 case XmlNodeType.Text:
 // Call the method that will peek in top of the stack
 // and extract the DB elements
 ExtractDBElements(myStack, myReader, myWriter);
 break;

 The ExtractDBElements() will talk three parameters the stack object the reader and the
writer object as input parameters. And it will return void. The method will start with if statement
for each element by peeking at the top of the stack. If at the top of the stack is the value that we
are interested in then will take that value and assign it to a global variable. For example,
DBServer = myReader.Value DBserver is a global variable for the database server that we
would like to connect to. The code for the ExtractDBElements()is as follows:

private void ExtractDBElements(Stack myStack, XmlTextReader myReader,
XmlTextWriter myWriter){

 if (myStack.Peek().Equals("server")) {
 DBServer = myReader.Value;
 }
 else if (myStack.Peek().Equals("security")) {
 DBSecurity = myReader.Value;
 }
 else if (myStack.Peek().Equals("database")) {
 Database = myReader.Value;
 }
 else if (myStack.Peek().Equals("timeout")) {
 DBTimeout = myReader.Value;
 // build the Connection String
 buildConnectionString();
 }
 else if (myStack.Peek().Equals("DataSetElement")) {
 DataSetValue = myReader.Value;
 }
 else if (myStack.Peek().Equals("ResultElement")) {
 ResultSetValue = myReader.Value;

 40

 }
 else if (myStack.Peek().Equals("SQLQuery")) {
 SQLQueryElement = myReader.Value;

 // Connect to Database and return the Result in XML Format
 string ResultXML = DatabaseConnection();

 // Crate an XmlTextReader object Reader1 to Read the string from DB
 ASCIIEncoding AEnCod = new ASCIIEncoding();
 byte[] XMLbyte = AEnCod.GetBytes(ResultXML);
 MemoryStream myStr = new MemoryStream(XMLbyte);
 XmlTextReader Reader1 = new XmlTextReader(myStr);

 while(Reader1.Read()) {
// Reading and Write the Result in between the SQLStatament Element/Tag
 ReadingWritingDataSet(Reader1, myWriter, DataSetValue);
 }
 Reader1.Close();
 myStr.Close();
 }// Close the if for the "SQLQuery" Element
 else {
 myWriter.WriteString(myReader.Value);
 }
 }

 Notice after we peek for the time out string we call buildConnectionString() method that
is because at this point we have collected all the information that we want use for connecting to
the server. We will continue reading the rest of the elements until we reach SQLQuery element
again at this point we know that we have collected every thing we need for us to be able to
connect to the database and the requirements for the DataSet class and the SqlDataAdapter class.
We will call the DatabaseConnection() method, which will return for us the result in XML
format. After we get the result we assign it to local string and start reading the and writing this
result using a new reader object but the same writer object. That is because we want to replace
the seven elements with the result that come from the database.

 For this purpose we created a new method that will take care of the reading the result and
writing it to the out put document. The last else statement in the ExtractDBElements() method
will write to the output document every thing else that was not relevant to connect to the
database or to run the query.

We will talk now about the ReadingWritingDataSet() method. This method as we said will
write the result that we got from the database. We start our while loop before we call the method
and the method itself will implement the switch case. In this case it will be the same switch case
that we used above the only difference will be is that we are writing extra attributes to the dataset
element. The reason for these attributes is when we write the final document we would like to
know the query that generated this result and the source of this result. The following code will
accomplish this task:

if (Reader1.Name == DataSet) {
 // Writing the Query statment as an attrbute element
 // <sql:query> in the DataSet Element
 myWriter.WriteStartElement(Reader1.Name);

 41

 myWriter.WriteAttributeString("sql:query",SQLQueryElement);
 // Writing the Database Name as a attrbuite element
 // <from> in the DataSet Element
 myWriter.WriteAttributeString("source",Database);

 }

Now we would like to discusses the DatabaseConnection() method. In this method we
establish connection with the database and pass the query and the connection string to the
SqlDataAdapter class and pass the dataset element and the result element to the DataSet class.

private string DatabaseConnection() {

 // Conecting to the Database
 string conStr = ConnectionString;

 // Connecting to Database and Open the Connection
 SqlConnection sqlConn = new SqlConnection(conStr);
 sqlConn.Open();

 // Running the Query
 SqlDataAdapter da = new SqlDataAdapter(SQLQueryElement, sqlConn);

 // Passing the DataSet Element
 DataSet ds = new DataSet(DataSetValue);

 // Passing the Result Element
 da.Fill(ds, ResultSetValue);

The method WriteXml() will Writes XML data, and optionally the schema, from the
DataSet. We would like to capture the result in to string so we instantiate a string builder and use
TextWriter class that will hold the result in the object sw. When we are done we read the object
using the BuildResult object that was crated by StringBuilder class and return the string to the
ExtractDBElements() method.

 // Instantiate a string builder to hold the XML Result in to a string
 StringBuilder BuildResult = new StringBuilder();
 TextWriter sw = (TextWriter) new StringWriter(BuildResult, null);

 // Writing the Result in XML Format
 ds.WriteXml(sw);
 sqlConn.Close();

 string ResultDoc = BuildResult.ToString();

 return ResultDoc;
}

Now we go back to out Run_Click() method. We can read our writer object and write the
result in to the result text box. To better see the result we have used the same Send_Click()
method we used previous ly.

 42

In the next section we will run this application and test its functionality.

6.3 Testing and Running

Before we start out test case I would like to introduce the database software I used with this
application. I used Microsoft Data Engine (MSDE) 7.0 which is a scaled version of Microsoft
SQL Server that sets in top of Microsoft Access. This database engine was installed by VS.NET
it was one of the options you have to choose it will not be installed automatically. It is also can
be downloaded for free from Microsoft download page. It will come with pre configured
databases as examples to work on.

The input document I used is:

<?xml version="1.0"?>
<ROOT xmlns:3ql="urn:schemas-microsoft-com:xml-sql">
<E1> Any other Elements, and as many as we want </E1>
<SQLStatement>
<server>server = (local)\NetSDK</server>
<security>Integrated Security = true</security>
<database>database = Northwind</database>
<timeout>Connection Timeout = 5</timeout>
<DataSetElement>Employees_Table</DataSetElement>
<ResultElement>Employees</ResultElement>
<SQLQuery>SELECT EmployeeID, FirstName, LastName FROM Employees</SQLQuery>
</SQLStatement>
<E2> Any other Elements, and as many as we want </E2>
<SQLStatement>
<server>server = (local)\NetSDK</server>
<security>Integrated Security = true</security>
<database>database = GrocerToGo</database>
<timeout>Connection Timeout = 5</timeout>
<DataSetElement>Categories_Table</DataSetElement>
<ResultElement>Categories</ResultElement>
<SQLQuery>SELECT CategoryID, CategoryName FROM Categories</SQLQuery>
</SQLStatement>
<E3> Any other Elements, and as many as we want </E3>
<SQLStatement>
<server>server = (local)\NetSDK</server>
<security>Integrated Security = true</security>
<database>database = pubs</database>
<timeout>Connection Timeout = 5</timeout>
<DataSetElement>authors_Table</DataSetElement>
<ResultElement>Authors</ResultElement>
<SQLQuery>SELECT au_id, au_lname, au_fname FROM authors</SQLQuery>
</SQLStatement>
<E4> Any other Elements, and as many as we want </E4>
</ROOT>

We can see that we are connecting to three different databases and running three different
queries. All of these databases are available in the MSDE.

 43

After we run the application the result document will look like this:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
 <E1> Any other Elements, and as many as we want </E1>
 <SQLQueryResult>
 <Employees_Table sql:query="SELECT EmployeeID, FirstName, LastName FROM
Employees" source="database = Northwind">
 <Employees>
 <EmployeeID>1</EmployeeID>
 <FirstName>Nancy</FirstName>
 <LastName>Davolio</LastName>
 </Employees>
 <Employees>
 <EmployeeID>2</EmployeeID>
 <FirstName>Andrew</FirstName>
 <LastName>Fuller</LastName>
 </Employees>
 ……………………………
 <Employees>
 <EmployeeID>9</EmployeeID>
 <FirstName>Anne</FirstName>
 <LastName>Dodsworth</LastName>
 </Employees>
 </Employees_Table>
 </SQLQueryResult>
 <E2> Any other Elements, and as many as we want </E2>
 <SQLQueryResult>
 <Categories_Table sql:query="SELECT CategoryID, CategoryName FROM
Categories" source="database = GrocerToGo">
 <Categories>
 <CategoryID>3</CategoryID>
 <CategoryName>Soda</CategoryName>
 </Categories>
 <Categories>
 <CategoryID>2</CategoryID>
 <CategoryName>Cereal</CategoryName>
 </Categories>
 <Categories>
 <CategoryID>1</CategoryID>
 <CategoryName>Milk</CategoryName>
 </Categories>
 </Categories_Table>
 </SQLQueryResult>
 <E3> Any other Elements, and as many as we want </E3>
 <SQLQueryResult>
 <authors_Table sql:query="SELECT au_id, au_lname, au_fname FROM authors"
source="database = pubs">
 <Authors>
 <au_id>409-56-7008</au_id>
 <au_lname>Bennet</au_lname>
 <au_fname>Abraham</au_fname>
 </Authors>
 ……………………………
 <Authors>
 <au_id>672-71-3249</au_id>
 <au_lname>Yokomoto</au_lname>

 44

 <au_fname>Akiko</au_fname>
 </Authors>
 </authors_Table>
 </SQLQueryResult>
 <E4> Any other Elements, and as many as we want </E4>
</ROOT>

Since we are interested in the functionality rather than the result I have collapsed some of the
result and placed …………………………… to show that it is a continues.

7.0 Conclusion

In this report we have talked about the XML Web Service in general and the building blocks
of any XML Web Service: SOAP, WSDL, and UDDI. Also, we have seen how to build an XML
Web Service in .NET Environment. The [WebService] attributes, which is placed in top of the
class, is an optional attributes that can have the service name and description. The [WebMethod]
attribute is required to be placed in top of any method that we would like to access over the web
or want to invoke its capability using a consumer.

The XML Transformer Web Service was capable of transforming the XML document in to
another XML document according to a given XSLT document. The input streams to the service
could be in any format. For example, the XML file could be coming from the Internet using a
URL and the XSLT file could be coming from a memory stream. The service will be able to
handle mixed inputs streams. We have also, built both Web based and Console based client that
will work as an interface to our service. The Web based client involved more programming than
the console based since we are using ASP.NET Web Components. When we built the Web
based client we considered the user friendliness factor by giving the user better control over the
transformed XML document.

The XML-SQL Web based application was capable of taking XML Template document
which contains SQL queries and connection string to the database. Using the connection string
the application will run the query and return the result in XML format. We have used some of
the ASP.NET Web Component such as radio buttons.

 45

8.0 References

[1] Dalvi, D., Gray, J., Joshi, B., Normen, F., Norton, F., Olsen, A., Palermo IV, M., Singh, D.,
Slater, J., & Williams, K., (December 2001). Professional XML for .NET Developers. Chicago,
Illinois: Wrox Press, Inc.

[2] Short, Scott, (2002) Building XML Web Services for the Microsoft .NET Platform. Redmond,
Washington: Microsoft Press.

[3] Freeman, A. & Jones, A., (2003) Microsoft .NET XML Web Services Step by Step.
Redmond, Washington: Microsoft Press.

[4] Microsoft .NET web site. What are XML Web Services?, URL:
http://www.microsoft.com/net/basics/xmlservices.asp, (January 14, 2002)

[5] Wolter, Roger XML Web Services Basics, URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwebsrv/html/webservbasics.asp (December 2001)

[6] Tapang, Carlos C. Web Services Description Language (WSDL) Explained, URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwebsrv/html/wsdlexplained.asp (July 2001)

[7] Wyke, A., Rehman, S., & Leupen, B., (2002). XML Programming. Redmond, Washington:
Microsoft Press.

[8] Deitel, H. M., Deitel, P. J., & Nieto, T. R. (2001) Internet and World Wide Web How to
program. Upper Saddle River, New Jersey: Prentice-Hall, Inc.

[9] Visual Studio .NET Help pages for “XSLT Transformations with the XslTransform Class”

[10] Visual Studio .NET Help pages for “XPthDocument”

[11] Visual Studio .NET Help pages for “XmlTextWriter”

[12] Visual Studio .NET Help pages for “HTTP Headers Reference”

[13] Visual Studio .NET Help pages for “Comparing XmlReader to SAX Reader”

[14] Skonnard, Aaron. XML in .NET: .NET Framework XML Classes and C# Offer Simple,
Scalable Data Manipulation, (January 2001) MSDN Magazine

 46

Appendix A: Files Used and Descriptions

Table 1: Lists the Web Reference directory auto generated files that correspond to any client
communicating with XML Web Service:

File Name Description

Reference.map An XML file that maps the URL of the XML Web Service WSDL
and Discovery (DISCO) files to the locally cached versions of the
files (listed below). Maintain a reference to the original file files
allows Visual Studio .NET to easily regenerate the proxy if the
service description changes.

Reference.cs The C# source file that contains the auto generated code for the proxy
class.

<Filename>.disco A locally cashed copy of the discovery file for the .NET XML Web
Service.

<Filename>.wsdl A locally cashed copy of the discovery file for the XML Web
Service’s WSDL service description file. The name of the file
depends on the XML Web Service. By default, the file will have the
same name of the service’s .asmx file but with a .wsdl extension

Table 2: Lists the files in the main directory of the .NET XML Web Service and ASP.NET Web
applications:

File Name Description

Assembly.cs Contains metadata that will applied to the assemblies
contained in a project, including name, version, and culture
information.

Global.asax This is also known as “ASP.NET application file” allows the
developer to add application and session startup procedures
and event handlers. The functionality are implemented in a
separate file with an addition of the language extension such
as .cs for “C#” of .vb for “Visual Basic”

Global.asax.cs C# code that contain the functionality of the Global.asax

Global.asax.resx A file used to edit and define application resources for the
Global.asax file. It is in XML Format

 47

<Filename>.asmx Contain the main logic of .NET XML Web Service. It has the
ASP.NET directives indicating that this file represent an
XML Web Service. The functionality are implemented in a
separate file with an addition of the language extension such
as .cs for “C#” of .vb for “Visual Basic”

<Filename>.asmx.cs C# code that contain the functionality of the .NET XML Web
Service files .asmx

<Filename>.asmx.resx A file used to edit and define application resources for
the .asmx file. It is in XML Format

<Filename>.vsdisco This file is used by ASP.NET to auto generate DISCO files
from XML Web Service.

<Filename>.aspx ASP.NET Web form. The functionality are implemented in a
separate file with an addition of the language extension such
as .cs for “C#” of .vb for “Visual Basic”

<Filename>.aspx.cs C# code that contain the functionality of the ASP.NET Web
form files .aspx

Web.config Is an XML file that contains configuration settings for XML
Web Service

 48

Appendix B: XML Classes in .NET

XML Classes tha t are available under in .NET are under System.Xml namespace, which
provides standards-based support for processing XML.

Class Description

NameTable Implements a single-threaded XmlNameTable.
XmlAttribute Represents an attribute. Valid and default values for the attribute

are defined in a DTD or schema.
XmlAttributeCollection Represents a collection of attributes that can be accessed by name

or index.
XmlCDataSection Represents a CDATA section.
XmlCharacterData Provides text manipulation methods that are used by several

classes.
XmlComment Represents the content of an XML comment.
XmlConvert Encodes and decodes XML names and provides methods for

converting between common language runtime types and XML
Schema definition language (XSD) types. When converting data
types the values returned are locale independent.

XmlDataDocument Allows structured data to be stored, retrieved, and manipulated
through a relational DataSet.

XmlDeclaration Represents the XML declaration node: <?xml version='1.0' ...?>.
XmlDocument Represents an XML document.
XmlDocumentFragment Represents a lightweight object that is useful for tree insert

operations.
XmlDocumentType Represents the document type declaration.
XmlElement Represents an element.
XmlEntity Represents an entity declaration: <!ENTITY ... >.
XmlEntityReference Represents an entity reference node.
XmlException Returns detailed information about the last exception.
XmlImplementation Defines the context for a set of XmlDocument objects.
XmlLinkedNode Gets the node immediately preceding or following this node.
XmlNamedNodeMap Represents a collection of nodes that can be accessed by name or

index.
XmlNamespaceManager Resolves, adds and removes namespaces to a collection and

provide scope management for these namespaces. This class is
used by the XsltContext and XmlReader classes.

XmlNameTable Table of atomized string objects.
XmlNode Represents a single node in the XML document.
XmlNodeChangedEventArgs Provides data for the NodeChanged, NodeChanging,

NodeInserted, NodeInserting, NodeRemoved and NodeRemoving
events.

 49

XmlNodeList Represents an ordered collection of nodes.
XmlNodeReader Represents a reader that provides fast, non-cached forward only

access to XML data in an XmlNode .
XmlNotation Represents a notation declaration: <!NOTATION ... >.
XmlParserContext Provides all the context information required by XmlTextReader

or XmlValidatingReader to parse an XML fragment.
XmlProcessingInstruction Represents a processing instruction, which XML defines to keep

processor-specific information in the text of the document.
XmlQualifiedName Represents an XML qualified name.
XmlReader Represents a reader that provides fast, non-cached, forward-only

access to XML data.
XmlResolver Resolves external XML resources named by a URI.
XmlSignificantWhitespace Represents white space between markup in a mixed content mode

or white space within an xml:space= 'preserve' scope. This is also
referred to as significant white space.

XmlText Represents the text content of an element or attribute.
XmlTextReader Represents a reader that provides fast, non-cached, forward-only

access to XML data.
XmlTextWriter Represents a writer that provides a fast, non-cached, forward-only

way of generating streams or files containing XML data that
conforms to the W3C Extensible Markup Language (XML) 1.0
and the Namespaces in XML recommendations.

XmlUrlResolver Resolves external XML resources named by a URI.
XmlValidatingReader Represents a reader that provides DTD, XML-Data Reduced

(XDR) schema, and XML Schema definition language (XSD)
schema validation.

XmlWhitespace Represents white space in element content.
XmlWriter

 50

Appendix C: SQL Classes in .NET

SQL Classes that are available in .NET are under the System.Data.SqlClient namespace, which
is the SQL Server .NET Data Provider.

A .NET data provider describes a collection of classes used to access a SQL Server database in
the managed space.

Class Description
SqlClientPermission Provides the capability for the SQL Server .NET Data Provider to

ensure that a user has a security level adequate to access a data
source.

SqlClientPermissionAttribute Associates a security action with a custom security attribute.
SqlCommand Represents a Transact-SQL statement or stored procedure to

execute against a SQL Server database. This class cannot be
inherited.

SqlCommandBuilder Provides a means of automatically generating single-table
commands used to reconcile changes made to a DataSet with the
associated SQL Server database. This class cannot be inherited.

SqlConnection Represents an open connection to a SQL Server database. This
class cannot be inherited.

SqlDataAdapter Represents a set of data commands and a database connection
that are used to fill the DataSet and update a SQL Server
database. This class cannot be inherited.

SqlDataReader Provides a means of reading a forward-only stream of rows from
a SQL Server database. This class cannot be inherited.

SqlError Collects information relevant to a warning or error returned by
SQL Server. This class cannot be inherited.

SqlErrorCollection Collects all errors generated by the SQL .NET Data Provider.
This class cannot be inherited.

SqlException The exception that is thrown when SQL Server returns a warning
or error. This class cannot be inherited.

SqlInfoMessageEventArgs Provides data for the InfoMessage event. This class cannot be
inherited.

SqlParameter Represents a parameter to a SqlCommand, and optionally, its
mapping to DataSet columns. This class cannot be inherited.

SqlParameterCollection Collects all parameters relevant to a SqlCommand as well as their
respective mappings to DataSet columns. This class cannot be
inherited.

SqlRowUpdatedEventArgs Provides data for the RowUpdated event. This class cannot be
inherited.

SqlRowUpdatingEventArgs Provides data for the RowUpdating event. This class cannot be
inherited.

SqlTransaction Represents a Transact-SQL transaction to be made in a SQL
Server database. This class cannot be inherited.

 51

Appendix D: Source Code Attachments

File Name: Trans.asmx.cs
For: XML Transformer Web Service
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.Xml;
using System.Xml.Xsl;
using System.Xml.XPath;
using System.Text;
using System.IO;

namespace Transformer
{
 [WebService(Namespace="http://localhost/project/XMLTrans/",
 Name="Trans",
 Description="XML Web Service for Transforming XML to XML
Document.")]
 public class Trans : System.Web.Services.WebService
 {
 public Trans()
 {
 //CODEGEN: This call is required by the ASP.NET Web
Services Designer
 InitializeComponent();
 }
 #region Component Designer generated code

 //Required by the Web Services Designer
 private IContainer components = null;

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing && components != null)
 {
 components.Dispose();

 52

 }
 base.Dispose(disposing);
 }

 #endregion

 [WebMethod]
 public string xmlToxml(string xmlinput, string xslinput)
 {
 //Load the XML data file
 XPathDocument xmlDoc = new
XPathDocument(ReadInputDocument(xmlinput));

 //Create the XslTransform and load the stylesheet
 XslTransform xslDoc = new XslTransform();
 xslDoc.Load(ReadInputDocument(xslinput));

 //Create an XmlTextWriter to handle the output.
 XmlTextWriter myWriter;

 //XML Writer send the data to a Memory Stream
 Stream s = new MemoryStream();
 myWriter = new XmlTextWriter(s, null);
 myWriter.Formatting = Formatting.Indented;

 //Transform the file.
 xslDoc.Transform(xmlDoc, null, myWriter);

 // Reading the Tranfomed document from the Memeory Stream
 // Then returing the string to the client/consumer
 myWriter.Flush();
 s.Position = 0;
 StreamReader sr = new StreamReader(s);
 return sr.ReadToEnd();

 myWriter.Close();

 }

 private XmlTextReader ReadInputDocument(string Doc)
 {
 XmlTextReader DocReader;

 if (Doc.EndsWith("xml") || Doc.EndsWith("xsl"))
 {
 DocReader = new XmlTextReader(Doc);
 }
 else
 {
 // Memory stream reading the XML Document/Data
 byte[] byteDoc = Encoding.UTF8.GetBytes(Doc);
 MemoryStream DocStream = new MemoryStream(byteDoc);
 DocReader = new XmlTextReader(DocStream);
 }
 return DocReader;

 DocReader.Close();

 53

 }
 }
}

File Name: Trans.wsdl
For: XML Transformer Web Service

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://localhost/project/XMLTrans/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://localhost/project/XMLTrans/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <s:schema elementFormDefault="qualified"
targetNamespace="http://localhost/project/XMLTrans/">
 <s:element name="xmlToxml">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="xmlinput"
type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="xslinput"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="xmlToxmlResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="xmlToxmlResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="string" nillable="true" type="s:string" />
 </s:schema>
 </types>
 <message name="xmlToxmlSoapIn">
 <part name="parameters" element="s0:xmlToxml" />
 </message>
 <message name="xmlToxmlSoapOut">
 <part name="parameters" element="s0:xmlToxmlResponse" />
 </message>
 <message name="xmlToxmlHttpGetIn">
 <part name="xmlinput" type="s:string" />
 <part name="xslinput" type="s:string" />
 </message>
 <message name="xmlToxmlHttpGetOut">
 <part name="Body" element="s0:string" />
 </message>
 <message name="xmlToxmlHttpPostIn">
 <part name="xmlinput" type="s:string" />

 54

 <part name="xslinput" type="s:string" />
 </message>
 <message name="xmlToxmlHttpPostOut">
 <part name="Body" element="s0:string" />
 </message>
 <portType name="TransSoap">
 <operation name="xmlToxml">
 <input message="s0:xmlToxmlSoapIn" />
 <output message="s0:xmlToxmlSoapOut" />
 </operation>
 </portType>
 <portType name="TransHttpGet">
 <operation name="xmlToxml">
 <input message="s0:xmlToxmlHttpGetIn" />
 <output message="s0:xmlToxmlHttpGetOut" />
 </operation>
 </portType>
 <portType name="TransHttpPost">
 <operation name="xmlToxml">
 <input message="s0:xmlToxmlHttpPostIn" />
 <output message="s0:xmlToxmlHttpPostOut" />
 </operation>
 </portType>
 <binding name="TransSoap" type="s0:TransSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
 <operation name="xmlToxml">
 <soap:operation soapAction="http://localhost/project/XMLTrans/xmlToxml"
style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
 <binding name="TransHttpGet" type="s0:TransHttpGet">
 <http:binding verb="GET" />
 <operation name="xmlToxml">
 <http:operation location="/xmlToxml" />
 <input>
 <http:urlEncoded />
 </input>
 <output>
 <mime:mimeXml part="Body" />
 </output>
 </operation>
 </binding>
 <binding name="TransHttpPost" type="s0:TransHttpPost">
 <http:binding verb="POST" />
 <operation name="xmlToxml">
 <http:operation location="/xmlToxml" />
 <input>
 <mime:content type="application/x-www-form-urlencoded" />
 </input>
 <output>

 55

 <mime:mimeXml part="Body" />
 </output>
 </operation>
 </binding>
 <service name="Trans">
 <documentation>XML Web Service for Transforming XML to XML
Document.</documentation>
 <port name="TransSoap" binding="s0:TransSoap">
 <soap:address location="http://localhost/project/XMLTrans/Trans.asmx" />
 </port>
 <port name="TransHttpGet" binding="s0:TransHttpGet">
 <http:address location="http://localhost/project/XMLTrans/Trans.asmx" />
 </port>
 <port name="TransHttpPost" binding="s0:TransHttpPost">
 <http:address location="http://localhost/project/XMLTrans/Trans.asmx" />
 </port>
 </service>
</definitions>

File Name: WebForm.aspx.cs
For: The Web Based Client for the XML Transformer Web Service
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.IO;
using System.Xml;
using System.Xml.Xsl;
using System.Xml.XPath;
using System.Text;
// Importing the XML Transfomer Web Service
using WebClientApplication.TransService;

namespace WebClientApplication
{
 /// <summary>
 /// Summary description for WebForm.
 /// </summary>
 public class WebForm : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.TextBox txtXML;
 protected System.Web.UI.WebControls.Label Label1;
 protected System.Web.UI.WebControls.Label Label2;
 protected System.Web.UI.WebControls.TextBox txtXSL;
 protected System.Web.UI.WebControls.TextBox txtResult;
 protected System.Web.UI.WebControls.Label Label3;
 protected System.Web.UI.WebControls.Label Label4;
 protected System.Web.UI.WebControls.Label Label5;

 56

 protected System.Web.UI.WebControls.TextBox ResultFile;
 protected System.Web.UI.WebControls.Label Label6;
 protected System.Web.UI.WebControls.Button Transform;
 protected System.Web.UI.WebControls.RadioButtonList
RadioButtonList1;
 protected System.Web.UI.WebControls.Button Send;
 protected System.Web.UI.WebControls.Button Reset;

 private string x_file;

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form
Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.txtXML.TextChanged += new
System.EventHandler(this.txtXML_TextChanged);
 this.txtXSL.TextChanged += new
System.EventHandler(this.txtXSL_TextChanged);
 this.txtResult.TextChanged += new
System.EventHandler(this.txtResult_TextChanged);
 this.ResultFile.TextChanged += new
System.EventHandler(this.ResultFile_TextChanged);
 this.Transform.Click += new
System.EventHandler(this.Transform_Click);
 this.Reset.Click += new
System.EventHandler(this.Reset_Click);
 this.RadioButtonList1.SelectedIndexChanged += new
System.EventHandler(this.RadioButtonList1_SelectedIndexChanged);
 this.Send.Click += new
System.EventHandler(this.Send_Click);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void txtXML_TextChanged(object sender, System.EventArgs
e)
 {

 57

 }

 private void txtXSL_TextChanged(object sender, System.EventArgs
e)
 {

 }

 private void txtResult_TextChanged(object sender,
System.EventArgs e)
 {

 }

 private void RadioButtonList_SelectedIndexChanged(object sender,
System.EventArgs e)
 {

 }

 private void ResultFile_TextChanged(object sender,
System.EventArgs e)
 {

 }

 private void Transform_Click(object sender, System.EventArgs e)
 {
 //Instantiate the proxy class
 Trans x_Trans = new Trans();

 // Call the method of the proxy class
 x_file = x_Trans.xmlToxml(txtXML.Text,txtXSL.Text);

 // To send the output to the container within the page
 txtResult.Text = x_file;
 }

 private void Reset_Click(object sender, System.EventArgs e)
 {
 txtXML.Text =" ";
 txtXSL.Text =" ";
 ResultFile.Text = "";
 txtResult.Text = " ";
 RadioButtonList1.SelectedIndex = -1;

 }

 private void RadioButtonList1_SelectedIndexChanged(object sender,
System.EventArgs e)
 {

 }

 private void Send_Click(object sender, System.EventArgs e)
 {

 58

 if (RadioButtonList1.SelectedItem.Value.Equals("File") &&
ResultFile.Text.EndsWith("xml"))
 {
 StreamWriter wr = new StreamWriter(ResultFile.Text);
 wr.Write(txtResult.Text);
 wr.Close();
 }
 else
if(RadioButtonList1.SelectedItem.Value.Equals("New_Browser_Page"))
 {
 // To send the output to the new Browser Window
 ASCIIEncoding ae = new ASCIIEncoding();
 byte[] byteXML = ae.GetBytes(txtResult.Text);

 Response.ContentType="text/xml";

 Response.OutputStream.Write(byteXML,0,byteXML.Length);
 Response.End();
 }
 else
if(RadioButtonList1.SelectedItem.Value.Equals("New_Windows_Container"))
 {
 // To send the output to a conatiner out in a new
page
 string ResultDoc = txtResult.Text;
 Response.Redirect("FormContainer.aspx?ResultDoc=" +
System.Web.HttpUtility.UrlEncode(ResultDoc));
 }

 }
 }
}

File Name: References.cs
For: The Web Based Client for the XML Transformer Web Service

//---

// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.3705.0
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </autogenerated>
//---

//
// This source code was auto-generated by Microsoft.VSDesigner, Version
1.0.3705.0.
//
namespace WebClientApplication.TransService {
 using System.Diagnostics;

 59

 using System.Xml.Serialization;
 using System;
 using System.Web.Services.Protocols;
 using System.ComponentModel;
 using System.Web.Services;

 /// <remarks/>
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.ComponentModel.DesignerCategoryAttribute("code")]
 [System.Web.Services.WebServiceBindingAttribute(Name="TransSoap",
Namespace="http://localhost/project/XMLTrans/")]
 public class Trans : System.Web.Services.Protocols.SoapHttpClientProtocol
{

 /// <remarks/>
 public Trans() {
 this.Url = "http://localhost/project/XMLTrans/Trans.asmx";
 }

 /// <remarks/>

[System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://localhost/
project/XMLTrans/xmlToxml",
RequestNamespace="http://localhost/project/XMLTrans/",
ResponseNamespace="http://localhost/project/XMLTrans/",
Use=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 public string xmlToxml(string xmlinput, string xslinput) {
 object[] results = this.Invoke("xmlToxml", new object[] {
 xmlinput,
 xslinput});
 return ((string)(results[0]));
 }

 /// <remarks/>
 public System.IAsyncResult BeginxmlToxml(string xmlinput, string
xslinput, System.AsyncCallback callback, object asyncState) {
 return this.BeginInvoke("xmlToxml", new object[] {
 xmlinput,
 xslinput}, callback, asyncState);
 }

 /// <remarks/>
 public string EndxmlToxml(System.IAsyncResult asyncResult) {
 object[] results = this.EndInvoke(asyncResult);
 return ((string)(results[0]));
 }
 }
}

 60

File Name: SQLForm.aspx.cs
For: The XML-SQL Web Application

using System;
using System.Collections;
using System.Data;
using System.ComponentModel;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
using System.IO;
// Required for the SQL Methods and functinality
using System.Data.SqlClient;
// Required fro the XML methods and functinality
using System.Xml;
// Required to ASCIIEncoding functinality
using System.Text;

namespace XML_SQLApplication
{
 public class XMLSQLForm : System.Web.UI.Page {
 protected System.Web.UI.WebControls.RadioButtonList
RadioButtonList;
 protected System.Web.UI.WebControls.Label FileNameLabel;
 protected System.Web.UI.WebControls.Label SendResultLabel;
 protected System.Web.UI.WebControls.Label XMLSQLDocumentLabel;
 protected System.Web.UI.WebControls.Button Send;
 protected System.Web.UI.WebControls.TextBox XMLSQLDoc;
 protected System.Web.UI.WebControls.TextBox ResultDoc;
 protected System.Web.UI.WebControls.Button Run;
 protected System.Web.UI.WebControls.Button Reset;
 protected System.Web.UI.WebControls.Label ResultLabel;
 protected System.Web.UI.WebControls.TextBox FileName;
 protected System.Web.UI.WebControls.Label Label1;

 private string DBServer;
 private string DBSecurity;
 private string Database;
 private string DBTimeout;

 private string ConnectionString;

 private string DataSetValue;
 private string ResultSetValue;
 private string SQLQueryElement;

 private void Page_Load(object sender, System.EventArgs e) {
 // Put user code to initialize the page here
 }

 #region Web Form Designer generated code

 61

 override protected void OnInit(EventArgs e) {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form
Designer.
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent() {
 this.XMLSQLDoc.TextChanged += new
System.EventHandler(this.XMLSQLDoc_TextChanged);
 this.ResultDoc.TextChanged += new
System.EventHandler(this.ResultDoc_TextChanged);
 this.Run.Click += new System.EventHandler(this.Run_Click);
 this.Reset.Click += new
System.EventHandler(this.Reset_Click);
 this.RadioButtonList.SelectedIndexChanged += new
System.EventHandler(this.RadioButtonList_SelectedIndexChanged);
 this.FileName.TextChanged += new
System.EventHandler(this.FileName_TextChanged);
 this.Send.Click += new
System.EventHandler(this.Send_Click);
 this.Load += new System.EventHandler(this.Page_Load);

 }
 #endregion

 private void Run_Click(object sender, System.EventArgs e) {

 //XML Writer send the data to a Memory Stream
 XmlTextWriter myWriter;
 Stream s = new MemoryStream();
 myWriter = new XmlTextWriter(s, null);
 myWriter.Formatting = Formatting.Indented;

 //Calling the method that will read the XML-SQL Document
Text Box
 //to find out wither it is a Document or a file
 XmlTextReader myReader = ReadXmlSqlTextBox();
 myReader.WhitespaceHandling =
WhitespaceHandling.Significant;

 Stack myStack = new Stack();

 // Reading and Writing Loop
 while(myReader.Read()) {
 switch(myReader.NodeType) {
 case XmlNodeType.Element:
 if(myReader.Name == "server"){
 myStack.Push(myReader.Name);
 }
 else if(myReader.Name == "security"){

 62

 myStack.Push(myReader.Name);
 }
 else if(myReader.Name == "database"){
 myStack.Push(myReader.Name);
 }
 else if(myReader.Name == "timeout"){
 myStack.Push(myReader.Name);
 }
 else if(myReader.Name=="DataSetElement")
{
 myStack.Push(myReader.Name);
 }
 else if(myReader.Name =="ResultElement")
{
 myStack.Push(myReader.Name);
 }
 else if(myReader.Name=="SQLQuery") {
 myStack.Push(myReader.Name);
 }
 else if (myReader.Name == "SQLStatement")
{
 myStack.Push(myReader.Name);

 myWriter.WriteStartElement("SQLQueryResult");
 myWriter.WriteAttributes(myReader,
true);
 }
 else {
 myStack.Push(myReader.Name);

 myWriter.WriteStartElement(myReader.Name);
 myWriter.WriteAttributes(myReader,
true);
 }
 break;

 case XmlNodeType.CDATA:
 myWriter.WriteCData(myReader.Value);
 break;

 case XmlNodeType.EndElement:
 if ((myReader.Name== "DataSetElement") ||
(myReader.Name== "ResultElement") || (myReader.Name==
"SQLQuery")||(myReader.Name== "server")|| (myReader.Name== "security") ||
(myReader.Name== "database")||(myReader.Name== "timeout")) {
 myStack.Pop();
 }
 else {
 myWriter.WriteEndElement();
 myStack.Pop();
 }
 break;

 case XmlNodeType.EntityReference:
 myWriter.WriteEntityRef(myReader.Name);
 break;

 63

 case XmlNodeType.ProcessingInstruction:

 myWriter.WriteProcessingInstruction(myReader.Name,myReader.Value);
 break;

 case XmlNodeType.Text:
 // Call the method that will peek in top
of the stack
 // and extract the DB elements
 ExtractDBElements(myStack, myReader,
myWriter);
 break;

 //case XmlNodeType.SignificantWhitespace:
 // myWriter.WriteString(myReader.Value);
 // break;

 default:
 break;
 }// End switch

 }// End While Loop

 myReader.Close();

 // Writing the Result Document to the Result Text Box
 myWriter.Flush();
 s.Position = 0;
 StreamReader sr = new StreamReader(s);
 ResultDoc.Text = sr.ReadToEnd();

 myWriter.Close();

 }

 private void ExtractDBElements(Stack myStack, XmlTextReader
myReader, XmlTextWriter myWriter){

 if (myStack.Peek().Equals("server")) {
 DBServer = myReader.Value;
 }
 else if (myStack.Peek().Equals("security")) {
 DBSecurity = myReader.Value;
 }
 else if (myStack.Peek().Equals("database")) {
 Database = myReader.Value;
 }
 else if (myStack.Peek().Equals("timeout")) {
 DBTimeout = myReader.Value;
 // build the Connection String
 buildConnectionString();
 }
 else if (myStack.Peek().Equals("DataSetElement")) {
 DataSetValue = myReader.Value;
 }
 else if (myStack.Peek().Equals("ResultElement")) {
 ResultSetValue = myReader.Value;

 64

 }
 else if (myStack.Peek().Equals("SQLQuery")) {
 SQLQueryElement = myReader.Value;

 // Connect to Database and return the Result in XML
Format
 string ResultXML = DatabaseConnection();

 // Crate an XmlTextReader object Reader1 to Read the
string from DB
 ASCIIEncoding AEnCod = new ASCIIEncoding();
 byte[] XMLbyte = AEnCod.GetBytes(ResultXML);
 MemoryStream myStr = new MemoryStream(XMLbyte);
 XmlTextReader Reader1 = new XmlTextReader(myStr);

 while(Reader1.Read()) {
 // Reading and Write the Result in between the
SQLStatament Element/Tag
 ReadingWritingDataSet(Reader1, myWriter,
DataSetValue);
 }
 Reader1.Close();
 myStr.Close();
 }// Close the if for the "SQLQuery" Element
 else {
 myWriter.WriteString(myReader.Value);
 }
 }

 private void buildConnectionString() {

 // Adding ";" to each string claus
 string ServerStr = DBServer.Insert(DBServer.Length, ";");

 string SecurityStr =
DBSecurity.Insert(DBSecurity.Length,";");

 // Concatinating the 1st two strings the Server and the
Security
 string tempStr1 =
ServerStr.Insert(ServerStr.Length,SecurityStr);

 string TimeoutStr = DBTimeout.Insert(DBTimeout.Length,";");

 // Concatinating/Adding the Timeout to the tempStr1
 string tempStr2 =
tempStr1.Insert(tempStr1.Length,TimeoutStr);

 //Building the Connection String. Note: No need for ";" for
the last claus of the string
 ConnectionString = tempStr2.Insert(tempStr2.Length,
Database);

 }

 private string DatabaseConnection() {

 65

 // Conecting to the Database
 string conStr = ConnectionString;

 // Connecting to Database and Open the Connection
 SqlConnection sqlConn = new SqlConnection(conStr);
 sqlConn.Open();

 // Running the Query
 SqlDataAdapter da = new SqlDataAdapter(SQLQueryElement,
sqlConn);

 // Passing the DataSet Element
 DataSet ds = new DataSet(DataSetValue);

 // Passing the Result Element
 da.Fill(ds, ResultSetValue);

 // Instainating a string builder to hold the XML Result in
to a string
 StringBuilder BuildResult = new StringBuilder();
 TextWriter sw = (TextWriter) new StringWriter(BuildResult,
null);

 // Writing the Result in XML Format
 ds.WriteXml(sw);
 sqlConn.Close();

 string ResultDoc = BuildResult.ToString();

 return ResultDoc;
 }

 private void ReadingWritingDataSet(XmlTextReader Reader1,
XmlTextWriter myWriter, string DataSet) {

 switch(Reader1.NodeType) {
 case XmlNodeType.Element:
 if (Reader1.Name == DataSet) {
 // Writing the Query statment as an
attrbute element
 // <sql:query> in the DataSet Element
 myWriter.WriteStartElement(Reader1.Name);

 myWriter.WriteAttributeString("sql:query",SQLQueryElement);
 // Writing the Database Name as a
attrbuite element
 // <from> in the DataSet Element

 myWriter.WriteAttributeString("source",Database);
 }
 else {
 myWriter.WriteStartElement(Reader1.Name);
 myWriter.WriteAttributes(Reader1, true);
 }
 break;

 case XmlNodeType.CDATA:

 66

 myWriter.WriteCData(Reader1.Value);
 break;

 case XmlNodeType.EndElement:
 myWriter.WriteEndElement();
 break;

 case XmlNodeType.EntityReference:
 myWriter.WriteEntityRef(Reader1.Name);
 break;

 case XmlNodeType.ProcessingInstruction:

 myWriter.WriteProcessingInstruction(Reader1.Name, Reader1.Value);
 break;

 case XmlNodeType.Text:
 case XmlNodeType.SignificantWhitespace:
 myWriter.WriteString(Reader1.Value);
 break;

 default:
 // write nothing to the result document
 break;
 }
 }

 private void Send_Click(object sender, System.EventArgs e) {

 if
(RadioButtonList.SelectedItem.Value.Equals("New_Browser_Window")) {
 ASCIIEncoding ae = new ASCIIEncoding();
 Response.ContentType="text/xml";
 byte[] byteXML = ae.GetBytes(ResultDoc.Text);

 Response.OutputStream.Write(byteXML,0,byteXML.Length);

 Response.End();
 }
 else if (RadioButtonList.SelectedItem.Value.Equals("File"))
{
 StreamWriter wr = new StreamWriter(FileName.Text);
 wr.Write(ResultDoc.Text);
 wr.Close();
 }

 }

 private void Reset_Click(object sender, System.EventArgs e) {

 XMLSQLDoc.Text = " ";
 ResultDoc.Text = " ";
 FileName.Text = " ";
 RadioButtonList.SelectedIndex = -1;

 }

 67

 private XmlTextReader ReadXmlSqlTextBox() {
 XmlTextReader Reader;

 // Reading the Document/Data from File
 if (XMLSQLDoc.Text.EndsWith("xml")) {
 Reader = new XmlTextReader(XMLSQLDoc.Text);
 }
 else {
 // Memory stream reading the XML Document/Data
 byte[] byteXML =
Encoding.UTF8.GetBytes(XMLSQLDoc.Text);
 MemoryStream XMLStream = new MemoryStream(byteXML);
 Reader = new XmlTextReader(XMLStream);
 }
 return Reader;
 }

 private void XMLSQLDoc_TextChanged(object sender,
System.EventArgs e) {

 }

 private void ResultDoc_TextChanged(object sender,
System.EventArgs e) {

 }

 private void RadioButtonList_SelectedIndexChanged(object sender,
System.EventArgs e) {

 }

 private void FileName_TextChanged(object sender, System.EventArgs
e) {

 }
 }
}

