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ABSTRACT

The dissertation research is concerned with enabling parallel, high-performance computa-

tion—in particular development of scientific software in the network-aware programming

language, Java. Traditionally, this kind of computing was done in Fortran. Arguably, Fortran

is becoming a marginalized language, with limited economic incentive for vendors to produce

modern development environments, optimizing compilers for new hardware, or other kinds

of associated software expected of by today’s programmers. Hence, Java looks like a very

promising alternative for the future.

The dissertation will discuss in detail a particular environment called HPJava. HPJava is

the environment for parallel programming—especially data-parallel scientific programming–

in Java. Our HPJava is based around a small set of language extensions designed to support

parallel computation with distributed arrays, plus a set of communication libraries. In

particular the dissertation work will concentrate on issues related to the development of

efficient run time support software for parallel languages extending an underlying object-

oriented language.

Two characteristic run-time communication libraries of HPJava are developed as an

application level library and device level library. A high-level communication API, Adlib,

is developed as an application level communication library suitable for our HPJava. This

communication library supports collective operations on distributed arrays. We include Java

Object as one of the Adlib communication data types. So we fully support communication

of intrinsic Java types, including primitive types, and Java object types. The Adlib library

is developed on top of low-level communication library called mpjdev, designed to interface

efficiently to the Java execution environment (virtual machine).

The mpjdev API is a device level underlying communication library for HPJava. This

library is developed to perform actual communication between processes. The mpjdev API

is developed with HPJava in mind, but it is a standalone library and could be used by other

ix



systems. This can be implementing portably on network platforms and efficiently on parallel

hardware.

The dissertation describes the novel issues in the interface and implementation of these

libraries on different platforms, and gives comprehensive benchmark results on a parallel

platform. All software developed in this project is available for free download from

www.hpjava.org.
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CHAPTER 1

INTRODUCTION

The Java programming language is becoming the language of choice for implementing

Internet-based applications. Undoubtedly Java provides many benefits—including access

to secure, platform-independent applications from anywhere on the Internet. Java today

goes well beyond its original role of enhancing the functionality of HTML documents. Few

Java developers today are concerned with applets. Instead it is used to develop large-scale

enterprise applications, to enhance the functionality of World Wide Web servers, to provide

applications for consumer device such as cell phones, pagers and personal digital assistants.

Amongst computational scientists Java may well become a very attractive language to

create new programming environments that combine powerful object-oriented technology

with potentially high performance computing. The popularity of Java has led to it being

seriously considered as a good language to develop scientific and engineering applications,

and in particular for parallel computing [2, 3, 4]. Sun’s claims on behalf of Java, that is

simple, efficient and platform-natural—a natural language for network programming—make

it attractive to scientific programmers who wish to harness the collective computational

power of parallel platforms as well as networks of workstations or PCs, with interconnections

ranging from LANs to the Internet. This role for Java is being encouraged by bodies like

Java Grande [33].

Over the last few years supporters of the Java Grande Forum have been working actively

to address some of the issues involved in using Java for technical computation. The goal of the

forum is to develop consensus and recommendations on possible enhancements to the Java

language and associated Java standards, for large-scale (“Grande”) applications. Through a

series of ACM-supported workshops and conferences the forum has helped stimulate research

on Java compilers and programming environments.

1



float [[*, *]] c = new float [[M, N]];
float [[*, *]] a = new float [[M, L]];
float [[*, *]] b = new float [[L, N]];

... initialize ’a’, ’b’

for(int i = 0; i < M; i++)
for(int j = 0; j < N; j++) {

c [i, j] = 0;
for(int k = 0; k < L; k++)

c [i, j] += a [i, k] + b [k, j];
}

Figure 1.1. Sequential Matrix multiplication in HPJava.

Our HPJava is an environment for parallel programming, especially suitable for data

parallel scientific programming. HPJava is an implementation of a programming model we

call the HPspmd nodel. It is a strict extension of its base language, Java, adding some

predefined classes and some extra syntax for dealing with distributed arrays. We overview

of HPJava in following section.

1.1 Features of HPJava

In this section, we present a high level overview of our HPJava. Some predefined classes

and some extra syntax for dealing with distributed arrays are added into the basic language,

Java. We will briefly review the features of the HPJava language by showing simple HPJava

examples. In this section, we will only give an overview of features. Detailed description of

those features will be presented in the Chapter 3.

Figure 1.1 is a basic HPJava program for sequential matrix multiplication. This program

is simple and similar to the ordinary Java program. It uses simple sequential multiarrays—a

feature HPJava adds to standard Java. A multiarray uses double brackets to distinguish the

type signature from a standard Java array. The multiarray and ordinary Java array have
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Procs2 p = new Procs2(P, P);
on(p) {

Range x = new BlockRange(N, p.dim(0));
Range y = new BlockRange(N, p.dim(1));

float [[-,-]] c = new float [[x, y]];
float [[-,*]] a = new float [[x, N]];
float [[*,-]] b = new float [[N, y]];

// ... initialize ‘a’, ‘b’

overall(i = x for : )
overall(j = y for : ){

float sum = 0;
for(int k = 0; k < N ; k++)

sum += a[i, k] * b[k, j];

c[i, j] = sum;

}
}

Figure 1.2. A parallel Matrix multiplication in HPJava.

many similarities. Both arrays have some index space and stores a collection of elements of

fixed type. Syntax of accessing a multiarray is very similar with accessing ordinary Java array

which uses single brackets, but an HPJava sequential multiarray uses double bracket and

asterisks for its type signature. The most significant difference between ordinary Java array

and the multiarray of HPJava is that the distributed array is true multi-dimensional array

like the arrays of Fortran, while ordinary Java only provides arrays of arrays. These features

of Fortran arrays have adapted and evolved to support scientific and parallel algorithms.

HPJava also adds a distributed array feature to the base language Java. The distributed

array is a very important feature of HPJava. Like the name says, the elements of the

distributed array are distributed among processes: each process only has a portion of the

data. As we can see from the parallel version (Figure 1.2) of matrix multiplication, HPJava
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puts a hyphen in the type signature to indicate a particular dimension is distributed over

processes. Input arrays a and b and result array c are distributed arrays. The array c is

distributed in both its dimensions while array a and b each have one distributed dimension

and one sequential dimension.

Figure 1.2 is a simple program but it includes much of the HPJava special syntax. In

this program, we can see some unusual key words and operations which we do not see in an

ordinary Java program like control constructs on and overall. There are also some added

standard classes, like Procs2, and BlockRange.

The class Procs2 represents 2-dimensional grids of processes selected from the set of

available processes. The on construct makes p the active process group within its body, and

only the processes that belong to p execute the code inside of the on construct. Distribution

format of each dimension of a distributed array is represented by a Range class. The

BlockRange class used in this example describes block-distributed indexes. We also have

a control construct which represents distributed parallel loops, similar the forall construct

in High Performance Fortran (HPF), called overall. The overall construct introduced a

distributed index for subscripting a distributed array.

The program in Figure 1.2 depends on a special alignment relation between its distributed

arrays.

We can create a general purpose matrix multiplication routine that works for arrays with

any distributed format (Figure 1.3) from Figure 1.2 using collective communication. This

program take arrays which may be distributed in both their dimensions, and copies into

the temporary array with a special distribution format for better performance. A collective

communication schedule remap() is used to copy the elements of one distributed array to

another.

From the viewpoint of this dissertation, the most important part of this code is

communication method. We can divide the communication library of HPJava into two

parts: the high-level Adlib library, and the low-level mpjdev library. The Adlib library is

responsible for the collective communication schedules and the mpjdev library is responsible

for the actual communication. One of the most characteristic and important communication

library methods, remap(), takes two arrays as arguments and copies the elements of the

source array to the destination array, regardless of the distribution format of the two arrays.
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public void matmul(float [[-,-]] c, float [[-,-]] a, float [[-,-]] b) {

Group2 p = c.grp();

Range x = c.rng(0);
Range y = c.rng(1);

int N = a.rng(1).size();

float [[-,*]] ta = new float [[x, N]] on p;
float [[*,-]] tb = new float [[N, y]] on p;

Adlib.remap(ta, a);
Adlib.remap(tb, b);

on(p)
overall(i = x for : )

overall(j = y for : ) {

float sum = 0;
for(int k = 0; k < N ; k++)

sum += ta [i, k] * tb [k, j];

c[i, j] = sum;
}

}

Figure 1.3. A general Matrix multiplication in HPJava.

In addition to the features described above, many more features and communication

functions available to the HPJava are described in the Chapter 3 and Chapter 4.

The HPJava software including Adlib and mpjdev is available for free download from

www.hpjava.org.

1.2 Organization of the Dissertation

This dissertation discusses in detail a particular environment under development at

Florida State University and Indiana University called HPJava. The idea behind HPJava is
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not only to use Java for scientific computing. It is also to demonstrate a specific programming

model for parallel computing that we call the HPspmd model. The HPspmd model itself is

independent of the choice of Java as base language, but the two go together well. One goal of

this dissertation is as a foundation for research and development on the HPJava environment.

In particular the dissertation concentrates on issues related to the development of efficient run

time support software for a class of parallel languages extending an underlying object-oriented

language. So the dissertation emphasizes aspects most relevant to this topic—aspects like

high performance interprocessor communication.

A review of interesting related research and systems is given first. We will be especially

interested in technologies developed in recent years by participants of bodies like the Java

Grande Forum and the Global Grid Forum. We start with reviews of general parallel and

distributed computing environments for Java including JavaParty, Javelin, and Jini. We

discuss communication approaches relevant to parallel computing including Java RMI and

Message passing libraries for Java. As an example of distributed computing, we review

Peer-to-Peer (P2P) computing and Java enterprise computing. We review SETI@home as a

characteristic example of P2P. As examples of P2P in Java, we briefly review Parabon, and

discuss JXTA in more detail. We also briefly review contemporary, Java-specific enterprise

distributed computing technology, like the Java Message Service and Enterprise JavaBeans.

Java as language support for parallel and scientific computing is compared with C++ and

C#.

The dissertation continues with the HPJava design and its features. Motivation of

HPJava and its syntax features are described in this chapter. An existing runtime library,

mpiJava, is also discussed. The mpiJava library, an object-oriented Java interface to MPI,

has been developed as part of HPJava. Its usage in HPJava will be described.

Discussion of detailed detailed implementation issues for our high-level communication

library follows. New syntax features of HPJava omitted from previous chapters are also

illustrated in this chapter. Implementation of a characteristic collective communication

function is described in depth. Complete API of Adlib library methods are presented in

an appendix. In this appendix we describes complete API, effect, pre-requirements, and

restrictions of each method in the Adlib library.
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Detailed description of a low-level communication library, mpjdev, is follows. We start

with requirements of mpjdev. Its Message buffer API and communication API are described.

We describe how a message will be formatted, sent, and received among the processes. Four

different implementations of mpjdev are also described.

The following chapter presents applications and analyzes performance of HPJava pro-

grams. A full application of HPJava is discussed first to illustrate how HPJava can be

used as a tool for complex problems. Some partial differential equations are developed and

analyzed for the performance using HPJava. We describe computational fluid dynamics

simulation into a grapical user interface using HPJava. We also have performance test and

evaluation of a platform-specific, LAPI-based implementation of the libraries.

The final chapter, the conclusion and the directions for future work are discussed.

7



CHAPTER 2

ENVIRONMENTS FOR PARALLEL AND

DISTRIBUTED COMPUTING

In this chapter we give a general overview of some interesting research and systems

related to ours. We will be especially interested in technologies developed in recent years by

participants of bodies like the Java Grande Forum and the Global Grid Forum. We start

with discussion of parallel and distributed computing environments for Java. We briefly

review contemporary Java-specific distributed computing technology and how they related

to our high performance infrastructures. Finally Java as language to support parallel and

scientific computing is compared with C++ and C#.

2.1 Parallel and Distributed Computing Environments for Java

As well as reviewing select computing environments for Java, this section includes

discussion of communication frameworks including Java RMI and Message Passing libraries

for Java. PVM and MPJ are discussed as examples of message passing libraries. MPJ is an

effort by members of the Java Grande Forum [33] to define a consensus MPI-like interface

for Java.

2.1.1 Parallel Virtual Machine (PVM) in Java

Communication in parallel programming significantly affects the efficiency of distributed

systems. We need to find a way to move data from one local memory to another because

a distributed memory system does not share one common global memory. Message passing

is very suitable to this task via send/receive API calls which must be written into the

application program or used by some higher-level software. To achieve increased bandwidth,
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reduced latency, and better reliability within workstation clusters using Java, several projects

are under way.

PVM [30], developed at Oak Ridge National Laboratory, provides a mechanism that

enables a collection of heterogeneous networked computing systems to be used cooperatively

for concurrent or parallel computation. This system can solve large computational problems

effectively using the aggregate power and memory of many computers. The PVM system

consists of two parts: a daemon, pvmd, and a library of PVM. Any user with a valid login can

install a daemon on a computer, adding it to a virtual machine. The PVM library contains

a repertoire of primitives that are needed for cooperation between tasks of an application:

user-callable routines that include message passing, spawning processes, coordinating tasks,

and modifying the virtual machine. C, C++, and Fortran languages are currently supported

by the PVM system.

JavaPVM [34] (or jPVM), which is an interface written using the Java native methods

capability, and JPVM [26], which is a pure Java implementation of PVM are two groups

working on making PVM support for programs written in Java. Since JavaPVM is using

native methods, cross-platform portability is limited. JPVM is better matched to Java

programming styles, much simpler to maintain across heterogeneous machines compared to

JavaPVM. The performance of JavaPVM is better compared to JPVM. Communication

benchmarks of native PVM, JavaPVM, and JPVM are reported in [57].

2.1.2 MPI and MPJ

The Message-Passing Interface (MPI) [39] is the first message-passing standard for

programming parallel processors. It provides a rich set of communication libraries, ap-

plication topologies and user defined data types. Language-independent specification and

language-specific (C and Fortran) bindings are provided in the MPI standard documents.

The MPI-2 release of the standard added a C++ binding [29]. A binding of MPI for Java

has not been offered and is not planned by the MPI Forum. With the evident success

of Java as a programming language, and its inevitable use in connection with parallel as

well as distributed computing, the absence of a well-designed language-specific binding of

message-passing with Java will lead to divergent, non-portable practices. A likely prerequisite

for parallel programming in a distributed environment is a good message passing API.
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In 1998, the Message-Passing Working Group of Java Grande Forum was formed in

response to the independent development by several groups of Java APIs for MPI-like

systems. Discussion of a common API for MPI-like Java libraries was an immediate goal.

An initial draft for a common API specification was distributed at Supercomputing ’98

[14]. Minutes of meetings that held in San Francisco, Syracuse and Supercomputing ’99

are available at http://mailer.csit.fsu.edu/mailman/listinfo/java-mpi/. To avoid

confusion with standards published by the original MPI Forum (which is not presently

convening) the nascent API is now called MPJ. Its reference implementation can be

implemented two ways. A pure Java reference implementation of that API has been

proposed, and Java wrapper to a native MPI reference implementation, which will be

discussed in section 3.4.1. We will discuss a proposed pure Java reference implementation in

section 5.5.4.

2.1.3 Java RMI

Java Remote Method Invocation (RMI), which is a simple and powerful network object

transport mechanism, provides a way for a Java program on one machine to communicate

with objects residing in different address spaces. Some Java parallel computing environments

use RMI for communication, such as JavaParty, discussed in next section. It is also the

foundation of Jini technology—discussed on section 2.1.5. RMI is an implementation of

the distributed object programming model, comparable with CORBA, but simpler, and

specialized to the Java language. An overview of the RMI architecture is shown in Figure

2.1. Important parts of the RMI architecture are the stub class, the object serialization, and

the server-side Run-time System.

The stub class implements the remote interface and is responsible for marshaling and

unmarshaling the data and managing the network connection to a server. An instance of

the stub class is needed on each client. Local method invocations on the stub class will be

made whenever a client invokes a method on a remote object.

Java has a general mechanism for converting objects into streams of bytes that can

later be read back into an arbitrary JVM. This mechanism, called object serialization, is

an essential functionality needed by Java’s RMI implementation. It provides a standardized

way to encode all the information into a byte stream suitable for streaming to some type of
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Figure 2.1. RMI Architecture.

network or to a file-system. In order to provide the functionality, an object must implement

the Serializable interface.

The server-side run-time system is responsible for listening for invocation requests on a

suitable IP port, and dispatching them to the proper, remote object on the server.

Since RMI is designed for Web based client-server applications over slow network, it is

not clear it is suitable for high performance distributed computing environments with low

latency and high bandwidth. A better serialization would be needed, since Java’s current

object serialization often takes at least 25% and up to 50% of the time [50] needed for a

remote invocation.

2.1.4 JavaParty

The JavaParty [51] platform, which is a system from the University of Karlsruhe,

Germany, has been developed with two main purposes. The two purposes are to serve

as a programming environment for cluster applications, and to provide a basis for computer

science research in optimization techniques to improve locality and reduce communication

time. Remote objects, in JavaParty, are added to Java purely by declaration, avoiding

disadvantages of explicit socket communication and the programming overhead of RMI.
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JavaParty provides a mechanism that can discover remote objects and remote threads on

different nodes without any programmer’s extra work.

JavaParty is implemented by a pre-processing phase added to EspressoGrinder [46] and

Pizza [47] Java compilers. After JavaParty code is transformed into regular Java code plus

RMI hooks, Sun’s RMI generator (stub and skeleton generator) take the resulting RMI

portions.

JavaParty is an important contribution to research on Java-based parallel computing.

Compared to approach in this survey paper, we expect to suffer from some unavoidable

overhead from the RMI mechanism, relative to direct message-passing. Also, arguably, there

is comparatively little evidence that the remote procedure call approach is most convenient

for SPMD programming.

2.1.5 Jini

As we mentioned in previous chapter, Jini technology may eventually become a core part

of the underlying communication environment for our HPJava project (see section 5.5.4). In

this section we will give a more general overview of Jini technology.

Jini technology [7, 24], built by Sun Microsystems, is a programming model that makes

it easier for programmers to get their devices talking to each other. It is a lightweight layer

of Java code that rests on top of the Java 2 platform. Jini provides a mechanism to enable

smooth adding, removal, and finding of devices and services on the network without device

vendors having to agree on network level protocols to allow their devices to interact. A

service can be anything that sits on the network and is ready to perform a useful function.

Hardware devices, software, and communications channels can all offer up their services to

a dynamic network in a standard fashion without a central controlling authority.

Jini’s architecture takes advantage of one of the fundamental features of object-oriented

programming—the separation of interface and implementation. Jini depends on Java’s RMI

to provide the underlying distributed communications framework. The runtime infrastruc-

ture uses one network-level protocol, called discovery, and two object-level protocols, called

join and lookup. Discovery enables clients and services to locate lookup services. Join

enables a service to register itself in a lookup service. Lookup enables a client to query a

lookup service for services that can help the client accomplish its goals. In addition the Jini
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programming model includes three important API collections: Distributed events, distributed

leasing, and distributed transactions. The distributed event programming model offers a set

of interfaces to allow services to notify each other of changes in their state. The distributed

leasing model provides a set of interfaces that encourage distributed objects to obtain leases

for use of particular distributed resources. The service is responsible for renewing that lease

before expires. If the lease is not renewed, access to the distributed resource expires, and

resources are freed. The purpose of this feature is that it cleans up resources no longer in

use by potentially failed distributed objects. For example, the lookup service automatically

unregisters a failed service object. Finally, a distributed transactions programming model

is to provide services for coordinating distributed operations, and guarantee that either all

must occur atomically or that none occur at all.

2.2 Peer to Peer Computing

The term peer-to-peer (P2P) became fashionable in the computing field around the

middle of the year 2000. A P2P network differs from conventional client/server or multitiered

server’s networks. A P2P architecture provides direct communication between peers without

the reliance on centralized servers or resources. The claim for P2P architecture is that enables

true distributed computing, creating networks of computing resources. Computers that have

traditionally been used as clients can act as both clients and servers. P2P allows systems

to have temporary associations with one other for a while, and then separate. P2P is an

umbrella term for a rather diverse set of projects and systems including Napster, Freenet,

and SETI@home. Here we discuss a select few that are more relevant to our interests.

2.2.1 Javelin

Javelin predates fashion for the P2P, but resembles other projects described in this

section. Javelin [18] from the University of California, Santa Barbara, is an Internet-based

global computing infrastructures that supports Java. Main goals of this system are to

enable everyone connected to the Internet to easily participate in Javelin, and to provide

an efficient infrastructure that supports as many different programming models as possible
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without compromising portability and flexibility. The Javelin design is exploit widely used

components—Web browsers and the Java language—to achieve those goals.

Three kinds of participating entities exist inside the Javelin system. The three entities

are clients, which are processes seeking computing resources, hosts, which are processes

offering computing resources, and brokers, which are processes that coordinate the supply

and demand for computing resources. The broker gets tasks from clients and assigns to hosts

that registered with the broker. Hosts send result back to the clients after finish running

tasks. Users can make their computers available to host part of a distributed computation

by pointing their browser to a known URL of a broker.

Javelin is good for loosely-coupled parallel applications (“task parallelism”) but in itself

it does not address the more tightly-coupled SPMD programming considered by HPJava.

2.2.2 SETI@home

SETI@home [52], a project that searches for extraterrestrial intelligence using networked

personal computers, was launched early 1998. The Internet clients analyze data that is

collected by the Arecibo radio telescope looking for possible indication of extraterrestrial

intelligence. The collected data is divided into work units of 0.25 Mbyte. A work unit is big

enough to keep a computer busy for a while and small enough to transmit in a few minutes

even for a 28.8Kbps modem.

The essential part of this project is the client program, which is a screen saver for Windows

or Macintosh users. Hence the client program will run only when computer is not being used.

A Sign-up client gets a work unit from SETI@home data distribution server. After finishing

processing its data, the client sends results back to the server and gets a new work unit.

The SETI@home data server connects only when transferring data. To protect the job from

computer failure, the client program writes a “check point” file to disk. Hence the program

can pick up where it left off. The SETI@home data distribution server keeps track of the

work units with a large database. When the work units are returned, they are put back into

the database and the server looks for a new work unit and sends it out. Each work unit is

sent out multiple times in order to make sure that the data is processed correctly.

SETI@home is faster then ASCI White, which is currently the fastest supercomputer,

having peak performance of 12.3 × 1024 floating-point operations per seconds (TFLOPS).
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3.1 trillion floating-point operations are required by a work unit to compute an FFT.

SETI@home clients (between them) process about 700,000 work units in a typical day. This

works out to over 20 TFLOPS. SETI@home also costs less then 1% compared to ASCI

White.

In the first week after the launch, over 200,000 people downloaded and ran the client.

This number has grown to 2,400,000 as of October 2000. People in 226 countries around the

world run SETI@home. You can find more information about this project and client sign

up are available from http://setiathome.ssl.berkeley.edu.

The SETI@home approach is not suitable for all problems. It must be possible to factor

the problem into a large number of pieces that can be handled in parallel, with few or no

interdependencies between the pieces.

2.2.3 Parabon

Parabon Computation, Inc. [48] announced a commercial distributed application called

Frontier at the Supercomputing 2000 conference. The Frontier is available as a service over

the Web or as service software. It claims to deliver scalable computing capacity via the

Internet to a variety of industries.

The Client Application, the Pioneer Compute Engine, and the Frontier Server are three

components of the Frontier platform. The client application runs on a single computer by

an individual or organization wishing to utilize the Frontier platform by communicating

with the Frontier server. The Pioneer Compute Engine is a desktop application that utilizes

the spare computational power of an Internet-connected machine to process small units of

computational work called tasks during idle time. The Frontier Server is the central hub

of the Frontier platform, which communicates with both the client application and multiple

Pioneer compute engines. It coordinates the scheduling and distribution of tasks.

Frontier gets a “job”—defined by a set of elements and a set of tasks to perform

computational work—from user. Then like work units in SETI@home, a job is divided

into an arbitrary set of individual tasks that is executed independently on a single node.

Each task is defined by a set of elements it contains a list of parameters, and an entry point

in the form of a JavaTM class name.
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The inherent security features of JVM technology was the main reason to choose Java over

other programming languages as programming language of Frontier. The JVM provides a

“sandbox” inside which an engine can securely process tasks on a provider’s computer. Valid

Java bytecode has to be sent to engines and used to run tasks within the JVM.

In this project sustaining a large network of “volunteer” machines is a problem. Not

many consumers are willing to donate computing cycles for purely commercial projects.

Parabon system is good for task parallel applications but arguably is not peer to peer

computing in sense tasks cannot communicate. Parabon system is less appropriate for the

more tightly-coupled SPMD programming we are interested in.

2.2.4 JXTA

Project JXTA [36], an industry-wide research project led by Sun Microsystems, was

launched on April 25th, 2001. The goal of Project JXTA is to develop protocols for

cross-platform communication that provide direct access from one node to another without

any centralized server control, and to create a simple, open, lightweight layer of standards

that ensures interoperability and scalability when existing software stacks are integrated.

Even though current JXTA is developed on top of Java technology, JXTA supposed to be

independent from programming platforms, systems platforms, and networking platforms.

The claim is that it can be embraced by all developers, independent of their preferred pro-

gramming languages, existing development environments, or targeted deployment platforms.

Currently existing software technologies such as Java, Jini, and Extensible Markup

Language (XML) are used by JXTA technology. The goal is a P2P system that is familiar

to developers and easy to use. The benefit of using Java technology is the ability to compute

on different machines without worrying about operating system limitations. Jini network

technology enables spontaneous networking of a wide variety of hardware, and services. XML

technology allows data to move across a network in a widely used format.

JXTA is developed with the Java 2 Platform, Micro Edition (J2ME) environment. The

core classes of JXTA are packed into a jar file of about 250Kbytes. Hence JXTA can easily

be stored in many different wireless mobile devices such as Personal Data Assistants, cell

phones, and laptops, which can thus be nodes on a P2P network. This makes it possible
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to access information directly from a PDA to a laptop without going through a centralized

server.

JXTA has a limited number of concepts at it core. Here we overview some important

concepts. A peer is any network device that implements one or more of the JXTA protocols.

A collection of peers which have common interests can organize into a peer group. We can

identify each peer group by a unique peer group id. Two peers can send and receive message

using pipes—currently unidirectional virtual communication channels. All network resources,

such as peers, peer groups, pipes and services are represented by an advertisement, which is

JXTA’s language neutral metadata structure for describing such resources.

Along with Jini technology, JXTA technology may become a very useful tool for our pure

Java version of HPJava runtime environment.

2.3 Java Enterprise Computing

Our project is not particularly targeting enterprise computing. However we will review

some related Java technologies in this area, namely the Java Message Service, which makes

possible to exchange messages between Java programs, and Enterprise Java Beans, which

implements server-side applications.

2.3.1 Java Message Service

Java Message Service (JMS) [35], designed by Sun Microsystems and several partner

companies provides standard APIs that allows applications to create, send, receive, and

read messages. It has been a part of the Java 2 Enterprise Edition since release 1.2. Java

programs can exchange messages with other Java programs by sharing a messaging system in

JMS. A messaging system, sometimes called Message-Oriented Middleware (MOM), accepts

messages from “producer” clients and delivers them to “consumer” clients. Messaging systems

are peer-to-peer distributed systems in the sense that every registered client can communicate

with every other registered client. The term messaging is used to describe asynchronous

communication between enterprise applications.

JMS supports point-to-point (PTP) and publish/subscribe message passing strategies.

The PTP message model is based on message queues. A QueueSender class (producer)
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sends a message to a specified queue. A QueueReceiver class (consumer) receives messages

from the queue. The publish/subscribe messaging model is organized around topics. A

TopicPublishers class (producer) sends messages to a topic. A TopicSubscribers class

(consumer) retrieves messages from a topic. JMS also supports both synchronous and

asynchronous message passing.

A JMS application is composed of the following parts: a JMS provider, JMS clients,

messages, administered objects, and native clients. A JMS provider is a messaging product

that implements the JMS interfaces and provides administrative and control features. JMS

clients are programs or components written in the Java programming language that produce

and consume messages. Messages are the objects that communicate information between

JMS clients. An administrator creates administered objects, which are JMS objects, for

use of client. There are two kinds of administered objects: destinations and connection

factories. A client uses a destination object to specify the target and the source of messages.

Connection configurations that have been defined by the administrator are contained in a

connection factory. Native clients are programs that use a messaging product’s native client

API instead of the JMS API. Figure 2.2 illustrates the way these parts interact. After we

bind destinations and connection factories into a Java Naming Directory Interface (JNDI)

namespace, a JMS client looks up the administered objects in the namespace. Then the JMS

provider provides the same objects for a logical connection to the JMS client.

Unlike the Remote Procedure Call (RPC) synchronous model, where we block and

wait until each system finishes processing a task, a fundamental concept of MOM is that

communication between applications is asynchronous. Code that is written to communicate

assumes there is a one-way message that requires no immediate response from another

application. There is also a high degree of anonymity between producer and consumer.

Information about the owner of produced message is not important for the message consumer.

This anonymity helps provide dynamic, reliable, and flexible systems.

2.3.2 Enterprise JavaBeans (EJB)

Enterprise JavaBeans (EJB) [25] implements server-side, arbitrarily scalable, transac-

tional, multi-user, secure enterprise-level applications. It is Java’s component model for

enterprise applications. EJB combines distributed object technologies such as CORBA and
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Java RMI with server-side components to simplify the task of application development.

EJBs can be built on top of existing transaction processing systems including traditional

transaction processing monitors, Web servers, database servers, and application servers. Sun

claims that EJB is not just platform independent—it is also implementation independent.

An EJB component can run in any application server that implements the EJB specification

[22].

User applications and beans are isolated from the details of the component services. The

ability to reuse the same enterprise bean in different specific applications is one advantage

of this separation. The bean implementation or the client application need not have the

parameters that control a bean’s transactional nature, persistence, resource pooling, or

security management. These parameters can be specified in separate deployment descriptors.

So, when a bean is deployed in a distributed application, the properties of the deployment

environment can be accounted for and reflected in the setting of the bean’s options.

EJB is a distributed component model. A distributed component model defines how

components are written. Hence different people can build systems from components with

little or no customization. EJB defines a standard way of writing distributed components.

The EJB client only gets a reference to an EJBObject instance and never really gets a

reference to the actual EJB Bean instance itself. The EJBObject class is the client’s view of

the enterprise Bean and implements the remote interface.
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EJB is a rather specialized architecture—aimed at transaction processing and database

access. It is not really an environment for general distributed computing in our sense.

2.4 Comparison of Languages

In this section we compare Java as a language to support parallel and scientific computing

with other object-oriented programming languages like C++ and C#, which is a new .NET

platform language from Microsoft. In this comparison we discuss issues like performance and

added functionality, such as multidimensional arrays, operator overloading, and lightweight

objects. We also compare the Microsoft intermediate language with the Java Virtual Machine

(JVM).

2.4.1 Java

Java started out as a Sun Microsystems funded internal corporate research project that

tried to develop intelligent consumer electronic devices in 1990. A C and C++ based language

called Oak—the former name of Java—was developed as a result of this project. After the

World Wide Web exploded in popularity in 1993, the potential of using Java to create Web

pages emerged. Although Java applets have lost some popularity, the Java language has

continued to gain new applications.

The Java Grande Forum [33] has been set up to co-ordinate the community’s efforts to

standardize many aspects of Java and so ensure that its future development makes it more

appropriate for scientific programmers. A “Grande” application can be described as one

with a large scale nature, potentially requiring any combination of computers, network,

I/O, and memory-intensive applications. Examples include, financial modeling, aircraft

simulation, climate and weather, satellite image processing and earthquake predication. Two

major working group of the Java Grande Forum are the Numerics Working Group and the

Applications and Concurrency Working Group.

The Applications and Concurrency Working Group has been looking directly at uses of

Java in parallel and distributed computing. The Numerics Working Group [45] has focused

on five critical areas where improvements to the Java language are needed: floating-point

arithmetic, complex arithmetic, multidimensional arrays, lightweight classes, and operator
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overloading. Lightweight classes and operator overloading provide key components to

proposed improvements for complex arithmetic and multidimensional arrays.

Associated developments have helped establish the case that Java can meet the vital

performance constraints for numerically intensive computing. A series of papers from IBM

[40, 41, 56], for example, demonstrated how to apply aggressive optimizations in Java

compilers to obtain performance competitive with Fortran. In a recent paper [42] they

described a case study involving a data mining application that used the Java Array package

supported by the Java Grande Numerics Working Group. Using the experimental IBM

HPCJ Java compiler they reported obtaining over 90% of the performance of Fortran.

2.4.2 C++

C++, an extension of C, was developed by Bjarne Stroustrup in the early 1980s at Bell

Laboratories. The most important feature of C++, and difference from C, is that C++

provides capabilities for object-oriented programming. C++ was recently standardized by

the ANSI and ISO committees.

Java is a descendant of C++. Although a lot of syntax has been borrowed from C++,

Java made no attempt to be compatible with C++. Java is designed to run over the Internet,

and that required it take advantage of new language technology—for example, advances in

automatic garbage collection, and just-in-time compilation.

There are some similarities of Java and C++, like C-style statements, expressions, and

declarations—and classes, access privileges, virtual functions and overloading. Java, however,

omits various features of C and C++ that are considered “difficult”—notably, pointers. Poor

compiler analysis has often been blamed on these features. Java has fewer rules to remember.

This is sometimes because it doesn’t support the operations (operator overloading, for

example), and sometimes because it does the work for you (automatic garbage collection,

for example).

In recent years numerous variations on the theme of C++ for parallel computing have

appeared. See, for example [8, 17, 23, 28, 31, 55].
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2.4.3 C#

C# [20], which is an important part of the new Microsoft .NET platform, is a modern,

object-oriented and type-safe programming language based on C and C++. Header files,

Interface Definition Language, and complicated interfaces are not needed in C#. C#

is supposed to offer an alternative to C++ programmers who find that language too

complicated, and to Java programmers who miss certain features of C and C++, like pointers,

operator overloading, and templates.

C# has all the data types provided by the Java, with additional unsigned counterparts

and a new 12-byte-decimal floating-point number. Java uses primitive types that are

distinguished from object-based types. Java primitive types must be put into an instance

of a wrapper class to participate in the object-based world. C# provides what it calls a

“unified type system”. This means all types—including value types—derive from the type

object. Primitive types are stack–allocated as in Java, but are also considered to derived

from the ultimate base class, object. This means that the primitive types can have member

functions called on them. The example:

using System;
class Test
{

static void Main()
{

Console.WriteLine(3.ToString());
}

}

calls the object-defined ToString method on an integer literal.

Whenever a primitive type is used in a situation where a parameter of type object

is required, the compiler will automatically box the primitive type into a heap-allocated

wrapper. An “object box” is allocated to hold the value, and the value is copied into the

box. Unboxing is just the opposite. When an object box is cast back to its original value

type, the value is copied out of the box and into the appropriate storage location. For

example:
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class Test
{

static void Main()
{

int i = 123;
object o = i; // boxing
Console.WriteLine(‘‘Value is: {0}’’, o);
int j = (int) o; // unboxing

}
}

Declaring the object variable is done for illustration only; in real code, i would be passed

directly, and the boxing would happen at the call site.

Unlike Java we can pass method arguments by reference in C# using ref and out

modifiers. A reference parameter is declared with a ref modifier. The same storage location

is used between a reference parameter and the variable given as the argument. An example

usage of these parameters may look like:

void Swap(ref int x, ref int y) {
int temp = x;
x = y;
y = temp;

}

A out modifier is used to declare a output parameter. Like reference parameters, output

parameters do not create a new storage location. An output parameter need not be assigned

before it is passed as a argument of a method.

C# also provides C-like pointers through unsafe code. In order to use unsafe code we

should specify the unsafe modifier on the code block. Unsafe code can be used in place of

Java Native Methods in many cases.

As mentioned in section 2.4.1, the Java Grande Numerics Working Group identified

various critical areas to improve the Java language. C# addresses some of issues by

supporting structs, operator overloading, and multidimensional arrays.

Structs can be used instead of classes when the user wants to create an object that

behaves like one of the built-in types; one that is cheap and fast to allocate and doesn’t have

the overhead of references. Structs act similarly to classes, but with a few added restrictions.
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They are value types rather than reference types, and inheritance is not supported for structs.

Struct values are stored either “on the stack” or “in-line”.

C# provides operator overloading that allows user-defined operators to be implemented

on classes or structs so that they can be used with operator syntax. Unlike C++, it is not

possible to overload member access, member invocation (function calling), or the +, &&, ‖,
?:, or new operators. The new operation can’t be overloaded because the .NET Runtime is

responsible for managing memory.

Like our HPJava system, C# supports both “rectangular” and “jagged” multi-dimensional

arrays1. Rectangular arrays always have a rectangular shape. Given the length of each

dimension of the array, its rectangular shape is clear. A jagged array is merely an array of

arrays and it doesn’t have to be square.

Microsoft’s .NET framework is based on its Common Language Runtime (CLR), which

is a specification for language-independent intermediate language (IL) code, and a runtime

that provides memory management and security. Whereas Java programs can run on

any platform supporting JVM, and are compiled to byte code, which is an intermediate

language only for Java, C# demands the standardization of Microsoft intermediate language

(MSIL) [1]. Unlike Java, which is platform independent, MSIL has a feature called language

independence: code and objects written in one language can be compiled to MSIL format and

interoperate with other languages. However, for classes to be usable from .NET languages

in general, the classes must adhere to the Common Language Specification (CLS), which

describes what features can be used internally in a class. This significantly restricts C++

programs, for example, if they are to run under .NET.

The MSIL instruction set is very similar in many ways to the JVM instruction set. The

MSIL assumes a stack-based abstract machine very similar to the JVM, with a heap, a frame

stack, the same concept of stack frame, and bytecode verification.

There are some rather simple differences—for example JVM words are big endian (most

significant byte first) whereas MSIL uses a little endian (least significant byte first) binary

representation. Also MSIL instructions do not include information that specifies the type of

the arguments. Rather, that is inferred by what is been pushed on the stack. We can find
1Of course C# doesn’t support distributed multidimensional arrays. Nor does it support Fortran 90-like

regular sections
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more fundamental differences between JVM instruction sets and MSIL in the verification of

compiled code, and pointers.

JVM verification ensures that the binary representation of a class or interface is struc-

turally correct. The following lists of checks are performed during JVM verification.

• Every instruction has a valid operation code.

• Every branch instruction branches to the start of some other instruction, rather than

into the middle of an instruction.

• Every method is provided with a structurally correct signature.

• Every instruction obeys the type discipline of the Java language.

Unlike JVM, several important uses of MSIL instructions are not verifiable, such as the

pointer arithmetic versions of add that are required for the faithful and efficient compilation

of C programs. For nonverifiable code, memory safety is the responsibility of the application

programmer.

The only kind of pointer manipulated by the JVM instruction set is the object reference.

MSIL manipulates three different kinds of pointers: object reference like JVM, managed

pointers for reference argument variables, and unmanaged pointers for unsafe code pointers.

Managed pointers must be reported to the garbage collector. The garbage collector can

modify the managed pointer itself, as well as the contents of the location which is pointed to.

The unmanaged pointers get great flexibility in their operation since they are not reported

to the garbage collector. But memory safety is endangered by performing arithmetic on

unmanaged pointers; hence they are not verifiable.

2.4.3.1 MPI with C#

The MPI binding of the C# language and the CLI [54] has been developed by the Open

Systems Laboratory at Indiana University. Two levels of language bindings are presented.

A set of C# bindings to MPI is a low-level interface similar to the existing C++ bindings

given in the MPI-2 specification. The other library called MPI.NET is a high-level interface.

This interface integrates modern programming language features of C#.

25



The C# binding is relatively straightforward. Each object of C# bindings contains

the underlying C representation of the MPI object. Similarly, the high-level objects in

the MPI.NET are usually containers of underlying MPI objects. Both the C# binding and

MPI.NET libraries are built on top of a native implementation of MPI. The P/Invoke feature

of CLI is used to bind lowest level of both libraries to the C MPI functions. A P/Invoke is a

mechanism to create direct interface to existing libraries written in C and C++ in the .NET

programming environments.

Since the MPI.NET binding uses language features of C#, it has unique features. The

MPI.NET uses a feature of C# properties. This feature allows to access a field of object

more conveniently by providing special syntax like method. This feature simplifies interface

of information like rank of the current process or number of nodes. Unlike the C# bindings,

automatic pinning and unpinning of user defined data is also provided in the MPI.NET

binding. A more minor difference is the C# bindings try to follow naming convention of

MPI C++ bindings and the MPI.NET library tries to follow C# naming convention.

According to [54], performance of the current MPI binding of the C# and the CLI is

slightly slower than our MPI binding to Java (mpiJava).
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CHAPTER 3

REVIEW OF THE HPJAVA ENVIRONMENT

In this chapter we will discuss ongoing work within our research group on the HPJava

system. HPJava is an environment for SPMD (Single Program, Multiple Data) parallel

programming—especially, for SPMD programming with distributed arrays. The HPJava

language design and its features are discussed first. The results reported in this dissertation

concentrate in particular on issues related to the development of efficient run time support

software for parallel languages extending an underlying object-oriented language. So the

review emphasizes aspects most relevant to this topic—aspects like high performance

interprocessor communication.

3.1 Introduction

The SPMD (Single Program Multiple Data) programming style is the most commonly

used style of writting data-parallel programs for MIMD (Multiple Instruction Multiple

Data) systems. This style provides a Loosely Synchronous Model. In SPMD programming

style, each processor has its own local copy of control variables and datas. Processors

execute the same SPMD program asynchronously across MIMD nodes. Explicit or implicit

synchronization takes place only when processors need to exchange data. Conditional

branches within the source code may provide the effect of running different programs.

There have been many data-parallel languages. These programming languages provided

some consensus about outline of a standard language for SPMD programming. The High

Performance Fortran (HPF) standard was established by the High Performance Fortran

Forum in 1993.

HPF is an extension of Fortran 90 to support the data-parallel programming model on

distributed memory parallel computers. It extends the set of parallel features to Fortran

90. The HPF language especially targets the SPMD model. Each processor runs same
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program and operates on parts of the overall data. The HPF programs are simpler to

write than explicit message-passing programs, but performance of HPF rarely achieves

the efficiency of the message-passing. Although the HPF language might never be widely

adopted, many of the ideas—for example its standardization of a distributed data model for

SPMD computing—remain important.

Over many years the SPMD programming style has been very popular among the high-

level parallel programming environment and library developers. SPMD framework libraries

try to overcome weakness of HPF. While HPF has strength on rather regular data structures

and regular data access patterns problems, it is not particularly suitable for irregular data

access. Some libraries are dealing directly with irregularly distributed data, DAGH [49], Kelp

[27], and other libraries support unstructured access to distributed arrays, CHAOS/PARTI

[21] and Global Arrays [44]. While the library-based SPMD approach to data-parallel

programming may address weakness of HPF, it loses good features like the uniformity and

elegance that promised by HPF. There are no compile-time or compiler-generated run-time

safety checks for the distributed arrays because libraries manage the arrays. The our HPspmd

model is an attempt to address such shortcomings.

The HPspmd model is SPMD programming supported by additional syntax for HPF-like

distributed arrays. This model provides a hybrid of the data parallel model of HPF and the

low-level SPMD programming style—as often implemented using communication libraries

like MPI. In the HPspmd model, a subscripting syntax can be used to directly access local

elements of distributed arrays. References to these elements can only be made on processors

that hold copies of the elements concerned. To ensure this, a well-defined set of rules are

automatically checked by the translator. Even though the HPspmd model does provide

special syntax for HPF-like distributed arrays, all access to non-local array elements should

go through library function calls in the source program. These library calls must be placed

in the original HPJava program by the programmer. This requirement may be unusual to

people expecting high-level parallel languages like HPF, but it should not seem particularly

unnatural to programmers used to writing parallel programs using MPI or other SPMD

libraries. The exact nature of the communication library used is not part of the HPJava

language design. Collective operations on whole distributed arrays , or some kind of get

and put functions for access to remote blocks of a distributed array might be provided
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by an appropriate communication library. This dissertation concentrates especially on one

particular communication library called Adlib.

In the current system, syntax extensions are handled by a preprocessor that outputs an

ordinary SPMD program in the base language. The HPspmd syntax provides a fairly thin

veneer on low-level SPMD programming, and the transformations applied by the translator

are correspondingly direct—only limited analysis should be needed to obtain good parallel

performance. But the language does provide a uniform model of a distributed array, which

can be targeted by reusable libraries for parallel communication and arithmetic. The model

adopted very closely follows the distributed array model defined in the High Performance

Fortran standard.

3.2 HPJava—an HPspmd language

HPJava [15] is a particular implementation of the HPspmd idea. It is a strict extension

of its base language, Java, adding some predefined classes and some extra syntax for dealing

with distributed arrays. HPJava is thus an environment for parallel programming, especially

suitable for data parallel scientific programming. To some extent the choice of base language

is accidental, and we could have added equivalent extensions to another language, such as

Fortran itself. But Java does seem to be a better language in various respects, and it seems

likely that in the future more software will be available for modern object-oriented languages

like Java than for Fortran.

An HPJava program can freely invoke any existing Java classes without restrictions

because it incorporates all of Java as a subset. A concept of multidimensional distributed

arrays—closely modeled on the arrays of HPF1—has been added to Java. Regular sections

of distributed arrays are fully supported. Distributed arrays can have any rank greater than

or equal to zero and the elements of distributed arrays can be of any standard Java type,

including primitive types, Java class types and ordinary Java array types.

A standard Java class file is produced after translating and compiling a HPJava program.

This Java class file will be executed by a distributed collection of Java Virtual Machines. All

externally visible attributes of an HPJava class—e.g. existence of distributed-array-valued
1“Sequential” multi-dimensional arrays are available as a subset of the HPJava distributed arrays.
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Procs2 p = new Procs2(P, P) ;
on(p) {

Range x = new BlockRange(M, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[-,-]] a = new float [[x, y]], b = new float [[x, y]],
c = new float [[x, y]] ;

... initialize values in ‘a’, ‘b’

overall(i = x for :)
overall(j = y for :)

c [i, j] = a [i, j] + b [i, j] ;
}

Figure 3.1. A parallel matrix addition.

fields or method arguments—can be automatically reconstructed from Java signatures

stored in the class file. This makes it possible to build libraries operating on distributed

arrays, while maintaining the usual portability and compatibility features of Java. The

libraries themselves can be implemented in HPJava, or in standard Java, or through Java

Native Interface (JNI) wrappers to code implemented in other languages. The HPJava

language specification carefully documents the mapping between distributed arrays and the

standard-Java components they translate to.

Figure 3.1 is a simple HPJava program. It illustrates creation of distributed arrays,

and access to their elements. An HPJava program is started concurrently in some set of

processes that are named through grids objects. The class Procs2 is a standard library

class, and represents a two dimensional grid of processes. During the creation of p, P by P

processes are selected from the active process group. The Procs2 class extends the special

base class Group which represents a group of processes and has a privileged status in the

HPJava language. An object that inherits this class can be used in various special places.

For example, it can be used to parameterize an on construct. The on(p) construct is a new

control construct specifying that the enclosed actions are performed only by processes in

group p.
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The distributed array is the most important feature HPJava adds to Java. A distributed

array is a collective array shared by a number of processes. Like an ordinary array, a

distributed array has some index space and stores a collection of elements of fixed type. The

type signature of an r-dimensional distributed array involves double brackets surrounding r

comma-separated slots. A hyphen in one of these slots indicates the dimension is distributed.

Asterisks are also allowed in these slots, specifying that some dimensions of the array are

not to be distributed, i.e. they are “sequential” dimensions (if all dimensions have asterisks,

the array is actually an ordinary, non-distributed, Fortran-like, multidimensional array—a

valuable addition to Java in its own right, as many people have noted [42, 43]).

In HPJava the subscripts in distributed array element references must normally be

distributed indexes (the only exceptions to this rule are subscripts in sequential dimensions,

and subscripts in arrays with ghost regions, discussed later). The indexes must be in the

distributed range associated with the array dimension. This strict requirement ensures that

referenced array elements are held by the process that references them.

The variables a, b, and c are all distributed array variables. The creation expressions

on the right hand side of the initializers specify that the arrays here all have ranges x and

y—they are all M by N arrays, block-distributed over p. We see that mapping of distributed

arrays in HPJava is described in terms of the two special classes Group and Range.

The Range is another special class with privileged status. It represents an integer interval

0,..., N - 1, distributed somehow over a process dimension (a dimension or axis of a grid

like p). BlockRange is a particular subclass of Range. The arguments in the constructor of

BlockRange represent the total size of the range and the target process dimension. Thus, x

has M elements distributed over first dimension of p and y has N elements distributed over

second dimension of p.

HPJava defines a class hierarchy of different kinds of range object (Figure 3.2). Each

subclass represents a different kind of distribution format for an array dimension. The

simplest distribution format is collapsed (sequential) format in which the whole of the array

dimension is mapped to the local process. Other distribution formats (motivated by High

Performance Fortran) include regular block decomposition, and simple cyclic decomposition.

In these cases the index range (thus array dimension) is distributed over one of the dimensions

of the process grid defined by the group object. All ranges must be distributed over different
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Figure 3.2. The HPJava Range hierarchy

dimensions of this grid, and if a particular dimension of the grid is targeted by none of the

ranges, the array is said to be replicated in that dimension2. Some of the range classes allow

ghost extensions to support stencil-based computations.

A second new control construct, overall, implements a distributed parallel loop. It

shares some characteristics of the forall construct of HPF. The symbols i and j scoped by

these constructs are called distributed indexes. The indexes iterate over all locations (selected

here by the degenerate interval “:”) of ranges x and y.

HPJava also supports Fortran-like array sections. An array section expression has a

similar syntax to a distributed array element reference, but uses double brackets. It yields

a reference to a new array containing a subset of the elements of the parent array. Those

elements can be accessed either through the parent array or through the array section—

HPJava sections behave something like array pointers in Fortran, which can reference an

arbitrary regular section of a target array. As in Fortran, subscripts in section expressions

can be index triplets. HPJava also has built-in ideas of subranges and restricted groups.

These describe the range and distribution group of sections, and can be also used in array
2So there is no direct relation between the array rank and the dimension of the process grid: collapsed

ranges means the array rank can be higher; replication allows it to be lower.
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constructors on the same footing as the ranges and grids introduced earlier. They allow

HPJava arrays to reproduce any mapping allowed by the ALIGN directive of HPF.

The examples here have covered the basic syntax of HPJava. The language itself is

relatively simple. Complexities associated with varied or irregular patterns of communication

are supposed to be dealt with in communication libraries like the ones discussed in the

remainder of this dissertation.

The examples given so far look very much like HPF data-parallel examples, written in

a different syntax. We will give one last example to emphasize the point that the HPspmd

model is not the same as the HPF model. If we execute the following HPJava program

Procs2 p = new Procs2(2, 3) ;
on(p) {

Dimension d = p.dim(0), e = p.dim(1) ;

System.out.println("My coordinates are (" + d.crd() +
, " + e.crd() + ")") ;

}

we could see output like:

My coordinates are (0, 2)
My coordinates are (1, 2)
My coordinates are (0, 0)
My coordinates are (1, 0)
My coordinates are (1, 1)
My coordinates are (0, 1)

There are 6 messages. Because the 6 processes are running concurrently in 6 JVMs, the order

in which the messages appear is unpredictable. An HPJava program is a MIMD program,

and any appearance of collective behavior in previous examples was the result of a particular

programming style and a good library of collective communication primitives. In general an

HPJava program can freely exploit the weakly coupled nature of the process cluster, often

allowing more efficient algorithms to be coded.

33



public void matmul(float [[-,-]] c, float [[-,-]] a, float [[-,-]] b) {

Group2 p = c.grp();

Range x = c.rng(0);
Range y = c.rng(1);

int N = a.rng(1).size();

float [[-,*]] ta = new float [[x, N]] on p;
float [[*,-]] tb = new float [[N, y]] on p;

Adlib.remap(ta, a);
Adlib.remap(tb, b);

on(p)
overall(i = x for : )

overall(j = y for : ) {

float sum = 0;
for(int k = 0; k < N ; k++)

sum += ta [i, k] * tb [k, j];

c[i, j] = sum;
}

}

Figure 3.3. A general Matrix multiplication in HPJava.

3.3 High-level Communication Library

In this section we discuss extra syntax and usage of high-level communication library

in HPJava programs. Two characteristic collective communication methods remap() and

writeHalo() are described as examples.

We discuss more detail information about the general purpose matrix multiplication

routine (Figure 3.3). The method has two temporary arrays ta, tb with the desired

distributed format. This program is also using information which is defined for any

distributed array: grp() to fetch the distribution group and rng() to fetch the index ranges.
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This example relies on a high-level Adlib communication schedule that deals explicitly

with distributed arrays; the remap() method. The remap() operation can be applied to

various ranks and type of array. Any section of an array with any allowed distribution

format can be used. Supported element types include Java primitive and Object type. A

general API for the remap function is

void remap (T [[]] dst, T [[]] src) ;
void remap (T [[-]] dst, T [[-]] src) ;
void remap (T [[-,-]] dst, T [[-,-]] src) ;
...

where T is a Java primitive or Object type. The arguments here are zero-dimensional, one-

dimensional, two-dimensional, and so on. We will often summarize these in the shorthand

interface:

void remap (T # dst, T # src) ;

where the signature T # means any distributed array with elements of type T (This syntax

is not supported by the current HPJava compiler, but it supports method signatures of this

generic kind in externally implemented libraries—ie. libraries implemented in standard Java.

This more concise signature does not incorporate the constraint that dst and src have the

same rank—that has to be tested at run-time.)

As another example, Figure 3.4 is a HPJava program for the Laplace program that uses

ghost regions. It illustrates the use the library class ExtBlockRange to create arrays with

ghost extensions. In this case, the extensions are of width 1 on either side of the locally held

“physical” segment. Figure 3.5 illustrates this situation.

From the point of view of this dissertation the most important feature of this example

is the appearance of the function Adlib.writeHalo(). This is a collective communication

operation. This particular one is used to fill the ghost cells or overlap regions surrounding the

“physical segment” of a distributed array. A call to a collective operation must be invoked

simultaneously by all members of some active process group (which may or may not be

the entire set of processes executing the program). The effect of writeHalo is to overwrite

the ghost region with values from processes holding the corresponding elements in their

physical segments. Figure 3.6 illustrates the effect of executing the writeHalo function.
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Procs2 p = new Procs2(P, P) ;
on(p) {

Range x = new ExtBlockRange(M, p.dim(0), 1) ;
Range y = new ExtBlockRange(N, p.dim(1), 1) ;

float [[-,-]] a = new float [[x, y]] ;

... initialize edge values in ’a’

float [[-,-]] b = new float [[x, y]], r = new float [[x, y]] ;

do {
Adlib.writeHalo(a) ;

overall(i = x for 1 : N - 2)
overall(j = y for 1 : N - 2) {

float newA = 0.25 * (a[i - 1, j] + a[i + 1, j] +
a[i, j - 1] + a[i, j + 1]);

r[i,j] = Math.abs(newA - a[i,j]);
b[i,j] = newA ;

}

HPutil.copy(a,b) ; // Jacobi relaxation.
} while(Adlib.maxval(r) > EPS);

}

Figure 3.4. Solution of Laplace equation by Jacobi relaxation.

More general forms of writeHalo may specify that only a subset of the available ghost area

is to be updated, or may select cyclic wraparound for updating ghost cells at the extreme

ends of the array.

If an array has ghost regions the rule that the subscripts must be simple distributed

indices is relaxed; shifted indices, including a positive or negative integer offset, allow access

to elements at locations neighboring the one defined by the overall index.

Besides remap() and writeHalo(), Adlib includes a family of related regular collective

communication operations (shifts, skews, and so on). It also incorporates a set of collective

gather and scatter operations for more irregular communications, and a set of reduction
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a[0,0] a[0,1]  a[0,2]
a[1,0] a[1,1]  a[1,2]
a[2,0] a[2,1]  a[2,2]

a[2,0] a[2,1]  a[2,2]

a[3,0] a[3,1]  a[3,2]
a[4,0] a[4,1]  a[4,2]

a[3,0] a[3,1]  a[3,2]

a[0,1]  a[0,2] a[0,3]
a[1,1]  a[1,2] a[1,3]

a[3,1]  a[3,2] a[3,3]

a[2,1]  a[2,2] a[2,3]

a[5,0] a[5,1]  a[5,2]

a[2,1]  a[2,2] a[2,3]

a[3,1]  a[3,2] a[3,3]
a[4,1]  a[4,2] a[4,3]
a[5,1]  a[5,2] a[5,3]

0 1

0

1

Figure 3.5. Example of a distributed array with ghost regions.

operations based on the corresponding Fortran 90 array intrinsics. Reduction operations

take one or more distributed arrays as input. They combine the elements to produce one or

more scalar values, or arrays of lower rank.

Currently our collective communication library is built on top of device level commu-

nication library called mpjdev. The mpjdev API is designed with the goal that it can

be implemented portably on network platforms and efficiently on parallel hardware. This

library is developed with HPJava in mind, but it is a standalone library and could be used

by other systems. The main purpose of this library is to perform actual point-to-point

communications between processes.

We will discuss implementation issues of high- and low-level communication libraries in

Chapter 4 and Chapter 5.

3.4 Message-passing for HPJava

High level libraries like Adlib are very powerful. But in “real” parallel programming lower

level SPMD approaches may also be necessary. HPJava therefore supports low-level message

passing as well.
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    by WriteHalo
Ghost area written

Figure 3.6. Illustration of the effect of executing the writeHalo function.

3.4.1 The mpiJava wrapper

The Message-Passing Interface (MPI) [39] was developed by a group of researchers from

industry, government, and academia. It provides a rich set of communication libraries,

application topologies and user defined data types. MPI is the first message-passing standard

for programming parallel processors.

Our mpiJava software implements a Java binding for MPI proposed late in 1997. The

API is modeled as closely as practical on the C++ binding defined in the MPI 2.0 standard,

specifically supporting the MPI 1.1 subset of that standard. The mpiJava is developed by

our research group and currently version 1.2 is available.

The MPI standard is explicitly object-based. The C and Fortran bindings rely on

“opaque objects” that can be manipulated only by acquiring object handles from constructor

functions, and passing the handles to suitable functions in the library. The C++ binding

specified in the MPI 2 standard collects these objects into suitable class hierarchies and

defines most of the library functions as class member functions. The mpiJava API follows
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Figure 3.7. Principal classes of mpiJava

this model, lifting the structure of its class hierarchy directly from the C++ binding. The

major classes of mpiJava are illustrated in Figure 3.7.

The class MPI only has static members. It acts as a module containing global services,

such as initialization of MPI, and many global constants including the default communicator

COMM_WORLD.

The most important class in the package is the communicator class Comm. All commu-

nication functions in mpiJava are members of Comm or its subclasses. As usual in MPI, a

communicator stands for a “collective object” logically shared by a group of processors. The

processes communicate, typically by addressing messages to their peers through the common

communicator.

Another class that is important later discussion is the Datatype class. This describes

the type of the elements in the message buffers passed to send, receive, and all other

communication functions. Various basic data types are predefined in the package. These

mainly correspond to the primitive types of Java, shown in Table 3.1 that allows Java objects

to be communicated. The MPI.OBJECT type is a new predefined basic data type of mpiJava.

The standard send and receive operations of MPI are members of Comm with interfaces:
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Table 3.1. Basic data types of mpiJava
MPI data type Java data type
MPI.BYTE byte
MPI.CHAR char
MPI.SHORT short
MPI.BOOLEAN boolean
MPI.INT int
MPI.LONG long
MPI.FLOAT float
MPI.DOUBLE double
MPI.OBJECT Object

public void Send(Object buf, int offset, int count,
Datatype datatype, int dest, int tag)

public Status Recv(Object buf, int offset, int count,
Datatype datatype, int source, int tag)

In both cases the actual argument corresponding to buf must be a Java array. In these and

all other mpiJava calls, the buffer array argument is followed by an offset that specifies the

element of in array where the message actually starts.

A native MPI library, a version of the Java Development Toolkit (JDK), and a C

compiler is necessary to install mpiJava. The MPI Java classes and the C stubs that bind

the MPI Java classes to the underlying native MPI implementation are two core parts of

mpiJava. We create these C stubs using Java Native Interface (JNI), which Java can call

and pass parameters to and from a native API. The new version 1.2 of the software supports

direct communication of objects via object serialization, which is an important step toward

implementing the specification in [14].

The mpiJava software is available from

http://www.hpjava.org/mpiJava.html

The releases of mpiJava include complete source, make files, configuration scripts, compiled

libraries for WMPI, release test codes (based on the IBM MPI test suit), example applica-

tions, javadoc documentation, and installation usage notes.
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3.4.2 Task-Parallelism in HPJava

Sometimes some parts of a large parallel program cannot be written efficiently in the pure

data parallel style, using overall constructs to process all elements of distributed arrays

homogeneously. Sometimes, for efficiency, a process has to do some procedure that combines

just the locally held array elements in a non-trivial way.

The HPJava environment is designed to facilitate direct access to SPMD library in-

terfaces. HPJava provides constructs to facilitate both data-parallel and task-parallel

programming. Different processors can either simultaneously work on data in globally

subscripted arrays, or independently execute more complex procedures on their own local

data. The conversion between these phases is supposed to be relatively seamless.

As an example of the HPJava binding for MPI, we will consider a fragment from a parallel

N-body classical mechanics problem. As the name suggests, this problem is concerned with

the dynamics of a set of N interacting bodies. The total force on each body includes a

contribution from all the other bodies in the system. The size of this contribution depends

on the position, x, of the body experiencing the force, and the position, y, of the body

exerting it. If the individual contribution is given by force(x, y), the net force on body i is

∑
j

force(ai, aj)

where now aj is the position of the jth body. A simplified pure data parallel version of force

computation in a N-body program is illustrated in Figure 3.8. There are three distributed

arrays in the program, a, b and f. We repeatedly rotate a copy, b, of the position vector, a,

and contributions to the force are accumulated as we go. The trouble is that this involves N

small shifts. Calling out to the communication library so many times (and copying a whole

array so many times) is likely to produce an inefficient program.

One way to express the algorithm is in a direct SPMD message-passing style. Example

code is given in Figure 3.9. In this HPJava/MPI version of N-body, the HPJava will manage

process group arrangements and initialization for distributed arrays. We have used the

method Sendrecv_replace(), a point-to-point communication routine between processors

from the mpiJava binding of MPI, instead of the shift-operation from Figure 3.8. The local

variables a_block, b_block and f_block in the program are not distributed arrays. And
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Procs1 p = new Procs1(P) ;
on(p) {

Range x = new BlockRange(N, p.dim(0)) ;

float [[]] f = new float [[x]], a = new float [[x]],
b = new float [[x]] ;

... initialize ’a’ ...

overall(i = x for :) {
f[i] = 0 ;
b[i] = a[i] ;

}

for(int s = 0 ; s < N ; s++) {

overall(i = x for :)
f[i] += force(a[i], b[i]) ;

// cyclically shift ‘b’ (by amount 1 in x dim)...

Adlib.cshift(tmp, b, 1, 0) ;
HPspmd.copy(b, tmp) ;

}
}

Figure 3.8. HPJava data parallel version of the N-body force computation.

they are assigned by an inquiry function call dat() that returns a sequential Java array

containing the locally held elements of the distributed array. This HPJava/MPI version

does P shifts of whole blocks of size B for sending N data instead of N small shifts in pure

data parallel version. This reduces communication between nodes. The HPJava/MPI version

also requires less copying operations (P times) than the pure data parallel version (N times),

where typically P � N .

This example leaves some issues unresolved—in general what is the mapping from

distributed-array elements to local-data-segment elements? It assumes each processor hold

identical sized blocks of data (P exactly divides N). For a general distributed array or section,

the local segment may be some stride subset of the vector returned by dat(). The complete
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specification of HPJava addresses these issues. There is also an issue about the mapping

between HPJava process groups and MPI groups. We need an MPI like library that is

better integrated with HPJava constructs. We envisage an API tentatively called OOMPH

(Object-oriented Message Passing for HPJava). The details have not been worked out.

OOMPH would built on mpjdev, and fully interoperable with HPJava Adlib.
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Procs1 p = new Procs1(P) ;
on(p) {

Range x = new BlockRange(N, p.dim(0)) ;

float [[]] f = new float [[x]], a = new float [[x]],
b = new float [[x]] ;

... initialize ’a’ ...

overall(i = x for :) {
f[i] = 0.0 ;
b[i] = a[i] ;

}

// extract the local vectors of elements:

float [] f_blk = f.dat(), a_blk = a.dat(), b_blk = b.dat() ;

int myID = MPI.COMM_WORLD.Rank();

for(int s = 0 ; s < P ; s++) {

for(int i = 0 ; i < B ; i++) // B : local block size
for(int j = 0 ; j < B ; j++)

f_block[i] += force(a_blk[i], b_blk[j]) ;

// cyclically shift ‘b_blk’ (by amount B in x dim)...

int right = (myID + 1) % P, left = (myID + P -1) % P;

MPI.COMM_WORLD.Sendrecv_replace(b_blk, 0, B, MPI.FLOAT,
right, 99, left, 99) ;

}

}

Figure 3.9. Version of the N-body force computation using reduction to Java array.
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CHAPTER 4

A HIGH-LEVEL COMMUNICATION LIBRARY

FOR HPJAVA

In this chapter we discuss our high-level communication library, Adlib, in depth. Its

detailed functionalities and implementation issues are described. We start with background

of this library and move into two characteristic and important collective operations, remap

and writeHalo. Based on those operations, we describe detailed implementation issues of

collective communication. Finally other functionalities of collective communication operation

are described.

4.1 Background

A C++ library called Adlib [12] was completed in the Parallel Compiler Runtime

Consortium (PCRC) [19] project. It was a high-level runtime library designed to support

translation of data-parallel languages [16]. Initial emphasis was on High Performance

Fortran (HPF), and two experimental HPF translators used the library to manage their

communications [38, 58]. It incorporated a built-in representation of a distributed array,

and a library of communication and arithmetic operations acting on these arrays. The array

model supported general HPF-like distribution formats, and arbitrary regular sections.

Initially HPJava used a JNI wrapper interface to the C++ kernel of the PCRC library.

The library described here borrows many ideas form the PCRC library, but for this project

we rewrote high-level library from the scratch for Java. It was extended to support Java

object types, to target Java based communication platforms and to use Java exception

handling—making it “safe” for Java. The Java version of the Adlib library is developed on

top of mpjdev. The mpjdev API can be implemented portably on network platforms and

efficiently on parallel hardware (see Chapter 5).
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The Adlib series of libraries support collective operations on distributed arrays. A call

to a collective operation must be invoked simultaneously by all members of some active

process group, which may or may not be the entire set of processes executing the program.

Communication patterns supported include HPF/Fortran 90 intrinsics such as cshift. More

importantly they include the regular-section copy operation, remap, which copies elements

between shape-conforming array sections regardless of source and destination mapping.

Another function, writeHalo, updates ghost areas of a distributed array. Various collective

gather and scatter operations allow irregular patterns of access. The library also provides

essentially all Fortran 90 arithmetic transformational functions on distributed arrays and

various additional HPF library functions.

4.2 Implementation of Collectives

In this section we will discuss Java implementation of the Adlib collective operations.

For illustration we concentrate on the important Remap operation. Although it is a powerful

and general operation, it is actually one of the more simple collectives to implement in the

HPJava framework.

General algorithms for this primitive have been described by other authors in the past.

For example it is essentially equivalent to the operation called Regular_Section_Copy_Sched

in [6]. In this section we want to illustrate how this kind of operation can be implemented

in term of the particular Range and Group classes of HPJava, complemented by suitable set

of messaging primitives.

All collective operations in the library are based on communication schedule objects. Each

kind of operation has an associated class of schedules. Particular instances of these schedules,

involving particular data arrays and other parameters, are created by the class constructors.

Executing a schedule initiates the communications required to effect the operation. A single

schedule may be executed many times, repeating the same communication pattern. In this

way, especially for iterative programs, the cost of computations and negotiations involved

in constructing a schedule can often be amortized over many executions. This pattern

was pioneered in the CHAOS/PARTI libraries [21]. If a communication pattern is to be

executed only once, simple wrapper functions are made available to construct a schedule,
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execute it, then destroy it. The overhead of creating the schedule is essentially unavoidable,

because even in the single-use case individual data movements generally have to be sorted

and aggregated, for efficiency. The data structures for this are just those associated with

schedule construction.

Constructor and public method of the remap schedule for distributed arrays of float

element can be summarized as follows:

class RemapFloat extends Remap {
public RemapFloat (float # dst, float # src) {...}

public void execute() {...}
. . .

}

The # notation was explained in section 3.3.

The remap schedule combines two functionalities: it reorganizes data in the way indicated

by the distribution formats of source and destination array. Also, if the destination array has

a replicated distribution format, it broadcasts data to all copies of the destination. Here we

will concentrate on the former aspect, which is handled by an object of class RemapSkeleton

contained in every Remap object.

During construction of a RemapSkeleton schedule, all send messages, receive messages,

and internal copy operations implied by execution of the schedule are enumerated and

stored in light-weight data structures. These messages have to be sorted before sending,

for possible message agglomeration, and to ensure a deadlock-free communication schedule.

These algorithms, and maintenance of the associated data structures, are dealt with in a base

class of RemapSkeleton called BlockMessSchedule. The API for the superclass is outlined

in Figure 4.1. To set-up such a low-level schedule, one makes a series of calls to sendReq and

recvReq to define the required messages. Messages are characterized by an offset in some

local array segment, and a set of strides and extents parameterizing a multi-dimensional

patch of the (flat Java) array. Finally the build() operation does any necessary processing

of the message lists. The schedule is executed in a “forward” or “backward” direction by

invoking gather() or scatter().

In general Top-level schedules such as Remap, which deal explicitly with distributed arrays,

are implemented in terms of some lower-level schedules such as BlockMessSchedule that

47



public abstract class BlockMessSchedule {

BlockMessSchedule(int rank, int elementLen,boolean isObject) { ... }

void sendReq(int offset, int[] strs, int[] exts, int dstId) { ... }

void recvReq(int offset, int[] strs, int[] exts, int srcId) { ... }

void build() { ... }

void gather() { ... }

void scatter() { ... }

...
}

Figure 4.1. API of the class BlockMessSchedule

Table 4.1. Low-level Adlib schedules
operations on “words” operations on “blocks”

Point-to-point MessSchedule BlockMessSchedule
Remote access DataSchedule BlockDataSchedule

TreeSchedule BlockTreeSchedule
Tree operations RedxSchedule BlockRedxSchedule

Redx2Schedule BlockRedx2Schedule

simply operate on blocks and words of data. These lower-level schedules do not directly

depend on the Range and Group classes. The lower level schedules are tabulated in Table 4.1.

Here “words” means contiguous memory blocks of constant (for a given schedule instance)

size. “Blocks” means multidimensional (r-dimensional) local array sections, parameterized by

a vector of r extents and a vector of memory strides. The point-to-point schedules are used

to implement collective operations that are deterministic in the sense that both sender and

receiver have advanced knowledge of all required communications. Hence Remap and other

regular communications such as Shift are implemented on top of BlockMessSchedule. The

“remote access” schedules are used to implement operations where one side must inform the
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other end that a communication is needed. These negotiations occur at schedule-construction

time. Irregular communication operations such as collective Gather and Scatter are

implemented on these schedules. The tree schedules are used for various sorts of broadcast,

multicast, synchronization, and reduction.

We will describe in more detail the implementation of the higher-level RemapSkeleton

schedule on top of BlockMessSchedule. This provides some insight into the structure

HPJava distributed arrays, and the underlying role of the special Range and Group classes.

To produce an implementation of the RemapSkeleton class that works independently of

the detailed distribution format of the arrays we rely on virtual functions of the Range class

to enumerate the blocks of index values held on each processor. These virtual functions,

implemented differently for different distribution formats, encode all important information

about those formats. To a large extent the communication code itself is distribution format

independent.

The range hierarchy of HPJava was illustrated in Figure 3.2, and some of the relevant

virtual functions are displayed in the API of Figure 4.2. Most methods optionally take

arguments that allow one to specify a contiguous or strided subrange of interest. The

Triplet and Block instances represent simple struct-like objects holding a few int fields.

Those integer files are describing respectively a “triplet” interval, and the strided interval

of “global” and “local” subscripts that the distribution format maps to a particular process.

In the examples here Triplet is used only to describe a range of process coordinates that a

range or subrange is distributed over.

Now the RemapSkeleton communication schedule is built by two methods called sendLoop

and recvLoop that enumerate messages to be sent and received respectively. Figure 4.3

sketches the implementation of sendLoop. This is a recursive function—it implements a

multidimensional loop over the rank dimensions of the arrays. It is initially called with r =

0. An important thing to note is how this function uses the virtual methods on the range

objects of the source and destination arrays to enumerate blocks—local and remote—of

relevant subranges, and enumerates the messages that must be sent. Figure 4.4 illustrates

the significance of some of the variables in the code. When the offset and all extents and

strides of a particular message have been accumulated, the sendReq() method of the base
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public abstract class Range {
public int size() {...}
public int format() {...}
...
public Block localBlock() {...}
public Block localBlock(int lo, int hi) {...}
public Block localBlock(int lo, int hi, int stp) {...}

public Triplet crds() {...}
public Block block(int crd) {...}

public Triplet crds(int lo, int hi) {...}
public Block block(int crd, int lo, int hi) {...}

public Triplet crds(int lo, int hi, int stp) {...}
public Block block(int crd, int lo, int hi, int stp) {...}
. . .

}

Figure 4.2. Partial API of the class Range

class is invoked. The variables src and dst represent the distributed array arguments. The

inquiries rng() and grp() extract the range and group objects of these arrays.

Not all the schedules of Adlib are as “pure” as Remap. A few, like WriteHalo have built-in

dependency on the distribution format of the arrays (the existence of ghost regions in the

case of WriteHalo). But they all rely heavily on the methods and inquiries of the Range and

Group classes, which abstract the distribution format of arrays. The API of these classes has

evolved through C++ and Java versions of Adlib over a long period.

In the HPJava version, the lower-level, underlying schedules like BlockMessSchedule

(which are not dependent on higher-level ideas like distributed ranges and distributed arrays)

are in turn implemented on top of a messaging API, called mpjdev, described in the section

5.1. To deal with preparation of the data and to perform the actual communication, it uses

methods of the mpjdev like read(), write(), strGather(), strScatter(), isend(), and

irecv().

The write() and strGather() are used for packing the data and read() and

strScatter() are used for unpacking the data where two of those methods (read()
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private void sendLoop(int offset, Group remGrp, int r){

if(r == rank) {
sendReq(offset, steps, exts, world.leadId(remGrp));

} else {

Block loc = src.rng(r).localBlock();

int offsetElem = offset + src.str(r) * loc.sub_bas;
int step = src.str(r) * loc.sub_stp;

Range rng = dst.rng(r);
Triplet crds = rng.crds(loc.glb_lo, loc.glb_hi, loc.glb_stp);

for (int i = 0, crd = crds.lo; i < crds.count; i++, crd += crds.stp){

Block rem = rng.block3(crd, loc.glb_lo, loc.glb_hi, loc.glb_stp);

exts[r] = rem.count;
steps[r] = step * rem.glb_stp;

sendLoop(offsetElem + step * rem.glb_lo,
remGrp.restrict(rng.dim(), crd),
r + 1) ;

}
}

}

Figure 4.3. sendLoop method for Remap

and write()) are dealing with a contiguous data and the other two (strGather() and

strScatter()) are dealing with non-contiguous data. The usage of strGather() is to write

a section to the buffer from a multi-dimensional, strided patch of the source array. The

behaviour of strScatter() is opposite of strGather(). It reads a section from the buffer

into a multi-dimensional, strided patch of the destination array. The isend() and irecv()

are used for actual communication.
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Figure 4.4. Illustration of sendLoop operation for remap

4.3 Collective Communications

In the previous section we described the Adlib communication implementation issues

with a characteristic collective operation example, remap(). In this section we will

overview functionalities of all collective operations in Adlib. The Adlib has three main

families of collective operation: regular communications, reduction operations, and irregular

communications. We discuss usage and high-level API overview of Adlib methods. Complete

APIs of Adlib are described in Appendix A.

4.3.1 Regular Collective Communications

We already described two characteristic example of the regular communications, remap()

and writeHalo(), in depth. In this section we describe other regular collective communica-

tions.

The method shift() is a communication schedule for shifting the elements of a

distributed array along one of its dimensions, placing the result in another array. In general

we have the signatures:

void shift(T [[-]] destination, T [[-]] source,
int shiftAmount)

and
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void shift(T # destination, T # source,
int shiftAmount, int dimension)

where the variable T runs over all primitive types and Object, and the notation T # means

a multiarray of arbitrary rank, with elements of type T . The first form applies only for

one dimensional multiarrays. The second form applies to multiarrays of any rank. The

shiftAmount argument, which may be negative, specifies the amount and direction of the

shift. In the second form the dimension argument is in the range 0, . . . , R − 1 where R is

the rank of the arrays: it selects the array dimension in which the shift occurs. The source

and destination arrays must have the same shape, and they must also be identically aligned.

By design, shift() implements a simpler pattern of communication than general remap().

The alignment relation allows for a more efficient implementation. The library incorporates

runtime checks on alignment relations between arguments, where these are required.

The shift() operation does not copy values from source that would go past the edge

of destination, and at the other extreme of the range elements of destination that are

not targetted by elements from source are unchanged from their input value. The related

operation cshift() is essentially identical to shift() except that it implements a circular

shift, rather than an “edge-off” shift.

Finally we mention the function broadcast(), which is actually a simplified form of

remap(). There are two signatures:

T broadcast(T [[]] source)

and

T broadcast(T source, Group root)

The first form takes rank-0 distributed array as argument and broadcasts the element value

to all processes of the active process group. Typically it is used with a scalar section to

broadcast an element of a general array to all members of the active process group, as here:

int [[-,-]] a = new int [[x, y]] ;

int n = 3 + Adlib.broadcast(a [[10, 10]]) ;

The second form of broadcast() just takes an ordinary Java value as the source. This

value should be defined on the process or group of processes identified by root. It is broadcast

to all members of the active process group.
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4.3.2 Reductions

Reduction operations take one or more distributed arrays as input. They combine the

elements to produce one or more scalar values, or arrays of lower rank. Adlib provides a large

set of reduction operations, supporting the many kinds of reduction available as “intrinsic

functions” in Fortran. Here we mention only a few of the simplest reductions. One difference

between reduction operations and other collective operations is reduction operations do not

support Java Object type.

The maxval() operation simply returns the maximum of all elements of an array. It has

prototypes

t maxval (t # a)

where t now runs over all Java numeric types—that is, all Java primitive types except

boolean. The result is broadcast to the active process group, and returned by the function.

Other reduction operations with similar interfaces are minval(), sum() and product(). Of

these minval() is minimum value, sum() adds the elements of a in an unspecified order, and

product() multiplies them.

The boolean reductions:

boolean any (boolean # a)
boolean all (boolean # a)
int count (boolean # a)

behave in a similar way. The method any() returns true if any element of a is true. The

method all() returns true if all elements of a are true. The method count() returns a

count of the number of true elements in a.

The method dotProduct() is also logically a reduction, but it takes two one-dimensional

arrays as arguments and returns their scalar product—the sum of pairwise products of

elements. The situation with element types is complicated because the types of the

two arguments needn’t be identical. If they are different, standard Java binary numeric

promotions are applied—for example if the dot product of an int array with a float array

is a float value. The prototypes are

t3 dotProduct(t1 # a, t2 # b)
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and

boolean dotProduct(boolean # a, boolean # b)

If either of t1 or t2 is a floating point type (float or double) the result type, t3, is double).

Otherwise the result type t3 is long. The argument multiarrays must have the same shape

and must be aligned. The result is broadcast to all members of the active process group. The

second form takes boolean as the arguments and returns the logical “or” of all the pairwise

logical “ands” of elements.

The methods maxloc() and minloc() return respectively the maximum and minimum

values of all elements of an array—similar to maxval() and minval()—but also output the

index tuple in the array at which the extreme value was found. The prototypical forms are:

t maxval(int [] loc, t # a)
t minval(int [] loc, t # a)

where loc is an ordinary Java array of length R, the rank of a. On exit it contains the

(broadcast) global subscripts of the extreme value.

For each of the simple reductions that combine all elements of an array into a single

value, there is a corresponding “dimensional reduction”, which just reduces along a selected

dimension of the input array, and outputs an array of values of rank one less than the input.

The method maxvalDim(), for example, has the form:

void maxvalDim(t # res, t # a, int dimension)

The dimension argument takes a value, d, in the range 0, . . . , R − 1 where R is the rank of

a. The result array, res, must have rank R − 1. It must be aligned with the input array a,

with replicated alignment in the dth dimension of a. In other words, the distribution groups

of a and res must be the same, and

res.rng(i).isAligned(a.rng(i))

for i < d, and

res.rng(i).isAligned(a.rng(i + 1))

55



for d ≤ i < R − 1. The reductions minvalDim(), sumDim(), productDim(), anyDim(),

allDim(), countDim() are defined in a similar way. The maxloc() and minloc() reductions

have “dimensional” forms:

void maxlocDim(t # res, int # loc, t # a, int dimension)
void minlocDim(t # res, int # loc, t # a, int dimension)

where the array loc has the same rank and alignment as res (since the reduction is in a

single dimension, only one index value—for the specified dimension—needs to be returned

per extreme value). Currently there is no “Dim” form of dotProduct().

Finally all the numeric simple reductions and dimensional reductions all have “masked”

variants. These take an extra boolean array aligned with the source array. For example

t maxval(t # a, boolean # mask)

ignores all elements of a for which the corresponding element of mask is false.

One omission in the current version of the library is a facility for user-defined reduction

operations. It also omits various arithmetic reductions that might seem natural in Java, such

as bitwise, and, or, and xor. There is no fundamental reason for these omissions, and this

might change in future releases.

4.3.3 Irregular Collective Communications

Adlib has some support for irregular communications in the form of collective gather()

and scatter() operations. The simplest form of the gather operation for one-dimensional

arrays has prototypes

void gather(T [[-]] destination, T [[-]] source, int [[-]] subscripts) ;

The subscripts array should have the same shape as, and be aligned with, the destination

array. In pseudocode, the gather operation is equivalent to

for all i in {0, . . . , N − 1} in parallel do
destination [i] = source [subscripts [i]] ;

where N is the size of the destination (and subscripts) array. If we are implementing a

parallel algorithm that involves a stage like

for all i in {0, . . . , N − 1} in parallel do
a [i] = b [fun(i)] ;
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where fun is an arbitrary function, it can be expressed in HPJava as

int [[-]] tmp = new int [[x]] on p ;
on(p)

overall(i = x for :)
tmp [i] = fun(i) ;

Adlib.gather(a, b, tmp) ;

where p and x are the distribution group and range of a. The source array may have a

completely unrelated mapping.

The one-dimensional case generalizes to give a complicated family of prototypes for

multidimensional arrays:

void gather(T # destination, T [[-]] source,
int # subscripts)

void gather(T # destination, T [[-,-]] source,
int # subscripts0, int # subscripts1)

void gather(T # destination, T [[-,-,-]] source,
int # subscripts0, int # subscripts1, int # subscripts2)

Currently the highest rank of source array with a gather() method is 3. The source and

destination arrays can have different ranks (just as they have unrelated distribution formats).

But the destination and subscript arrays are all the same shape, and all are aligned with one

another. The number of subscript array arguments is equal to the rank of the source array.

If the rank of the destination array is R, the general behaviour of these methods is:

for all i0 in {0, . . . , N0 − 1} in parallel do
...

for all iR−1 in {0, . . . , NR−1 − 1} in parallel do
destination [i0, ..., iR−1] = source [subscripts0 [i0, ..., iR−1],

subscripts1 [i0, ..., iR−1],
...] ;

where (N0, . . . , NR−1) is the shape of destination array.

The basic scatter function has very similar prototypes, but the names source and

destination are switched. For example the one-dimensional case is

void scatter(T [[-]] source, T [[-]] destination,
int [[-]] subscripts) ;
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WriteHalo writeHalo = new WriteHalo(a) ;
MaxvalFloat maxval = new MaxvalFloat(r) ;

do {
writeHalo.execute() ;

overall(i = x for 1 : N - 2)
overall(j = y for 1 : N - 2) {

float newA = 0.25 * (a [i - 1, j] + a [i + 1, j] +
a [i, j - 1] + a [i, j + 1]) ;

r [i, j] = Math.abs(newA - a [i, j]) ;
b [i, j] = newA ;

}

HPutil.copy(a, b) ; // Jacobi relaxation.
} while(maxval.execute() > EPS)) ;

Figure 4.5. Jacobi relaxation, re-using communication schedules.

and it behaves like

for all i in {0, . . . , N − 1} in parallel do
destination [subscripts [i]] = source [i] ;

Currently the HPJava version of Adlib does not support combining scatters, although these

could be added in later releases.

All the gather() and scatter() operations take an optional final argument which is a

boolean array acting as a mask, e.g.

void gather(T [[-]] destination, T [[-]] source,
int [[-]] subscripts, boolean [[-]] mask)

The mask should have the same shape as and be aligned with the subscript arrays.

Assignment to a destination element is conditional on the value of the element of the mask

associated with the subscripts.
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4.4 Schedules

The collective communication methods introduced in the last few sections involve

two phases: an inspector phase in which the arguments are analyzed to determine what

communications and local copies will be needed to complete the operation, and an executor

phase in which the schedule of these data transfers is actually performed. In iterative

algorithms, it often happens that exactly the same communication pattern is repeated many

times over. In this case it is wasteful to repeat the inspector phase in every iteration, because

the data transfer schedule will be the same every time.

Adlib provides a class of schedule objects for each of its communication functions. The

classes generally have the same names as the static methods, with the first letter capitalized

(the name may also be extended with a result type). Each class has a series of constructors

with arguments identical to the instances of the function. Every schedule class has one public

method with no arguments called execute, which executes the schedule.

Using WriteHalo and Maxval schedules, the main loop of the Jacobi relaxation program

from section 3.2, Figure 3.4 could be rewritten as in Figure 4.5.

59



CHAPTER 5

A LOW-LEVEL COMMUNICATION LIBRARY

FOR JAVA HPC

In this chapter we describe the low-level communication library, mpjdev, we introduced

for HPJava. This library is developed with HPJava in mind, but it is a standalone library

and could be used by other systems. We start this chapter with brief introduction of mpjdev.

Detailed information on the mpjdev buffer APIs and communication APIs follows. We will

describe different types of buffer operations dealing with both contiguous and non-contiguous

data, and various communication methods like blocking and non-blocking communications.

A following section discusses how actual data is stored into the message buffer. We also

describe issues in four different implementations. An implementation based on native MPI,

a pure-Java multithreaded implementation, and platform specific LAPI implementation are

already developed. There is also one proposed Jini implementation.

5.1 Goals and Requirements

The mpjdev API is designed with the goal that it can be implemented portably on

network platforms and efficiently on parallel hardware. Unlike MPI which is intended

for the application developer, mpjdev is meant for library developers. Application level

communication libraries like the Java version of Adlib (or MPJ [13]) may be implemented

on top of mpjdev. The mpjdev API itself might be implemented on top of Java sockets in

a portable network implementation, or—on HPC platforms—through a JNI (Java Native

Interface) to a subset of MPI. The positioning of the mpjdev API is illustrated in Figure 5.1.

Currently not all the communication stack in this figure is implemented. The Java version

of Adlib, the pure Java implementation on SMPs, and native the MPI implementation are
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Figure 5.1. An HPJava communication stack.

developed and included in the current HPJava or mpiJava releases. The rest of the stack

may be filled in the future. Detailed API information is given in section 5.2.

An important requirement is to support communication of all intrinsic Java types,

including primitive types, and objects. It should transfer data between the Java program

and the network while keeping the overheads of the Java Native Interface as low as practical.

From the development of our earlier successful library mpiJava, we learned communication

overheads are key factor of performance. For the mpjdev library, one important decision

is made to reduce communication overhead. Usually communication protocols are type

specific—different type of data should be sent separately. To avoid many small sends, we

maintain all the data of the mpjdev as the Java byte [] array for pure Java versions or C

char [] array for JNI-based versions. This means all the different primitive types of Java

can be stored into the one buffer and sent together instead of using many small separate

sends. The Java class types are treated as special case. We can send both primitive types

and class types together in one buffer but data may end up in two different messages, one for

primitive data and the other for serialized Java objects. To support Java objects efficiently,

mpjdev maintains serialized Java objects as a separate Java byte [] array.

Currently there are three different implementations. The initial version of mpjdev was

targeted to HPC platforms, through a JNI interface to a subset of MPI. For SMPs, and

for debugging on a single processor, we later implemented a pure-Java, multithreaded

version. This version assumes SPMD processes are mapped to Java threads. We also

developed a more optimized and system-specific mpjdev built on the IBM SP system using
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the Low-level Application Programming Interface (LAPI). This chapter also describes a

proposed pure-Java version of mpjdev that uses a Java sockets. This would provide a more

portable network implementation of HPJava (without layering on, say, MPICH or LAM).

Our mpjdev layer is similar to abstract device interface (ADI) of MPICH. This is used as

a lower level communications layer in the MPICH implementation of the MPI. This interface

handles just the communication between processes. Message information is divided into two

parts: the message envelope and the data. The message envelope is relatively small and

contains message information like tag, communicator, and length.

There are various differences between mpjdev and the ADI. One is that while mpjdev

stores message information in the same buffer with the data and send together, the ADI

message envelope maintain own buffer and the data of ADI may or may not be delivered at

same time. Another is that mpjdev is more suitable to handle different types of data in a

message. The ADI does not have particularly good ways to handle different data types in

the same buffer.

5.2 General APIs

There are two parts of the mpjdev API. One part deals with communication, and the

other part deals with the message buffer.

The currently specified communication API for mpjdev is small compared to MPI. It only

includes point-to-point communications. The sophisticated data types of MPI are omitted.

This is a fairly major change relative to MPI, but for now it seems hard to make progress in

Java while pursuing the HPC ideal of messaging with “zero-copying”—something the derived

data types of MPI were designed to facilitate. Avoiding internal copying of message buffers

would require changes to the implementation of some of the most popular Java Virtual

Machines. This is outside our control.

So in mpjdev we revert to a less demanding scheme in which data is locally copied at least

once—between the Java program’s memory space and a system-managed message-buffer.

There is explicit packing and unpacking of buffers—a similar strategy to new I/O package of

the Sun JDK version 1.4—but we provide a specialized set of gather/scatter buffer operation

to better support HPC applications. Much of the complexity in the mpjdev API is then

associated with packing and unpacking of message buffers. Because we want to make sure
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public class Buffer {
public static final int SECTION_OVERHEAD = 8 ;

public void ensureCapacity(int newCapacity) { ... }

public void restoreCapacity() { ... }

public void free() { ... }
. . .

}

Figure 5.2. The public interface of Buffer class.

that usually data need be copied locally at most once, we provide a flexible suite of operations

for copying data to and from the buffers. These include assorted gather- and scatter-style

operations.

5.2.1 Message Buffer API

The message buffer described by class Buffer is used for explicit packing and unpacking

of messages. The sender creates a communication buffer object of type Buffer. Internally

this buffer maintains a vector of bytes reflecting the wire format of the message.

This class is a base class for several concrete classes described below. Constructors for

those classes specify a fixed initial capacity. The effective public interface of the Buffer class

itself is given in Figure 5.2. We can increase the buffer capacity by calling ensureCapacity().

This method will temporarily increase capacity to newCapacity for extra space and will clear

previous data from the buffer. The method restoreCapacity() is called after to one or more

calls to ensureCapacity(). It restores the buffer capacity to its original value and frees extra

storage that was temporarily allocated. It also clears data from the buffer. The method

free() is used to free the Buffer object. This method is important for implementations

of Buffer based on native methods. In those implementations, the message vector may

be maintained as a dynamically allocated C array that needs an explicit free() call to

recover its storage. In pure-Java implementations this job will be done by the Java garbage
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public class WriteBuffer {
public WriteBuffer(int capacity) { ... }

public void clear() { ... }

public void write(t [] source, int srcOff, int numEls) { ... }

public void gather(t [] source, int numEls, int offs,
int [] indexes) { ... }

public void strGather(t [] source, int srcOff, int rank, int exts,
int strs, int [] indexes) { ... }

. . .
}

Figure 5.3. The public interface of WriteBuffer class.

collector—calling free() is optional. The constant SECTION_OVERHEAD defines some extra

space needed on each message section. This will be explained in depth in section 5.3.

The Buffer class has two subclasses for primitive-type data: WriteBuffer for pack-

ing and ReadBuffer for unpacking. Packing and unpacking of messages that include

Object types is handled by two special subclasses of WriteBuffer and ReadBuffer:

ObjectWriteBuffer and ObjectReadBuffer.

The effective public interface of the WriteBuffer and ReadBuffer classes are represented

in Figure 5.3 and Figure 5.4. When constructors WriteBuffer() or ReadBuffer() create

an object they allocate a message vector with size of capacity. The write(), gather(),

and strGather() are used for packing data. The read(), scatter(), and strScatter()

are used for unpacking data. In Figure 5.3, the symbol t runs over all Java primitive

types—e.g. there are actually 8 different write() methods corresponding to the 8 different

primitive types in Java. Each class has three main kinds of method to deal with contiguous

and non-contiguous data. Two of those pack and unpack methods (read() and write())

deal with a contiguous data and the other four (gather(), strGather(), scatter(), and

strScatter()) deal with non-contiguous data.
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public class ReadBuffer {
public ReadBuffer(int capacity) { ... }

public void reset() { ... }

public void read(t [] dest, int dstOff, int numEls) { ... }

public void scatter(t [] dest, int numEls, int offs,
int [] indexes) { ... }

public void strScatter(t [] dest, int dstOff, int rank, int exts,
int strs, int [] indexes) { ... }

. . .
}

Figure 5.4. The public interface of ReadBuffer class.

In the WriteBuffer class, we can make write buffer vector empty using clear() method.

Any later data is then stored from the beginning of vector. The programmer can re-read a

vector from the start by calling method reset() in the ReadBuffer class.

To support object serialization technology for the Java Object type, we need more func-

tionalities. Two special classes, ObjectWriteBuffer (Figure 5.5) and ObjectReadBuffer

(Figure 5.6), have additional pack and unpack methods for Object arrays. Notice these

classes also inherit methods for primitive types. This allows to store Object type with

primitive types in the buffer vector. These classes store serialized data into the separate

Java byte [] array. Overridden clear() and free() methods do some extra work for

dealing with the serialized byte array. Both methods flush and close a serialization stream.

For clear() it will deallocate the stream object. The programmer must call the flush()

method before sending the message. It prepares the byte array with the serialized Java

objects, ready for sending.

65



public class ObjectWriteBuffer extends WriteBuffer {
public ObjectWriteBuffer(int capacity) { ... }

public void clear() { ... }

public void free() { ... }

public void flush() { ... }

public void write(Object [] source, int srcOff, int numEls) { ... }

public void gather(Object [] source, int numEls, int offs,
int [] indexes) { ... }

public void strGather(Object [] source, int srcOff, int rank, int exts,
int strs, int [] indexes) { ... }

. . .
}

Figure 5.5. The public interface of ObjectWriteBuffer class.

5.2.2 Communication API

In MPI there is a rich set of communication modes. Point-to-point communication

and collective communication are two main communication modes of MPI. Point-to-point

communication support blocking and non-blocking communication modes. Blocking com-

munication mode includes one blocking mode receive, MPI_RECV, and four different send

communication modes. Blocking send communication modes include standard mode,

MPI_SEND, synchronous mode, MPI_SSEND, ready mode, MPI_RSEND, and buffered mode,

MPI_BSEND. Non-blocking communication mode also uses one receive, MPI_IRECV and the

same four modes as blocking sends: standard, MPI_ISEND, synchronous, MPI_ISSEND, ready,

MPI_IRSEND, and buffered, MPI_IBSEND. Collective communication also includes various

communication modes. It has characteristic collective modes like broadcast, MPI_BCAST,

gather, MPI_GATHER, and scatter, MPI_SCATER. Global reduction operations are also included

in collective communication.
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public class ObjectReadBuffer extends ReadBuffer{
public ObjectReadBuffer(int capacity) { ... }

public void reset() { ... }

public void free() { ... }

public void read(Object [] dest, int dstOff, int numEls) { ... }

public void scatter(Object [] dest, int numEls, int offs,
int [] indexes) { ... }

public void strScatter(Object [] dest, int dstOff, int rank, int exts,
int strs, int [] indexes) { ... }

. . .
}

Figure 5.6. The public interface of ObjectReadBuffer class.

The mpjdev API is much simpler. It only includes point-to-point communications.

Currently the only messaging modes for mpjdev are standard blocking mode (like MPI_SEND,

MPI_RECV) and standard non-blocking mode (like MPI_ISEND, MPI_IRECV), together with a

couple of “wait” primitives.

The communicator class, Comm, is very similar to the one in MPI but it has a reduced

number of functionalities. It has communication methods like send(), recv(), isend(),

and irecv(), and defines constants ANY_SOURCE, and ANY_TAG as static variables.

Figure 5.7 shows the public interface of Comm class.

We can get the number of processes that are spanned by this communicator by calling

size() (similar to MPI_COMM_SIZE). Current id of process relative to this communicator is

returned by id() (similar to MPI_COMM_RANK).

The two methods send() and recv() are blocking communication modes. These two

methods block until the communication finishes. The method send() sends a message

containing the contents of buf to the destination described by dest and message tag value

tag.
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public class Comm {
public void size() { ... }

public void id() { ... }

public void dup() { ... }

public void create(int [] ids) { ... }

public void free() { ... }

public void send(Buffer buf, int dest, int tag) { ... }

public Status recv(Buffer buf, int src, int tag) { ... }

public Request isend(Buffer buf, int dest, int tag) { ... }

public Request irecv(Buffer buf, int dest, int tag) { ... }

public static String [] init(String[] args) { ... }

public static void finish() { ... }

. . .
}

Figure 5.7. The public interface of mpjdev Comm class.

The method recv() receives a message from matching source described by src with

matching tag value tag and copies contents of message to the receive buffer, buf. The

receiver may use wildcard value ANY_SOURCE for src and ANY_TAG for tag instead specifying

src and tag values. These indicate that a receiver accepts any source and/or tag of send.

The Comm class also has the initial communicator, WORLD, like MPI_COMM_WORLD in MPI and

other utility methods. The capacity of receive buffer must be large enough to accept these

contents. Initializes the source and tag fields of the returned Status class which describes

a completed communication.

The functionalities of send() and recv() methods are same as standard mode point-to-

point communication of MPI (MPI_SEND and MPI_RECV). A recv() will be blocked until the
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send if posted. A send() will be blocked until the message have been safely stored away.

Internal buffering is not guaranteed in send(), and the message may be copied directly into

the matching receive buffer. If no recv() is posted, send() is allowed to block indefinitely,

depending on the availability of internal buffering in the implementation. The programmer

must allow for this—this is a low-level API for experts.

The other two communication methods isend() and irecv() are non-blocking versions

of send() and recv. These are equivalent to MPI_ISEND and MPI_IRECV in MPI. Unlike

blocking send, a non-blocking send returns immediately after its call and does not wait for

completion. To complete the communication a separate send complete call (like iwait()

and iwaitany() methods in the Request class) is needed. A non-blocking receive also work

similarly. The wait() operations block exactly as for the blocking versions of send() and

recv() (e.g. the wait() operation for an isend() is allowed to block indefinitely if no

matching receive is posted).

The method dup() creates a new communicator the spanning the same set of processes,

but with a distinct communication context. We can also create a new communicator spanning

a selected set of processes selected using the create() method. The ids of array ids contains

a list of ids relative to this communicator. Processes that are outside of the group will get

a null result. The new communicator has a distinct communication context.

By calling the free() method, we can destroy this communicator (like MPI_COMM_FREE

in MPI). This method is called usually when this communicator is no longer in use. It frees

any resources that used by this communicator.

We should call static init() method once before calling any other methods in com-

municator. This static method initializes mpjdev and makes it ready to use. The static

method finish() (which is equivalent of MPI_FINALIZE) is the last method should be called

in mpjdev.

The other important class is Request (Figure 5.8). This class is used for non-blocking

communications to ensure completion of non-blocking send and receive. We wait for a single

non-blocking communication to complete by calling iwait() method. This method returns

when the operation identified by the current class is complete. The other method iwaitany()

waits for one non-blocking communication from a set of requests reqs to complete. This

method returns when one of the operations associated with the active requests in the array
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public class Request {
public Status iwait() { ... }

public Status iwaitany(Request [] reqs) { ... }
. . .

}

Figure 5.8. The public interface of Request class.

reqs has completed. After completion of iwait() or iwaitany() call, the source and tag

fields of the returned status object are initialized. One more field, index, is initialized for

iwaitway() method. This field indicates the index of the selected request in the reqs array.

5.3 Message Format

This section describes the message format used by mpjdev. The specification here doesn’t

define how a message vector which contained in the Buffer object is stored internally—for

example it may be as a Java byte [] array or it may be as a C char [] array, accessed

through native methods. But this section does define the organization of data in the buffer.

For example it includes formula for computing the required buffer capacity, as a function of

the set of Java data that is to be written to the buffer. It is the responsibility of the user

to ensure that sufficient space is available in the buffer to hold the desired message. Trying

to write too much data to a buffer causes an exception to be thrown. Likewise, trying to

receive a message into a buffer that is too small will cause an exception to be thrown. These

features are (arguably) in the spirit of MPI.

A message is divided into two main parts. The primary payload is used to store message

elements of primitive type. The secondary payload is intended to hold the data from object

elements in the message (although other uses for the secondary payload are conceivable).

The size of the primary payload is limited by the fixed capacity of the buffer, as discussed

above. The size of the secondary payload, if it is non-empty, is likely to be determined

“dynamically”—for example as objects are written to the buffer.

The message starts with a short primary header, defining an encoding scheme used in

headers and primary payload, and the total number of data bytes in the primary payload.
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Figure 5.9. Overall layout of logical message.

Only one byte is allocated in the message to describe the encoding scheme: currently the only

encoding schemes supported or envisaged are big-ending and little-endian. This is to allow

for native implementations of the buffer operations, which (unlike standard Java read/write

operations) may use either byte order.

A message is divided into zero or more sections. Each section contains a fixed number

of elements of homogeneous type. The elements in a section will all have identical primitive

Java type, or they will all have Object type (in the latter case the exact classes of the objects

need not be homogeneous within the section).

Each section has a short header in the primary payload, specifying the type of the

elements, and the number of elements in the section. For sections with primitive type,

the header is followed by the actual data. For sections with object type, the header is the

only representation of the section appearing in the primary payload—the actual data will go

in the secondary payload.

After the primary payload there is a secondary header. The secondary header defines the

number of bytes of data in the secondary payload.

The secondary header is followed in the logical message by the secondary payload. This

section says nothing about the layout of the secondary payload. In practice this layout will

be determined by the Java Object Serialization specification.
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5.3.1 Layout details

Further details of the message layout are schematized in Figures 5.9 through 5.11. Figure

5.9 shows the overall layout of the logical message. As explained above, there are four parts:

a primary header, a primary payload, a secondary header, and a secondary payload. The

figure also shows the layout of the headers.

The first byte of the primary header specifies the encoding of numeric types used

throughout the two main headers and the primary payload. Currently there are two possible

values for this byte: 0 indicates big-endian, 1 indicates little-endian.

The next three bytes are unused. The second 4-byte word of the the header contains the

total length of the primary payload in bytes (because of the way sections are padded, this

will always be a multiple of 8). Like all numbers in the parts of the message discussed here,

this word is encoded according to the scheme selected by the first byte of the header.

The format of the primary payload will be described below. The secondary header only

contains the length of the secondary payload in bytes. For uniformity with the primary

header, this information is stored in the second 4-byte word. The first 4 bytes of the header

are unused.

Note that all basic units of the message start on 8-byte boundaries. This is to avoid

possible word alignment problems on some computer architectures, if the buffer operations

are implemented natively.
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Now we discuss the format of the primary payload. Figure 5.10 shows that it is divided

into a series of zero or more sections. These sections will be separated by padding, if

necessary, to ensure that the sections all start on 8-byte boundaries. If the size of a section

in bytes is b, the amount of padding following the section is 8�b/8� − b bytes.

Figure 5.11 shows the layout of an individual section. The first byte defines the type of

the elements held in the section according to the scheme:

value Java type, T sizeof(T)
0 byte 1
1 char 2
2 short 2
3 boolean 1
4 int 4
5 long 8
6 float 4
7 double 8
8 Object 0

The space occupied by an individual element in the section is defined in terms of the function

sizeof(). This is defined to return 0 for object types, reflecting that the data content of

objects is not stored in the primary payload.

The empty message consists of 16 bytes—the primary header defining an encoding in its

first byte, and containing zero in its second word, and the secondary header containing zero

in its second word.
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n
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b) (size of secondary payload (n) + size of the primary payload) < capacity of buffer (One message)

c) (size of secondary payload (n) + size of the primary payload) > capacity of buffer (Two messages)

Figure 5.12. Layout of send messages. a) When secondary payload is empty. b) When
secondary payload is not empty and the sum of secondary payload size and the size of the
primary payload are less than the capacity of the buffer object. c) When secondary payload
is not empty and the sum of secondary payload size and the size of the primary payload are
greater than the capacity of the buffer object.

The smallest contentful message, containing one primitive element, consists of 32 bytes:

the primary header defining an encoding and specifying a size of 16 for the primary

payload; an 8-byte section header specifying an element type and a length of 1; the section

contents—one primitive element padded out if necessary to 8 bytes; and the secondary header

specifying an empty secondary payload.

For larger messages the use of buffer space soon becomes more economical. We assume

that the overheads in buffer size for short messages will be hidden by other message overheads,

including the processing cost for message startup, and network latency.

5.4 Communication Protocol

This section discusses a protocol for sending a logical message on top of message-oriented

transport like MPI, and discusses the physical messages that are sent. On top of a

stream-oriented transport like TCP, some of these considerations may be less relevant. Figure

5.12 illustrates layout of possible send messages.
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When a buffer object is created, a capacity is defined for that buffer. This capacity is

the available space for the primary payload buffer (in practise an extra 16 bytes will be

allocated to allow for the primary header and the secondary header, but the user need not

be concerned with this).

Through write operations on the buffer, the user will initialize the primary payload. These

operations may also define a non-empty secondary payload, presumably held in separate

storage.

When the time to send the message comes, the primary and secondary headers are written

to the buffer. If the secondary payload is empty, a single message is sent containing the

primary payload along with the primary header and secondary header, the latter specifying

a size of zero.

In this case (when it is known in advance that the secondary payload will be empty—for

example because only primitive elements are expected) it is required that the receiver accepts

the message into a buffer object with a capacity equal to at least the actual size of the primary

payload.

If the secondary payload is not empty, it may either be concatenated to the same

message, or sent as a second message (in which case the first message still contains the

primary header, the primary buffer and the secondary header). If there are two messages,

the receiver allocates an array large enough to hold the secondary payload after the first

message (containing the secondary header) has been received.

If the secondary payload is not empty, but the sum of its size and the size of the primary

payload are less than the capacity of the buffer object at the sending end, the two may be

concatenated together in a single message.

This implies that if it is possible that the secondary payload may not be empty, the receiver

should accept the message into a buffer object with a capacity equal to at least the capacity

of the buffer object used to send the message. Otherwise a concatenated message might

overflow the receive buffer. Note this is a stronger requirement than in the case where all

message elements are primitive (and there is no secondary payload).

Typical message-based transports allow the receiver to determine the actual number

of bytes received in a message (in MPI, through the MPI_Status object). Moreover, by

examining the primary and secondary header contained in the received message, the receiver
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can compute the expected size of the complete, logical message. If this is greater than the

number of bytes in the physical message, a second message must be expected.

The simplest safe policy is probably to try always to accept a message into a buffer object

with identical capacity to the buffer used to send the message. This policy can be relaxed if

the message is known only to involve primitive elements, but care should be taken.

5.4.1 Encoding

A “reader-makes-right” strategy (like CORBA IIOP, for example) is adopted to handle

encoding. The writer outputs a message using the endianess most natural to its local

processor or software platform. The reader must be prepared to accept either encoding,

and reverse byte orders if the encoding in the message does not agree with its local native

ordering. If the source and destination have same endianess (which is common), no reversal

in necessary, whatever the endianess actually is.

5.5 Implementations

Currently we have three different implementations of mpjdev: mpiJava-based, multi-

threaded, and LAPI-based. We have also proposed an implementation based on Jini. These

implementation have their own characteristic signatures. The mpiJava-based implementation

uses MPI as communication protocol via JNI calls. This implementation is platform

dependent due to use of JNI. Multithreaded implementation assumes HPspmd “processes”

are implemented as Java threads, and uses Java thread synchronization mechanisms for com-

munication. This provides maximum portability by using pure Java. LAPI implementation

is specific to one system, the IBM SP. Design goals of the proposed Jini implementation are

that the system should be as easy to install on distributed systems as we can reasonably

make it, and that it be sufficiently robust to be usable in an Internet environment. It could

use Java sockets for underlying communication.

5.5.1 mpiJava-based Implementation

The mpiJava-based implementation assumes C binding of native method calls to MPI

from mpiJava (see section 3.4.1) as basic communication protocol. This implementation
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can be divided into two parts: Java APIs (Buffer and Comm classes) which are described in

the previous sections and C native methods that construct the message vector and perform

communication. The Java-side methods of communicator class Comm and message buffer

class Buffer are used to call native methods via JNI. The C stubs that bind the mpjdev

communication class to the underlying native MPI implementation are created using JNI,

which Java can call and thus pass parameters to and from a native API.

To optimize the performance of this version, we maintain the message buffer inside the C

code. Instances of a C struct type (lightweight object) Buffer (differnt from the Java side

Buffer class) is used for maintain message vector. This lightweight object stores a pointer to

the message vectors and other information that is used for operation on the message vector:

information like original capacity, current capacity, and current write and read position of

vector.

Message elements of all data types other than Object are stored as C char [] array.

This architectural decision means actual communication takes place only with MPI_BYTE data

type. Before sending, we extract char [] array from the C object and store the total number

of data bytes of the array into the Primary header (see section 5.3). This size information is

used to make sure capacity of receive side vector is large enough to hold incoming data. For

elements of Object type, the serialized data are stored into a Java byte [] array. We can

send this array by copying into the existing message vector if it has space to hold serialized

data array, or by using separate send if the original message vector is not large enough.

In latter case there will be two different sends from the sender side. The receiver side

will have to expect a second message.

5.5.2 Multithreaded Implementation

In this implementation, the processes of an HPJava program are mapped to the Java

threads of a single JVM. This allows to debug and demonstrate HPJava programs without

facing the ordeal of installing MPI or running on a network. A single JVM is used to debug

programs before launching them on a network or parallel computer. If an HPJava program

is written for execution on distributed memory parallel computers then it may be possible to

run the program in this implementation and have behave the same way. As a by-product, it

also means we can run HPJava programs on shared memory parallel computers. These kinds
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Figure 5.13. Multithreaded implementation.

of machines are quite widely available today—sold, for example, as high-end UNIX servers.

Because the Java threads of modern JVMs are usually executed in parallel on this kind of

machine, it is possible to get quit reasonable parallel speedup running HPJava programs in

the multithreaded mode.

Figure 5.13 illustrates multithreaded implementation. In this implementation, communi-

cations are involved between Java threads. The set of all threads is stored as an array. Each

index in this array represents node id.

Two different static queues send and receive queue are maintained to store early arrival

of send and receive requests. Each thread also maintains a wait set in the Request class.

Communication of any thread that is stroed in this set will be blocked untile complete

transaction. If tasks of a non-blocking send or receive are not completed by the time to

call completion method of non-blocking communication, like iwait() or iwaitany(), that

particular send or receive is stored into the wait set and is blocked for its completion.

Current version of send() and recv() methods are implemented using isend() and

irecv() with iwait() method call. When a send request is created by the send thread,

it looks for a matching receive request in the receive queue. If a matching receive request

is exist, it copies data from the send buffer to the receive request buffer. It also checks if
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any other thread is iwait-ing on “matching receive” and removes all requests from wait set,

and signal the waiting thread. This signal makes the waiting thread awake and continue its

operation. The send request will be added into the send queue if it fails to find matching

receive queue. A receive request work similarly as the send request. The receive request

searches the send queue instead of receive queue for a matching request.

5.5.3 LAPI Implementation

The Low-level Application Programming Interface (LAPI) is a low level communication

interface for the IBM Scalable Powerparallel (SP) supercomputer Switch. This switch

provides scalable high performance communication between SP nodes. The LAPI is a non-

standard application programming interface and provides efficient one-side communication

performance between tasks on IBM SP system. LAPI offers better message passing

performance than MPI on small and medium size messages. However users must write

many extra lines of low-level communication calls on their applications. The target group of

LAPI is power programmers who need performance improvement more than code portability.

LAPI functions can be divided into three different characteristic groups. The first of these

is a basic active message infrastructure that allows programmers to write and install their

own set of handlers that are invoked and executed in a target process on behalf of the process

originating the active message. The active messages play important role in implementation

of our underlying communication. In addition to the active message, the LAPI provides a

Remote Memory Copy (RMC) interface—including a PUT operation that copies data from

the address space of the origin process into the address space of the target process and a

GET operation which is opposite of the PUT operation. LAPI also provides a set of control

functions for the initialization and termination of the LAPI layer.

The active message function (LAPI_Amsend) is a basic programming mechanism that

provides a one-sided communications model. It is a non-blocking call on the origin process

that causes a specified active message handler to be invoked and executed in the address

space of the target process. The basic communication model of the active message function

is given in Figure 5.14. Different steps of communication functions are involved within an

active message call. Each active message includes the address of a user-specified handler and

it may optionally bring a user header and data from the origination process (step 1). Once
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Figure 5.14. LAPI Active Message Call.

the first packet of the message arrives at the target process. The LAPI dispatcher, which

is the part of the LAPI that deals with the arrival of message and invocation of handlers,

invokes a header handler (step 2). A header handler is responsible for the address of where

to copy the arriving data, the address of the optional completion handler, and a pointer to

the parameter that is to passed to the completion hander (step 3). The completion handler

is executed after the last packet of the message has been received and copied into a buffer

(step 4).

To ensure reusability of buffer on completion of data transfer, the active message uses

three counters. Two counters (origin counter and completion counter) are located in the

address space of sending task and one counter (target counter) is located in the target task’s

address space. The origin counter is incremented when it is safe for the origin task to update

the origin buffer. After the message has arrived at the target task, the target counter is

incremented. Completion of the message transfer updates the completion counter. We can

simulate blocking communication by waiting for the completion counter to increment.
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5.5.3.1 Implementation issues

We produced two different implementations of mpjdev using LAPI. The first one uses

the active message function (LAPI_Amsend) togather with a GET operation (LAPI_Get). It

will send only message information accessery to identify the matching send on the receive

side with LAPI_Amsend. After a matching send is identified by the receiver, the receiver will

get actual messages with LAPI_Get. The advantage of this is that we can reduce number of

message copies. But this uses an extra communication to get messages.

The second implement uses only LAPI_Amsend as communication. It will send actual

messages along with message information. In this implementation the advantage is that we

can reduce an extra communication to get message. But this increase number of message

copies.

There are some common design issues in both implementations. Both implementations

store and manage message buffer in C, like in mpiJava-based implementation. They both

use Java thread synchronization to implement waiting in the MPI. Both use two static

objects—“send queue” and “receive queue”—to maintain early arrived send and receive

requests.

Figure 5.15 illustrates LAPI implementation with LAPI_Amsend and LAPI_Get commu-

nication calls. When source process receives a send request, it issues active message to

target process. This active message contains message information like length, source and

destination id, tag, and address of actual messages. Those information are used to identify

matching send by the target process. Actual buffer data will remain with the sender until

the target process gets the messages. This means sender thread must block until completion

of data send when completion method (iwait() or iwaitany()) is called.

After the initial active message arrives at the target process, it calls the completion

handler. In this handler, all the active message information are extracted and passed to the

JVM by calling Java static method from JNI. In this static method, the posted receive queue

is searched to see if receive has already been posted with matching the message description.

If a matching receive is found, target issues GET operation to get actual messages from the

source. To complete the transaction, the target must notify to source to wake any waiting

thread. This is done by a second active message call to the source. It also wakes any user
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thread that is waiting for this receive by issuing a local notify signal. If there is no matching

receive, it will store all the information into the send queue for later use.

A receive request on the target process behaves similarly to the target side of a sending

active message call. The difference is it searches send queue instead of receive queue. And

it stores to the receive queue when a matching send is not found.

Figure 5.16 illustrates LAPI implementation with single LAPI_Amsend communication

call. Architecture of this implementation is simpler than the previous. Because messages

are sent out when active message call is made, the source process does not have to wait

for completion of communication. This decision eliminate call backs to the source from

the target. The target does not have to perform any GET operation any more. However,

this implementation must perform extra message copies that do not exist in the previous

implementation. Whenever we see a transaction of a message from the Figure 5.16, whole

messages are copied into different storage.

Even though the simpler implementation has extra message copy operations, it is faster

with our problem sizes (up to float array size of 1024 x 1024). We will see in section 6.4

that our LAPI implementation was not faster than the SP MPI implementation. We believe

this was due to reliance on Java-side thread synchronization, which appears to be slow. We

believe that this problem could be overcome by doing thread synchonization on the C side

using POSIX mechanisms, but didn’t have time to test this.
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5.5.4 Jini Implementation

Current distributed implementations of our mpjdev rely on the availability of a platform-

specific native underlying communication interfaces, like MPI and LAPI, for the target

computer (although we have the pure Java multithreaded implementation, this implemen-

tation is not useful for distributed programming). While this is a reasonable basis in

many cases, the approach has some disadvantages. For one thing the two-stage installation

procedure—get and build a native underlying communication interface then install and

match Java wrappers—can be tedious and discouraging to potential users. The situation has

improved, and mpjdev now runs with several combinations of JVM and MPI implementation,

but portability is still a problem.

The authors of [9] have outlined a design for a pure-Java reference implementation for

MPJ (see section 2.1.2). Design goals were that the system should be as easy to install on

distributed systems as one can reasonably make it, and that it be sufficiently robust to be

usable in an Internet environment. This proposed design can be naturally adapted to the

mpjdev library. A system like this may be an important component in a future HPJava

system.

The paper referenced above suggests that Jini may be a natural foundation for meeting

the requirements. Jini is Sun’s Java architecture for making services available over a network.

It is built on top of the Java Remote Method Invocation (RMI) mechanism. The main

additional features are a set of protocols and basic services for “spontaneous” discovery of

new services, and a framework for detecting and handling partial failures in the distributed

environment.

A Jini lookup service is typically discovered through multicast on a well-known port.

The discovered registry is a unified first point of contact for all kinds of device, service, and

client on the network. This model of discovery and lookup is somewhat distinct from the

more global concept of discovery in, say, the CORBA trading services, HP’s e-speak [32],

or JXTA. The Jini version is a lightweight protocol, especially suitable for initial binding of

clients and services within multicast range.

The ideas of Jini run deeper than the lookup services. Jini completes a vision of distributed

programming started by RMI. In this vision partial failure is a defining characteristic, distin-
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mpjdev Device Level

Figure 5.17. Layers of a proposed mpjdev reference implementation

guishing distributed programming from the textbook discipline of concurrent programming

[53]. So in Jini remote objects and RMI replace ordinary Java objects and methods; garbage

collection for recovery of memory is replaced by a leasing model for recovery of distributed

resources; the events of, say, AWT or JavaBeans are replaced by the distributed events of

Jini. Finally, the synchronized methods of Java are mirrored in the nested transactions of

the Jini model. Concurrent programming exactly identical to scalable parallel programming,

but we need analogous sets of abstractions for the parallel case.

The installation script can start a daemon on the local machine by registering a persistent

activatable object with the rmid daemon. The mpjdev daemons automatically advertise their

presence through the Jini lookup services. The Jini paradigms of leasing and distributed

events are used to detect failures and reclaim resources in the event of failure. These

observations lead us to believe that a pure Java distributed reference implementation of

mpjdev should probably use Jini technology [7, 24] to facilitate location of remote mpjdev

daemons and to provide a framework for the required fault-tolerance.

A possible architecture is sketched in Figure 5.17. The base layer—process creation and

monitoring—incorporates initial negotiation with the mpjdev daemon, and low-level services
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Jini Lookup Services

mpjdevSlavempjdevSlave

mpjdevService

mpjdevSlavempjdevSlave

mpjdevService
mpjdevService

mpjdevSlave

mpjdevClient mpjdevClient

Figure 5.18. Independent clients may find mpjdevService daemons through the Jini lookup
service. Each daemon may spawn several slaves.

provided by this daemon, including clean termination and routing of output streams (Figure

5.18).

One emphasis for the future work will be on researching links between parallel message-

passing programming and Jini-like systems. Moreover we will also investigate newer ideas

coming from projects like JXTA.
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CHAPTER 6

APPLICATIONS AND PERFORMANCE

In this chapter we illustrate usage of HPJava with some applications. Performance

and usage of three different implementations of mpjdev are discussed with applications.

We start by describing a full multigrid solver application. Benchmark results of simple

kernel applications that use MPI-based mpjdev follow. We present a graphical simulation

of 2D inviscid flow through an axisymmetric nozzle with GUI in Section 6.3. This example

illustrates usage of the multithreaded implementation of mpjdev. LAPI implementation of

mpjdev communication library is also evaluated. Finally, we compare our mpiJava based

Adlib communication library with C/MPI version to find most time consuming part of

communication. This data can be used for further optimization.

6.1 Environments

We have implemented several HPspmd style parallel applications using HPJava. These

applications are included in the HPJava software package (available from www.hpjava.org).

In this chapter we consider a full application of HPJava, and also evaluate the performance of

some of simpler kernel applications written in HPJava like red-black relaxation and diffusion

equation.

For each application, we have developed both sequential and parallel programs to compare

the performance. The sequential programs were written in Fortran 95 and Java and parallel

programs were written in HPF and HPJava. For better performance, all sequential and

parallel Fortran and Java codes were compiled using -O5 or -O3 with -qhot or -O (i.e.

maximum optimization) flag.

The system environment for SP3 runs were as follows:
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• System: IBM SP3 supercomputing system with AIX 4.3.3 operating system and 42

nodes.

• CPU: A node has Four processors (Power3 375 MHz) and 2 gigabytes of shared memory.

• Network MPI Settings: Shared “css0” adapter with User Space(US) communication

mode.

• Java VM: IBM ’s JIT

• Java Compiler: IBM J2RE 1.3.1

6.2 Partial Differential Equations

Partial differential equations (PDE’s) are one of the most fundamental applications of

mathematics. They describe phenomena of the physical, natural and social science such as

fluids, gravitational and electromagnetic fields, and the human body. They also play an

important role in fields like aircraft simulation, computer graphics, and weather prediction.

There exist many partial differential equations, but from the view point of mathematics,

three important examples are Laplace’s equation, diffusion equation, and wave equation.

The general linear 2 dimensional equation of the PDE’s is can be written as follows

a
∂2V

∂x2
+ 2b

∂2V

∂x∂y
+ c

∂2V

∂y2
+ d

∂V

∂x
+ e

∂V

∂y
+ fV + g = 0 (6.1)

where it is Laplace equation if b2 < ac, Wave equation if b2 > ac, and Diffusion/Schrödinger

equation if b2 = ac.

In this paper we will perform benchmarks on the Laplace’s equation and diffusion

equation.

Elliptic equation like Laplace equation is commonly found in multidimensional steady

state problems. We can write the simplest form of elliptic equation (Poisson equation) by

simplifying the equation (6.1) as follows

∂2V

∂x2
+

∂2V

∂y2
= ρx,y (6.2)
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Figure 6.1. An example of multigrid iteration.

This equation can also be rewritten in finite-difference form using the function u(x, y) and

its representation values at the discrete set of points

xj = x0 + j∆ and yl = y0 + l∆ (6.3)

with the indices j = 0, 1, 2, ..., J and l = 0, 1, 2, ..., L. Finite-difference representation

(equation (6.4)) of equation 6.2 and its equivalent format (equation (6.5)) which can be

written as a system of linear equations in matrix form can be described as follows

uj+1,l − 2uj,l + uj−1,l

∆2
+

uj,l+1 − 2uj,l + uj,l−1

∆2
= ρj,l (6.4)

uj+1,l + uj−1,l + uj,l+1 + uj,l−1 − 4uj,l = ∆2ρj,l (6.5)

6.2.1 An Application

In this section we will discuss a full application of HPJava—a multigrid solver. The

particular solver was adapted from an existing Fortran program (called PDE2), taken from

the Genesis parallel benchmark suite [5]. The whole of this program has been ported to

HPJava (it is about 800 lines), but in this section we will only consider a few critical routines.

The Multigrid [10] method is a fast algorithm for solution of linear and nonlinear problems

using restrict and interpolate operations between current grids (fine grid) and restricted

grids (coarse grid). As applied to basic relaxation methods for PDEs, it hugely accelerates

elimination of the residual by restricting a smoothed version of the error term to a coarse

grid, computing a correction term on the coarse grid, then interpolating this correction
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static void relax(int itmax, int npf, double[[-,-]] uf, double[[-,-]] ff) {

Range xf = ff.rng(0), yf = ff.rng(1);

for(int it = 1; it <= itmax * 2; it++) {
Adlib.writeHalo(uf);

overall(i = xf for 1 : npf - 2)
overall(j = yf for 1 + (i‘ + it) % 2 : npf - 2 : 2) {

uf [i, j] = 0.25 * (ff [i, j] + uf [i - 1, j] + uf [i + 1, j] +
uf [i, j - 1] + uf [i, j + 1]);

}
}

}

Figure 6.2. Red black relaxation on array uf.

back to the original fine grid where it is used to improve the original approximation to

the solution. Multigrid methods can be developed as a V-cycle method for simple linear

iterative methods. As we can see in Figure 6.1, there are three characteristic phases in

a V-cycle method; pre-relaxation, multigrid, and post-relaxation. The pre-relaxation phase

makes the error smooth by performing a relaxation method. The multigrid phase restricts

the current problem to a subset of the grid points and solves a restricted problem for the

correction term. The post-relaxation phase perform some steps of the relaxation method

again after interpolating results back to the original grid.

As an example we take red-black relaxation for the Laplace equation as our relaxation

method. The relax operation, the restrict operation, and the interpolate operation are three

critical parts of a solution of 2D Poisson equation using a multigrid method. Domain

decomposition, which assigns part of the grid to each processor, is used for paralleliza-

tion. Boundary values of the subgrids are exchanged with nearest neighbors before each

calculation. Red-black relaxation on array uf is illustrated in Figure 6.2. In this red-black

relaxation, the values of the subgrids boundary are exchanged by using the writeHalo

method. We assume that all distributed arrays in our examples were created with ghost

regions.
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static void restr(int npc, int npf, double[[-,-]] fc,
double[[-,-]] uf , double[[-,-]] ff ) {

// uf, ff are input values on fine grid, fc is output.
Range xf = ff.rng(0), ff = ff.rng(1);

float [[-,-]] tf = new float [[xf, yf]] ;

int nc = npc - 1, nf = npf - 1;

Adlib.writeHalo(uf);

overall(i = xf for 2 : nf - 2 : 2)
overall(j = yf for 2 : nf - 2 : 2)

tf [i, j] += 2.0 * (ff [i, j] - 4.0 * uf [i, j] +
uf [i - 1, j] + uf [i + 1, j] +
uf [i, j - 1] + uf [i, j + 1]);

Adlib.remap(fc [[1 : nc - 1, 1 : nc - 1]],
tf [[2 : nf - 2 : 2, 2 : nf - 2 : 2]]);

}

Figure 6.3. Restrict operation.

The implementation makes use of the integer global loop index i‘ (read “i-primed”)

associated with distributed index i. This value is used in computing the lower bound of the

inner overall. The modulo 2 operation including i‘ and it, in conjunction with the loop

stride of 2, ensures that sites of a single parity are updated in a given iteration it, and that

this parity is swapped in successive iterations. This is a short way to write the algorithm,

although it might be more efficient to split into several overall constructs dealing with sites

of different party.

The restrict operation (Figure 6.3) computes the residual and restricts it to a coarser

grid. The residual is computed only at points of the fine grid matching points in the coarse

grid (hence the strides of 2 in the overall constructs). A work-array, tf, aligned with uf, is

used to hold the residual values. We then use a remap operation to copy these values to the

coarse grid.
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Figure 6.4. Illustration of restrict operation

The important remap operation copies one distributed array to another of the same

shape which may have unrelated distribution format. We have made no assumptions of any

relationship between the distribution of the fine grid array uf and the coarse grid array uc.

In our code a subset of the elements of the work-array tf is copied into a subset of the array

in coarse grid. Behavior of the restrict operation is illustrated in Figure 6.4.

The interpolate operation (Figure 6.5) is the opposite of restriction. It sends the

correction computed on the coarse grid to the finer grid, and corrects current values on

that grid. The remap and the array section expression are used to copy correction, uc, from

coarse grid to matching point of a work-array, tf, on the fine grid. After the copying, we

need to update boundary values using the writeHalo to get most up-to-date values. By the

two nested overall constructs, it corrects current values of grid with the work-array tf. The

first overall deals with fine grid points on horizontal links of the coarse grid and the second

deals with those of vertical links—this is sufficient because it turns out that the correction

is only needed on fine grid sites of a single parity. Behavior of the interpolate operation is

illustrated in Figure 6.6.

6.2.2 Evaluation

Before attempting benchmark the full multigrid application, we experiment with simple

kernel applications like Laplace equation and diffusion equation.

Figure 6.7 show result of four different versions (HPJava, sequential Java, HPF and

Fortran) of red-black relaxation of the two dimensional Laplace equation with size of 512 by
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static void interp(int npf, double[[-,-]] uc, double[[-,-]] uf) {

// uc is correction, uf is output
Range xf = uf.rng(0), yf = uf.rng(1);

int nf = npf - 1;

float [[-,-]] tf = new float [[xf, yf]] ;

Adlib.remap(tf [[0 : nf : 2, 0 : nf : 2]], uc);

Adlib.writeHalo(tf);

overall(i = xf for 1 : nf - 1 : 2)
overall(j = yf for 2 : nf - 2 : 2)

uf [i, j] += 0.5 * (tf [i - 1, j] + tf [i + 1, j]);

overall(i = xf for 2 : nf - 2 : 2)
overall(j = yf for 1 : nf - 1 : 2)

uf [i, j] += 0.5 * (tf [i, j - 1] + tf [i, j + 1]);
}

Figure 6.5. Interpolate operation.

512. In our runs HPJava can out-perform sequential Java by up to 17 times. On 36 processors

HPJava can get about 79% of the performance of HPF. It is not very bad performance for

the initial benchmark result without any serious optimization. Performance of the HPJava

will be increased by applying optimization strategies as described in a previous paper [37].

Scaling behavior of HPJava is slightly better then HPF, though this mainly reflects the low

performance of a single Java node compared to Fortran. We do not believe that the current

communication library of HPJava is faster than the HPF library because our communication

library is built on top of the portability layers, mpjdev and MPI, while IBM HPF is likely

to use a platform specific communication library. But future versions of Adlib could be

optimized for the platform.

Complete performance results of red-black relaxation of the Laplace equation are given

in Table 6.1.
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Figure 6.6. Illustration of interpolate operation
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Figure 6.7. Red-black relaxation of two dimensional Laplace equation with size of 5122.

We see similar behavior on large size of three dimensional Diffusion equation benchmark

(Figure 6.8). In general we expect 3 dimensional problems will be more amenable to

parallelism, because of the large problem size.

On a small problem size the three dimensional Diffusion equation benchmark (Figure 6.9)

we can see the speed of sequential Fortran is about 4-5 times faster then Java. Benchmarking

results from [11] do not see this kind of result on other platforms—a factor of 2 or less is

common. Either IBM version of Fortran is very good or we are using an old Java compiler

(JDK 1.3.1).
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Table 6.1. Red-black relaxation performance. All speeds in MFLOPS.
2562

Processors 1 4 9 16 25 36
HPF 263.33 358.42 420.23 430.11 441.89 410.93

HPJava 69.12 184.33 258.06 322.58 430.12 430.10
Fortran 224.40
Java 73.59

5122

Processors 1 4 9 16 25 36
HPF 190.32 622.99 954.49 1118.71 1253.49 1316.96

HPJava 61.44 247.72 472.91 650.26 743.15 1040.40
Fortran 217.66
Java 59.98

10242

Processors 1 4 9 16 25 36
HPF 104.66 430.27 1558.93 2153.58 2901.34 3238.71

HPJava 62.36 274.86 549.73 835.59 1228.81 1606.90
Fortran 149.11
Java 58.73
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Figure 6.8. Three dimensional Diffusion equation with size of 1283.
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Figure 6.9. Three dimensional Diffusion equation with size of 323.

Table 6.2. Three dimensional Diffusion equation performance. All speeds in MFLOPS.
323

Processors 1 2 4 8 16 32
HPF 299.26 306.56 315.18 357.35 470.02 540.00

HPJava 63.95 101.25 173.57 220.91 303.75 347.14
Fortran 113.00
Java 66.50

643

Processors 1 2 4 8 16 32
HPF 274.12 333.53 502.92 531.32 685.07 854.56

HPJava 77.60 129.21 233.15 376.31 579.72 691.92
Fortran 113.00
Java 66.50

1283

Processors 1 2 4 8 16 32
HPF 152.55 185.15 313.16 692.01 1214.97 1670.38

HPJava 83.15 149.53 275.28 478.81 829.65 1154.06
Fortran 113.00
Java 66.50
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Figure 6.10. Multigrid solver with size of 5122.

Table 6.3. Multigrid solver with size of 5122. All speeds in MFLOPS.
5122

Processors 1 2 3 4 6 9
HPF 170.02 240.59 258.23 288.56 336.03 376.09

HPJava 39.77 75.70 91.02 94.97 117.54 123.15

Complete performance results of three dimensional Diffusion equation are given in Table

6.2.

Finally, we consider benchmark results on our original problem, the multigrid solver,

in Figure 6.10 and Table 6.3. For the complete multigrid algorithm, speedup is relatively

modest. This seems to be due to the complex pattern of communication in this algorithm.

Neither the HPJava translation scheme or the Adlib implementation are yet optimized. We

expect there is plenty of low hanging fruit in terms of opportunities for improving them.

Speedup of HPJava for the various applications is summarized in Table 6.4. Different

size of problems are measured on different numbers of processors. For the reference value,

we are using the result of the single-processor HPJava version. As we can see on the table we

are getting up to 25.77 times speedup on Laplace equation using 36 processors with problem

size of 10242. Many realistic applications with more computation for each grid point (for
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Table 6.4. Speedup of HPJava benchmarks as compared with 1 processor HPJava.
Multigrid Solver

Processors 2 3 4 6 9
5122 1.90 2.29 2.39 2.96 3.03

2D Laplace Equation
Processors 4 9 16 25 36

2562 2.67 3.73 4.67 6.22 6.22
5122 4.03 7.70 10.58 12.09 16.93
10242 4.41 8.82 13.40 19.71 25.77

3D Diffusion Equation
Processors 2 4 8 16 32

323 1.58 2.72 3.45 4.75 5.43
643 1.67 3.00 4.85 7.47 8.92
1283 1.80 3.31 5.76 9.98 13.88

example CFD which will be discussed in next section) will be more suitable for the parallel

implementation than the Laplace equation and simple benchmarks described in this section.

6.3 HPJava with GUI

In this section we will illustrate how our HPJava can be used with a Java graphical

user interface. The Java multithreaded implementation of mpjdev makes it possible for

HPJava to cooperate with Java AWT. We ported the mpjdev layer to communicate between

the threads of a single Java Virtual Machine (see section 5.5.2). The threads cooperate in

solving a problem by communicating through our communication library, Adlib, with pure

Java version of the mpjdev. In this version of the implementation we followed the mpjdev

buffer specification which is described in Chapter 5. By adding pure Java version of the

mpjdev to the Adlib communication library, it gives us the possibility to use the Java AWT

and other Java graphical packages to support a GUI and visualize graphical output of the

parallel application. Visualization of the collected data is a critical element in providing

developers or educators with the needed insight into the system under study.

For test and demonstration of multithreaded version of mpjdev, we implemented com-

putational fluid dynamics (CFD) code using HPJava which simulates 2 dimensional inviscid
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Figure 6.11. A 2 dimensional inviscid flow simulation.

flow through an axisymmetric nozzle(Figure 6.11). The simulation yields contour plots of all

flow variables, including velocity components, pressure, Mach number, density and entropy,

and temperature. The plots show the location of any shock wave that would reside in the

nozzle. Also, the code finds the steady state solution to the 2 dimensional Euler equations,

seen below.

∂U

∂t
+

∂E

∂x
+

∂F

∂y
= αH (6.6)

Here U =




ρ
ρu
ρv
et


, E =




ρu
ρu2 + p

ρuv
(et + p)u


, and F =




ρv
ρuv

ρv2 + p
(et + p)v


.

The source vector H is zero for this case.

The demo consists of 4 independent Java applets communicating through the Adlib

communication library which is layered on top of mpjdev. Applet 1 is handling all events

and broadcasting control variables to other applets. Each applet has the responsibility to

draw its own portion of the data set into the screen, as we can see in the figure. That
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Table 6.5. CFD speedup of HPJava benchmarks as compared with 1 processor HPJava.
CFD

Processors 2 3 4 6 9
97 by 25 1.75 2.33 2.73 4.06 4.91

Processors 2 4 8 16
1282 1.84 3.34 5.43 7.96
2562 2.01 3.90 7.23 12.75

this demo also illustrates usage of Java object in our communication library. We are using

writeHalo() method to communicate Java class object between threads.

This unusual interpretation of parallel computing, in which several applets in a single

Web browser cooperate on a scientific computation, is for demonstration purpose only. The

HPJava simulation code can also be run on a collection of virtual machines distributed across

heterogeneous platforms like the native MPI of MPICH, SunHPC-MPI, and IBM POE (see

next section).

You can view this demonstration and source code at

http://www.hpjava.org/demo.html

6.3.1 Evaluation

We also removed the graphic part of the CFD code and did performance tests on the

computational part only. For this we also changed a 2 dimensional Java object distributed

array into a 3 dimensional double distributed array and stored fields of the Java object

into the collapsed 3rd dimension of double array. This change was to improve performance,

because if we are using Java object to communicate between processors, there is an object

serialization overhead which is not required for primitive data types. Also we are using HPC

implementation of underlying communication to run the code on an SP.

Figure 6.12 shows result of two different versions (HPJava, sequential Java) of CFD with

size of 256 by 256. Speedup of HPJava is also summarized in Table 6.5. As we mentioned

earlier, we are measuring different size of problems on different number of processors and

using the result of the single-processor HPJava version for the reference value. As we are
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Figure 6.12. CFD with size of 2562.

expected speed up of CFD is more scalable then partial differential equation examples which

described in the previous section. As we can see on the table we are getting up to 12.75

times speedup (4.68 times speed up on Laplace equation) using 16 processors with problem

size of 2562.

Complete performance results from the CFD code are given in Table 6.6.

6.4 LAPI

Figure 6.13 and Table 6.7 show same benchmark results of an implementation of

underlying communication library using LAPI. As we can see from the figure, the results

of the sample benchmark indicate, unfortunately, that LAPI version of library is slower

then MPI version. After careful investigation of the time consuming parts of the library,

we found that current version of Java thread synchronization is not implemented with high

performance. The Java thread consumes more then five times a long as POSIX thread, to

perform wait and awake thread function calls (Table 6.8). This result suggests we should look

for a new architectural design for mpjdev using LAPI. In this section we will not discuss in

detail the new architecture design. However, we briefly introduce our thoughts. To eliminate

major problem of current design, we consider using POSIX threads by calling JNI to the C

instead of Java threads. This would force us to move any synchronized data from the Java
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Table 6.6. CFD performance. All speeds in MFLOPS.
97 x 25

Processors 1 2 3 4 6 9
HPJava 49.09 85.74 114.31 133.79 199.58 241.08

Java 72.03

1282

Processors 1 2 4 8 16
HPJava 51.37 94.75 171.40 278.84 408.86

Java 72.42

2562

Processors 1 2 4 8 16
HPJava 50.04 100.73 195.30 361.72 638.24

Java 72.56
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Figure 6.13. Comparison of the mpjdev communication library using MPI vs. LAPI.

Table 6.7. Comparison of the mpjdev communication library using MPI vs. LAPI. All
speeds in MFLOPS.

CFD
Processors 1 2 4 8 16

HPJava/MPI 50.04 100.73 195.30 361.72 638.24
HPJava/LAPI 50.08 99.44 184.09 307.12 459.22

Java 72.56
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Table 6.8. Timing for a wait and wake-up function calls on JAVA thread and POSIX
Thread in microseconds.

Java Thread POSIX Thread
57.49 10.68

Table 6.9. Latency of Laplace equation Communication Library per One Iteration and
C/MPI sendrecv() function in microseconds.

Adlib.writeHalo() Preparations Communications C/MPI (1368 bytes)
300.00 100.00 200.00 44.97

to the C side. In this design, work for the Java side of the mpjdev is to call C functions via

JNI. All the actual communication and data processing parts including maintain send and

receive queue, protection of any shared datas, and thread waiting and awaking will be done

in C. Implementation is a future project.

6.5 Communication Evaluation

In this section we timed each part of an Adlib communication call to compare underlying

communication latency with C/MPI and to find most time consuming part of the operation.

This data can be used for further optimization of Adlib communication calls.

We divided HPJava communication into two parts: actual communication calls like

isend(), irecv(), and iwaitany(), and communication preparations. In preparation parts,

we include a high-level Adlib collective communication schedule like the method remap()

and writeHalo(), and a message packing and unpacking parts of mpjdev. We measured

timing of communication and preparation parts in a Laplace equation solver on 9 processors,

and also measured sendrecv() function call using C/MPI with 1368 bytes on 2 processors

(Table 6.9).

We use 9 processors to measure timing because this is the smallest number of processors

with most time consuming communication pattern. Figure 6.14 illustrates communication

patterns of Adlib.writeHalo() method among 9 processors with a 3 by 3 processes grid.

This figure indicates that processor 4 is the most communication-based processor with 4
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Figure 6.14. writeHalo() communication patterns on 9 processors.

pairs of send and receive. Since the size of the problem is 5122, the processor 4 performed

each send and receive with 171 double values (1368 bytes).

According to Table 6.9 the communication in writeHalo() takes about 200 microseconds.

Meanwhile 4 pairs of send and receive communications are taking about 180 microseconds

with C/MPI. So our communication library performs very close to the C/MPI version with

marginal overhead. Overhead in our communication is due to the language binding and some

extra work like finding the Java class and store communication result values during the JNI

call. As we can see in the Table 6.9, one third (100 microseconds) of the total writeHalo()

method timing (300 microseconds) is consumed by the preparation of communication. It

is bit high but it is not such a bad performance for the initial implementation. Useful

optimization can be done on this part in the future.

We see similar behavior in the CFD benchmark (Table 6.10). This is done on 9 processors

with processes grid of 9 by 1 and problem size of 97 by 25. In this processes grid two send and

receive communication is occurred on each processors, where first and last processor which

only one send and receive is happening. We have about 20 microseconds of communication

latency which is about same as previous case. About one fourth of total time is spent on

preparation. This reduction of preparation time is due to the smaller problem size.
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Table 6.10. Latency of CFD Communication Library per One Iteration and C/MPI
sendrecv() function in microseconds.

Adlib.writeHalo() Preparations Communications C/MPI (1728 bytes)
181.57 42.1 139.47 60.00

The above data indicates that further optimization is needed on preparation part of Adlib.

In the future we also may adopt a platform specific communication library (for example,

LAPI on AIX) instead of using MPI to reduce actual communication latency as discussed in

section 5.5.3.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

We have explored enabling parallel, high-performance computation—in particular de-

velopment of scientific software in the network-aware programming language, Java. Tra-

ditionally, this kind of computing was done in Fortran. Arguably, Fortran is becoming a

marginalized language, with limited economic incentive for vendors to produce modern de-

velopment environments, optimizing compilers for new hardware, or other kinds of associated

software expected by today’s programmers. Java looks like a promising alternative for the

future.

In this dissertation, we have discussed motivations and features of HPJava, a new

HPspmd programming environment. HPJava is an environment for SPMD parallel

programming—especially, for SPMD programming with distributed arrays. HPJava has

a lower-level programming model than HPF. Interfacing to other parallel-programming

paradigms is more natural than in HPF. Both data parallel code and direct SPMD library

calls are allowed in the same program. Various features and new concepts of HPJava were

discussed using simple examples.

We have discussed in detail the design and development of high-level and low-level

runtime libraries for HPJava—these are essentially communication libraries. The Adlib API

is presented as high-level communication library. This API is intended as an example of

an application level communication library suitable for data parallel programming in Java.

This library fully supports Java object types, as part of the basic data types. We discussed

implementation issues of collective communications in depth. The API and usage of three
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different types of collective communications were also presented. Current implementation of

this library is based on low-level communication library called mpjdev.

Java introduces implementation issues for message-passing APIs that do not occur in

conventional programming languages. One important issue is how to transfer data between

the Java program and the network while reducing overheads of the Java Native Interface.

As contribution toward new low-level APIs, we developed a low-level Java API for HPC

message passing, called mpjdev. The mpjdev API is a device level communication library.

This library is developed with HPJava in mind, but it is a standalone library and could be

used by other systems. We discussed message buffer and communication APIs of mpjdev

and also format of a message. We also discussed three different implementations of mpjdev:

mpiJava-based, multithreaded, and LAPI-based.

To evaluate current communication libraries, we did various performance tests. We

developed small kernel level applications and a full application for performance test. We

got reasonable performance on simple applications without any serious optimization. We

also evaluated a communication performance of the high- and low-level libraries for future

optimization.

7.2 Future Work

7.2.1 HPJava

The initial release of HPJava was made on April 1, 2003. It is freely available from

www.hpjava.org. This release includes complete HPJava translator, two implementations

of communication libraries (mpiJava-based and multithreaded), test suites, and all the

applications described in this dissertation. In the future, further optimization of the HPJava

translator is needed.

7.2.2 Communication Libraries

Some HPJava benchmark results were described in Chapter 6. We get good performance

the simple problems like Laplace equation with the initial HPJava implementation. Results

for the multigrid solver indicate further optimization for HPJava translation scheme and the

Adlib communication library is desirable.
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The evaluation of communication libraries (see section 6.5) indicates that further opti-

mization of the preparation operations in Adlib would be useful. As we mentioned in section

6.4, we would also like a better design for LAPI implementation of mpjdev to avoid the

overheads of Java thread operation.

We also need to develop portable network platforms based underlying communication

library. As we discussed in Section 5.5.4, it may done by Jini-based implementation. The

goals of this implementation are the system should be as easy to install on distributed systems

as one can reasonably make it, and that it be sufficiently robust to be usable in an Internet

environment.
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APPENDIX A

THE JAVA ADLIB API

This appendix defines the Adlib communication library. An overview of Adlib was

given in Chapter 5. Currently all communication functions in Adlib take the form of

collective transformations on distributed arrays. These transformations are implemented

in terms of communication schedules. Each kind of transformation has an associated class

of schedules. Specific instances of these schedules, involving particular data arrays and

particular parameters, are created as instances of the classes concerned. Executing a schedule

initiates the communications required to perform the transformation. A single schedule may

be executed many times, repeating the same communication pattern.

A.1 General Features

Adlib includes a family of related regular collective communication operations, a set of

collective gather and scatter operations for more irregular communications, and a set of

reduction operations based on the corresponding Fortran 90 array intrinsics. Reduction

operations take one or more distributed arrays as input. They combine the elements to

produce one or more scalar values, or arrays of lower rank. Adlib also provides a few I/O

operations.

Only two public member parts, constructor(s) and an execute() method, are described

in this chapter. All the input and output arrays and any parameters of the transformation

are passed to the constructor. During execution of constructor, all send messages, receive

messages, and internal copy operations implied by execution of the schedule are enumerated

and stored in light-weight data structures. The execute() method nearly always involves

communication. It should of course be treated as a collective operation, executed by all

members of the active process group.
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In this appendix we are using type variables T , t, and a notation like NameT , Namet for

schedule names. The variable T runs over all primitive types and Java object types. The

variable t typically runs over all primitive types other than boolean. Since each data type

of Java initially has its own Adlib schedule class, we attach the type variable to the name of

method to represent scope of method. A method NameT means that this particular method

has all primitive type classes and Java object type class (e.g. NameFloat, NameDouble, . . . ,

NameObject). A method Namet means that this particular method has all primitive type

classes other than boolean type.

Below we briefly discuss various terms and notations used, following the subheadings

used in the schedule definitions.

A.2 Glossary of Terms

Array Shape

As in Fortran, the shape of an array, a, is defined as the vector of extents of its ranges, ie

(a.rng(0).size(), . . . , a.rng(R-1).size()), where R is the rank of the array. Implicitly,

if two array have the same shape, they also have the same rank.

Alignment

An array, a is aligned with an array b if they are distributed over the equivalent process

groups and their ranges are all equivalent:

a.grp() ≈ b.grp()

a.rng(0) ≈ b.rng(0)
...

a.rng(R-1) ≈ b.rng(R-1)

Informally, two groups or two ranges are equivalent if they are structurally equivalent. The

informal meaning of array alignment is that corresponding elements of the two arrays are

stored on the same process, or replicated over the same group of processes.

The array, a is aligned with b with replicated-alignment in some dimensions if the groups

are equivalent, and the ranges of a can be paired with equivalent ranges of b by omitting

the ranges of b associated with the specified dimensions.
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Containment

An array, a, is fully contained at a particular point in program execution if it is distributed

over a group contained in the active process group:

a.grp() ⊆ apg

Informally this means that all copies of all elements of the array are available within the set

of processes sharing the current thread of control.

Effect

In describing the effect of schedules, array subscripting notation will after be used

informally. In this context, the subscripting should always be understood in terms of global

subscripts to abstract global arrays, without reference to the distributed nature of the actual

arrays.

Value Restrictions

These are simply restrictions on the input values of data, such as constraints ensuring

values used as subscripts are in the required bounds.

Type Restrictions

Schedules that perform arithmetic operations or comparisons will impose further restric-

tions on the types of the array elements.

Shape Restrictions

Restrictions on the shape of the array arguments, such as the requirement that a

particular pair of arrays passed to the constructor should have the same shape.

Alignment Restrictions

Many of the schedules in the library assume some alignment relations (see section A.2)

between their array arguments. For example, it is required that the source array for a Shift
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is aligned with the destination array. Historically, an essential feature of the shift operation is

that it can be implemented very efficiently by simple nearest neighbour communications. The

library could easily have been defined to implement shift without the alignment constraint,

but then implementation would be essentially the same as the more complex Remap operation,

and the main point of providing Shift is that it is a simpler, relatively light-weight operation.

If versions of the library functions without alignment restrictions are needed, they can always

be constructed by combining the constrained operation with Remap operations.

Containment Restrictions

Containment restrictions are needed to ensure that copies of array elements are available

inside the group of processes that execute a schedule. Access to elements stored outside

the active process group is not allowed by the collective communication paradigm currently

implemented by Adlib.

Overlap Restrictions

In general the library does not allow in-place updates. No array written by a communica-

tion schedule should overlap with an array read by the schedule. The sections on individual

to schedules give the specific restrictions.

Replicated Data

By definition, an array is replicated over a particular process dimension if the dimension

appears in its distination group but not its signature (ie, the array has no range distributed

over the dimension concerned).

As a rule it is good practise for programmers to maintain the same values in all copies

of an element of a replicated array. If all arrays input to the communication schedules meet

this requirement, it is guaranteed that those output do. This is not an absolute requirement

on arrays passed to schedules, and the sections on individual schedules discuss the effect of

defaulting on this rule.

113



A.3 Remap

A remap() operation is a communication schedule for copying the elements of one

distributed array to another. The remap() method takes two distributed array arguments—a

source array and a destination. The source and destination must have the same size, shape

and same element-types, but no relation between the mapping of the two arrays is required.

If the destination array has replicated mapping, the remap() operation will broadcast source

values to all copies of the destination array elements.

The remap() method is a static member of the Adlib class. This operation can be applied

to various ranks and type of array. Any section of an array with any allowed distribution

format can be used. Supported element types include Java primitive and Object types. A

general signature of the remap() function is

void remap (T # destination, T # source)

where the variable T runs over all primitive types and Object, and the notation T # means

a multiarray of arbitrary rank, with elements of type T .

The remap method is implemented by a schedule object with HPspmd class RemapT .

Each primitive type and Object has its own schedule class. This class has a constructor with

arguments identical to the method above, and has one public method with no arguments

called execute(), which executes the schedule. The effective public interface of the RemapT

class is

public class RemapT implements HPspmd {
public RemapT (T # destination, T # source) { ... }

public void execute () { ... }
. . .

}

The source array is the source and the destination array is destination.

A.3.1 Effect and Restrictions

Effect: Copy the values of the elements in the source array to the corresponding elements

in the destination.
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Type restrictions: The elements of the source and destination arrays must have the same

type if primitive. If the element types are Object, subtypes of all objects referenced by

elements of the source array must be assignable to elements of the destination array.

Shape restrictions: The source and destination arrays must have the same shape.

Containment restrictions: The source and destination arrays must be fully contained in

the active process group.

Overlap restrictions: In-place updates are not allowed. The source and destination arrays

must not overlap—no element of source array must be an alias for an element of the

destination array. This is only an issue if both arguments are sections of the same

array.

Replicated data: If the source array has replicated mapping, the value for a particular

element is taken from one of its copies. If the destination array has replicated mapping,

identical values are broadcast to every copy of the elements.
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A.4 Shift

A shift() method is a communication schedule for shifting the elements of a distributed

array along one of its dimensions, placing the result in another array. The source and

destination arrays must have the same shape and element-type, and they must be identically

aligned. The shift() operation does not copy values from source array that would go past

the edge of destination array, and at the other extreme of the range elements of destination

that are not targeted by elements from source array are unchanged from their input value.

The related operation cshift() is essentially identical to shift() except that it implements

a circular shift, rather then an “edge-off” shift.

General signatures of shift() function are

void shift (T [[-]] destination, T [[-]] source, int shiftAmount)
void cshift (T [[-]] destination, T [[-]] source, int shiftAmount)

and

void shift (T # destination, T # source, int shiftAmount,
int dimension)

void cshift (T # destination, T # source, int shiftAmount,
int dimension)

where the variable T runs over all primitive types and Object, and the notation T # means

a multiarray of arbitrary rank, with elements of type T . The first form applies only for

one dimensional multiarrays. The second form applies to multiarrays of any rank. The

shiftAmount argument, which may be negative, specifies the amount and direction of the

shift. In the second form the dimension argument is in the range 0, . . . ,R-1 where R is the

rank of the arrays.

The shift method is implemented by a schedule object with HPspmd class ShiftT .

Each primitive type and Object has its own schedule class. This class has a constructor with

arguments identical to the method above, and has one public method with no arguments

called execute(), which executes the schedule. The effective public interface of the ShiftT

class is
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public class ShiftT implements HPspmd {
public ShiftT (T # destination, T # source,

int shiftAmount , int dimension, int mode) { ... }

public void execute () { ... }
. . .

}

The source array is the source and the destination array is destination. The shift mount

is given by shiftAmount. The dimension argument selects the array dimension in which the

shift occurs. The flag mode specifies the type of shift. It takes one of the values Adlib.CYCL,

Adlib.EDGE, or Adlib.NONE.

A.4.1 Effect and Restrictions

Effect: On exit, if mode is Adlib.CYCL, cshift(), the value of

destination [x0, . . . , xdim, . . . , xR−1]

is

source [x0, . . . , xdim + shift mod N, . . . , xR−1]

where N is the extent of dimension dim. If mode is Adlib.EDGE, shift(), the exit

value of the destination element is

source [x0, . . . , xdim + shift, . . . , xR−1]

if xdim + shift is in the range 0, . . . , N − 1, or unchanged from the entry value, if not.

If mode is Adlib.NONE executing the schedule has no effect.

Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Type restrictions: The elements of the source and destination arrays must have the same

type if primitive. If the element types are Object, subtypes of all objects referenced by

elements of the source array must be assignable to elements of the destination array.
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Shape restrictions: The source and destination array must have the same shape.

Alignment restrictions: The source array must be aligned with the destination array.

Containment restrictions: The source and destination arrays must be fully contained in

the active progess group.

Overlap restrictions: In-place updates are not allowed. The source and destination arrays

must not overlap—no element of source array must be an alias for an element of the

destination array. This is only an issue if both arguments are sections of the same

array.

Replicated data: If the arrays have replicated mapping, values for individual copies of the

destination are generally taken from the nearest copy of the corresponding source array

element. The definition of “nearest” is implementation dependent. This schedule does

not implement a broadcast—consistent replication of copies in the destination array

depends on consistency of copies in the source array.
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A.5 Skew

A skew() method is a communication schedule for performing a skewed shift—a shift

where the shift amount is itself an array—in a particular dimension of a distributed array

placing the result in another array. The source and destination must have the same shape

and same element-type, and they must be identically aligned. The skew() operation does

not copy values from source array that would go past the edge of destination array, and at

the other extreme of the range elements of destination that are not targeted by elements from

source array are unchanged from their input value. The related operation cskew() is almost

identical to skew() except that it implements a circular shift, rather then an “edge-off” shift.

General signature of skew() function is

void skew (T # destination, T # source, T # shift, int dimension)
void cskew (T # destination, T # source, T # shift, int dimension)

where the variable T runs over all primitive types and Object, and the notation T # means a

multiarray of arbitrary rank, with elements of type T . The shift argument is a multiarray.

The elements of this array specifies the amount and direction of the shift. The shift-amount

array should have rank one less than the source array. The dimension argument is in the

range 0, . . . ,R-1 where R is the rank of the arrays.

The skew method is implemented by a schedule object with HPspmd class SkewT . Each

primitive type and Object has its own schedule class. This class has a constructor with

arguments identical to the method above, and has one public method with no arguments

called execute(), which executes the schedule. The effective public interface of the SkewT

class is

public class ShiftT implements HPspmd {
public SkewT (T # destination, T # source, T # shift,

int dimension , int mode) { ... }

public void execute () { ... }
. . .

}

The source array is the source and the destination array is destination. The array of shift

mounts is shift The dimension argument selects the array dimension in which the shift
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occurs. The flag mode specifies the type of shift. It takes one of the values Adlib.CYCL,

Adlib.EDGE, or Adlib.NONE.

A.5.1 Effect and Restrictions

Effect: The description of the exit value of destination is identical to the description after

execution of a Shift schedule (see section A.4), except that the constant shift is

replaced by

shift [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Type restrictions: The elements of the source and destination arrays must have the same

type if primitive. If the element types are Object, subtypes of all objects referenced by

elements of the source array must be assignable to elements of the destination array.

Shape restrictions: The source and destination array must have the same shape. The

shape of the shift array must be obtained from the shape of the source array by deleting

dimension dimension.

Alignment restrictions: The source array must be aligned with the destination array.

The shift-amount array should be aligned with the destination array, with replicated

alignment over dimension dimension.

Containment restrictions: The source array, the shift-amount array, and the destination

array must be fully contained in the active progess group.

Overlap restrictions: In-place updates are not allowed.

Replicated data: If the arrays have replicated mapping, values for individual copies of the

destination are generally taken from the nearest copy of the corresponding source array

element. The definition of “nearest” is implementation dependent. This schedule does

not implement a broadcast—consistent replication of copies in the destination array

relies on consistency of copies of the source array.
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A.6 WriteHalo

A writeHalo() method is a collective communication operation used to fill the ghost cells

or overlap regions surrounding the "physical" segment of a distributed array. The simplest

versions have prototype

void writeHalo (T # source)

where the variable T runs over all primitive types and Object, and the notation T # means

a multiarray of arbitrary rank, with elements of type T . More general forms of writeHalo

allow to specify that only a subset of the available ghost area is to be updated, or to select

circular wraparound for updating ghost cells at the extreme ends of the array:

void writeHalo (T # source, int [] wlo, int [] whi)

and

void writeHalo (T # source, int [] wlo, int [] whi, int [] mode)

Simplest form defines a schedule in which whole of the array ghost region is updated

using Adlib.EDGE mode:

who [r] = source.rng(r).loExtension()
whi [r] = source.rng(r).hiExtension()

mode [r] = Adlib.EDGE

In general forms, the integer vectors wlo, whi, and mode have length R, the rank of the

argument source. The values wlo and whi specify the widths at upper and lower ends of the

bands to be updated. The upper and lower widths in dimension r are given by wlo [r] and

whi [r]. These values are non-negative, and can only be non-zero if array source actually

has suitable ghost extensions in the dimension concerned. More specifically, if the array

source was created using a range with ghost extensions wloact, whiact as its rth dimension,

ie

wloact = source.rng(r).loExtension()

whiact = source.rng(r).hiExtension()
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it is required that

whi [r] ≤ whiact

wlo [r] ≤ wloact

The writeHalo method is implemented by a schedule object with HPspmd class

WriteHaloT . Each primitive type and Object has its own schedule class. This class has two

constructors with arguments identical to the method above, and has one public method with

no arguments called execute(), which executes the schedule. The effective public interface

of the WriteHaloT class is

public class WriteHaloT implements HPspmd {
public WriteHaloT (T # source) { ... }

public WriteHaloT (T # source, int [] wlo, int [] whi,
int [] mode) { ... }

public void execute () { ... }
. . .

}

The source array is the source. In the second form the values wlo and whi specify the

widths at upper and lower ends of the bands to be updated. The flag mode specifies the type

of shift. It takes one of the values Adlib.CYCL, Adlib.EDGE, or Adlib.NONE.

A.6.1 Effect and Restrictions

Effect: We distinguish between the locally held physical segment of an array and the

surrounding ghost region, which is used to cache local copies of remote elements. The

effect of this operation is to overwrite a portion of the ghost region—a halo of extent

defined by the wlo, whi vectors of the constructor—with values from processes holding

the corresponding elements in their physical segments. The operation is visualized in

figure 3.6. If the value of the mode element for a dimension is EDGE, ghost cells past

the extreme ends of the array range are not updated by the the write-halo operation.

If the value is CYCL, those cells are updated assuming cyclic wraparound. If the value

is NONE, there is no updating at all of the ghost cells associated with this dimension.
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Containment restrictions: The source array must be fully contained in the active progess

group.

Replicated data: If the array has replicated mapping, values for individual copies of the

ghost cell are generally taken from the nearest copy of the corresponding physical array

element. The definition of “nearest” is implementation dependent. This schedule does

not implement a broadcast—consistent replication of copies in the destination array

relies on consistency of copies of the source array.
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A.7 Gather

A gather() operation is a communication schedule for collecting an arbitrary set of values

from one distributed array (the source array) into the elements of another (the destination

array). The selected set of elements is defined by a vector of subscript arrays, with an

optional mask array. General signatures of the gather() function are

void gather (T # destination, T [[-]] source,
int # subscripts)

void gather (T # destination, T [[-,-]] source,
int # subscripts0, int # subscripts1)

void gather (T # destination, T [[-,-,-]] source,
int # subscripts0, int # subscripts1, int # subscripts2)

and

void gather (T # destination, T [[-]] source,
int # subscripts, boolean # mask)

void gather (T # destination, T [[-,-]] source,
int # subscripts0, int # subscripts1, boolean # mask)

void gather (T # destination, T [[-,-,-]] source,
int # subscripts0, int # subscripts1, int # subscripts2,
boolean # mask)

where the variable T runs over all primitive types and Object, and the notation T # means

a multiarray of arbitrary rank, with elements of type T . Currently the highest rank of source

array with a gather() method is 3. The source and destination arrays can have different

ranks. But the destination and subscript arrays are all the same shape, and all are aligned

with one another. The number of subscript array arguments is equal to the rank of the source

array. The second set of signatures take an extra boolean array aligned with the subscript

array. Assignment to a destination element is conditional on the value of the element of the

mask associated with the subscripts.

The gather method is implemented by a schedule object with HPspmd class GatherT .

Each primitive type and Object has its own schedule class. This class has six constructors

with arguments identical to the method above, and has one public method with no arguments
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called execute(), which executes the schedule. The effective public interface of the GatherT

class is

public class GatherT implements HPspmd {
public GatherT (T # destination, T [[-]] source,

T # subscripts) { ... }

public GatherT (T # destination, T [[-,-]] source,
T # subscripts0, T # subscripts1) { ... }

public GatherT (T # destination, T [[-,-,-]] source,
T # subscripts0, T # subscripts1, T # subscripts2)
{ ... }

public GatherT (T # destination, T [[-]] source,
T # subscripts, boolean # mask) { ... }

public GatherT (T # destination, T [[-,-]] source,
T # subscripts0, T # subscripts1,
boolean # mask) { ... }

public GatherT (T # destination, T [[-,-,-]] source,
T # subscripts0, T # subscripts1, T # subscripts2,
boolean # mask) { ... }

public void execute () { ... }
. . .

}

A.7.1 Effect and Restrictions

Effect:

for all i0 in {0, . . . , N0 − 1} in parallel do
...

for all iR−1 in {0, . . . , NR−1 − 1} in parallel do
if (mask [i0, ..., iR−1])
destination[i0, ..., iR−1] = source[subscripts0 [i0, ..., iR−1],

subscripts1 [i0, ..., iR−1],
...] ;

where (N0, . . . , NR−1) is the shape of destination array. If mask is absent, the

assignment is unconditional.
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Value restrictions: All elements of the rth subscript array must be in the range 0, . . . ,N -1

where N is the extent of the source array in its rth dimension.

Type restrictions: The elements of the source and destination arrays must have the same

type if primitive. If the element types are Object, subtypes of all objects referenced by

elements of the source array must be assignable to elements of the destination array.

Shape restrictions: The destination array, all subscript arrays, and the mask array, if

defined, must have the same shape.

Alignment restrictions: All subscript arrays and the mask array, if defined, must be

aligned with the destination array.

Containment restrictions: The source and subscript arrays, the mask array, if defined,

and the destination array must be fully contained in the active progess group.

Overlap restrictions: In-place updates are not allowed. The source and destination arrays

must not overlap—no element of source array must be an alias for an elements of

destination array. This is only an issue if both arguments are sections of the same

array.

Replicated data: If the source array has replicated mapping, the value for a particular

element is taken from one of its copies. If the destination array has replicated mapping,

identical values are broadcast to every copy of the elements.
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A.8 Scatter

A scatter() operation is a communication schedule for scattering values from one

distributed array (the source array) into the elements of another (the destination array).

The selected set of elements is defined by a vector of subscript arrays, with an optional mask

array. General signatures of the scatter() function are

void scatter (T # source, T [[-]] destination,
int # subscripts)

void scatter (T # source, T [[-,-]] destination,
int # subscripts0, int # subscripts1)

void scatter (T # source, T [[-,-,-]] destination,
int # subscripts0, int # subscripts1, int # subscripts2)

and

void scatter (T # source, T [[-]] destination,
int # subscripts, boolean # mask)

void scatter (T # source, T [[-,-]] destination,
int # subscripts0, int # subscripts1, boolean # mask)

void scatter (T # source, T [[-,-,-]] destination,
int # subscripts0, int # subscripts1, int # subscripts2,
boolean # mask)

where the variable T runs over all primitive types and Object, and the notation T # means

a multiarray of arbitrary rank, with elements of type T . Currently the highest rank of

destination array with a scatter() method is 3. The source and destination arrays can

have different ranks. But the destination and subscript arrays are all the same shape, and

all are aligned with one another. The number of subscript array arguments is equal to the

rank of the destination array. The second set of signatures take an extra boolean array

aligned with the subscript array. Assignment to a destination element is conditional on the

value of the element of the mask associated with the subscripts.

The scatter method is implemented by a schedule object with HPspmd class ScatterT .

Each primitive type and Object has its own schedule class. This class has six constructors

with arguments identical to the method above, and has one public method with no arguments
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called execute(), which executes the schedule. The effective public interface of the

ScatterT class is

public class ScatterT implements HPspmd {
public ScatterT (T # destination, T [[-]] source,

T # subscripts) { ... }

public ScatterT (T # destination, T [[-,-]] source,
T # subscripts0, T # subscripts1) { ... }

public ScatterT (T # destination, T [[-,-,-]] source,
T # subscripts0, T # subscripts1, T # subscripts2)
{ ... }

public ScatterT (T # destination, T [[-]] source,
T # subscripts, boolean # mask) { ... }

public ScatterT (T # destination, T [[-,-]] source,
T # subscripts0, T # subscripts1,
boolean # mask) { ... }

public ScatterT (T # destination, T [[-,-,-]] source,
T # subscripts0, T # subscripts1, T # subscripts2,
boolean # mask) { ... }

public void execute () { ... }
. . .

}

A.8.1 Effect and Restrictions

Effect:

for all i0 in {0, . . . , N0 − 1} in parallel do
...

for all iR−1 in {0, . . . , NR−1 − 1} in parallel do
if (mask [i0, ..., iR−1])

destination[subscripts0 [i0, ..., iR−1],
subscripts1 [i0, ..., iR−1],
...] = source [i0, ..., iR−1]

where (N0, . . . , NR−1) is the shape of destination array. If mask is absent, the for

loop is unconditional.
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Value restrictions: All elements of the rth subscript array must be in the range 0, . . . ,N -1

where N is the extent of the source array in its rth dimension.

Type restrictions: The elements of the source and destination arrays must have the same

type if primitive. If the element types are Object, subtypes of all objects referenced by

elements of the source array must be assignable to elements of the destination array.

Shape restrictions: The destination array, all subscript arrays, and the mask array, if

defined, must have the same shape.

Alignment restrictions: All subscript arrays and the mask array, if defined, must be

aligned with the destination array.

Containment restrictions: The source and subscript arrays, the mask array, if defined,

and the destination array must be fully contained in the active progess group.

Overlap restrictions: In-place updates are not allowed. The source and destination arrays

must not overlap—no element of source array must be an alias for an elements of

destination array. This is only an issue if both arguments are sections of the same

array.

Replicated data: If the source array has replicated mapping, the value for a particular

element is taken from one of its copies. If the destination array has replicated mapping,

identical values are broadcast to every copy of the elements.
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A.9 Sum

A sum() method is a reduction operation for adding together all elements of a distributed

array. It has two prototypes

t sum (t # source)

and

t sum (t # source, boolean # mask)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. The second form takes an

extra boolean array aligned with the source array and ignores all elements of source for

which the corresponding element of mask is false.

The sum method is implemented by a schedule object with HPspmd class Sumt. Each

primitive types other than boolean has its own schedule class. This class has two constructors

with arguments identical to the method above, and has one public method with no arguments

called execute(), which executes the schedule. The effective public interface of the Sumt

class is

public class Sumt implements HPspmd {
public Sumt (t # source) { ... }

public Sumt (t # source, boolean # mask){ ... }

public t execute () { ... }
. . .

}

The source array is source. It will have elements of type t. The mask array is mask.

A.9.1 Effect and Restrictions

Effect: If mask is not present, executing the schedule adds together all elements of the

array. If mask is present, executing the schedule adds together all elements of the

array for which the corresponding element of the mask array is non-zero. The addition

is performed in an unspecified order. It has same effect as without the mask if all values

of the mask are true. If all elements of the mask are false, it will return zero. It has
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same effect as all elements of source array are zero without the mask. The result value

is broadcast to all members of the active process group.

Shape restrictions: The mask array if present must have the same shape as the source

array.

Alignment restrictions: The mask array if present must be aligned with the source array.

Containment restrictions: The source array and the mask array if present must be fully

contained in the active progess group.

Replicated data: If the source or mask array has replicated mapping, values for particular

elements are generally taken from the nearest copy. The definition of “nearest” is

implementation dependent.
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A.10 SumDim

A sumDim() method is a reduction operation for summing the elements of a distributed

array along one of its dimensions, yielding a reduced array with the rank one less than the

source. It has two prototypes

void sumDim (t # res, t # source, int dimension)

and

void sumDim (t # res, t # source, boolean # mask, int dimension)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. The result of this operation

is written in res. The reduction occurs in dimension dimension. The second form takes

an extra boolean array aligned with the source array and ignores all elements of source for

which the corresponding element of mask is false.

The sumDim method is implemented by a schedule object with HPspmd class SumDimt.

Each primitive types other than boolean has its own schedule class. This class has two

constructors with arguments identical to the method above, and has one public method with

no arguments called execute(), which executes the schedule. The effective public interface

of the SumDimt class is

public class SumDimt implements HPspmd {
public SumDimt (t # res, t # source, int dimension) { ... }

public SumDimt (t # res, t # source, boolean # mask,
int dimension){ ... }

public void execute () { ... }
. . .

}

The source array is source and the result array is res. They will both have elements of

type t. The reduction occurs in dimension dimension. The mask array is mask.

A.10.1 Effect and Restrictions

Effect: On exit, if mask is not present, the value of
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res [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is
N−1∑

xdim=0

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

where N is the extent of the source array in dimension dim. The sum is performed in

an unspecified order. If mask is present, the exit value is

N−1∑

xdim = 0
mask [x0, . . . , xdim-1, xdim,

xdim+1, . . . , xR−1] �= false

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

It has same effect as without the mask if all values of the mask are true. If all elements

of the mask are false, res will store zero. It has same effect as if all elements of source

array are zero without the mask.

As implied by the replicated alignment of the result array, results are broadcast in the

process dimension associated with dimension dim of the source array.

Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Shape restrictions: The mask array if present must have the same shape as the source

array. The shape of the result array must be obtained from the shape of the source

array be deleting dimension dimension.

Alignment restrictions: The mask array if present must be aligned with the source array.

The result array must be aligned to the source array, with replicated alignment in

dimension dimension.

Containment restrictions: The source array, mask array if present, and the result array

must be fully contained in the active progess group.

Overlap restrictions: In-place updates are not allowed.
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Replicated data: If the source array or mask array if present has replicated mapping,

values for particular elements are generally taken from the nearest copy. The definition

of “nearest” is implementation dependent. Consistent replication of copies in the result

array relies on consistency of copies in the source array.
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A.11 Product

A product() method is a reduction operation for multiplying together all elements of a

distributed array. It has two prototypes

t product (t # source)

and

t product (t # source, boolean # mask)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. The second form takes an

extra boolean array aligned with the source array and ignores all elements of source for

which the corresponding element of mask is false.

The product method is implemented by a schedule object with HPspmd class Productt.

Each primitive types other than boolean has its own schedule class. This class has two

constructors with arguments identical to the method above, and has one public method with

no arguments called execute(), which executes the schedule. The effective public interface

of the Productt class is

public class Productt implements HPspmd {
public Productt (t # source) { ... }

public Productt (t # source, boolean # mask) { ... }

public t execute () { ... }
. . .

}

The source array is source. It will have elements of type t. The mask array is mask.

A.11.1 Effect and Restrictions

Effect: If mask argument is not present, executing the schedule multiplies together all

elements of the array. If mask argument is present, executing the schedule multiplies

together all elements of the array for which the corresponding element of the mask

array is non-zero. The multiplication is performed in an unspecified order. It has same
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effect as without the mask if all values of the mask are true. If all elements of the mask

are false, it will return one. The result value is broadcast to all members of the active

process group.

Shape restrictions: The mask array if present must have the same shape as the source

array.

Alignment restrictions: The mask array if present must be aligned with the source array.

Containment restrictions: The source array and the mask array if present must be fully

contained in the active progess group.

Replicated data: If the source or mask array has replicated mapping, values for particular

elements are generally taken from the nearest copy. The definition of “nearest” is

implementation dependent.
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A.12 ProductDim

A productDim() method is a reduction operation for multiplying together the elements

of a distributed array along one of its dimensions, yielding a reduced array with the rank

one less than the source. It has two prototypes

void productDim (t # res, t # source, int dimension)

and

void productDim (t # res, t # source, boolean # mask, int dimension)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. The result of this operation

is written in res. The reduction occurs in dimension dimension. The second form takes

an extra boolean array aligned with the source array and ignores all elements of source for

which the corresponding element of mask is false.

The productDim method is implemented by a schedule object with HPspmd class

ProductDimt. Each primitive types other than boolean has its own schedule class. This

class has two constructors with arguments identical to the method above, and has one

public method with no arguments called execute(), which executes the schedule. The

effective public interface of the ProductDimt class is

public class ProductDimt implements HPspmd {
public ProductDimt (t # res, t # source, int dimension) { ... }

public ProductDimt (t # res, t # source, boolean # mask,
int dimension){ ... }

public void execute () { ... }
. . .

}

The source array is source and the result array is res. They will both have elements of

type t. The reduction occurs in dimension dimension. The mask array is mask.

A.12.1 Effect and Restrictions

Effect: On exit, if mask is not present, the value of
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res [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is
N−1∏

xdim=0

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

where N is the extent of the source array in dimension dim. The product is performed

in an unspecified order. If mask is present, the exit value is

N−1∏

xdim = 0
mask [x0, . . . , xdim-1, xdim,

xdim+1, . . . , xR−1] �= false

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

It has same effect as without the mask if all values of the mask are true. If all elements

of the mask are false, res will store one.

As implied by the replicated alignment of the result array, results are broadcast in the

process dimension associated with dimension dim of the source array.

Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Shape restrictions: The mask array if present must have the same shape as the source

array. The shape of the result array must be obtained from the shape of the source

array be deleting dimension dimension.

Alignment restrictions: The mask array if present must be aligned with the source array.

The result array must be aligned to the source array, with replicated alignment in

dimension dimension.

Containment restrictions: The source array, mask array if present, and the result array

must be fully contained in the active progess group.

Overlap restrictions: In-place updates are not allowed.

Replicated data: If the source array or mask array if present has replicated mapping,

values for particular elements are generally taken from the nearest copy. The definition
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of “nearest” is implementation dependent. Consistent replication of copies in the result

array relies on consistency of copies in the source array.
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A.13 Maxval

A maxval() method is a reduction operation for finding the largest elements of a

distributed array. It has two prototypes

t maxval (t # source)

and

t maxval (t # source, boolean # mask)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. The second form takes an

extra boolean array aligned with the source array and ignores all elements of source for

which the corresponding element of mask is false.

The maxval method is implemented by a schedule object with HPspmd class Maxvalt.

Each primitive types other than boolean has its own schedule class. This class has two

constructors with arguments identical to the method above, and has one public method with

no arguments called execute(), which executes the schedule. The effective public interface

of the Maxvalt class is

public class Maxvalt implements HPspmd {
public Maxvalt (t # source) { ... }

public Maxvalt (t # source, boolean # mask) { ... }

public T execute () { ... }
. . .

}

The source array is source. It will have elements of type T . The mask array is mask.

A.13.1 Effect and Restrictions

Effect: If mask argument is not present, executing the schedule finds the largest elements of

the array. If mask argument is present, executing the schedule finds the largest elements

of the array for which the corresponding element of the mask array is non-zero. It has

same effect as without the mask if all values of the mask are true. If all elements of
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the mask are false, it will return most negative value in its type. The result value is

broadcast to all members of the active process group.

Shape restrictions: The mask array if present must have the same shape as the source

array.

Alignment restrictions: The mask array if present must be aligned with the source array.

Containment restrictions: The source array and the mask array if present must be fully

contained in the active progess group.

Replicated data: If the source array or mask array if present has replicated mapping,

values for particular elements are generally taken from the nearest copy. The definition

of “nearest” is implementation dependent.
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A.14 MaxvalDim

A maxvalDim() method is a reduction operation for finding the largest elements of a

distributed array along one of its dimensions, yielding a reduced array with the rank one less

than the source. It has two prototypes

void maxvalDim (t # res, t # source, int dimension)

and

void maxvalDim (t # res, t # source, boolean # mask, int dimension)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. The result of this operation

is written in res. The reduction occurs in dimension dimension. The second form takes

an extra boolean array aligned with the source array and ignores all elements of source for

which the corresponding element of mask is false.

The maxvalDim method is implemented by a schedule object with HPspmd class

MaxvalDimt. Each primitive types other than boolean has its own schedule class. This class

has two constructors with arguments identical to the method above, and has one public

method with no arguments called execute(), which executes the schedule. The effective

public interface of the MaxvalDimt class is

public class MaxvalDimt implements HPspmd {
public MaxvalDimt (t # res, t # source, int dimension) { ... }

public MaxvalDimt (t # res, t # source, boolean # mask,
int dimension) { ... }

public void execute () { ... }
. . .

}

The source array is source and the result array is res. They will both have elements of

type t. The reduction occurs in dimension dimension. The mask array is mask.

A.14.1 Effect and Restrictions

Effect: On exit, the value of
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res [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is the maximum value of

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

for which

mask [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1] �= false

over the allowed values of xdim. It has same effect as without the mask if all values of

the mask are true. If all elements of the mask are false, res will store most negative

value in its type.

As implied by the replicated alignment of the result array, results are broadcast in the

process dimension associated with dimension dim of the source array.

Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Shape restrictions: The mask array if present must have the same shape as the source

array. The shape of the result array must be obtained from the shape of the source

array be deleting dimension dimension.

Alignment restrictions: The mask array if present must be aligned with the source array.

The result array must be aligned to the source array, with replicated alignment in

dimension dimension.

Containment restrictions: The source array, mask array if present, and the result array

must be fully contained in the active progess group.

Overlap restrictions: In-place updates are not allowed.

Replicated data: If the source array or mask array if present has replicated mapping,

values for particular elements are generally taken from the nearest copy. The definition

of “nearest” is implementation dependent. Consistent replication of copies in the result

array relies on consistency of copies in the source array.
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A.15 Minval

A minval() method is a reduction operation for finding the smallest elements of a

distributed array. It has two prototypes

t minval (t # source)

and

t minval (t # source, boolean # mask)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. The second form takes an

extra boolean array aligned with the source array and ignores all elements of source for

which the corresponding element of mask is false.

The minval method is implemented by a schedule object with HPspmd class Minvalt.

Each primitive types other than boolean has its own schedule class. This class has two

constructors with arguments identical to the method above, and has one public method with

no arguments called execute(), which executes the schedule. The effective public interface

of the Minvalt class is

public class Minvalt implements HPspmd {
public Minvalt (t # source) { ... }

public Minvalt (t # source, boolean # mask) { ... }

public t execute () { ... }
. . .

}

The source array is source. It will have elements of type t. The mask array is mask.

A.15.1 Effect and Restrictions

Effect: If mask argument is not present, executing the schedule finds the smallest elements

of the array. If mask argument is present, executing the schedule finds the smallest

elements of the array for which the corresponding element of the mask array is non-zero.

It has same effect as without the mask if all values of the mask are true. If all elements
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of the mask are false, it will return most positive value in its type. The result value is

broadcast to all members of the active process group.

Shape restrictions: The mask array if present must have the same shape as the source

array.

Alignment restrictions: The mask array if present must be aligned with the source array.

Containment restrictions: The source array and the mask array if present must be fully

contained in the active progess group.

Replicated data: If the source array or mask array if present has replicated mapping,

values for particular elements are generally taken from the nearest copy. The definition

of “nearest” is implementation dependent.
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A.16 MinvalDim

A minvalDim() method is a reduction operation for finding the smallest elements of a

distributed array along one of its dimensions, yielding a reduced array with the rank one less

than the source. It has two prototypes

void minvalDim (t # res, t # source, int dimension)

and

void minvalDim (t # res, t # source, boolean # mask, int dimension)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. The result of this operation

is written in res. The reduction occurs in dimension dimension. The second form takes

an extra boolean array aligned with the source array and ignores all elements of source for

which the corresponding element of mask is false.

The minvalDim method is implemented by a schedule object with HPspmd class

MinvalDimt. Each primitive types other than boolean has its own schedule class. This class

has two constructors with arguments identical to the method above, and has one public

method with no arguments called execute(), which executes the schedule. The effective

public interface of the MinvalDimt class is

public class MinvalDimt implements HPspmd {
public MinvalDimt (t # res, t # source, int dimension) { ... }

public MinvalDimt (t # res, t # source, boolean # mask,
int dimension){ ... }

public void execute () { ... }
. . .

}

The source array is source and the result array is res. They will both have elements of

type t. The reduction occurs in dimension dimension. The mask array is mask.

A.16.1 Effect and Restrictions

Effect: On exit, the value of
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res [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is the minimum value of

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

for which

mask [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1] �= false

over the allowed values of xdim. It has same effect as without the mask if all values

of the mask are true. If all elements of the mask are false, res will store most positive

value in its type.

As implied by the replicated alignment of the result array, results are broadcast in the

process dimension associated with dimension dim of the source array.

Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Shape restrictions: The mask array if present must have the same shape as the source

array. The shape of the result array must be obtained from the shape of the source

array be deleting dimension dimension.

Alignment restrictions: The mask array if present must be aligned with the source array.

The result array must be aligned to the source array, with replicated alignment in

dimension dimension.

Containment restrictions: The source array, mask array if present, and the result array

must be fully contained in the active progess group.

Overlap restrictions: In-place updates are not allowed.

Replicated data: If the source array or mask array if present has replicated mapping,

values for particular elements are generally taken from the nearest copy. The definition

of “nearest” is implementation dependent. Consistent replication of copies in the result

array relies on consistency of copies in the source array.
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A.17 All

A all() method is a boolean reduction operation for computing the logical conjunction

of the elements of a distributed array of boolean values. This method returns true if and

only if all element of source are true. The prototype is

boolean all (boolean # source)

where the notation boolean # means a multiarray of arbitrary rank with elements of type

boolean.

The all method is implemented by a schedule object with HPspmd class All. This class

has two constructors with arguments identical to the method above, and has one public

method with no arguments called execute(), which executes the schedule. The effective

public interface of the All class is

public class All implements HPspmd {
public All (boolean # source) { ... }

public boolean execute () { ... }
. . .

}

The source array is source.

A.17.1 Effect and Restrictions

Effect: Executing the schedule forms the logical conjunction (boolean and) of the elements

of the array. The result value is broadcast to all members of the active process group.

Replicated data: If the source array has replicated mapping, values for particular elements

are generally taken from the nearest copy. The definition of “nearest” is implementation

dependent.

148



A.18 AllDim

A allDim() method is a boolean reduction operation for computing the logical conjunc-

tion of the elements of a distributed array of its dimensions, yielding a reduced array with

the rank one less than the source. The prototype is

void allDim (boolean # res, boolean # source, int dimension)

where the notation boolean # means a multiarray of arbitrary rank with elements of type

boolean. The result of this operation is written in res. The reduction occurs in dimension

dimension.

The allDim method is implemented by a schedule object with HPspmd class AllDim.

This class has two constructors with arguments identical to the method above, and has

one public method with no arguments called execute(), which executes the schedule. The

effective public interface of the AllDim class is

public class AllDim implements HPspmd {
public AllDim (boolean # res, boolean # source, int dimension) { ... }

public void execute () { ... }
. . .

}

The source array is source and the result array is res. They will both have elements of

type boolean. The reduction occurs in dimension dimension.

A.18.1 Effect and Restrictions

Effect: On exit, the value of

res [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is true if

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

is true for all allowed values of xdim.

As implied by the replicated alignment of the result array, results are broadcast in the

process dimension associated with dimension dim of the source array.

149



Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Shape restrictions: The shape of the result array must be obtained from the shape of the

source array be deleting dimension dimension.

Alignment restrictions: The result array must be aligned to the source array, with

replicated alignment in dimension dimension.

Containment restrictions: The source array and the result array must be fully contained

in the active progess group.

Overlap restrictions: In-place updates are not allowed.

Replicated data: If the source array has replicated mapping, values for particular elements

are generally taken from the nearest copy. The definition of “nearest” is implementation

dependent. Consistent replication of copies in the result array relies on consistency of

copies in the source array.
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A.19 Any

A any() method is a boolean reduction operation for computing the logical disjunction

of the elements of a distributed array of boolean values. This method returns true if and

only if any element of source is true. The prototype is

boolean any (boolean # source)

where the notation boolean # means a multiarray of arbitrary rank with elements of type

boolean.

The any method is implemented by a schedule object with HPspmd class Any. This class

has two constructors with arguments identical to the method above, and has one public

method with no arguments called execute(), which executes the schedule. The effective

public interface of the Any class is

public class Any implements HPspmd {
public Any (boolean # source) { ... }

public boolean execute () { ... }
. . .

}

The source array is source. It will have elements of type boolean.

A.19.1 Effect and Restrictions

Effect: Executing the schedule forms the logical conjunction (boolean and) of the elements

of the array. The result value is broadcast to all members of the active process group.

Replicated data: If the source array has replicated mapping, values for particular elements

are generally taken from the nearest copy. The definition of “nearest” is implementation

dependent.
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A.20 AnyDim

A anyDim() method is a boolean reduction operation for computing the logical disjunc-

tion of the elements of a distributed array of its dimensions, yielding a reduced array with

the rank one less than the source. The prototype is

void anyDim (boolean # res, boolean # source, int dimension)

where the notation boolean # means a multiarray of arbitrary rank with elements of type

boolean. The result of this operation is written in res. The reduction occurs in dimension

dimension.

The anyDim method is implemented by a schedule object with HPspmd class AnyDim.

This class has two constructors with arguments identical to the method above, and has

one public method with no arguments called execute(), which executes the schedule. The

effective public interface of the AnyDim class is

public class AnyDim implements HPspmd {
public AnyDim (boolean # res, boolean # source, int dimension) { ... }

public void execute () { ... }
. . .

}

The source array is source and the result array is res. They will both have elements of

type boolean. The reduction occurs in dimension dimension.

A.20.1 Effect and Restrictions

Effect: On exit, the value of

res [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is true if

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

is true for any allowed values of xdim.

As implied by the replicated alignment of the result array, results are broadcast in the

process dimension associated with dimension dim of the source array.
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Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Shape restrictions: The shape of the result array must be obtained from the shape of the

source array be deleting dimension dimension.

Alignment restrictions: The result array must be aligned to the source array, with

replicated alignment in dimension dimension.

Containment restrictions: The source array and the result array must be fully contained

in the active progess group.

Overlap restrictions: In-place updates are not allowed.

Replicated data: If the source array has replicated mapping, values for particular elements

are generally taken from the nearest copy. The definition of “nearest” is implementation

dependent. Consistent replication of copies in the result array relies on consistency of

copies in the source array.
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A.21 Count

A count() method is a boolean reduction operation for counting the number of true

elements in a distributed array of boolean values. This method returns true if and only if

count element of source is true. The prototype is

boolean count (boolean # source)

where the notation boolean # means a multiarray of arbitrary rank with elements of type

boolean.

The count method is implemented by a schedule object with HPspmd class Count. This

class has a constructor with arguments identical to the method above, and has one public

method with no arguments called execute(), which executes the schedule. The effective

public interface of the Count class is

public class Count implements HPspmd {
public Count (boolean # source) { ... }

public int execute () { ... }
. . .

}

The source array is source. It will have elements of type boolean.

A.21.1 Effect and Restrictions

Effect: Executing the schedule returns the number of true elements of the array. The result

value is broadcast to all members of the active process group.

Containment restrictions: The source array array must be fully contained in the active

progess group.

Replicated data: If the source array has replicated mapping, values for particular elements

are generally taken from the nearest copy. The definition of “nearest” is implementation

dependent.
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A.22 CountDim

A countDim() method is a boolean reduction operation for counting the number of true

elements of a distributed array of boolean values along one of its dimensions, yielding a

reduced array with the rank one less than the source. The prototype is

void countDim (boolean # res, boolean # a, int dimension)

where the notation boolean # means a multiarray of arbitrary rank with elements of type

boolean. The result of this operation is written in res. The reduction occurs in dimension

dimension.

The countDim method is implemented by a schedule object with HPspmd class CountDim.

This class has a constructor with arguments identical to the method above, and has one

public method with no arguments called execute(), which executes the schedule. The

effective public interface of the CountDim class is

public class CountDim implements HPspmd {
public CountDim (boolean # res, boolean # source, int dimension) { ... }

public void execute () { ... }
. . .

}

The source array is source and the result array is res. They will both have elements of

type boolean. The reduction occurs in dimension dimension.

A.22.1 Effect and Restrictions

Effect: On exit, the value of

res [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is the number of true (non-zero) elements

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

over allowed values of xdim.

As implied by the replicated alignment of the result array, results are broadcast in the

process dimension associated with dimension dim of the source array.
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Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Shape restrictions: The shape of the result array must be obtained from the shape of the

source array be deleting dimension dimension.

Alignment restrictions: The result array must be aligned to the source array, with

replicated alignment in dimension dimension.

Containment restrictions: The source array and the result array must be fully contained

in the active progess group.

Overlap restrictions: In-place updates are not allowed.

Replicated data: If the source array has replicated mapping, values for particular elements

are generally taken from the nearest copy. The definition of “nearest” is implementation

dependent. Consistent replication of copies in the result array relies on consistency of

copies in the source array.
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A.23 DotProduct

A dotProduct() method is a reduction operation for computing the dot product of two

distributed arrays. The function dotProduct takes two aligned arrays as arguments and

returns their scalar product—the sum of pairwise products of elements. The situation with

element types is complicated because the types of the two arguments need not be identical. If

they are different, standard Java binary numeric promotions are applied before multiplying

elements. The prototypes are

t3 dotProduct(t1 # a, t2 # b)

and

boolean dotProduct(boolean # a, boolean # b)

If either of t1 or t2 is a floating point type (float or double) the result type, t3, is double).

Otherwise the result type t3 is long. The second form takes boolean as the arguments

and returns the logical “or” of all the pairwise logical “ands” of elements. The argument

multiarrays must have the same shape and must be aligned. The result is broadcasts to all

members of the active process group.

The dotProduct method is implemented by a schedule object with HPspmd class

DotProductt. Each pair of primitive types other than boolean has its own schedule class.

This class has a constructor with arguments identical to the method above, and has one

public method with no arguments called execute(), which executes the schedule. The

effective public interface of the DotProductt class is

public class DotProductt1t2 implements HPspmd {
public DotProductt1t2 (t1 # source1, t2 # source2) { ... }

public t3 execute () { ... }
. . .

}

All primitive type of Java combination other than boolean type is possible for t1 and t2.

Type of t3 is depends on the type of arguments t1 and t2.
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A.23.1 Effect and Restrictions

Effect: Executing the schedule multiplies together corresponding elements of the source

arrays, in pairs, then adds together all pairwise products. The addition occurs in

an unspecified order. Boolean dot product equivalent to masked version of ‘Any’ (see

section A.19). The result value is broadcast to all members of the active process group.

Shape restrictions: The two source arrays must have the same shape.

Alignment restrictions: The source arrays must be aligned with one another.

Containment restrictions: The source arrays must be fully contained in the active progess

group.

Replicated data: If the source has replicated mapping, values for particular elements are

generally taken from the nearest copy. The definition of “nearest” is implementation

dependent.
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A.24 Maxloc

A maxloc() method is a reduction operation for finding the location of the largest

elements of a distributed array. This method rerun the maximum value of all element of an

array—similar to maxval (see section A.13—but also output the index tuple in the array at

which the extreme value was found. The prototypical forms are

t maxloc (int [] loc, t # source)

and

t maxloc (int [] loc, t # source, boolean # mask)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. loc is an ordinary Java array

of length R, the rank of source. On exit it contains the global subscripts of the extreme

value. The second form takes an extra boolean array aligned with the source array and

ignores all elements of source for which the corresponding element of mask is false.

The maxloc method is implemented by a schedule object with HPspmd class Maxloct.

Each primitive types other than boolean has its own schedule class. This class has two

constructors with arguments identical to the method above, and has one public method with

no arguments called execute(), which executes the schedule. The effective public interface

of the Maxloct class is

public class Maxloct implements HPspmd {
public Maxloct (int [] loc, t # source) { ... }

public Maxloct (int [] loc, t # source, boolean # mask) { ... }

public t execute () { ... }
. . .

}

The source array is source. It will have elements of type t. The location of the largest value

stored in loc. Size of loc vector must be equal to the rank of the source array. The mask

array is mask.
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A.24.1 Effect and Restrictions

Effect: If mask argument is not present the value of largest element in the array is returned.

If mask argument is present the value of largest element in the array for which the

corresponding element of the mask array is non-zero is returned. The global subscripts

of the first occurrence of this element are written to the vector loc. If the maximum

value occurs more than once in the array, “first occurrence” is defined by ordering the

set of global subscripts with first subscript least significant. The result values returned

value and location are broadcast to all member of the active process group.

It has same effect as without the mask if all values of the mask are true. If all elements

of the mask are false, it will return most negative value in its type and loc will store

most positive value in its type.

Shape restrictions: The mask array if present must have the same shape as the source

array.

Alignment restrictions: The mask array if present must be aligned with the source array.

Containment restrictions: The source array and the mask array if present must be fully

contained in the active progess group.

Replicated data: If the source array or mask array if present has replicated mapping,

values for particular elements are generally taken from the nearest copy. The definition

of “nearest” is implementation dependent.
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A.25 MaxlocDim

A maxlocDim() method is a reduction operation for searching for the largest elements of

a distributed array along one of its dimensions, yielding a reduced array with the rank one

less than the source. It has two prototypes

void maxlocDim (t # res, t # loc, t # a, int dimension)

and

void maxlocDim (t # res, t # loc, t # source, boolean # mask,
int dimension)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. The result of this operation

is written in res and location is written in loc. The array loc has the same rank and

alignment as res (since the reduction is in a single dimension, only one index value—for

the specified dimension—meeds to be returned per extreme value). The reduction occurs

in dimension dimension. The second form takes an extra boolean array aligned with the

source array and ignores all elements of source for which the corresponding element of mask

is false.

The maxlocDim method is implemented by a schedule object with HPspmd class

MaxlocDimt. Each primitive types other than boolean has its own schedule class. This class

has two constructors with arguments identical to the method above, and has one public

method with no arguments called execute(), which executes the schedule. The effective

public interface of the MaxlocDimt class is

public class MaxlocDimt implements HPspmd {
public MaxlocDimt (t # res, t # loc, t # source,

int dimension) { ... }

public MaxlocDimt (t # res, t # loc, t # source, boolean # mask,
int dimension) { ... }

public void execute () { ... }
. . .

}
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The source array is source and the array of maximum values is res. They will both

have elements of type t. The array of maximum locations is loc. The reduction occurs

in dimension dimension. The mask array is mask.

A.25.1 Effect and Restrictions

Effect: On exit, the value of

res [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is the maximum value of

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

for which

mask [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1] �= false

over the allowed values of xdim. The value of

loc [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is the smallest xdim value at which this maximum occurs. It has same effect as without

the mask if all values of the mask are true. If all elements of the mask are false, res

will store most negative value in its type and loc will store most positive value in its

type.

As implied by the replicated alignment of the result array, results are broadcast in the

process dimension associated with dimension dim of the source array.

Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Shape restrictions: The shape of the two result arrays (res and loc) must be obtained

from the shape of the source array by deleting dimension dimension. The mask array

if present must be same shape as the source array.
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Alignment restrictions: The two result arrays (res and loc) must be aligned to the

source array, with replicated alignment in dimension dimension. The mask array if

present must be aligned with the source array.

Containment restrictions: The source array and mask array if present and the result

array must be fully contained in the active progess group.

Overlap restrictions: In-place updates are not allowed.

Replicated data: If the source array or mask array if present has replicated mapping,

values for particular elements are generally taken from the nearest copy. The definition

of “nearest” is implementation dependent. Consistent replication of copies in the result

array relies on consistency of copies in the source array.
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A.26 Minloc

A minloc() method is a reduction operation for finding the location of the smallest

elements of a distributed array. This method returns the minimum value of all element of

an array—similar to minval (see section A.15—but also output the index tuple in the array

at which the extreme value was found. The prototypical forms are

t minloc (int [] loc, t # source)

and

t minloc (int [] loc, t # source, boolean # mask)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. loc is an ordinary Java array

of length R, the rank of source. On exit it contains the global subscripts of the extreme

value. The second form takes an extra boolean array aligned with the source array and

ignores all elements of source for which the corresponding element of mask is false.

The minloc method is implemented by a schedule object with HPspmd class Minloct.

Each primitive types other than boolean has its own schedule class. This class has two

constructors with arguments identical to the method above, and has one public method with

no arguments called execute(), which executes the schedule. The effective public interface

of the Minloct class is

public class Minloct implements HPspmd {
public Minloct (int [] loc, t # source) { ... }

public Minloct (int [] loc, t # source, boolean # mask) { ... }

public t execute () { ... }
. . .

}

The source array is source. It will have elements of type t. The location of the largest value

stored in loc. Size of loc vector must be equal to the rank of the source array. The mask

array is mask.
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A.26.1 Effect and Restrictions

Effect: If mask argument is not present the value of smallest element in the array is returned.

If mask argument is present the value of smallest element in the array for which the

corresponding element of the mask array is non-zero is returned. The global subscripts

of the first occurrence of this element are written to the vector loc. If the minimum

value occurs more than once in the array, “first occurrence” is defined by ordering the

set of global subscripts with first subscript least significant. The result values returned

value and location are broadcast to all member of the active process group.

It has same effect as without the mask if all values of the mask are true. If all elements

of the mask are false, it will return most positive value in its type and loc will store

most positive value in its type.

Shape restrictions: The mask array if present must have the same shape as the source

array.

Alignment restrictions: The mask array if present must be aligned with the source array.

Containment restrictions: The source array and the mask array if present must be fully

contained in the active progess group.

Replicated data: If the source array or mask array if present has replicated mapping,

values for particular elements are generally taken from the nearest copy. The definition

of “nearest” is implementation dependent.
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A.27 MinlocDim

A minlocDim() method is a reduction operation for searching for the smallest elements

of a distributed array along one of its dimensions, yielding a reduced array with the rank

one less than the source. It has two prototypes

void minlocDim (t # res, t # loc, t # a, int dimension)

and

void minlocDim (t # res, t # loc, t # source, boolean # mask,
int dimension)

where the variable t runs over all primitive types other than boolean, and the notation t #

means a multiarray of arbitrary rank, with elements of type t. The result of this operation

is written in res and location is written in loc. The array loc has the same rank and

alignment as res (since the reduction is in a single dimension, only one index value—for

the specified dimension—meeds to be returned per extreme value). The reduction occurs

in dimension dimension. The second form takes an extra boolean array aligned with the

source array and ignores all elements of source for which the corresponding element of mask

is false.

The minlocDim method is implemented by a schedule object with HPspmd class

MinlocDimt. Each primitive types other than boolean has its own schedule class. This class

has two constructors with arguments identical to the method above, and has one public

method with no arguments called execute(), which executes the schedule. The effective

public interface of the MinlocDimt class is

public class MinlocDimt implements HPspmd {
public MinlocDimt (t # res, t # loc, t # source,

int dimension) { ... }

public MinlocDimt (t # res, t # loc, t # source, boolean # mask,
int dimension) { ... }

public void execute () { ... }
. . .

}
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The source array is source and the array of maximum values is res. They will both

have elements of type t. The array of maximum locations is loc. The reduction occurs

in dimension dimension. The mask array is mask.

A.27.1 Effect and Restrictions

Effect: On exit, the value of

res [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is the minimum value of

source [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1]

for which

mask [x0, . . . , xdim-1, xdim, xdim+1, . . . , xR−1] �= false

over the allowed values of xdim. The value of

loc [x0, . . . , xdim-1, xdim+1, . . . , xR−1]

is the smallest xdim value at which this minimum occurs. It has same effect as without

the mask if all values of the mask are true. If all elements of the mask are false, res

and loc will store most positive value in its type.

As implied by the replicated alignment of the result array, results are broadcast in the

process dimension associated with dimension dim of the source array.

Value restrictions: The value of dimension must be in the range 0, . . . ,R-1 where R is

the rank of the source array.

Shape restrictions: The shape of the two result arrays (res and loc) must be obtained

from the shape of the source array by deleting dimension dimension. The mask array

if present must be same shape as the source array.
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Alignment restrictions: The two result arrays (res and loc) must be aligned to the

source array, with replicated alignment in dimension dimension. The mask array if

present must be aligned with the source array.

Containment restrictions: The source array, mask array if present, and the result array

must be fully contained in the active progess group.

Overlap restrictions: In-place updates are not allowed.

Replicated data: If the source array or mask array if present has replicated mapping,

values for particular elements are generally taken from the nearest copy. The definition

of “nearest” is implementation dependent. Consistent replication of copies in the result

array relies on consistency of copies in the source array.
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A.28 APrintf

A aprintf method is a I/O operation that modelled on the C printf() function. Its

arguments are a control string and a list of distributed arrays. The effective prototypes are

void aprintf(String control, T # source)

void aprintf(String control, T0 # source0, T1 # source1)

void aprintf(String control, T0 # source0, T1 # source1, T2 # source2)

For now a maximum of three input arrays is allowed. If more than one array is specified, all

should have the same shape. But they can have any, unrelated distribution format.

The aptintf method is implemented by a class APrintf. The effective public interface

of the APrintf class is

public class APrintf {
public APrintf(String control, IOArg[] args) { ... }

. . .
}

The control string is control. The multidimensional arrays are stored into the array args.

A.28.1 Effect and Restrictions

Effect: In a pseudocode notation, the general behaviour of aprintf() is like

for each i0 in (0, . . . , N0 − 1) in sequence do
...

for each iR−1 in (0, . . . , NR−1 − 1) in sequence do
printf(control, source0 [i0, ..., iR−1],

source1 [i0, ..., iR−1],
...)

where (N0, . . . , NR−1) is the shape the arrays. The integer value i0 is interpolated into

the output wherever there is a %R0 in the control string; the value i1 is interpolated

wherever there is a %R1; and so on. The imaginary elemental printf operation outputs

to System.out on the root process of the active process group.
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Special options:

%RD: It prints the current index value. D stands for integer number like %R0, %R1, and

so on. The format %RD interpolates the index value into the string without the

need to initialize an extra array of integer.

Example:

float [[-,-]] a = new float [[x,y]] ;
overall(i = x for :)

overall(j = y for :)
a [i, j] = 10.0F * i‘ + j‘;

Adlib.aprintf("a[%R0, %R1] = %f\n", a) ;

Output:
a [0, 0] = 0.0
a [0, 1] = 1.0
a [0, 2] = 2.0
a [1, 0] = 10.0
a [1, 1] = 11.0
a [1, 2] = 12.0

%N: It provides line breaking. It behaves exactly like the \n escape sequence. But

%N allow an integer modifier. It defines the frequency with which the newline is

printed. If the value of the modifier is w, the new line is only printed in every

wth elemental print operation.

Example: If we replace the aprintf() call in the previous example with

Adlib.aprintf("a[%R0, %R1] = %f %3N", a) ;

Output:
a [0, 0] = 0.0 a [0, 1] = 1.0 a [0, 2] = 2.0
a [1, 0] = 10.0 a [1, 1] = 11.0 a [1, 2] = 12.0

Shape restrictions: All arrays should have the same shape.

170



A.29 gprintf

A gprintf is a I/O operation for printing a “global” String value. All they do is output

string to System.out on the root process of the active process group. They have interfaces:

gprint(String string)

gprintln(String string)

The interface gprintf() is equivalent to System.out.print() and the interface gprintln()

is eqivalent to System.out.println().
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